linux/fs/libfs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      fs/libfs.c
   4 *      Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/fsnotify.h>
  23#include <linux/unicode.h>
  24#include <linux/fscrypt.h>
  25
  26#include <linux/uaccess.h>
  27
  28#include "internal.h"
  29
  30int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
  31                   struct kstat *stat, u32 request_mask,
  32                   unsigned int query_flags)
  33{
  34        struct inode *inode = d_inode(path->dentry);
  35        generic_fillattr(&init_user_ns, inode, stat);
  36        stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  37        return 0;
  38}
  39EXPORT_SYMBOL(simple_getattr);
  40
  41int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  42{
  43        buf->f_type = dentry->d_sb->s_magic;
  44        buf->f_bsize = PAGE_SIZE;
  45        buf->f_namelen = NAME_MAX;
  46        return 0;
  47}
  48EXPORT_SYMBOL(simple_statfs);
  49
  50/*
  51 * Retaining negative dentries for an in-memory filesystem just wastes
  52 * memory and lookup time: arrange for them to be deleted immediately.
  53 */
  54int always_delete_dentry(const struct dentry *dentry)
  55{
  56        return 1;
  57}
  58EXPORT_SYMBOL(always_delete_dentry);
  59
  60const struct dentry_operations simple_dentry_operations = {
  61        .d_delete = always_delete_dentry,
  62};
  63EXPORT_SYMBOL(simple_dentry_operations);
  64
  65/*
  66 * Lookup the data. This is trivial - if the dentry didn't already
  67 * exist, we know it is negative.  Set d_op to delete negative dentries.
  68 */
  69struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  70{
  71        if (dentry->d_name.len > NAME_MAX)
  72                return ERR_PTR(-ENAMETOOLONG);
  73        if (!dentry->d_sb->s_d_op)
  74                d_set_d_op(dentry, &simple_dentry_operations);
  75        d_add(dentry, NULL);
  76        return NULL;
  77}
  78EXPORT_SYMBOL(simple_lookup);
  79
  80int dcache_dir_open(struct inode *inode, struct file *file)
  81{
  82        file->private_data = d_alloc_cursor(file->f_path.dentry);
  83
  84        return file->private_data ? 0 : -ENOMEM;
  85}
  86EXPORT_SYMBOL(dcache_dir_open);
  87
  88int dcache_dir_close(struct inode *inode, struct file *file)
  89{
  90        dput(file->private_data);
  91        return 0;
  92}
  93EXPORT_SYMBOL(dcache_dir_close);
  94
  95/* parent is locked at least shared */
  96/*
  97 * Returns an element of siblings' list.
  98 * We are looking for <count>th positive after <p>; if
  99 * found, dentry is grabbed and returned to caller.
 100 * If no such element exists, NULL is returned.
 101 */
 102static struct dentry *scan_positives(struct dentry *cursor,
 103                                        struct list_head *p,
 104                                        loff_t count,
 105                                        struct dentry *last)
 106{
 107        struct dentry *dentry = cursor->d_parent, *found = NULL;
 108
 109        spin_lock(&dentry->d_lock);
 110        while ((p = p->next) != &dentry->d_subdirs) {
 111                struct dentry *d = list_entry(p, struct dentry, d_child);
 112                // we must at least skip cursors, to avoid livelocks
 113                if (d->d_flags & DCACHE_DENTRY_CURSOR)
 114                        continue;
 115                if (simple_positive(d) && !--count) {
 116                        spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 117                        if (simple_positive(d))
 118                                found = dget_dlock(d);
 119                        spin_unlock(&d->d_lock);
 120                        if (likely(found))
 121                                break;
 122                        count = 1;
 123                }
 124                if (need_resched()) {
 125                        list_move(&cursor->d_child, p);
 126                        p = &cursor->d_child;
 127                        spin_unlock(&dentry->d_lock);
 128                        cond_resched();
 129                        spin_lock(&dentry->d_lock);
 130                }
 131        }
 132        spin_unlock(&dentry->d_lock);
 133        dput(last);
 134        return found;
 135}
 136
 137loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 138{
 139        struct dentry *dentry = file->f_path.dentry;
 140        switch (whence) {
 141                case 1:
 142                        offset += file->f_pos;
 143                        fallthrough;
 144                case 0:
 145                        if (offset >= 0)
 146                                break;
 147                        fallthrough;
 148                default:
 149                        return -EINVAL;
 150        }
 151        if (offset != file->f_pos) {
 152                struct dentry *cursor = file->private_data;
 153                struct dentry *to = NULL;
 154
 155                inode_lock_shared(dentry->d_inode);
 156
 157                if (offset > 2)
 158                        to = scan_positives(cursor, &dentry->d_subdirs,
 159                                            offset - 2, NULL);
 160                spin_lock(&dentry->d_lock);
 161                if (to)
 162                        list_move(&cursor->d_child, &to->d_child);
 163                else
 164                        list_del_init(&cursor->d_child);
 165                spin_unlock(&dentry->d_lock);
 166                dput(to);
 167
 168                file->f_pos = offset;
 169
 170                inode_unlock_shared(dentry->d_inode);
 171        }
 172        return offset;
 173}
 174EXPORT_SYMBOL(dcache_dir_lseek);
 175
 176/* Relationship between i_mode and the DT_xxx types */
 177static inline unsigned char dt_type(struct inode *inode)
 178{
 179        return (inode->i_mode >> 12) & 15;
 180}
 181
 182/*
 183 * Directory is locked and all positive dentries in it are safe, since
 184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 185 * both impossible due to the lock on directory.
