linux/fs/nfs/dir.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996  Added silly rename for unlink   --okir
  10 * 28 Sep 1996  Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/time.h>
  23#include <linux/errno.h>
  24#include <linux/stat.h>
  25#include <linux/fcntl.h>
  26#include <linux/string.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/sunrpc/clnt.h>
  31#include <linux/nfs_fs.h>
  32#include <linux/nfs_mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/pagevec.h>
  35#include <linux/namei.h>
  36#include <linux/mount.h>
  37#include <linux/swap.h>
  38#include <linux/sched.h>
  39#include <linux/kmemleak.h>
  40#include <linux/xattr.h>
  41
  42#include "delegation.h"
  43#include "iostat.h"
  44#include "internal.h"
  45#include "fscache.h"
  46
  47#include "nfstrace.h"
  48
  49/* #define NFS_DEBUG_VERBOSE 1 */
  50
  51static int nfs_opendir(struct inode *, struct file *);
  52static int nfs_closedir(struct inode *, struct file *);
  53static int nfs_readdir(struct file *, struct dir_context *);
  54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56static void nfs_readdir_clear_array(struct page*);
  57
  58const struct file_operations nfs_dir_operations = {
  59        .llseek         = nfs_llseek_dir,
  60        .read           = generic_read_dir,
  61        .iterate_shared = nfs_readdir,
  62        .open           = nfs_opendir,
  63        .release        = nfs_closedir,
  64        .fsync          = nfs_fsync_dir,
  65};
  66
  67const struct address_space_operations nfs_dir_aops = {
  68        .freepage = nfs_readdir_clear_array,
  69};
  70
  71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
  72{
  73        struct nfs_inode *nfsi = NFS_I(dir);
  74        struct nfs_open_dir_context *ctx;
  75        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  76        if (ctx != NULL) {
  77                ctx->duped = 0;
  78                ctx->attr_gencount = nfsi->attr_gencount;
  79                ctx->dir_cookie = 0;
  80                ctx->dup_cookie = 0;
  81                spin_lock(&dir->i_lock);
  82                if (list_empty(&nfsi->open_files) &&
  83                    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  84                        nfs_set_cache_invalid(dir,
  85                                              NFS_INO_INVALID_DATA |
  86                                                      NFS_INO_REVAL_FORCED);
  87                list_add(&ctx->list, &nfsi->open_files);
  88                spin_unlock(&dir->i_lock);
  89                return ctx;
  90        }
  91        return  ERR_PTR(-ENOMEM);
  92}
  93
  94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  95{
  96        spin_lock(&dir->i_lock);
  97        list_del(&ctx->list);
  98        spin_unlock(&dir->i_lock);
  99        kfree(ctx);
 100}
 101
 102/*
 103 * Open file
 104 */
 105static int
 106nfs_opendir(struct inode *inode, struct file *filp)
 107{
 108        int res = 0;
 109        struct nfs_open_dir_context *ctx;
 110
 111        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 112
 113        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 114
 115        ctx = alloc_nfs_open_dir_context(inode);
 116        if (IS_ERR(ctx)) {
 117                res = PTR_ERR(ctx);
 118                goto out;
 119        }
 120        filp->private_data = ctx;
 121out:
 122        return res;
 123}
 124
 125static int
 126nfs_closedir(struct inode *inode, struct file *filp)
 127{
 128        put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 129        return 0;
 130}
 131
 132struct nfs_cache_array_entry {
 133        u64 cookie;
 134        u64 ino;
 135        const char *name;
 136        unsigned int name_len;
 137        unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 141        u64 last_cookie;
 142        unsigned int size;
 143        unsigned char page_full : 1,
 144                      page_is_eof : 1,
 145                      cookies_are_ordered : 1;
 146        struct nfs_cache_array_entry array[];
 147};
 148
 149struct nfs_readdir_descriptor {
 150        struct file     *file;
 151        struct page     *page;
 152        struct dir_context *ctx;
 153        pgoff_t         page_index;
 154        u64             dir_cookie;
 155        u64             last_cookie;
 156        u64             dup_cookie;
 157        loff_t          current_index;
 158        loff_t          prev_index;
 159
 160        __be32          verf[NFS_DIR_VERIFIER_SIZE];
 161        unsigned long   dir_verifier;
 162        unsigned long   timestamp;
 163        unsigned long   gencount;
 164        unsigned long   attr_gencount;
 165        unsigned int    cache_entry_index;
 166        signed char duped;
 167        bool plus;
 168        bool eof;
 169};
 170
 171static void nfs_readdir_array_init(struct nfs_cache_array *array)
 172{
 173        memset(array, 0, sizeof(struct nfs_cache_array));
 174}
 175
 176static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
 177{
 178        struct nfs_cache_array *array;
 179
 180        array = kmap_atomic(page);
 181        nfs_readdir_array_init(array);
 182        array->last_cookie = last_cookie;
 183        array->cookies_are_ordered = 1;
 184        kunmap_atomic(array);
 185}
 186
 187/*
 188 * we are freeing strings created by nfs_add_to_readdir_array()
 189 */
 190static
 191void nfs_readdir_clear_array(struct page *page)
 192{
 193        struct nfs_cache_array *array;
 194        int i;
 195
 196        array = kmap_atomic(page);
 197        for (i = 0; i < array->size; i++)
 198                kfree(array->array[i].name);
 199        nfs_readdir_array_init(array);
 200        kunmap_atomic(array);
 201}
 202
 203static struct page *
 204nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 205{
 206        struct page *page = alloc_page(gfp_flags);
 207        if (page)
 208                nfs_readdir_page_init_array(page, last_cookie);
 209        return page;
 210}
 211
 212static void nfs_readdir_page_array_free(struct page *page)
 213{
 214        if (page) {
 215                nfs_readdir_clear_array(page);
 216                put_page(page);
 217        }
 218}
 219
 220static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 221{
 222        array->page_is_eof = 1;
 223        array->page_full = 1;
 224}
 225
 226static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 227{
 228        return array->page_full;
 229}
 230
 231/*
 232 * the caller is responsible for freeing qstr.name
 233 * when called by nfs_readdir_add_to_array, the strings will be freed in
 234 * nfs_clear_readdir_array()
 235 */
 236static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 237{
 238        const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 239
 240        /*
 241         * Avoid a kmemleak false positive. The pointer to the name is stored
 242         * in a page cache page which kmemleak does not scan.
 243         */
 244        if (ret != NULL)
 245                kmemleak_not_leak(ret);
 246        return ret;
 247}
 248
 249/*
 250 * Check that the next array entry lies entirely within the page bounds
 251 */
 252static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 253{
 254        struct nfs_cache_array_entry *cache_entry;
 255
 256        if (array->page_full)
 257                return -ENOSPC;
 258        cache_entry = &array->array[array->size + 1];
 259        if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
 260                array->page_full = 1;
 261                return -ENOSPC;
 262        }
 263        return 0;
 264}
 265
 266static
 267int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 268{
 269        struct nfs_cache_array *array;
 270        struct nfs_cache_array_entry *cache_entry;
 271        const char *name;
 272        int ret;
 273
 274        name = nfs_readdir_copy_name(entry->name, entry->len);
 275        if (!name)
 276                return -ENOMEM;
 277
 278        array = kmap_atomic(page);
 279        ret = nfs_readdir_array_can_expand(array);
 280        if (ret) {
 281                kfree(name);
 282                goto out;
 283        }
 284
 285        cache_entry = &array->array[array->size];
 286        cache_entry->cookie = entry->prev_cookie;
 287        cache_entry->ino = entry->ino;
 288        cache_entry->d_type = entry->d_type;
 289        cache_entry->name_len = entry->len;
 290        cache_entry->name = name;
 291        array->last_cookie = entry->cookie;
 292        if (array->last_cookie <= cache_entry->cookie)
 293                array->cookies_are_ordered = 0;
 294        array->size++;
 295        if (entry->eof != 0)
 296                nfs_readdir_array_set_eof(array);
 297out:
 298        kunmap_atomic(array);
 299        return ret;
 300}
 301
 302static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
 303                                                pgoff_t index, u64 last_cookie)
 304{
 305        struct page *page;
 306
 307        page = grab_cache_page(mapping, index);
 308        if (page && !PageUptodate(page)) {
 309                nfs_readdir_page_init_array(page, last_cookie);
 310                if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
 311                        nfs_zap_mapping(mapping->host, mapping);
 312                SetPageUptodate(page);
 313        }
 314
 315        return page;
 316}
 317
 318static u64 nfs_readdir_page_last_cookie(struct page *page)
 319{
 320        struct nfs_cache_array *array;
 321        u64 ret;
 322
 323        array = kmap_atomic(page);
 324        ret = array->last_cookie;
 325        kunmap_atomic(array);
 326        return ret;
 327}
 328
 329static bool nfs_readdir_page_needs_filling(struct page *page)
 330{
 331        struct nfs_cache_array *array;
 332        bool ret;
 333
 334        array = kmap_atomic(page);
 335        ret = !nfs_readdir_array_is_full(array);
 336        kunmap_atomic(array);
 337        return ret;
 338}
 339
 340static void nfs_readdir_page_set_eof(struct page *page)
 341{
 342        struct nfs_cache_array *array;
 343
 344        array = kmap_atomic(page);
 345        nfs_readdir_array_set_eof(array);
 346        kunmap_atomic(array);
 347}
 348
 349static void nfs_readdir_page_unlock_and_put(struct page *page)
 350{
 351        unlock_page(page);
 352        put_page(page);
 353}
 354
 355static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
 356                                              pgoff_t index, u64 cookie)
 357{
 358        struct page *page;
 359
 360        page = nfs_readdir_page_get_locked(mapping, index, cookie);
 361        if (page) {
 362                if (nfs_readdir_page_last_cookie(page) == cookie)
 363                        return page;
 364                nfs_readdir_page_unlock_and_put(page);
 365        }
 366        return NULL;
 367}
 368
 369static inline
 370int is_32bit_api(void)