 186 */
 187
 188int dcache_readdir(struct file *file, struct dir_context *ctx)
 189{
 190        struct dentry *dentry = file->f_path.dentry;
 191        struct dentry *cursor = file->private_data;
 192        struct list_head *anchor = &dentry->d_subdirs;
 193        struct dentry *next = NULL;
 194        struct list_head *p;
 195
 196        if (!dir_emit_dots(file, ctx))
 197                return 0;
 198
 199        if (ctx->pos == 2)
 200                p = anchor;
 201        else if (!list_empty(&cursor->d_child))
 202                p = &cursor->d_child;
 203        else
 204                return 0;
 205
 206        while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 207                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 208                              d_inode(next)->i_ino, dt_type(d_inode(next))))
 209                        break;
 210                ctx->pos++;
 211                p = &next->d_child;
 212        }
 213        spin_lock(&dentry->d_lock);
 214        if (next)
 215                list_move_tail(&cursor->d_child, &next->d_child);
 216        else
 217                list_del_init(&cursor->d_child);
 218        spin_unlock(&dentry->d_lock);
 219        dput(next);
 220
 221        return 0;
 222}
 223EXPORT_SYMBOL(dcache_readdir);
 224
 225ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 226{
 227        return -EISDIR;
 228}
 229EXPORT_SYMBOL(generic_read_dir);
 230
 231const struct file_operations simple_dir_operations = {
 232        .open           = dcache_dir_open,
 233        .release        = dcache_dir_close,
 234        .llseek         = dcache_dir_lseek,
 235        .read           = generic_read_dir,
 236        .iterate_shared = dcache_readdir,
 237        .fsync          = noop_fsync,
 238};
 239EXPORT_SYMBOL(simple_dir_operations);
 240
 241const struct inode_operations simple_dir_inode_operations = {
 242        .lookup         = simple_lookup,
 243};
 244EXPORT_SYMBOL(simple_dir_inode_operations);
 245
 246static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
 247{
 248        struct dentry *child = NULL;
 249        struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
 250
 251        spin_lock(&parent->d_lock);
 252        while ((p = p->next) != &parent->d_subdirs) {
 253                struct dentry *d = container_of(p, struct dentry, d_child);
 254                if (simple_positive(d)) {
 255                        spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 256                        if (simple_positive(d))
 257                                child = dget_dlock(d);
 258                        spin_unlock(&d->d_lock);
 259                        if (likely(child))
 260                                break;
 261                }
 262        }
 263        spin_unlock(&parent->d_lock);
 264        dput(prev);
 265        return child;
 266}
 267
 268void simple_recursive_removal(struct dentry *dentry,
 269                              void (*callback)(struct dentry *))
 270{
 271        struct dentry *this = dget(dentry);
 272        while (true) {
 273                struct dentry *victim = NULL, *child;
 274                struct inode *inode = this->d_inode;
 275
 276                inode_lock(inode);
 277                if (d_is_dir(this))
 278                        inode->i_flags |= S_DEAD;
 279                while ((child = find_next_child(this, victim)) == NULL) {
 280                        // kill and ascend
 281                        // update metadata while it's still locked
 282                        inode->i_ctime = current_time(inode);
 283                        clear_nlink(inode);
 284                        inode_unlock(inode);
 285                        victim = this;
 286                        this = this->d_parent;
 287                        inode = this->d_inode;
 288                        inode_lock(inode);
 289                        if (simple_positive(victim)) {
 290                                d_invalidate(victim);   // avoid lost mounts
 291                                if (d_is_dir(victim))
 292                                        fsnotify_rmdir(inode, victim);
 293                                else
 294                                        fsnotify_unlink(inode, victim);
 295                                if (callback)
 296                                        callback(victim);
 297                                dput(victim);           // unpin it
 298                        }
 299                        if (victim == dentry) {
 300                                inode->i_ctime = inode->i_mtime =
 301                                        current_time(inode);
 302                                if (d_is_dir(dentry))
 303                                        drop_nlink(inode);
 304                                inode_unlock(inode);
 305                                dput(dentry);
 306                                return;
 307                        }
 308                }
 309                inode_unlock(inode);
 310                this = child;
 311        }
 312}
 313EXPORT_SYMBOL(simple_recursive_removal);
 314
 315static const struct super_operations simple_super_operations = {
 316        .statfs         = simple_statfs,
 317};
 318
 319static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 320{
 321        struct pseudo_fs_context *ctx = fc->fs_private;
 322        struct inode *root;
 323
 324        s->s_maxbytes = MAX_LFS_FILESIZE;
 325        s->s_blocksize = PAGE_SIZE;
 326        s->s_blocksize_bits = PAGE_SHIFT;
 327        s->s_magic = ctx->magic;
 328        s->s_op = ctx->ops ?: &simple_super_operations;
 329        s->s_xattr = ctx->xattr;
 330        s->s_time_gran = 1;
 331        root = new_inode(s);
 332        if (!root)
 333                return -ENOMEM;
 334
 335        /*
 336         * since this is the first inode, make it number 1. New inodes created
 337         * after this must take care not to collide with it (by passing
 338         * max_reserved of 1 to iunique).
 339         */
 340        root->i_ino = 1;
 341        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 342        root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 343        s->s_root = d_make_root(root);
 344        if (!s->s_root)
 345                return -ENOMEM;
 346        s->s_d_op = ctx->dops;
 347        return 0;
 348}
 349
 350static int pseudo_fs_get_tree(struct fs_context *fc)
 351{
 352        return get_tree_nodev(fc, pseudo_fs_fill_super);
 353}
 354
 355static void pseudo_fs_free(struct fs_context *fc)
 356{
 357        kfree(fc->fs_private);
 358}
 359
 360static const struct fs_context_operations pseudo_fs_context_ops = {
 361        .free           = pseudo_fs_free,
 362        .get_tree       = pseudo_fs_get_tree,
 363};
 364
 365/*
 366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 367 * will never be mountable)
 368 */
 369struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 370                                        unsigned long magic)
 371{
 372        struct pseudo_fs_context *ctx;
 373
 374        ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 375        if (likely(ctx)) {
 376                ctx->magic = magic;
 377                fc->fs_private = ctx;
 378                fc->ops = &pseudo_fs_context_ops;
 379                fc->sb_flags |= SB_NOUSER;
 380                fc->global = true;
 381        }
 382        return ctx;
 383}
 384EXPORT_SYMBOL(init_pseudo);
 385
 386int simple_open(struct inode *inode, struct file *file)
 387{
 388        if (inode->i_private)
 389                file->private_data = inode->i_private;
 390        return 0;
 391}
 392EXPORT_SYMBOL(simple_open);
 393
 394int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 395{
 396        struct inode *inode = d_inode(old_dentry);
 397
 398        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 399        inc_nlink(inode);
 400        ihold(inode);
 401        dget(dentry);
 402        d_instantiate(dentry, inode);
 403        return 0;
 404}
 405EXPORT_SYMBOL(simple_link);
 406
 407int simple_empty(struct dentry *dentry)
 408{
 409        struct dentry *child;
 410        int ret = 0;
 411
 412        spin_lock(&dentry->d_lock);
 413        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 414                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 415                if (simple_positive(child)) {
 416                        spin_unlock(&child->d_lock);
 417                        goto out;
 418                }
 419                spin_unlock(&child->d_lock);
 420        }
 421        ret = 1;
 422out:
 423        spin_unlock(&dentry->d_lock);
 424        return ret;
 425}
 426EXPORT_SYMBOL(simple_empty);
 427
 428int simple_unlink(struct inode *dir, struct dentry *dentry)
 429{
 430        struct inode *inode = d_inode(dentry);
 431
 432        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 433        drop_nlink(inode);
 434        dput(dentry);
 435        return 0;
 436}
 437EXPORT_SYMBOL(simple_unlink);
 438
 439int simple_rmdir(struct inode *dir, struct dentry *dentry)
 440{
 441        if (!simple_empty(dentry))
 442                return -ENOTEMPTY;
 443
 444        drop_nlink(d_inode(dentry));
 445        simple_unlink(dir, dentry);
 446        drop_nlink(dir);
 447        return 0;
 448}
 449EXPORT_SYMBOL(simple_rmdir);
 450
 451int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
 452                  struct dentry *old_dentry, struct inode *new_dir,
 453                  struct dentry *new_dentry, unsigned int flags)
 454{
 455        struct inode *inode = d_inode(old_dentry);
 456        int they_are_dirs = d_is_dir(old_dentry);
 457
 458        if (flags & ~RENAME_NOREPLACE)
 459                return -EINVAL;
 460
 461        if (!simple_empty(new_dentry))
 462                return -ENOTEMPTY;
 463
 464        if (d_really_is_positive(new_dentry)) {
 465                simple_unlink(new_dir, new_dentry);
 466                if (they_are_dirs) {
 467                        drop_nlink(d_inode(new_dentry));
 468                        drop_nlink(old_dir);
 469                }
 470        } else if (they_are_dirs) {
 471                drop_nlink(old_dir);
 472                inc_nlink(new_dir);
 473        }
 474
 475        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 476                new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 477
 478        return 0;
 479}
 480EXPORT_SYMBOL(simple_rename);
 481
 482/**
 483 * simple_setattr - setattr for simple filesystem
 484 * @mnt_userns: user namespace of the target mount
 485 * @dentry: dentry
 486 * @iattr: iattr structure
 487 *
 488 * Returns 0 on success, -error on failure.
 489 *
 490 * simple_setattr is a simple ->setattr implementation without a proper
 491 * implementation of size changes.
 492 *
 493 * It can either be used for in-memory filesystems or special files
 494 * on simple regular filesystems.  Anything that needs to change on-disk
 495 * or wire state on size changes needs its own setattr method.
 496 */
 497int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 498                   struct iattr *iattr)
 499{
 500        struct inode *inode = d_inode(dentry);
 501        int error;
 502
 503        error = setattr_prepare(mnt_userns, dentry, iattr);
 504        if (error)
 505                return error;
 506
 507        if (iattr->ia_valid & ATTR_SIZE)
 508                truncate_setsize(inode, iattr->ia_size);
 509        setattr_copy(mnt_userns, inode, iattr);
 510        mark_inode_dirty(inode);
 511        return 0;
 512}
 513EXPORT_SYMBOL(simple_setattr);
 514
 515int simple_readpage(struct file *file, struct page *page)
 516{
 517        clear_highpage(page);
 518        flush_dcache_page(page);
 519        SetPageUptodate(page);
 520        unlock_page(page);
 521        return 0;
 522}
 523EXPORT_SYMBOL(simple_readpage);
 524
 525int simple_write_begin(struct file *file, struct address_space *mapping,
 526                        loff_t pos, unsigned len, unsigned flags,
 527                        struct page **pagep, void **fsdata)
 528{
 529        struct page *page;
 530        pgoff_t index;
 531
 532        index = pos >> PAGE_SHIFT;
 533
 534        page = grab_cache_page_write_begin(mapping, index, flags);
 535        if (!page)
 536                return -ENOMEM;
 537
 538        *pagep = page;
 539
 540        if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 541                unsigned from = pos & (PAGE_SIZE - 1);
 542
 543                zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 544        }
 545        return 0;
 546}
 547EXPORT_SYMBOL(simple_write_begin);
 548
 549/**
 550 * simple_write_end - .write_end helper for non-block-device FSes
 551 * @file: See .write_end of address_space_operations
 552 * @mapping:            "
 553 * @pos:                "
 554 * @len:                "
 555 * @copied:             "
 556 * @page:               "
 557 * @fsdata:             "
 558 *
 559 * simple_write_end does the minimum needed for updating a page after writing is
 560 * done. It has the same API signature as the .write_end of
 561 * address_space_operations vector. So it can just be set onto .write_end for
 562 * FSes that don't need any other processing. i_mutex is assumed to be held.
 563 * Block based filesystems should use generic_write_end().
 564 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 565 * is not called, so a filesystem that actually does store data in .write_inode
 566 * should extend on what's done here with a call to mark_inode_dirty() in the
 567 * case that i_size has changed.