 371{
 372#ifdef CONFIG_COMPAT
 373        return in_compat_syscall();
 374#else
 375        return (BITS_PER_LONG == 32);
 376#endif
 377}
 378
 379static
 380bool nfs_readdir_use_cookie(const struct file *filp)
 381{
 382        if ((filp->f_mode & FMODE_32BITHASH) ||
 383            (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 384                return false;
 385        return true;
 386}
 387
 388static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 389                                      struct nfs_readdir_descriptor *desc)
 390{
 391        loff_t diff = desc->ctx->pos - desc->current_index;
 392        unsigned int index;
 393
 394        if (diff < 0)
 395                goto out_eof;
 396        if (diff >= array->size) {
 397                if (array->page_is_eof)
 398                        goto out_eof;
 399                return -EAGAIN;
 400        }
 401
 402        index = (unsigned int)diff;
 403        desc->dir_cookie = array->array[index].cookie;
 404        desc->cache_entry_index = index;
 405        return 0;
 406out_eof:
 407        desc->eof = true;
 408        return -EBADCOOKIE;
 409}
 410
 411static bool
 412nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 413{
 414        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 415                return false;
 416        smp_rmb();
 417        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 418}
 419
 420static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 421                                              u64 cookie)
 422{
 423        if (!array->cookies_are_ordered)
 424                return true;
 425        /* Optimisation for monotonically increasing cookies */
 426        if (cookie >= array->last_cookie)
 427                return false;
 428        if (array->size && cookie < array->array[0].cookie)
 429                return false;
 430        return true;
 431}
 432
 433static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 434                                         struct nfs_readdir_descriptor *desc)
 435{
 436        int i;
 437        loff_t new_pos;
 438        int status = -EAGAIN;
 439
 440        if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 441                goto check_eof;
 442
 443        for (i = 0; i < array->size; i++) {
 444                if (array->array[i].cookie == desc->dir_cookie) {
 445                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 446
 447                        new_pos = desc->current_index + i;
 448                        if (desc->attr_gencount != nfsi->attr_gencount ||
 449                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 450                                desc->duped = 0;
 451                                desc->attr_gencount = nfsi->attr_gencount;
 452                        } else if (new_pos < desc->prev_index) {
 453                                if (desc->duped > 0
 454                                    && desc->dup_cookie == desc->dir_cookie) {
 455                                        if (printk_ratelimit()) {
 456                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 457                                                                "Please contact your server vendor.  "
 458                                                                "The file: %s has duplicate cookie %llu\n",
 459                                                                desc->file, array->array[i].name, desc->dir_cookie);
 460                                        }
 461                                        status = -ELOOP;
 462                                        goto out;
 463                                }
 464                                desc->dup_cookie = desc->dir_cookie;
 465                                desc->duped = -1;
 466                        }
 467                        if (nfs_readdir_use_cookie(desc->file))
 468                                desc->ctx->pos = desc->dir_cookie;
 469                        else
 470                                desc->ctx->pos = new_pos;
 471                        desc->prev_index = new_pos;
 472                        desc->cache_entry_index = i;
 473                        return 0;
 474                }
 475        }
 476check_eof:
 477        if (array->page_is_eof) {
 478                status = -EBADCOOKIE;
 479                if (desc->dir_cookie == array->last_cookie)
 480                        desc->eof = true;
 481        }
 482out:
 483        return status;
 484}
 485
 486static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 487{
 488        struct nfs_cache_array *array;
 489        int status;
 490
 491        array = kmap_atomic(desc->page);
 492
 493        if (desc->dir_cookie == 0)
 494                status = nfs_readdir_search_for_pos(array, desc);
 495        else
 496                status = nfs_readdir_search_for_cookie(array, desc);
 497
 498        if (status == -EAGAIN) {
 499                desc->last_cookie = array->last_cookie;
 500                desc->current_index += array->size;
 501                desc->page_index++;
 502        }
 503        kunmap_atomic(array);
 504        return status;
 505}
 506
 507/* Fill a page with xdr information before transferring to the cache page */
 508static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 509                                  __be32 *verf, u64 cookie,
 510                                  struct page **pages, size_t bufsize,
 511                                  __be32 *verf_res)
 512{
 513        struct inode *inode = file_inode(desc->file);
 514        struct nfs_readdir_arg arg = {
 515                .dentry = file_dentry(desc->file),
 516                .cred = desc->file->f_cred,
 517                .verf = verf,
 518                .cookie = cookie,
 519                .pages = pages,
 520                .page_len = bufsize,
 521                .plus = desc->plus,
 522        };
 523        struct nfs_readdir_res res = {
 524                .verf = verf_res,
 525        };
 526        unsigned long   timestamp, gencount;
 527        int             error;
 528
 529 again:
 530        timestamp = jiffies;
 531        gencount = nfs_inc_attr_generation_counter();
 532        desc->dir_verifier = nfs_save_change_attribute(inode);
 533        error = NFS_PROTO(inode)->readdir(&arg, &res);
 534        if (error < 0) {
 535                /* We requested READDIRPLUS, but the server doesn't grok it */
 536                if (error == -ENOTSUPP && desc->plus) {
 537                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 538                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 539                        desc->plus = arg.plus = false;
 540                        goto again;
 541                }
 542                goto error;
 543        }
 544        desc->timestamp = timestamp;
 545        desc->gencount = gencount;
 546error:
 547        return error;
 548}
 549
 550static int xdr_decode(struct nfs_readdir_descriptor *desc,
 551                      struct nfs_entry *entry, struct xdr_stream *xdr)
 552{
 553        struct inode *inode = file_inode(desc->file);
 554        int error;
 555
 556        error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 557        if (error)
 558                return error;
 559        entry->fattr->time_start = desc->timestamp;
 560        entry->fattr->gencount = desc->gencount;
 561        return 0;
 562}
 563
 564/* Match file and dirent using either filehandle or fileid
 565 * Note: caller is responsible for checking the fsid
 566 */
 567static
 568int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 569{
 570        struct inode *inode;
 571        struct nfs_inode *nfsi;
 572
 573        if (d_really_is_negative(dentry))
 574                return 0;
 575
 576        inode = d_inode(dentry);
 577        if (is_bad_inode(inode) || NFS_STALE(inode))
 578                return 0;
 579
 580        nfsi = NFS_I(inode);
 581        if (entry->fattr->fileid != nfsi->fileid)
 582                return 0;
 583        if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 584                return 0;
 585        return 1;
 586}
 587
 588static
 589bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 590{
 591        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 592                return false;
 593        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 594                return true;
 595        if (ctx->pos == 0)
 596                return true;
 597        return false;
 598}
 599
 600/*
 601 * This function is called by the lookup and getattr code to request the
 602 * use of readdirplus to accelerate any future lookups in the same
 603 * directory.
 604 */
 605void nfs_advise_use_readdirplus(struct inode *dir)
 606{
 607        struct nfs_inode *nfsi = NFS_I(dir);
 608
 609        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 610            !list_empty(&nfsi->open_files))
 611                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 612}
 613
 614/*
 615 * This function is mainly for use by nfs_getattr().
 616 *
 617 * If this is an 'ls -l', we want to force use of readdirplus.
 618 * Do this by checking if there is an active file descriptor
 619 * and calling nfs_advise_use_readdirplus, then forcing a
 620 * cache flush.
 621 */
 622void nfs_force_use_readdirplus(struct inode *dir)
 623{
 624        struct nfs_inode *nfsi = NFS_I(dir);
 625
 626        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 627            !list_empty(&nfsi->open_files)) {
 628                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 629                invalidate_mapping_pages(dir->i_mapping,
 630                        nfsi->page_index + 1, -1);
 631        }
 632}
 633
 634static
 635void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 636                unsigned long dir_verifier)
 637{
 638        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 639        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 640        struct dentry *dentry;
 641        struct dentry *alias;
 642        struct inode *inode;
 643        int status;
 644
 645        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 646                return;
 647        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 648                return;
 649        if (filename.len == 0)
 650                return;
 651        /* Validate that the name doesn't contain any illegal '\0' */
 652        if (strnlen(filename.name, filename.len) != filename.len)
 653                return;
 654        /* ...or '/' */
 655        if (strnchr(filename.name, filename.len, '/'))
 656                return;
 657        if (filename.name[0] == '.') {
 658                if (filename.len == 1)
 659                        return;
 660                if (filename.len == 2 && filename.name[1] == '.')
 661                        return;
 662        }
 663        filename.hash = full_name_hash(parent, filename.name, filename.len);
 664
 665        dentry = d_lookup(parent, &filename);
 666again:
 667        if (!dentry) {
 668                dentry = d_alloc_parallel(parent, &filename, &wq);
 669                if (IS_ERR(dentry))
 670                        return;
 671        }
 672        if (!d_in_lookup(dentry)) {
 673                /* Is there a mountpoint here? If so, just exit */
 674                if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 675                                        &entry->fattr->fsid))
 676                        goto out;
 677                if (nfs_same_file(dentry, entry)) {
 678                        if (!entry->fh->size)
 679                                goto out;
 680                        nfs_set_verifier(dentry, dir_verifier);
 681                        status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 682                        if (!status)
 683                                nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 684                        goto out;
 685                } else {
 686                        d_invalidate(dentry);
 687                        dput(dentry);
 688                        dentry = NULL;
 689                        goto again;
 690                }
 691        }
 692        if (!entry->fh->size) {
 693                d_lookup_done(dentry);
 694                goto out;
 695        }
 696
 697        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 698        alias = d_splice_alias(inode, dentry);
 699        d_lookup_done(dentry);
 700        if (alias) {
 701                if (IS_ERR(alias))
 702                        goto out;
 703                dput(dentry);
 704                dentry = alias;
 705        }
 706        nfs_set_verifier(dentry, dir_verifier);
 707out:
 708        dput(dentry);
 709}
 710
 711/* Perform conversion from xdr to cache array */
 712static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
 713                                   struct nfs_entry *entry,
 714                                   struct page **xdr_pages,
 715                                   unsigned int buflen,
 716                                   struct page **arrays,
 717                                   size_t narrays)
 718{
 719        struct address_space *mapping = desc->file->f_mapping;
 720        struct xdr_stream stream;
 721        struct xdr_buf buf;
 722        struct page *scratch, *new, *page = *arrays;
 723        int status;
 724
 725        scratch = alloc_page(GFP_KERNEL);
 726        if (scratch == NULL)
 727                return -ENOMEM;
 728
 729        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 730        xdr_set_scratch_page(&stream, scratch);
 731
 732        do {
 733                if (entry->label)
 734                        entry->label->len = NFS4_MAXLABELLEN;
 735
 736                status = xdr_decode(desc, entry, &stream);
 737                if (status != 0)
 738                        break;
 739
 740                if (desc->plus)
 741                        nfs_prime_dcache(file_dentry(desc->file), entry,
 742                                        desc->dir_verifier);
 743
 744                status = nfs_readdir_add_to_array(entry, page);
 745                if (status != -ENOSPC)
 746                        continue;
 747
 748                if (page->mapping != mapping) {
 749                        if (!--narrays)
 750                                break;
 751                        new = nfs_readdir_page_array_alloc(entry->prev_cookie,
 752                                                           GFP_KERNEL);
 753                        if (!new)
 754                                break;
 755                        arrays++;
 756                        *arrays = page = new;
 757                } else {
 758                        new = nfs_readdir_page_get_next(mapping,
 759                                                        page->index + 1,
 760                                                        entry->prev_cookie);
 761                        if (!new)
 762                                break;
 763                        if (page != *arrays)
 764                                nfs_readdir_page_unlock_and_put(page);
 765                        page = new;
 766                }
 767                status = nfs_readdir_add_to_array(entry, page);
 768        } while (!status && !entry->eof);
 769
 770        switch (status) {
 771        case -EBADCOOKIE:
 772                if (entry->eof) {
 773                        nfs_readdir_page_set_eof(page);
 774                        status = 0;
 775                }
 776                break;
 777        case -ENOSPC:
 778        case -EAGAIN:
 779                status = 0;
 780                break;
 781        }
 782
 783        if (page != *arrays)
 784                nfs_readdir_page_unlock_and_put(page);
 785
 786        put_page(scratch);
 787        return status;
 788}
 789
 790static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 791{
 792        while (npages--)
 793                put_page(pages[npages]);
 794        kfree(pages);
 795}
 796
 797/*
 798 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 799 * to nfs_readdir_free_pages()
 800 */
 801static struct page **nfs_readdir_alloc_pages(size_t npages)
 802{
 803        struct page **pages;
 804        size_t i;
 805
 806        pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 807        if (!pages)
 808                return NULL;
 809        for (i = 0; i < npages; i++) {
 810                struct page *page = alloc_page(GFP_KERNEL);
 811                if (page == NULL)
 812                        goto out_freepages;
 813                pages[i] = page;
 814        }
 815        return pages;
 816
 817out_freepages:
 818        nfs_readdir_free_pages(pages, i);
 819        return NULL;
 820}
 821
 822static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 823                                    __be32 *verf_arg, __be32 *verf_res,
 824                                    struct page **arrays, size_t narrays)
 825{
 826        struct page **pages;
 827        struct page *page = *arrays;
 828        struct nfs_entry *entry;
 829        size_t array_size;
 830        struct inode *inode = file_inode(desc->file);
 831        size_t dtsize = NFS_SERVER(inode)->dtsize;
 832        int status = -ENOMEM;
 833
 834        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 835        if (!entry)
 836                return -ENOMEM;
 837        entry->cookie = nfs_readdir_page_last_cookie(page);
 838        entry->fh = nfs_alloc_fhandle();
 839        entry->fattr = nfs_alloc_fattr();
 840        entry->server = NFS_SERVER(inode);
 841        if (entry->fh == NULL || entry->fattr == NULL)
 842                goto out;
 843
 844        entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 845        if (IS_ERR(entry->label)) {
 846                status = PTR_ERR(entry->label);
 847                goto out;
 848        }
 849
 850        array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 851        pages = nfs_readdir_alloc_pages(array_size);
 852        if (!pages)
 853                goto out_release_label;
 854
 855        do {
 856                unsigned int pglen;
 857                status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
 858                                                pages, dtsize,
 859                                                verf_res);
 860                if (status < 0)
 861                        break;
 862
 863                pglen = status;
 864                if (pglen == 0) {
 865                        nfs_readdir_page_set_eof(page);
 866                        break;
 867                }
 868
 869                verf_arg = verf_res;
 870
 871                status = nfs_readdir_page_filler(desc, entry, pages, pglen,
 872                                                 arrays, narrays);
 873        } while (!status && nfs_readdir_page_needs_filling(page));
 874
 875        nfs_readdir_free_pages(pages, array_size);
 876out_release_label:
 877        nfs4_label_free(entry->label);
 878out:
 879        nfs_free_fattr(entry->fattr);
 880        nfs_free_fhandle(entry->fh);
 881        kfree(entry);
 882        return status;
 883}
 884
 885static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
 886{
 887        put_page(desc->page);
 888        desc->page = NULL;
 889}
 890
 891static void
 892nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 893{
 894        unlock_page(desc->page);
 895        nfs_readdir_page_put(desc);
 896}
 897
 898static struct page *
 899nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
 900{
 901        return nfs_readdir_page_get_locked(desc->file->f_mapping,
 902                                           desc->page_index,
 903                                           desc->last_cookie);
 904}
 905
 906/*
 907 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 908 * and locks the page to prevent removal from the page cache.
 909 */
 910static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
 911{
 912        struct inode *inode = file_inode(desc->file);
 913        struct nfs_inode *nfsi = NFS_I(inode);
 914        __be32 verf[NFS_DIR_VERIFIER_SIZE];
 915        int res;
 916
 917        desc->page = nfs_readdir_page_get_cached(desc);
 918        if (!desc->page)
 919                return -ENOMEM;
 920        if (nfs_readdir_page_needs_filling(desc->page)) {
 921                res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
 922                                               &desc->page, 1);
 923                if (res < 0) {
 924                        nfs_readdir_page_unlock_and_put_cached(desc);
 925                        if (res == -EBADCOOKIE || res == -ENOTSYNC) {
 926                                invalidate_inode_pages2(desc->file->f_mapping);
 927                                desc->page_index = 0;
 928                                return -EAGAIN;
 929                        }
 930                        return res;
 931                }
 932                /*
 933                 * Set the cookie verifier if the page cache was empty
 934                 */
 935                if (desc->page_index == 0)
 936                        memcpy(nfsi->cookieverf, verf,
 937                               sizeof(nfsi->cookieverf));
 938        }
 939        res = nfs_readdir_search_array(desc);
 940        if (res == 0) {
 941                nfsi->page_index = desc->page_index;
 942                return 0;
 943        }
 944        nfs_readdir_page_unlock_and_put_cached(desc);
 945        return res;
 946}
 947
 948static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
 949{
 950        struct address_space *mapping = desc->file->f_mapping;
 951        struct inode *dir = file_inode(desc->file);
 952        unsigned int dtsize = NFS_SERVER(dir)->dtsize;
 953        loff_t size = i_size_read(dir);
 954
 955        /*
 956         * Default to uncached readdir if the page cache is empty, and
 957         * we're looking for a non-zero cookie in a large directory.
 958         */
 959        return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
 960}
 961
 962/* Search for desc->dir_cookie from the beginning of the page cache */
 963static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
 964{
 965        int res;
 966
 967        if (nfs_readdir_dont_search_cache(desc))
 968                return -EBADCOOKIE;
 969
 970        do {
 971                if (desc->page_index == 0) {
 972                        desc->current_index = 0;
 973                        desc->prev_index = 0;
 974                        desc->last_cookie = 0;
 975                }
 976                res = find_and_lock_cache_page(desc);
 977        } while (res == -EAGAIN);
 978        return res;
 979}
 980
 981/*
 982 * Once we've found the start of the dirent within a page: fill 'er up...
 983 */
 984static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
 985                           const __be32 *verf)
 986{
 987        struct file     *file = desc->file;
 988        struct nfs_cache_array *array;
 989        unsigned int i = 0;
 990
 991        array = kmap(desc->page);
 992        for (i = desc->cache_entry_index; i < array->size; i++) {
 993                struct nfs_cache_array_entry *ent;
 994
 995                ent = &array->array[i];
 996                if (!dir_emit(desc->ctx, ent->name, ent->name_len,
 997                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 998                        desc->eof = true;
 999                        break;
1000                }
1001                memcpy(desc->verf, verf, sizeof(desc->verf));
1002                if (i < (array->size-1))
1003                        desc->dir_cookie = array->array[i+1].cookie;
1004                else
1005                        desc->dir_cookie = array->last_cookie;
1006                if (nfs_readdir_use_cookie(file))
1007                        desc->ctx->pos = desc->dir_cookie;
1008                else
1009                        desc->ctx->pos++;
1010                if (desc->duped != 0)
1011                        desc->duped = 1;
1012        }
1013        if (array->page_is_eof)
1014                desc->eof = true;
1015
1016        kunmap(desc->page);
1017        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018                        (unsigned long long)desc->dir_cookie);
1019}
1020
1021/*
1022 * If we cannot find a cookie in our cache, we suspect that this is
1023 * because it points to a deleted file, so we ask the server to return
1024 * whatever it thinks is the next entry. We then feed this to filldir.
1025 * If all goes well, we should then be able to find our way round the
1026 * cache on the next call to readdir_search_pagecache();
1027 *
1028 * NOTE: we cannot add the anonymous page to the pagecache because
1029 *       the data it contains might not be page aligned. Besides,
1030 *       we should already have a complete representation of the
1031 *       directory in the page cache by the time we get here.
1032 */
1033static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1034{
1035        struct page     **arrays;
1036        size_t          i, sz = 512;
1037        __be32          verf[NFS_DIR_VERIFIER_SIZE];
1038        int             status = -ENOMEM;
1039
1040        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041                        (unsigned long long)desc->dir_cookie);
1042
1043        arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044        if (!arrays)
1045                goto out;
1046        arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047        if (!arrays[0])
1048                goto out;
1049
1050        desc->page_index = 0;
1051        desc->last_cookie = desc->dir_cookie;
1052        desc->duped = 0;
1053
1054        status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1055
1056        for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1057                desc->page = arrays[i];
1058                nfs_do_filldir(desc, verf);
1059        }
1060        desc->page = NULL;
1061
1062
1063        for (i = 0; i < sz && arrays[i]; i++)
1064                nfs_readdir_page_array_free(arrays[i]);
1065out:
1066        kfree(arrays);
1067        dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1068        return status;
1069}
1070
1071/* The file offset position represents the dirent entry number.  A
1072   last cookie cache takes care of the common case of reading the
1073   whole directory.
1074 */
1075static int nfs_readdir(struct file *file, struct dir_context *ctx)
1076{
1077        struct dentry   *dentry = file_dentry(file);
1078        struct inode    *inode = d_inode(dentry);
1079        struct nfs_inode *nfsi = NFS_I(inode);
1080        struct nfs_open_dir_context *dir_ctx = file->private_data;
1081        struct nfs_readdir_descriptor *desc;
1082        int res;
1083
1084        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1085                        file, (long long)ctx->pos);
1086        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1087
1088        /*
1089         * ctx->pos points to the dirent entry number.