 568 *
 569 * Use *ONLY* with simple_readpage()
 570 */
 571int simple_write_end(struct file *file, struct address_space *mapping,
 572                        loff_t pos, unsigned len, unsigned copied,
 573                        struct page *page, void *fsdata)
 574{
 575        struct inode *inode = page->mapping->host;
 576        loff_t last_pos = pos + copied;
 577
 578        /* zero the stale part of the page if we did a short copy */
 579        if (!PageUptodate(page)) {
 580                if (copied < len) {
 581                        unsigned from = pos & (PAGE_SIZE - 1);
 582
 583                        zero_user(page, from + copied, len - copied);
 584                }
 585                SetPageUptodate(page);
 586        }
 587        /*
 588         * No need to use i_size_read() here, the i_size
 589         * cannot change under us because we hold the i_mutex.
 590         */
 591        if (last_pos > inode->i_size)
 592                i_size_write(inode, last_pos);
 593
 594        set_page_dirty(page);
 595        unlock_page(page);
 596        put_page(page);
 597
 598        return copied;
 599}
 600EXPORT_SYMBOL(simple_write_end);
 601
 602/*
 603 * the inodes created here are not hashed. If you use iunique to generate
 604 * unique inode values later for this filesystem, then you must take care
 605 * to pass it an appropriate max_reserved value to avoid collisions.
 606 */
 607int simple_fill_super(struct super_block *s, unsigned long magic,
 608                      const struct tree_descr *files)
 609{
 610        struct inode *inode;
 611        struct dentry *root;
 612        struct dentry *dentry;
 613        int i;
 614
 615        s->s_blocksize = PAGE_SIZE;
 616        s->s_blocksize_bits = PAGE_SHIFT;
 617        s->s_magic = magic;
 618        s->s_op = &simple_super_operations;
 619        s->s_time_gran = 1;
 620
 621        inode = new_inode(s);
 622        if (!inode)
 623                return -ENOMEM;
 624        /*
 625         * because the root inode is 1, the files array must not contain an
 626         * entry at index 1
 627         */
 628        inode->i_ino = 1;
 629        inode->i_mode = S_IFDIR | 0755;
 630        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 631        inode->i_op = &simple_dir_inode_operations;
 632        inode->i_fop = &simple_dir_operations;
 633        set_nlink(inode, 2);
 634        root = d_make_root(inode);
 635        if (!root)
 636                return -ENOMEM;
 637        for (i = 0; !files->name || files->name[0]; i++, files++) {
 638                if (!files->name)
 639                        continue;
 640
 641                /* warn if it tries to conflict with the root inode */
 642                if (unlikely(i == 1))
 643                        printk(KERN_WARNING "%s: %s passed in a files array"
 644                                "with an index of 1!\n", __func__,
 645                                s->s_type->name);
 646
 647                dentry = d_alloc_name(root, files->name);
 648                if (!dentry)
 649                        goto out;
 650                inode = new_inode(s);
 651                if (!inode) {
 652                        dput(dentry);
 653                        goto out;
 654                }
 655                inode->i_mode = S_IFREG | files->mode;
 656                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 657                inode->i_fop = files->ops;
 658                inode->i_ino = i;
 659                d_add(dentry, inode);
 660        }
 661        s->s_root = root;
 662        return 0;
 663out:
 664        d_genocide(root);
 665        shrink_dcache_parent(root);
 666        dput(root);
 667        return -ENOMEM;
 668}
 669EXPORT_SYMBOL(simple_fill_super);
 670
 671static DEFINE_SPINLOCK(pin_fs_lock);
 672
 673int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 674{
 675        struct vfsmount *mnt = NULL;
 676        spin_lock(&pin_fs_lock);
 677        if (unlikely(!*mount)) {
 678                spin_unlock(&pin_fs_lock);
 679                mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 680                if (IS_ERR(mnt))
 681                        return PTR_ERR(mnt);
 682                spin_lock(&pin_fs_lock);
 683                if (!*mount)
 684                        *mount = mnt;
 685        }
 686        mntget(*mount);
 687        ++*count;
 688        spin_unlock(&pin_fs_lock);
 689        mntput(mnt);
 690        return 0;
 691}
 692EXPORT_SYMBOL(simple_pin_fs);
 693
 694void simple_release_fs(struct vfsmount **mount, int *count)
 695{
 696        struct vfsmount *mnt;
 697        spin_lock(&pin_fs_lock);
 698        mnt = *mount;
 699        if (!--*count)
 700                *mount = NULL;
 701        spin_unlock(&pin_fs_lock);
 702        mntput(mnt);
 703}
 704EXPORT_SYMBOL(simple_release_fs);
 705
 706/**
 707 * simple_read_from_buffer - copy data from the buffer to user space
 708 * @to: the user space buffer to read to
 709 * @count: the maximum number of bytes to read
 710 * @ppos: the current position in the buffer
 711 * @from: the buffer to read from
 712 * @available: the size of the buffer
 713 *
 714 * The simple_read_from_buffer() function reads up to @count bytes from the
 715 * buffer @from at offset @ppos into the user space address starting at @to.
 716 *
 717 * On success, the number of bytes read is returned and the offset @ppos is
 718 * advanced by this number, or negative value is returned on error.
 719 **/
 720ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 721                                const void *from, size_t available)
 722{
 723        loff_t pos = *ppos;
 724        size_t ret;
 725
 726        if (pos < 0)
 727                return -EINVAL;
 728        if (pos >= available || !count)
 729                return 0;
 730        if (count > available - pos)
 731                count = available - pos;
 732        ret = copy_to_user(to, from + pos, count);
 733        if (ret == count)
 734                return -EFAULT;
 735        count -= ret;
 736        *ppos = pos + count;
 737        return count;
 738}
 739EXPORT_SYMBOL(simple_read_from_buffer);
 740
 741/**
 742 * simple_write_to_buffer - copy data from user space to the buffer
 743 * @to: the buffer to write to
 744 * @available: the size of the buffer
 745 * @ppos: the current position in the buffer
 746 * @from: the user space buffer to read from
 747 * @count: the maximum number of bytes to read
 748 *
 749 * The simple_write_to_buffer() function reads up to @count bytes from the user
 750 * space address starting at @from into the buffer @to at offset @ppos.
 751 *
 752 * On success, the number of bytes written is returned and the offset @ppos is
 753 * advanced by this number, or negative value is returned on error.