1090         * *desc->dir_cookie has the cookie for the next entry. We have
1091         * to either find the entry with the appropriate number or
1092         * revalidate the cookie.
1093         */
1094        if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1095                res = nfs_revalidate_mapping(inode, file->f_mapping);
1096                if (res < 0)
1097                        goto out;
1098        }
1099
1100        res = -ENOMEM;
1101        desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1102        if (!desc)
1103                goto out;
1104        desc->file = file;
1105        desc->ctx = ctx;
1106        desc->plus = nfs_use_readdirplus(inode, ctx);
1107
1108        spin_lock(&file->f_lock);
1109        desc->dir_cookie = dir_ctx->dir_cookie;
1110        desc->dup_cookie = dir_ctx->dup_cookie;
1111        desc->duped = dir_ctx->duped;
1112        desc->attr_gencount = dir_ctx->attr_gencount;
1113        memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1114        spin_unlock(&file->f_lock);
1115
1116        do {
1117                res = readdir_search_pagecache(desc);
1118
1119                if (res == -EBADCOOKIE) {
1120                        res = 0;
1121                        /* This means either end of directory */
1122                        if (desc->dir_cookie && !desc->eof) {
1123                                /* Or that the server has 'lost' a cookie */
1124                                res = uncached_readdir(desc);
1125                                if (res == 0)
1126                                        continue;
1127                                if (res == -EBADCOOKIE || res == -ENOTSYNC)
1128                                        res = 0;
1129                        }
1130                        break;
1131                }
1132                if (res == -ETOOSMALL && desc->plus) {
1133                        clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1134                        nfs_zap_caches(inode);
1135                        desc->page_index = 0;
1136                        desc->plus = false;
1137                        desc->eof = false;
1138                        continue;
1139                }
1140                if (res < 0)
1141                        break;
1142
1143                nfs_do_filldir(desc, nfsi->cookieverf);
1144                nfs_readdir_page_unlock_and_put_cached(desc);
1145        } while (!desc->eof);
1146
1147        spin_lock(&file->f_lock);
1148        dir_ctx->dir_cookie = desc->dir_cookie;
1149        dir_ctx->dup_cookie = desc->dup_cookie;
1150        dir_ctx->duped = desc->duped;
1151        dir_ctx->attr_gencount = desc->attr_gencount;
1152        memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153        spin_unlock(&file->f_lock);
1154
1155        kfree(desc);
1156
1157out:
1158        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1159        return res;
1160}
1161
1162static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1163{
1164        struct nfs_open_dir_context *dir_ctx = filp->private_data;
1165
1166        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167                        filp, offset, whence);
1168
1169        switch (whence) {
1170        default:
1171                return -EINVAL;
1172        case SEEK_SET:
1173                if (offset < 0)
1174                        return -EINVAL;
1175                spin_lock(&filp->f_lock);
1176                break;
1177        case SEEK_CUR:
1178                if (offset == 0)
1179                        return filp->f_pos;
1180                spin_lock(&filp->f_lock);
1181                offset += filp->f_pos;
1182                if (offset < 0) {
1183                        spin_unlock(&filp->f_lock);
1184                        return -EINVAL;
1185                }
1186        }
1187        if (offset != filp->f_pos) {
1188                filp->f_pos = offset;
1189                if (nfs_readdir_use_cookie(filp))
1190                        dir_ctx->dir_cookie = offset;
1191                else
1192                        dir_ctx->dir_cookie = 0;
1193                if (offset == 0)
1194                        memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1195                dir_ctx->duped = 0;
1196        }
1197        spin_unlock(&filp->f_lock);
1198        return offset;
1199}
1200
1201/*
1202 * All directory operations under NFS are synchronous, so fsync()
1203 * is a dummy operation.
1204 */
1205static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1206                         int datasync)
1207{
1208        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1209
1210        nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1211        return 0;
1212}
1213
1214/**
1215 * nfs_force_lookup_revalidate - Mark the directory as having changed
1216 * @dir: pointer to directory inode
1217 *
1218 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219 * full lookup on all child dentries of 'dir' whenever a change occurs
1220 * on the server that might have invalidated our dcache.
1221 *
1222 * Note that we reserve bit '0' as a tag to let us know when a dentry
1223 * was revalidated while holding a delegation on its inode.
1224 *
1225 * The caller should be holding dir->i_lock
1226 */
1227void nfs_force_lookup_revalidate(struct inode *dir)
1228{
1229        NFS_I(dir)->cache_change_attribute += 2;
1230}
1231EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1232
1233/**
1234 * nfs_verify_change_attribute - Detects NFS remote directory changes
1235 * @dir: pointer to parent directory inode
1236 * @verf: previously saved change attribute
1237 *
1238 * Return "false" if the verifiers doesn't match the change attribute.
1239 * This would usually indicate that the directory contents have changed on
1240 * the server, and that any dentries need revalidating.
1241 */
1242static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1243{
1244        return (verf & ~1UL) == nfs_save_change_attribute(dir);
1245}
1246
1247static void nfs_set_verifier_delegated(unsigned long *verf)
1248{
1249        *verf |= 1UL;
1250}
1251
1252#if IS_ENABLED(CONFIG_NFS_V4)
1253static void nfs_unset_verifier_delegated(unsigned long *verf)
1254{
1255        *verf &= ~1UL;
1256}
1257#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1258
1259static bool nfs_test_verifier_delegated(unsigned long verf)
1260{
1261        return verf & 1;
1262}
1263
1264static bool nfs_verifier_is_delegated(struct dentry *dentry)
1265{
1266        return nfs_test_verifier_delegated(dentry->d_time);
1267}
1268
1269static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1270{
1271        struct inode *inode = d_inode(dentry);
1272
1273        if (!nfs_verifier_is_delegated(dentry) &&
1274            !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1275                goto out;
1276        if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277                nfs_set_verifier_delegated(&verf);
1278out:
1279        dentry->d_time = verf;
1280}
1281
1282/**
1283 * nfs_set_verifier - save a parent directory verifier in the dentry
1284 * @dentry: pointer to dentry
1285 * @verf: verifier to save
1286 *
1287 * Saves the parent directory verifier in @dentry. If the inode has
1288 * a delegation, we also tag the dentry as having been revalidated
1289 * while holding a delegation so that we know we don't have to
1290 * look it up again after a directory change.
1291 */
1292void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1293{
1294
1295        spin_lock(&dentry->d_lock);
1296        nfs_set_verifier_locked(dentry, verf);
1297        spin_unlock(&dentry->d_lock);
1298}
1299EXPORT_SYMBOL_GPL(nfs_set_verifier);
1300
1301#if IS_ENABLED(CONFIG_NFS_V4)
1302/**
1303 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1304 * @inode: pointer to inode
1305 *
1306 * Iterates through the dentries in the inode alias list and clears
1307 * the tag used to indicate that the dentry has been revalidated
1308 * while holding a delegation.
1309 * This function is intended for use when the delegation is being
1310 * returned or revoked.
1311 */
1312void nfs_clear_verifier_delegated(struct inode *inode)
1313{
1314        struct dentry *alias;
1315
1316        if (!inode)
1317                return;
1318        spin_lock(&inode->i_lock);
1319        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1320                spin_lock(&alias->d_lock);
1321                nfs_unset_verifier_delegated(&alias->d_time);
1322                spin_unlock(&alias->d_lock);
1323        }
1324        spin_unlock(&inode->i_lock);
1325}
1326EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1327#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1328
1329/*
1330 * A check for whether or not the parent directory has changed.
1331 * In the case it has, we assume that the dentries are untrustworthy
1332 * and may need to be looked up again.
1333 * If rcu_walk prevents us from performing a full check, return 0.
1334 */
1335static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1336                              int rcu_walk)
1337{
1338        if (IS_ROOT(dentry))
1339                return 1;
1340        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1341                return 0;
1342        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1343                return 0;
1344        /* Revalidate nfsi->cache_change_attribute before we declare a match */
1345        if (nfs_mapping_need_revalidate_inode(dir)) {
1346                if (rcu_walk)
1347                        return 0;
1348                if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1349                        return 0;
1350        }
1351        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1352                return 0;
1353        return 1;
1354}
1355
1356/*
1357 * Use intent information to check whether or not we're going to do
1358 * an O_EXCL create using this path component.
1359 */
1360static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1361{
1362        if (NFS_PROTO(dir)->version == 2)
1363                return 0;
1364        return flags & LOOKUP_EXCL;
1365}
1366
1367/*
1368 * Inode and filehandle revalidation for lookups.
1369 *
1370 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1371 * or if the intent information indicates that we're about to open this
1372 * particular file and the "nocto" mount flag is not set.
1373 *
1374 */
1375static
1376int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1377{
1378        struct nfs_server *server = NFS_SERVER(inode);
1379        int ret;
1380
1381        if (IS_AUTOMOUNT(inode))
1382                return 0;
1383
1384        if (flags & LOOKUP_OPEN) {
1385                switch (inode->i_mode & S_IFMT) {
1386                case S_IFREG:
1387                        /* A NFSv4 OPEN will revalidate later */
1388                        if (server->caps & NFS_CAP_ATOMIC_OPEN)
1389                                goto out;
1390                        fallthrough;
1391                case S_IFDIR:
1392                        if (server->flags & NFS_MOUNT_NOCTO)
1393                                break;
1394                        /* NFS close-to-open cache consistency validation */
1395                        goto out_force;
1396                }
1397        }
1398
1399        /* VFS wants an on-the-wire revalidation */
1400        if (flags & LOOKUP_REVAL)
1401                goto out_force;
1402out:
1403        return (inode->i_nlink == 0) ? -ESTALE : 0;
1404out_force:
1405        if (flags & LOOKUP_RCU)
1406                return -ECHILD;
1407        ret = __nfs_revalidate_inode(server, inode);
1408        if (ret != 0)
1409                return ret;
1410        goto out;
1411}
1412
1413static void nfs_mark_dir_for_revalidate(struct inode *inode)
1414{
1415        spin_lock(&inode->i_lock);
1416        nfs_set_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE);
1417        spin_unlock(&inode->i_lock);
1418}
1419
1420/*
1421 * We judge how long we want to trust negative
1422 * dentries by looking at the parent inode mtime.
1423 *
1424 * If parent mtime has changed, we revalidate, else we wait for a
1425 * period corresponding to the parent's attribute cache timeout value.
1426 *
1427 * If LOOKUP_RCU prevents us from performing a full check, return 1
1428 * suggesting a reval is needed.
1429 *
1430 * Note that when creating a new file, or looking up a rename target,
1431 * then it shouldn't be necessary to revalidate a negative dentry.
1432 */
1433static inline
1434int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1435                       unsigned int flags)
1436{
1437        if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1438                return 0;
1439        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1440                return 1;
1441        return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1442}
1443
1444static int
1445nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1446                           struct inode *inode, int error)
1447{
1448        switch (error) {
1449        case 1:
1450                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1451                        __func__, dentry);
1452                return 1;
1453        case 0:
1454                /*
1455                 * We can't d_drop the root of a disconnected tree:
1456                 * its d_hash is on the s_anon list and d_drop() would hide
1457                 * it from shrink_dcache_for_unmount(), leading to busy
1458                 * inodes on unmount and further oopses.
1459                 */
1460                if (inode && IS_ROOT(dentry))
1461                        return 1;
1462                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1463                                __func__, dentry);
1464                return 0;
1465        }
1466        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1467                                __func__, dentry, error);
1468        return error;
1469}
1470
1471static int
1472nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1473                               unsigned int flags)
1474{
1475        int ret = 1;
1476        if (nfs_neg_need_reval(dir, dentry, flags)) {
1477                if (flags & LOOKUP_RCU)
1478                        return -ECHILD;
1479                ret = 0;
1480        }
1481        return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1482}
1483
1484static int
1485nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1486                                struct inode *inode)
1487{
1488        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1489        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1490}
1491
1492static int
1493nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1494                             struct inode *inode)
1495{
1496        struct nfs_fh *fhandle;
1497        struct nfs_fattr *fattr;
1498        struct nfs4_label *label;
1499        unsigned long dir_verifier;
1500        int ret;
1501
1502        ret = -ENOMEM;
1503        fhandle = nfs_alloc_fhandle();
1504        fattr = nfs_alloc_fattr();
1505        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1506        if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1507                goto out;
1508
1509        dir_verifier = nfs_save_change_attribute(dir);
1510        ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1511        if (ret < 0) {
1512                switch (ret) {
1513                case -ESTALE:
1514                case -ENOENT:
1515                        ret = 0;
1516                        break;
1517                case -ETIMEDOUT:
1518                        if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1519                                ret = 1;
1520                }
1521                goto out;
1522        }
1523        ret = 0;
1524        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1525                goto out;
1526        if (nfs_refresh_inode(inode, fattr) < 0)
1527                goto out;
1528
1529        nfs_setsecurity(inode, fattr, label);
1530        nfs_set_verifier(dentry, dir_verifier);
1531
1532        /* set a readdirplus hint that we had a cache miss */
1533        nfs_force_use_readdirplus(dir);
1534        ret = 1;
1535out:
1536        nfs_free_fattr(fattr);
1537        nfs_free_fhandle(fhandle);
1538        nfs4_label_free(label);
1539
1540        /*
1541         * If the lookup failed despite the dentry change attribute being
1542         * a match, then we should revalidate the directory cache.
1543         */
1544        if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1545                nfs_mark_dir_for_revalidate(dir);
1546        return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1547}
1548
1549/*
1550 * This is called every time the dcache has a lookup hit,
1551 * and we should check whether we can really trust that
1552 * lookup.
1553 *
1554 * NOTE! The hit can be a negative hit too, don't assume
1555 * we have an inode!
1556 *
1557 * If the parent directory is seen to have changed, we throw out the
1558 * cached dentry and do a new lookup.
1559 */
1560static int
1561nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1562                         unsigned int flags)
1563{
1564        struct inode *inode;
1565        int error;
1566
1567        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1568        inode = d_inode(dentry);
1569
1570        if (!inode)
1571                return nfs_lookup_revalidate_negative(dir, dentry, flags);
1572
1573        if (is_bad_inode(inode)) {
1574                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1575                                __func__, dentry);
1576                goto out_bad;
1577        }
1578
1579        if (nfs_verifier_is_delegated(dentry))
1580                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1581
1582        /* Force a full look up iff the parent directory has changed */
1583        if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1584            nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1585                error = nfs_lookup_verify_inode(inode, flags);
1586                if (error) {
1587                        if (error == -ESTALE)
1588                                nfs_mark_dir_for_revalidate(dir);
1589                        goto out_bad;
1590                }
1591                nfs_advise_use_readdirplus(dir);
1592                goto out_valid;
1593        }
1594
1595        if (flags & LOOKUP_RCU)
1596                return -ECHILD;
1597
1598        if (NFS_STALE(inode))
1599                goto out_bad;
1600
1601        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1602        error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1603        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1604        return error;
1605out_valid:
1606        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1607out_bad:
1608        if (flags & LOOKUP_RCU)
1609                return -ECHILD;
1610        return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1611}
1612
1613static int
1614__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1615                        int (*reval)(struct inode *, struct dentry *, unsigned int))
1616{
1617        struct dentry *parent;
1618        struct inode *dir;
1619        int ret;
1620
1621        if (flags & LOOKUP_RCU) {
1622                parent = READ_ONCE(dentry->d_parent);
1623                dir = d_inode_rcu(parent);
1624                if (!dir)
1625                        return -ECHILD;
1626                ret = reval(dir, dentry, flags);
1627                if (parent != READ_ONCE(dentry->d_parent))
1628                        return -ECHILD;
1629        } else {
1630                parent = dget_parent(dentry);
1631                ret = reval(d_inode(parent), dentry, flags);
1632                dput(parent);
1633        }
1634        return ret;
1635}
1636
1637static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1638{
1639        return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1640}
1641
1642/*
1643 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1644 * when we don't really care about the dentry name. This is called when a
1645 * pathwalk ends on a dentry that was not found via a normal lookup in the
1646 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1647 *
1648 * In this situation, we just want to verify that the inode itself is OK
1649 * since the dentry might have changed on the server.
1650 */
1651static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1652{
1653        struct inode *inode = d_inode(dentry);
1654        int error = 0;
1655
1656        /*
1657         * I believe we can only get a negative dentry here in the case of a
1658         * procfs-style symlink. Just assume it's correct for now, but we may
1659         * eventually need to do something more here.
1660         */
1661        if (!inode) {
1662                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1663                                __func__, dentry);
1664                return 1;
1665        }
1666
1667        if (is_bad_inode(inode)) {
1668                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1669                                __func__, dentry);
1670                return 0;
1671        }
1672
1673        error = nfs_lookup_verify_inode(inode, flags);
1674        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1675                        __func__, inode->i_ino, error ? "invalid" : "valid");
1676        return !error;
1677}
1678
1679/*
1680 * This is called from dput() when d_count is going to 0.
1681 */
1682static int nfs_dentry_delete(const struct dentry *dentry)
1683{
1684        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1685                dentry, dentry->d_flags);
1686
1687        /* Unhash any dentry with a stale inode */
1688        if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1689                return 1;
1690
1691        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1692                /* Unhash it, so that ->d_iput() would be called */
1693                return 1;
1694        }
1695        if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1696                /* Unhash it, so that ancestors of killed async unlink
1697                 * files will be cleaned up during umount */
1698                return 1;
1699        }
1700        return 0;
1701
1702}
1703
1704/* Ensure that we revalidate inode->i_nlink */
1705static void nfs_drop_nlink(struct inode *inode)
1706{
1707        spin_lock(&inode->i_lock);
1708        /* drop the inode if we're reasonably sure this is the last link */
1709        if (inode->i_nlink > 0)
1710                drop_nlink(inode);
1711        NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1712        nfs_set_cache_invalid(
1713                inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1714                               NFS_INO_INVALID_NLINK);
1715        spin_unlock(&inode->i_lock);
1716}
1717
1718/*
1719 * Called when the dentry loses inode.
1720 * We use it to clean up silly-renamed files.
1721 */
1722static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1723{
1724        if (S_ISDIR(inode->i_mode))
1725                /* drop any readdir cache as it could easily be old */
1726                nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1727
1728        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1729                nfs_complete_unlink(dentry, inode);
1730                nfs_drop_nlink(inode);
1731        }
1732        iput(inode);
1733}
1734
1735static void nfs_d_release(struct dentry *dentry)
1736{
1737        /* free cached devname value, if it survived that far */
1738        if (unlikely(dentry->d_fsdata)) {
1739                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1740                        WARN_ON(1);
1741                else
1742                        kfree(dentry->d_fsdata);
1743        }
1744}
1745
1746const struct dentry_operations nfs_dentry_operations = {
1747        .d_revalidate   = nfs_lookup_revalidate,
1748        .d_weak_revalidate      = nfs_weak_revalidate,
1749        .d_delete       = nfs_dentry_delete,
1750        .d_iput         = nfs_dentry_iput,
1751        .d_automount    = nfs_d_automount,
1752        .d_release      = nfs_d_release,
1753};
1754EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1755
1756struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1757{
1758        struct dentry *res;
1759        struct inode *inode = NULL;
1760        struct nfs_fh *fhandle = NULL;
1761        struct nfs_fattr *fattr = NULL;
1762        struct nfs4_label *label = NULL;
1763        unsigned long dir_verifier;
1764        int error;
1765
1766        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1767        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1768
1769        if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1770                return ERR_PTR(-ENAMETOOLONG);
1771
1772        /*
1773         * If we're doing an exclusive create, optimize away the lookup
1774         * but don't hash the dentry.