 754 **/
 755ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 756                const void __user *from, size_t count)
 757{
 758        loff_t pos = *ppos;
 759        size_t res;
 760
 761        if (pos < 0)
 762                return -EINVAL;
 763        if (pos >= available || !count)
 764                return 0;
 765        if (count > available - pos)
 766                count = available - pos;
 767        res = copy_from_user(to + pos, from, count);
 768        if (res == count)
 769                return -EFAULT;
 770        count -= res;
 771        *ppos = pos + count;
 772        return count;
 773}
 774EXPORT_SYMBOL(simple_write_to_buffer);
 775
 776/**
 777 * memory_read_from_buffer - copy data from the buffer
 778 * @to: the kernel space buffer to read to
 779 * @count: the maximum number of bytes to read
 780 * @ppos: the current position in the buffer
 781 * @from: the buffer to read from
 782 * @available: the size of the buffer
 783 *
 784 * The memory_read_from_buffer() function reads up to @count bytes from the
 785 * buffer @from at offset @ppos into the kernel space address starting at @to.
 786 *
 787 * On success, the number of bytes read is returned and the offset @ppos is
 788 * advanced by this number, or negative value is returned on error.
 789 **/
 790ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 791                                const void *from, size_t available)
 792{
 793        loff_t pos = *ppos;
 794
 795        if (pos < 0)
 796                return -EINVAL;
 797        if (pos >= available)
 798                return 0;
 799        if (count > available - pos)
 800                count = available - pos;
 801        memcpy(to, from + pos, count);
 802        *ppos = pos + count;
 803
 804        return count;
 805}
 806EXPORT_SYMBOL(memory_read_from_buffer);
 807
 808/*
 809 * Transaction based IO.
 810 * The file expects a single write which triggers the transaction, and then
 811 * possibly a read which collects the result - which is stored in a
 812 * file-local buffer.
 813 */
 814
 815void simple_transaction_set(struct file *file, size_t n)
 816{
 817        struct simple_transaction_argresp *ar = file->private_data;
 818
 819        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 820
 821        /*
 822         * The barrier ensures that ar->size will really remain zero until
 823         * ar->data is ready for reading.
 824         */
 825        smp_mb();
 826        ar->size = n;
 827}
 828EXPORT_SYMBOL(simple_transaction_set);
 829
 830char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 831{
 832        struct simple_transaction_argresp *ar;
 833        static DEFINE_SPINLOCK(simple_transaction_lock);
 834
 835        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 836                return ERR_PTR(-EFBIG);
 837
 838        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 839        if (!ar)
 840                return ERR_PTR(-ENOMEM);
 841
 842        spin_lock(&simple_transaction_lock);
 843
 844        /* only one write allowed per open */
 845        if (file->private_data) {
 846                spin_unlock(&simple_transaction_lock);
 847                free_page((unsigned long)ar);
 848                return ERR_PTR(-EBUSY);
 849        }
 850
 851        file->private_data = ar;
 852
 853        spin_unlock(&simple_transaction_lock);
 854
 855        if (copy_from_user(ar->data, buf, size))
 856                return ERR_PTR(-EFAULT);
 857
 858        return ar->data;
 859}
 860EXPORT_SYMBOL(simple_transaction_get);
 861
 862ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 863{
 864        struct simple_transaction_argresp *ar = file->private_data;
 865
 866        if (!ar)
 867                return 0;
 868        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 869}
 870EXPORT_SYMBOL(simple_transaction_read);
 871
 872int simple_transaction_release(struct inode *inode, struct file *file)
 873{
 874        free_page((unsigned long)file->private_data);
 875        return 0;
 876}
 877EXPORT_SYMBOL(simple_transaction_release);
 878
 879/* Simple attribute files */
 880
 881struct simple_attr {
 882        int (*get)(void *, u64 *);
 883        int (*set)(void *, u64);
 884        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 885        char set_buf[24];
 886        void *data;
 887        const char *fmt;        /* format for read operation */
 888        struct mutex mutex;     /* protects access to these buffers */
 889};
 890
 891/* simple_attr_open is called by an actual attribute open file operation
 892 * to set the attribute specific access operations. */
 893int simple_attr_open(struct inode *inode, struct file *file,
 894                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 895                     const char *fmt)
 896{
 897        struct simple_attr *attr;
 898
 899        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 900        if (!attr)
 901                return -ENOMEM;
 902
 903        attr->get = get;
 904        attr->set = set;
 905        attr->data = inode->i_private;
 906        attr->fmt = fmt;
 907        mutex_init(&attr->mutex);
 908
 909        file->private_data = attr;
 910
 911        return nonseekable_open(inode, file);
 912}
 913EXPORT_SYMBOL_GPL(simple_attr_open);
 914
 915int simple_attr_release(struct inode *inode, struct file *file)
 916{
 917        kfree(file->private_data);
 918        return 0;
 919}
 920EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 921
 922/* read from the buffer that is filled with the get function */
 923ssize_t simple_attr_read(struct file *file, char __user *buf,
 924                         size_t len, loff_t *ppos)
 925{
 926        struct simple_attr *attr;
 927        size_t size;
 928        ssize_t ret;
 929
 930        attr = file->private_data;
 931
 932        if (!attr->get)
 933                return -EACCES;
 934
 935        ret = mutex_lock_interruptible(&attr->mutex);
 936        if (ret)
 937                return ret;
 938
 939        if (*ppos && attr->get_buf[0]) {
 940                /* continued read */
 941                size = strlen(attr->get_buf);
 942        } else {
 943                /* first read */
 944                u64 val;
 945                ret = attr->get(attr->data, &val);
 946                if (ret)
 947                        goto out;
 948
 949                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 950                                 attr->fmt, (unsigned long long)val);
 951        }
 952
 953        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 954out:
 955        mutex_unlock(&attr->mutex);
 956        return ret;
 957}
 958EXPORT_SYMBOL_GPL(simple_attr_read);
 959
 960/* interpret the buffer as a number to call the set function with */
 961ssize_t simple_attr_write(struct file *file, const char __user *buf,
 962                          size_t len, loff_t *ppos)
 963{
 964        struct simple_attr *attr;
 965        unsigned long long val;
 966        size_t size;
 967        ssize_t ret;
 968
 969        attr = file->private_data;
 970        if (!attr->set)
 971                return -EACCES;
 972
 973        ret = mutex_lock_interruptible(&attr->mutex);
 974        if (ret)
 975                return ret;
 976
 977        ret = -EFAULT;
 978        size = min(sizeof(attr->set_buf) - 1, len);
 979        if (copy_from_user(attr->set_buf, buf, size))
 980                goto out;
 981
 982        attr->set_buf[size] = '\0';
 983        ret = kstrtoull(attr->set_buf, 0, &val);
 984        if (ret)
 985                goto out;
 986        ret = attr->set(attr->data, val);
 987        if (ret == 0)
 988                ret = len; /* on success, claim we got the whole input */
 989out:
 990        mutex_unlock(&attr->mutex);
 991        return ret;
 992}
 993EXPORT_SYMBOL_GPL(simple_attr_write);
 994
 995/**
 996 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 997 * @sb:         filesystem to do the file handle conversion on
 998 * @fid:        file handle to convert
 999 * @fh_len:     length of the file handle in bytes
1000 * @fh_type:    type of file handle
1001 * @get_inode:  filesystem callback to retrieve inode
1002 *
1003 * This function decodes @fid as long as it has one of the well-known
1004 * Linux filehandle types and calls @get_inode on it to retrieve the
1005 * inode for the object specified in the file handle.