1775         */
1776        if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1777                return NULL;
1778
1779        res = ERR_PTR(-ENOMEM);
1780        fhandle = nfs_alloc_fhandle();
1781        fattr = nfs_alloc_fattr();
1782        if (fhandle == NULL || fattr == NULL)
1783                goto out;
1784
1785        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1786        if (IS_ERR(label))
1787                goto out;
1788
1789        dir_verifier = nfs_save_change_attribute(dir);
1790        trace_nfs_lookup_enter(dir, dentry, flags);
1791        error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1792        if (error == -ENOENT)
1793                goto no_entry;
1794        if (error < 0) {
1795                res = ERR_PTR(error);
1796                goto out_label;
1797        }
1798        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1799        res = ERR_CAST(inode);
1800        if (IS_ERR(res))
1801                goto out_label;
1802
1803        /* Notify readdir to use READDIRPLUS */
1804        nfs_force_use_readdirplus(dir);
1805
1806no_entry:
1807        res = d_splice_alias(inode, dentry);
1808        if (res != NULL) {
1809                if (IS_ERR(res))
1810                        goto out_label;
1811                dentry = res;
1812        }
1813        nfs_set_verifier(dentry, dir_verifier);
1814out_label:
1815        trace_nfs_lookup_exit(dir, dentry, flags, error);
1816        nfs4_label_free(label);
1817out:
1818        nfs_free_fattr(fattr);
1819        nfs_free_fhandle(fhandle);
1820        return res;
1821}
1822EXPORT_SYMBOL_GPL(nfs_lookup);
1823
1824#if IS_ENABLED(CONFIG_NFS_V4)
1825static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1826
1827const struct dentry_operations nfs4_dentry_operations = {
1828        .d_revalidate   = nfs4_lookup_revalidate,
1829        .d_weak_revalidate      = nfs_weak_revalidate,
1830        .d_delete       = nfs_dentry_delete,
1831        .d_iput         = nfs_dentry_iput,
1832        .d_automount    = nfs_d_automount,
1833        .d_release      = nfs_d_release,
1834};
1835EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1836
1837static fmode_t flags_to_mode(int flags)
1838{
1839        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1840        if ((flags & O_ACCMODE) != O_WRONLY)
1841                res |= FMODE_READ;
1842        if ((flags & O_ACCMODE) != O_RDONLY)
1843                res |= FMODE_WRITE;
1844        return res;
1845}
1846
1847static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1848{
1849        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1850}
1851
1852static int do_open(struct inode *inode, struct file *filp)
1853{
1854        nfs_fscache_open_file(inode, filp);
1855        return 0;
1856}
1857
1858static int nfs_finish_open(struct nfs_open_context *ctx,
1859                           struct dentry *dentry,
1860                           struct file *file, unsigned open_flags)
1861{
1862        int err;
1863
1864        err = finish_open(file, dentry, do_open);
1865        if (err)
1866                goto out;
1867        if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1868                nfs_file_set_open_context(file, ctx);
1869        else
1870                err = -EOPENSTALE;
1871out:
1872        return err;
1873}
1874
1875int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1876                    struct file *file, unsigned open_flags,
1877                    umode_t mode)
1878{
1879        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1880        struct nfs_open_context *ctx;
1881        struct dentry *res;
1882        struct iattr attr = { .ia_valid = ATTR_OPEN };
1883        struct inode *inode;
1884        unsigned int lookup_flags = 0;
1885        bool switched = false;
1886        int created = 0;
1887        int err;
1888
1889        /* Expect a negative dentry */
1890        BUG_ON(d_inode(dentry));
1891
1892        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1893                        dir->i_sb->s_id, dir->i_ino, dentry);
1894
1895        err = nfs_check_flags(open_flags);
1896        if (err)
1897                return err;
1898
1899        /* NFS only supports OPEN on regular files */
1900        if ((open_flags & O_DIRECTORY)) {
1901                if (!d_in_lookup(dentry)) {
1902                        /*
1903                         * Hashed negative dentry with O_DIRECTORY: dentry was
1904                         * revalidated and is fine, no need to perform lookup
1905                         * again
1906                         */
1907                        return -ENOENT;
1908                }
1909                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1910                goto no_open;
1911        }
1912
1913        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1914                return -ENAMETOOLONG;
1915
1916        if (open_flags & O_CREAT) {
1917                struct nfs_server *server = NFS_SERVER(dir);
1918
1919                if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1920                        mode &= ~current_umask();
1921
1922                attr.ia_valid |= ATTR_MODE;
1923                attr.ia_mode = mode;
1924        }
1925        if (open_flags & O_TRUNC) {
1926                attr.ia_valid |= ATTR_SIZE;
1927                attr.ia_size = 0;
1928        }
1929
1930        if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1931                d_drop(dentry);
1932                switched = true;
1933                dentry = d_alloc_parallel(dentry->d_parent,
1934                                          &dentry->d_name, &wq);
1935                if (IS_ERR(dentry))
1936                        return PTR_ERR(dentry);
1937                if (unlikely(!d_in_lookup(dentry)))
1938                        return finish_no_open(file, dentry);
1939        }
1940
1941        ctx = create_nfs_open_context(dentry, open_flags, file);
1942        err = PTR_ERR(ctx);
1943        if (IS_ERR(ctx))
1944                goto out;
1945
1946        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1947        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1948        if (created)
1949                file->f_mode |= FMODE_CREATED;
1950        if (IS_ERR(inode)) {
1951                err = PTR_ERR(inode);
1952                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1953                put_nfs_open_context(ctx);
1954                d_drop(dentry);
1955                switch (err) {
1956                case -ENOENT:
1957                        d_splice_alias(NULL, dentry);
1958                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1959                        break;
1960                case -EISDIR:
1961                case -ENOTDIR:
1962                        goto no_open;
1963                case -ELOOP:
1964                        if (!(open_flags & O_NOFOLLOW))
1965                                goto no_open;
1966                        break;
1967                        /* case -EINVAL: */
1968                default:
1969                        break;
1970                }
1971                goto out;
1972        }
1973
1974        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1975        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1976        put_nfs_open_context(ctx);
1977out:
1978        if (unlikely(switched)) {
1979                d_lookup_done(dentry);
1980                dput(dentry);
1981        }
1982        return err;
1983
1984no_open:
1985        res = nfs_lookup(dir, dentry, lookup_flags);
1986        if (switched) {
1987                d_lookup_done(dentry);
1988                if (!res)
1989                        res = dentry;
1990                else
1991                        dput(dentry);
1992        }
1993        if (IS_ERR(res))
1994                return PTR_ERR(res);
1995        return finish_no_open(file, res);
1996}
1997EXPORT_SYMBOL_GPL(nfs_atomic_open);
1998
1999static int
2000nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2001                          unsigned int flags)
2002{
2003        struct inode *inode;
2004
2005        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2006                goto full_reval;
2007        if (d_mountpoint(dentry))
2008                goto full_reval;
2009
2010        inode = d_inode(dentry);
2011
2012        /* We can't create new files in nfs_open_revalidate(), so we
2013         * optimize away revalidation of negative dentries.
2014         */
2015        if (inode == NULL)
2016                goto full_reval;
2017
2018        if (nfs_verifier_is_delegated(dentry))
2019                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2020
2021        /* NFS only supports OPEN on regular files */
2022        if (!S_ISREG(inode->i_mode))
2023                goto full_reval;
2024
2025        /* We cannot do exclusive creation on a positive dentry */
2026        if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2027                goto reval_dentry;
2028
2029        /* Check if the directory changed */
2030        if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2031                goto reval_dentry;
2032
2033        /* Let f_op->open() actually open (and revalidate) the file */
2034        return 1;
2035reval_dentry:
2036        if (flags & LOOKUP_RCU)
2037                return -ECHILD;
2038        return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2039
2040full_reval:
2041        return nfs_do_lookup_revalidate(dir, dentry, flags);
2042}
2043
2044static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2045{
2046        return __nfs_lookup_revalidate(dentry, flags,
2047                        nfs4_do_lookup_revalidate);
2048}
2049
2050#endif /* CONFIG_NFSV4 */
2051
2052struct dentry *
2053nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2054                                struct nfs_fattr *fattr,
2055                                struct nfs4_label *label)
2056{
2057        struct dentry *parent = dget_parent(dentry);
2058        struct inode *dir = d_inode(parent);
2059        struct inode *inode;
2060        struct dentry *d;
2061        int error;
2062
2063        d_drop(dentry);
2064
2065        if (fhandle->size == 0) {
2066                error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2067                if (error)
2068                        goto out_error;
2069        }
2070        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2071        if (!(fattr->valid & NFS_ATTR_FATTR)) {
2072                struct nfs_server *server = NFS_SB(dentry->d_sb);
2073                error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2074                                fattr, NULL, NULL);
2075                if (error < 0)
2076                        goto out_error;
2077        }
2078        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2079        d = d_splice_alias(inode, dentry);
2080out:
2081        dput(parent);
2082        return d;
2083out_error:
2084        d = ERR_PTR(error);
2085        goto out;
2086}
2087EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2088
2089/*
2090 * Code common to create, mkdir, and mknod.
2091 */
2092int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2093                                struct nfs_fattr *fattr,
2094                                struct nfs4_label *label)
2095{
2096        struct dentry *d;
2097
2098        d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2099        if (IS_ERR(d))
2100                return PTR_ERR(d);
2101
2102        /* Callers don't care */
2103        dput(d);
2104        return 0;
2105}
2106EXPORT_SYMBOL_GPL(nfs_instantiate);
2107
2108/*
2109 * Following a failed create operation, we drop the dentry rather
2110 * than retain a negative dentry. This avoids a problem in the event
2111 * that the operation succeeded on the server, but an error in the
2112 * reply path made it appear to have failed.
2113 */
2114int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2115               struct dentry *dentry, umode_t mode, bool excl)
2116{
2117        struct iattr attr;
2118        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2119        int error;
2120
2121        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2122                        dir->i_sb->s_id, dir->i_ino, dentry);
2123
2124        attr.ia_mode = mode;
2125        attr.ia_valid = ATTR_MODE;
2126
2127        trace_nfs_create_enter(dir, dentry, open_flags);
2128        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2129        trace_nfs_create_exit(dir, dentry, open_flags, error);
2130        if (error != 0)
2131                goto out_err;
2132        return 0;
2133out_err:
2134        d_drop(dentry);
2135        return error;
2136}
2137EXPORT_SYMBOL_GPL(nfs_create);
2138
2139/*
2140 * See comments for nfs_proc_create regarding failed operations.
2141 */
2142int
2143nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2144          struct dentry *dentry, umode_t mode, dev_t rdev)
2145{
2146        struct iattr attr;
2147        int status;
2148
2149        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2150                        dir->i_sb->s_id, dir->i_ino, dentry);
2151
2152        attr.ia_mode = mode;
2153        attr.ia_valid = ATTR_MODE;
2154
2155        trace_nfs_mknod_enter(dir, dentry);
2156        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2157        trace_nfs_mknod_exit(dir, dentry, status);
2158        if (status != 0)
2159                goto out_err;
2160        return 0;
2161out_err:
2162        d_drop(dentry);
2163        return status;
2164}
2165EXPORT_SYMBOL_GPL(nfs_mknod);
2166
2167/*
2168 * See comments for nfs_proc_create regarding failed operations.