1006 */
1007struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1008                int fh_len, int fh_type, struct inode *(*get_inode)
1009                        (struct super_block *sb, u64 ino, u32 gen))
1010{
1011        struct inode *inode = NULL;
1012
1013        if (fh_len < 2)
1014                return NULL;
1015
1016        switch (fh_type) {
1017        case FILEID_INO32_GEN:
1018        case FILEID_INO32_GEN_PARENT:
1019                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1020                break;
1021        }
1022
1023        return d_obtain_alias(inode);
1024}
1025EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1026
1027/**
1028 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1029 * @sb:         filesystem to do the file handle conversion on
1030 * @fid:        file handle to convert
1031 * @fh_len:     length of the file handle in bytes
1032 * @fh_type:    type of file handle
1033 * @get_inode:  filesystem callback to retrieve inode
1034 *
1035 * This function decodes @fid as long as it has one of the well-known
1036 * Linux filehandle types and calls @get_inode on it to retrieve the
1037 * inode for the _parent_ object specified in the file handle if it
1038 * is specified in the file handle, or NULL otherwise.
1039 */
1040struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1041                int fh_len, int fh_type, struct inode *(*get_inode)
1042                        (struct super_block *sb, u64 ino, u32 gen))
1043{
1044        struct inode *inode = NULL;
1045
1046        if (fh_len <= 2)
1047                return NULL;
1048
1049        switch (fh_type) {
1050        case FILEID_INO32_GEN_PARENT:
1051                inode = get_inode(sb, fid->i32.parent_ino,
1052                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
1053                break;
1054        }
1055
1056        return d_obtain_alias(inode);
1057}
1058EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1059
1060/**
1061 * __generic_file_fsync - generic fsync implementation for simple filesystems
1062 *
1063 * @file:       file to synchronize
1064 * @start:      start offset in bytes
1065 * @end:        end offset in bytes (inclusive)
1066 * @datasync:   only synchronize essential metadata if true
1067 *
1068 * This is a generic implementation of the fsync method for simple
1069 * filesystems which track all non-inode metadata in the buffers list
1070 * hanging off the address_space structure.
1071 */
1072int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1073                                 int datasync)
1074{
1075        struct inode *inode = file->f_mapping->host;
1076        int err;
1077        int ret;
1078
1079        err = file_write_and_wait_range(file, start, end);
1080        if (err)
1081                return err;
1082
1083        inode_lock(inode);
1084        ret = sync_mapping_buffers(inode->i_mapping);
1085        if (!(inode->i_state & I_DIRTY_ALL))
1086                goto out;
1087        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1088                goto out;
1089
1090        err = sync_inode_metadata(inode, 1);
1091        if (ret == 0)
1092                ret = err;
1093
1094out:
1095        inode_unlock(inode);
1096        /* check and advance again to catch errors after syncing out buffers */
1097        err = file_check_and_advance_wb_err(file);
1098        if (ret == 0)
1099                ret = err;
1100        return ret;
1101}
1102EXPORT_SYMBOL(__generic_file_fsync);
1103
1104/**
1105 * generic_file_fsync - generic fsync implementation for simple filesystems
1106 *                      with flush
1107 * @file:       file to synchronize
1108 * @start:      start offset in bytes
1109 * @end:        end offset in bytes (inclusive)
1110 * @datasync:   only synchronize essential metadata if true
1111 *
1112 */
1113
1114int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1115                       int datasync)
1116{
1117        struct inode *inode = file->f_mapping->host;
1118        int err;
1119
1120        err = __generic_file_fsync(file, start, end, datasync);
1121        if (err)
1122                return err;
1123        return blkdev_issue_flush(inode->i_sb->s_bdev);
1124}
1125EXPORT_SYMBOL(generic_file_fsync);
1126
1127/**
1128 * generic_check_addressable - Check addressability of file system
1129 * @blocksize_bits:     log of file system block size
1130 * @num_blocks:         number of blocks in file system
1131 *
1132 * Determine whether a file system with @num_blocks blocks (and a
1133 * block size of 2**@blocksize_bits) is addressable by the sector_t
1134 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1135 */
1136int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1137{
1138        u64 last_fs_block = num_blocks - 1;
1139        u64 last_fs_page =
1140                last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1141
1142        if (unlikely(num_blocks == 0))
1143                return 0;
1144
1145        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1146                return -EINVAL;
1147
1148        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1149            (last_fs_page > (pgoff_t)(~0ULL))) {
1150                return -EFBIG;
1151        }
1152        return 0;
1153}
1154EXPORT_SYMBOL(generic_check_addressable);
1155
1156/*
1157 * No-op implementation of ->fsync for in-memory filesystems.
1158 */
1159int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1160{
1161        return 0;
1162}
1163EXPORT_SYMBOL(noop_fsync);
1164
1165int noop_set_page_dirty(struct page *page)
1166{
1167        /*
1168         * Unlike __set_page_dirty_no_writeback that handles dirty page
1169         * tracking in the page object, dax does all dirty tracking in
1170         * the inode address_space in response to mkwrite faults. In the
1171         * dax case we only need to worry about potentially dirty CPU
1172         * caches, not dirty page cache pages to write back.
1173         *
1174         * This callback is defined to prevent fallback to
1175         * __set_page_dirty_buffers() in set_page_dirty().
1176         */
1177        return 0;
1178}
1179EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1180
1181void noop_invalidatepage(struct page *page, unsigned int offset,
1182                unsigned int length)
1183{
1184        /*
1185         * There is no page cache to invalidate in the dax case, however
1186         * we need this callback defined to prevent falling back to
1187         * block_invalidatepage() in do_invalidatepage().
1188         */
1189}
1190EXPORT_SYMBOL_GPL(noop_invalidatepage);
1191
1192ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1193{
1194        /*
1195         * iomap based filesystems support direct I/O without need for
1196         * this callback. However, it still needs to be set in
1197         * inode->a_ops so that open/fcntl know that direct I/O is
1198         * generally supported.
1199         */
1200        return -EINVAL;
1201}
1202EXPORT_SYMBOL_GPL(noop_direct_IO);
1203
1204/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1205void kfree_link(void *p)
1206{
1207        kfree(p);
1208}
1209EXPORT_SYMBOL(kfree_link);
1210
1211/*
1212 * nop .set_page_dirty method so that people can use .page_mkwrite on
1213 * anon inodes.
1214 */
1215static int anon_set_page_dirty(struct page *page)
1216{
1217        return 0;
1218};
1219
1220struct inode *alloc_anon_inode(struct super_block *s)
1221{
1222        static const struct address_space_operations anon_aops = {
1223                .set_page_dirty = anon_set_page_dirty,
1224        };
1225        struct inode *inode = new_inode_pseudo(s);
1226
1227        if (!inode)
1228                return ERR_PTR(-ENOMEM);
1229
1230        inode->i_ino = get_next_ino();
1231        inode->i_mapping->a_ops = &anon_aops;
1232
1233        /*
1234         * Mark the inode dirty from the very beginning,
1235         * that way it will never be moved to the dirty
1236         * list because mark_inode_dirty() will think
1237         * that it already _is_ on the dirty list.
1238         */
1239        inode->i_state = I_DIRTY;
1240        inode->i_mode = S_IRUSR | S_IWUSR;
1241        inode->i_uid = current_fsuid();
1242        inode->i_gid = current_fsgid();
1243        inode->i_flags |= S_PRIVATE;
1244        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1245        return inode;
1246}
1247EXPORT_SYMBOL(alloc_anon_inode);
1248
1249/**
1250 * simple_nosetlease - generic helper for prohibiting leases
1251 * @filp: file pointer
1252 * @arg: type of lease to obtain
1253 * @flp: new lease supplied for insertion
1254 * @priv: private data for lm_setup operation
1255 *
1256 * Generic helper for filesystems that do not wish to allow leases to be set.
1257 * All arguments are ignored and it just returns -EINVAL.
1258 */
1259int
1260simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1261                  void **priv)
1262{
1263        return -EINVAL;
1264}
1265EXPORT_SYMBOL(simple_nosetlease);
1266
1267/**
1268 * simple_get_link - generic helper to get the target of "fast" symlinks
1269 * @dentry: not used here
1270 * @inode: the symlink inode
1271 * @done: not used here
1272 *
1273 * Generic helper for filesystems to use for symlink inodes where a pointer to
1274 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1275 * since as an optimization the path lookup code uses any non-NULL ->i_link
1276 * directly, without calling ->get_link().  But ->get_link() still must be set,
1277 * to mark the inode_operations as being for a symlink.
1278 *
1279 * Return: the symlink target
1280 */
1281const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1282                            struct delayed_call *done)
1283{
1284        return inode->i_link;
1285}
1286EXPORT_SYMBOL(simple_get_link);
1287
1288const struct inode_operations simple_symlink_inode_operations = {
1289        .get_link = simple_get_link,
1290};
1291EXPORT_SYMBOL(simple_symlink_inode_operations);
1292
1293/*
1294 * Operations for a permanently empty directory.
1295 */
1296static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1297{
1298        return ERR_PTR(-ENOENT);
1299}
1300
1301static int empty_dir_getattr(struct user_namespace *mnt_userns,
1302                             const struct path *path, struct kstat *stat,
1303                             u32 request_mask, unsigned int query_flags)
1304{
1305        struct inode *inode = d_inode(path->dentry);
1306        generic_fillattr(&init_user_ns, inode, stat);
1307        return 0;
1308}
1309
1310static int empty_dir_setattr(struct user_namespace *mnt_userns,
1311                             struct dentry *dentry, struct iattr *attr)
1312{
1313        return -EPERM;
1314}
1315
1316static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1317{
1318        return -EOPNOTSUPP;
1319}
1320
1321static const struct inode_operations empty_dir_inode_operations = {
1322        .lookup         = empty_dir_lookup,
1323        .permission     = generic_permission,
1324        .setattr        = empty_dir_setattr,
1325        .getattr        = empty_dir_getattr,
1326        .listxattr      = empty_dir_listxattr,
1327};
1328
1329static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1330{
1331        /* An empty directory has two entries . and .. at offsets 0 and 1 */
1332        return generic_file_llseek_size(file, offset, whence, 2, 2);
1333}
1334
1335static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1336{
1337        dir_emit_dots(file, ctx);
1338        return 0;
1339}
1340
1341static const struct file_operations empty_dir_operations = {
1342        .llseek         = empty_dir_llseek,
1343        .read           = generic_read_dir,
1344        .iterate_shared = empty_dir_readdir,
1345        .fsync          = noop_fsync,
1346};
1347
1348
1349void make_empty_dir_inode(struct inode *inode)
1350{
1351        set_nlink(inode, 2);
1352        inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1353        inode->i_uid = GLOBAL_ROOT_UID;
1354        inode->i_gid = GLOBAL_ROOT_GID;
1355        inode->i_rdev = 0;
1356        inode->i_size = 0;
1357        inode->i_blkbits = PAGE_SHIFT;
1358        inode->i_blocks = 0;
1359
1360        inode->i_op = &empty_dir_inode_operations;
1361        inode->i_opflags &= ~IOP_XATTR;
1362        inode->i_fop = &empty_dir_operations;
1363}
1364
1365bool is_empty_dir_inode(struct inode *inode)
1366{
1367        return (inode->i_fop == &empty_dir_operations) &&
1368                (inode->i_op == &empty_dir_inode_operations);
1369}
1370
1371#ifdef CONFIG_UNICODE
1372/*
1373 * Determine if the name of a dentry should be casefolded.