2169 */
2170int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2171              struct dentry *dentry, umode_t mode)
2172{
2173        struct iattr attr;
2174        int error;
2175
2176        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2177                        dir->i_sb->s_id, dir->i_ino, dentry);
2178
2179        attr.ia_valid = ATTR_MODE;
2180        attr.ia_mode = mode | S_IFDIR;
2181
2182        trace_nfs_mkdir_enter(dir, dentry);
2183        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2184        trace_nfs_mkdir_exit(dir, dentry, error);
2185        if (error != 0)
2186                goto out_err;
2187        return 0;
2188out_err:
2189        d_drop(dentry);
2190        return error;
2191}
2192EXPORT_SYMBOL_GPL(nfs_mkdir);
2193
2194static void nfs_dentry_handle_enoent(struct dentry *dentry)
2195{
2196        if (simple_positive(dentry))
2197                d_delete(dentry);
2198}
2199
2200int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2201{
2202        int error;
2203
2204        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2205                        dir->i_sb->s_id, dir->i_ino, dentry);
2206
2207        trace_nfs_rmdir_enter(dir, dentry);
2208        if (d_really_is_positive(dentry)) {
2209                down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2210                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2211                /* Ensure the VFS deletes this inode */
2212                switch (error) {
2213                case 0:
2214                        clear_nlink(d_inode(dentry));
2215                        break;
2216                case -ENOENT:
2217                        nfs_dentry_handle_enoent(dentry);
2218                }
2219                up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2220        } else
2221                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2222        trace_nfs_rmdir_exit(dir, dentry, error);
2223
2224        return error;
2225}
2226EXPORT_SYMBOL_GPL(nfs_rmdir);
2227
2228/*
2229 * Remove a file after making sure there are no pending writes,
2230 * and after checking that the file has only one user. 
2231 *
2232 * We invalidate the attribute cache and free the inode prior to the operation
2233 * to avoid possible races if the server reuses the inode.
2234 */
2235static int nfs_safe_remove(struct dentry *dentry)
2236{
2237        struct inode *dir = d_inode(dentry->d_parent);
2238        struct inode *inode = d_inode(dentry);
2239        int error = -EBUSY;
2240                
2241        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2242
2243        /* If the dentry was sillyrenamed, we simply call d_delete() */
2244        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2245                error = 0;
2246                goto out;
2247        }
2248
2249        trace_nfs_remove_enter(dir, dentry);
2250        if (inode != NULL) {
2251                error = NFS_PROTO(dir)->remove(dir, dentry);
2252                if (error == 0)
2253                        nfs_drop_nlink(inode);
2254        } else
2255                error = NFS_PROTO(dir)->remove(dir, dentry);
2256        if (error == -ENOENT)
2257                nfs_dentry_handle_enoent(dentry);
2258        trace_nfs_remove_exit(dir, dentry, error);
2259out:
2260        return error;
2261}
2262
2263/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2264 *  belongs to an active ".nfs..." file and we return -EBUSY.
2265 *
2266 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2267 */
2268int nfs_unlink(struct inode *dir, struct dentry *dentry)
2269{
2270        int error;
2271        int need_rehash = 0;
2272
2273        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2274                dir->i_ino, dentry);
2275
2276        trace_nfs_unlink_enter(dir, dentry);
2277        spin_lock(&dentry->d_lock);
2278        if (d_count(dentry) > 1) {
2279                spin_unlock(&dentry->d_lock);
2280                /* Start asynchronous writeout of the inode */
2281                write_inode_now(d_inode(dentry), 0);
2282                error = nfs_sillyrename(dir, dentry);
2283                goto out;
2284        }
2285        if (!d_unhashed(dentry)) {
2286                __d_drop(dentry);
2287                need_rehash = 1;
2288        }
2289        spin_unlock(&dentry->d_lock);
2290        error = nfs_safe_remove(dentry);
2291        if (!error || error == -ENOENT) {
2292                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2293        } else if (need_rehash)
2294                d_rehash(dentry);
2295out:
2296        trace_nfs_unlink_exit(dir, dentry, error);
2297        return error;
2298}
2299EXPORT_SYMBOL_GPL(nfs_unlink);
2300
2301/*
2302 * To create a symbolic link, most file systems instantiate a new inode,
2303 * add a page to it containing the path, then write it out to the disk
2304 * using prepare_write/commit_write.
2305 *
2306 * Unfortunately the NFS client can't create the in-core inode first
2307 * because it needs a file handle to create an in-core inode (see
2308 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2309 * symlink request has completed on the server.
2310 *
2311 * So instead we allocate a raw page, copy the symname into it, then do
2312 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2313 * now have a new file handle and can instantiate an in-core NFS inode
2314 * and move the raw page into its mapping.
2315 */
2316int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2317                struct dentry *dentry, const char *symname)
2318{
2319        struct page *page;
2320        char *kaddr;
2321        struct iattr attr;
2322        unsigned int pathlen = strlen(symname);
2323        int error;
2324
2325        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2326                dir->i_ino, dentry, symname);
2327
2328        if (pathlen > PAGE_SIZE)
2329                return -ENAMETOOLONG;
2330
2331        attr.ia_mode = S_IFLNK | S_IRWXUGO;
2332        attr.ia_valid = ATTR_MODE;
2333
2334        page = alloc_page(GFP_USER);
2335        if (!page)
2336                return -ENOMEM;
2337
2338        kaddr = page_address(page);
2339        memcpy(kaddr, symname, pathlen);
2340        if (pathlen < PAGE_SIZE)
2341                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2342
2343        trace_nfs_symlink_enter(dir, dentry);
2344        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2345        trace_nfs_symlink_exit(dir, dentry, error);
2346        if (error != 0) {
2347                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2348                        dir->i_sb->s_id, dir->i_ino,
2349                        dentry, symname, error);
2350                d_drop(dentry);
2351                __free_page(page);
2352                return error;
2353        }
2354
2355        /*
2356         * No big deal if we can't add this page to the page cache here.
2357         * READLINK will get the missing page from the server if needed.
2358         */
2359        if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2360                                                        GFP_KERNEL)) {
2361                SetPageUptodate(page);
2362                unlock_page(page);
2363                /*
2364                 * add_to_page_cache_lru() grabs an extra page refcount.
2365                 * Drop it here to avoid leaking this page later.
2366                 */
2367                put_page(page);
2368        } else
2369                __free_page(page);
2370
2371        return 0;
2372}
2373EXPORT_SYMBOL_GPL(nfs_symlink);
2374
2375int
2376nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2377{
2378        struct inode *inode = d_inode(old_dentry);
2379        int error;
2380
2381        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2382                old_dentry, dentry);
2383
2384        trace_nfs_link_enter(inode, dir, dentry);
2385        d_drop(dentry);
2386        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2387        if (error == 0) {
2388                ihold(inode);
2389                d_add(dentry, inode);
2390        }
2391        trace_nfs_link_exit(inode, dir, dentry, error);
2392        return error;
2393}
2394EXPORT_SYMBOL_GPL(nfs_link);
2395
2396/*
2397 * RENAME
2398 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2399 * different file handle for the same inode after a rename (e.g. when
2400 * moving to a different directory). A fail-safe method to do so would
2401 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2402 * rename the old file using the sillyrename stuff. This way, the original
2403 * file in old_dir will go away when the last process iput()s the inode.
2404 *
2405 * FIXED.
2406 * 
2407 * It actually works quite well. One needs to have the possibility for
2408 * at least one ".nfs..." file in each directory the file ever gets
2409 * moved or linked to which happens automagically with the new
2410 * implementation that only depends on the dcache stuff instead of
2411 * using the inode layer
2412 *
2413 * Unfortunately, things are a little more complicated than indicated
2414 * above. For a cross-directory move, we want to make sure we can get
2415 * rid of the old inode after the operation.  This means there must be
2416 * no pending writes (if it's a file), and the use count must be 1.
2417 * If these conditions are met, we can drop the dentries before doing
2418 * the rename.
2419 */
2420int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2421               struct dentry *old_dentry, struct inode *new_dir,
2422               struct dentry *new_dentry, unsigned int flags)
2423{
2424        struct inode *old_inode = d_inode(old_dentry);
2425        struct inode *new_inode = d_inode(new_dentry);
2426        struct dentry *dentry = NULL, *rehash = NULL;
2427        struct rpc_task *task;
2428        int error = -EBUSY;
2429
2430        if (flags)
2431                return -EINVAL;
2432
2433        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2434                 old_dentry, new_dentry,
2435                 d_count(new_dentry));
2436
2437        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2438        /*
2439         * For non-directories, check whether the target is busy and if so,
2440         * make a copy of the dentry and then do a silly-rename. If the
2441         * silly-rename succeeds, the copied dentry is hashed and becomes
2442         * the new target.
2443         */
2444        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2445                /*
2446                 * To prevent any new references to the target during the
2447                 * rename, we unhash the dentry in advance.
2448                 */
2449                if (!d_unhashed(new_dentry)) {
2450                        d_drop(new_dentry);
2451                        rehash = new_dentry;
2452                }
2453
2454                if (d_count(new_dentry) > 2) {
2455                        int err;
2456
2457                        /* copy the target dentry's name */
2458                        dentry = d_alloc(new_dentry->d_parent,
2459                                         &new_dentry->d_name);
2460                        if (!dentry)
2461                                goto out;
2462
2463                        /* silly-rename the existing target ... */
2464                        err = nfs_sillyrename(new_dir, new_dentry);
2465                        if (err)
2466                                goto out;
2467
2468                        new_dentry = dentry;
2469                        rehash = NULL;
2470                        new_inode = NULL;
2471                }
2472        }
2473
2474        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2475        if (IS_ERR(task)) {
2476                error = PTR_ERR(task);
2477                goto out;
2478        }
2479
2480        error = rpc_wait_for_completion_task(task);
2481        if (error != 0) {
2482                ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2483                /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2484                smp_wmb();
2485        } else
2486                error = task->tk_status;
2487        rpc_put_task(task);
2488        /* Ensure the inode attributes are revalidated */
2489        if (error == 0) {
2490                spin_lock(&old_inode->i_lock);
2491                NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2492                nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2493                                                         NFS_INO_INVALID_CTIME |
2494                                                         NFS_INO_REVAL_FORCED);
2495                spin_unlock(&old_inode->i_lock);
2496        }
2497out:
2498        if (rehash)
2499                d_rehash(rehash);
2500        trace_nfs_rename_exit(old_dir, old_dentry,
2501                        new_dir, new_dentry, error);
2502        if (!error) {
2503                if (new_inode != NULL)
2504                        nfs_drop_nlink(new_inode);
2505                /*
2506                 * The d_move() should be here instead of in an async RPC completion
2507                 * handler because we need the proper locks to move the dentry.  If
2508                 * we're interrupted by a signal, the async RPC completion handler
2509                 * should mark the directories for revalidation.