1374 *
1375 * Return: if names will need casefolding
1376 */
1377static bool needs_casefold(const struct inode *dir)
1378{
1379        return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1380}
1381
1382/**
1383 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1384 * @dentry:     dentry whose name we are checking against
1385 * @len:        len of name of dentry
1386 * @str:        str pointer to name of dentry
1387 * @name:       Name to compare against
1388 *
1389 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1390 */
1391static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1392                                const char *str, const struct qstr *name)
1393{
1394        const struct dentry *parent = READ_ONCE(dentry->d_parent);
1395        const struct inode *dir = READ_ONCE(parent->d_inode);
1396        const struct super_block *sb = dentry->d_sb;
1397        const struct unicode_map *um = sb->s_encoding;
1398        struct qstr qstr = QSTR_INIT(str, len);
1399        char strbuf[DNAME_INLINE_LEN];
1400        int ret;
1401
1402        if (!dir || !needs_casefold(dir))
1403                goto fallback;
1404        /*
1405         * If the dentry name is stored in-line, then it may be concurrently
1406         * modified by a rename.  If this happens, the VFS will eventually retry
1407         * the lookup, so it doesn't matter what ->d_compare() returns.
1408         * However, it's unsafe to call utf8_strncasecmp() with an unstable
1409         * string.  Therefore, we have to copy the name into a temporary buffer.
1410         */
1411        if (len <= DNAME_INLINE_LEN - 1) {
1412                memcpy(strbuf, str, len);
1413                strbuf[len] = 0;
1414                qstr.name = strbuf;
1415                /* prevent compiler from optimizing out the temporary buffer */
1416                barrier();
1417        }
1418        ret = utf8_strncasecmp(um, name, &qstr);
1419        if (ret >= 0)
1420                return ret;
1421
1422        if (sb_has_strict_encoding(sb))
1423                return -EINVAL;
1424fallback:
1425        if (len != name->len)
1426                return 1;
1427        return !!memcmp(str, name->name, len);
1428}
1429
1430/**
1431 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1432 * @dentry:     dentry of the parent directory
1433 * @str:        qstr of name whose hash we should fill in
1434 *
1435 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1436 */
1437static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1438{
1439        const struct inode *dir = READ_ONCE(dentry->d_inode);
1440        struct super_block *sb = dentry->d_sb;
1441        const struct unicode_map *um = sb->s_encoding;
1442        int ret = 0;
1443
1444        if (!dir || !needs_casefold(dir))
1445                return 0;
1446
1447        ret = utf8_casefold_hash(um, dentry, str);
1448        if (ret < 0 && sb_has_strict_encoding(sb))
1449                return -EINVAL;
1450        return 0;
1451}
1452
1453static const struct dentry_operations generic_ci_dentry_ops = {
1454        .d_hash = generic_ci_d_hash,
1455        .d_compare = generic_ci_d_compare,
1456};
1457#endif
1458
1459#ifdef CONFIG_FS_ENCRYPTION
1460static const struct dentry_operations generic_encrypted_dentry_ops = {
1461        .d_revalidate = fscrypt_d_revalidate,
1462};
1463#endif
1464
1465#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1466static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1467        .d_hash = generic_ci_d_hash,
1468        .d_compare = generic_ci_d_compare,
1469        .d_revalidate = fscrypt_d_revalidate,
1470};
1471#endif
1472
1473/**
1474 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1475 * @dentry:     dentry to set ops on
1476 *
1477 * Casefolded directories need d_hash and d_compare set, so that the dentries
1478 * contained in them are handled case-insensitively.  Note that these operations
1479 * are needed on the parent directory rather than on the dentries in it, and
1480 * while the casefolding flag can be toggled on and off on an empty directory,
1481 * dentry_operations can't be changed later.  As a result, if the filesystem has
1482 * casefolding support enabled at all, we have to give all dentries the
1483 * casefolding operations even if their inode doesn't have the casefolding flag
1484 * currently (and thus the casefolding ops would be no-ops for now).
1485 *
1486 * Encryption works differently in that the only dentry operation it needs is
1487 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1488 * The no-key flag can't be set "later", so we don't have to worry about that.
1489 *
1490 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1491 * with certain dentry operations) and to avoid taking an unnecessary
1492 * performance hit, we use custom dentry_operations for each possible
1493 * combination rather than always installing all operations.
1494 */
1495void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1496{
1497#ifdef CONFIG_FS_ENCRYPTION
1498        bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1499#endif
1500#ifdef CONFIG_UNICODE
1501        bool needs_ci_ops = dentry->d_sb->s_encoding;
1502#endif
1503#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1504        if (needs_encrypt_ops && needs_ci_ops) {
1505                d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1506                return;
1507        }
1508#endif
1509#ifdef CONFIG_FS_ENCRYPTION
1510        if (needs_encrypt_ops) {
1511                d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1512                return;
1513        }
1514#endif
1515#ifdef CONFIG_UNICODE
1516        if (needs_ci_ops) {
1517                d_set_d_op(dentry, &generic_ci_dentry_ops);
1518                return;
1519        }
1520#endif
1521}
1522EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1523