2510                 */
2511                d_move(old_dentry, new_dentry);
2512                nfs_set_verifier(old_dentry,
2513                                        nfs_save_change_attribute(new_dir));
2514        } else if (error == -ENOENT)
2515                nfs_dentry_handle_enoent(old_dentry);
2516
2517        /* new dentry created? */
2518        if (dentry)
2519                dput(dentry);
2520        return error;
2521}
2522EXPORT_SYMBOL_GPL(nfs_rename);
2523
2524static DEFINE_SPINLOCK(nfs_access_lru_lock);
2525static LIST_HEAD(nfs_access_lru_list);
2526static atomic_long_t nfs_access_nr_entries;
2527
2528static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2529module_param(nfs_access_max_cachesize, ulong, 0644);
2530MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2531
2532static void nfs_access_free_entry(struct nfs_access_entry *entry)
2533{
2534        put_cred(entry->cred);
2535        kfree_rcu(entry, rcu_head);
2536        smp_mb__before_atomic();
2537        atomic_long_dec(&nfs_access_nr_entries);
2538        smp_mb__after_atomic();
2539}
2540
2541static void nfs_access_free_list(struct list_head *head)
2542{
2543        struct nfs_access_entry *cache;
2544
2545        while (!list_empty(head)) {
2546                cache = list_entry(head->next, struct nfs_access_entry, lru);
2547                list_del(&cache->lru);
2548                nfs_access_free_entry(cache);
2549        }
2550}
2551
2552static unsigned long
2553nfs_do_access_cache_scan(unsigned int nr_to_scan)
2554{
2555        LIST_HEAD(head);
2556        struct nfs_inode *nfsi, *next;
2557        struct nfs_access_entry *cache;
2558        long freed = 0;
2559
2560        spin_lock(&nfs_access_lru_lock);
2561        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2562                struct inode *inode;
2563
2564                if (nr_to_scan-- == 0)
2565                        break;
2566                inode = &nfsi->vfs_inode;
2567                spin_lock(&inode->i_lock);
2568                if (list_empty(&nfsi->access_cache_entry_lru))
2569                        goto remove_lru_entry;
2570                cache = list_entry(nfsi->access_cache_entry_lru.next,
2571                                struct nfs_access_entry, lru);
2572                list_move(&cache->lru, &head);
2573                rb_erase(&cache->rb_node, &nfsi->access_cache);
2574                freed++;
2575                if (!list_empty(&nfsi->access_cache_entry_lru))
2576                        list_move_tail(&nfsi->access_cache_inode_lru,
2577                                        &nfs_access_lru_list);
2578                else {
2579remove_lru_entry:
2580                        list_del_init(&nfsi->access_cache_inode_lru);
2581                        smp_mb__before_atomic();
2582                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2583                        smp_mb__after_atomic();
2584                }
2585                spin_unlock(&inode->i_lock);
2586        }
2587        spin_unlock(&nfs_access_lru_lock);
2588        nfs_access_free_list(&head);
2589        return freed;
2590}
2591
2592unsigned long
2593nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2594{
2595        int nr_to_scan = sc->nr_to_scan;
2596        gfp_t gfp_mask = sc->gfp_mask;
2597
2598        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2599                return SHRINK_STOP;
2600        return nfs_do_access_cache_scan(nr_to_scan);
2601}
2602
2603
2604unsigned long
2605nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2606{
2607        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2608}
2609
2610static void
2611nfs_access_cache_enforce_limit(void)
2612{
2613        long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2614        unsigned long diff;
2615        unsigned int nr_to_scan;
2616
2617        if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2618                return;
2619        nr_to_scan = 100;
2620        diff = nr_entries - nfs_access_max_cachesize;
2621        if (diff < nr_to_scan)
2622                nr_to_scan = diff;
2623        nfs_do_access_cache_scan(nr_to_scan);
2624}
2625
2626static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2627{
2628        struct rb_root *root_node = &nfsi->access_cache;
2629        struct rb_node *n;
2630        struct nfs_access_entry *entry;
2631
2632        /* Unhook entries from the cache */
2633        while ((n = rb_first(root_node)) != NULL) {
2634                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2635                rb_erase(n, root_node);
2636                list_move(&entry->lru, head);
2637        }
2638        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2639}
2640
2641void nfs_access_zap_cache(struct inode *inode)
2642{
2643        LIST_HEAD(head);
2644
2645        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2646                return;
2647        /* Remove from global LRU init */
2648        spin_lock(&nfs_access_lru_lock);
2649        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2650                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2651
2652        spin_lock(&inode->i_lock);
2653        __nfs_access_zap_cache(NFS_I(inode), &head);
2654        spin_unlock(&inode->i_lock);
2655        spin_unlock(&nfs_access_lru_lock);
2656        nfs_access_free_list(&head);
2657}
2658EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2659
2660static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2661{
2662        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2663
2664        while (n != NULL) {
2665                struct nfs_access_entry *entry =
2666                        rb_entry(n, struct nfs_access_entry, rb_node);
2667                int cmp = cred_fscmp(cred, entry->cred);
2668
2669                if (cmp < 0)
2670                        n = n->rb_left;
2671                else if (cmp > 0)
2672                        n = n->rb_right;
2673                else
2674                        return entry;
2675        }
2676        return NULL;
2677}
2678
2679static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2680{
2681        struct nfs_inode *nfsi = NFS_I(inode);
2682        struct nfs_access_entry *cache;
2683        bool retry = true;
2684        int err;
2685
2686        spin_lock(&inode->i_lock);
2687        for(;;) {
2688                if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2689                        goto out_zap;
2690                cache = nfs_access_search_rbtree(inode, cred);
2691                err = -ENOENT;
2692                if (cache == NULL)
2693                        goto out;
2694                /* Found an entry, is our attribute cache valid? */
2695                if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2696                        break;
2697                if (!retry)
2698                        break;
2699                err = -ECHILD;
2700                if (!may_block)
2701                        goto out;
2702                spin_unlock(&inode->i_lock);
2703                err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2704                if (err)
2705                        return err;
2706                spin_lock(&inode->i_lock);
2707                retry = false;
2708        }
2709        res->cred = cache->cred;
2710        res->mask = cache->mask;
2711        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2712        err = 0;
2713out:
2714        spin_unlock(&inode->i_lock);
2715        return err;
2716out_zap:
2717        spin_unlock(&inode->i_lock);
2718        nfs_access_zap_cache(inode);
2719        return -ENOENT;
2720}
2721
2722static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2723{
2724        /* Only check the most recently returned cache entry,
2725         * but do it without locking.
2726         */
2727        struct nfs_inode *nfsi = NFS_I(inode);
2728        struct nfs_access_entry *cache;
2729        int err = -ECHILD;
2730        struct list_head *lh;
2731
2732        rcu_read_lock();
2733        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2734                goto out;
2735        lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2736        cache = list_entry(lh, struct nfs_access_entry, lru);
2737        if (lh == &nfsi->access_cache_entry_lru ||
2738            cred_fscmp(cred, cache->cred) != 0)
2739                cache = NULL;
2740        if (cache == NULL)
2741                goto out;
2742        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2743                goto out;
2744        res->cred = cache->cred;
2745        res->mask = cache->mask;
2746        err = 0;
2747out:
2748        rcu_read_unlock();
2749        return err;
2750}
2751
2752int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2753nfs_access_entry *res, bool may_block)
2754{
2755        int status;
2756
2757        status = nfs_access_get_cached_rcu(inode, cred, res);
2758        if (status != 0)
2759                status = nfs_access_get_cached_locked(inode, cred, res,
2760                    may_block);
2761
2762        return status;
2763}
2764EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2765
2766static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2767{
2768        struct nfs_inode *nfsi = NFS_I(inode);
2769        struct rb_root *root_node = &nfsi->access_cache;
2770        struct rb_node **p = &root_node->rb_node;
2771        struct rb_node *parent = NULL;
2772        struct nfs_access_entry *entry;
2773        int cmp;
2774
2775        spin_lock(&inode->i_lock);
2776        while (*p != NULL) {
2777                parent = *p;
2778                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2779                cmp = cred_fscmp(set->cred, entry->cred);
2780
2781                if (cmp < 0)
2782                        p = &parent->rb_left;
2783                else if (cmp > 0)
2784                        p = &parent->rb_right;
2785                else
2786                        goto found;
2787        }
2788        rb_link_node(&set->rb_node, parent, p);
2789        rb_insert_color(&set->rb_node, root_node);
2790        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2791        spin_unlock(&inode->i_lock);
2792        return;
2793found:
2794        rb_replace_node(parent, &set->rb_node, root_node);
2795        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2796        list_del(&entry->lru);
2797        spin_unlock(&inode->i_lock);
2798        nfs_access_free_entry(entry);
2799}
2800
2801void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2802{
2803        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2804        if (cache == NULL)
2805                return;
2806        RB_CLEAR_NODE(&cache->rb_node);
2807        cache->cred = get_cred(set->cred);
2808        cache->mask = set->mask;
2809
2810        /* The above field assignments must be visible
2811         * before this item appears on the lru.  We cannot easily
2812         * use rcu_assign_pointer, so just force the memory barrier.
2813         */
2814        smp_wmb();
2815        nfs_access_add_rbtree(inode, cache);
2816
2817        /* Update accounting */
2818        smp_mb__before_atomic();
2819        atomic_long_inc(&nfs_access_nr_entries);
2820        smp_mb__after_atomic();
2821
2822        /* Add inode to global LRU list */
2823        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2824                spin_lock(&nfs_access_lru_lock);
2825                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2826                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2827                                        &nfs_access_lru_list);
2828                spin_unlock(&nfs_access_lru_lock);
2829        }
2830        nfs_access_cache_enforce_limit();
2831}
2832EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2833
2834#define NFS_MAY_READ (NFS_ACCESS_READ)
2835#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2836                NFS_ACCESS_EXTEND | \
2837                NFS_ACCESS_DELETE)
2838#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2839                NFS_ACCESS_EXTEND)
2840#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2841#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2842#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2843static int
2844nfs_access_calc_mask(u32 access_result, umode_t umode)
2845{
2846        int mask = 0;
2847
2848        if (access_result & NFS_MAY_READ)
2849                mask |= MAY_READ;
2850        if (S_ISDIR(umode)) {
2851                if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2852                        mask |= MAY_WRITE;
2853                if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2854                        mask |= MAY_EXEC;
2855        } else if (S_ISREG(umode)) {
2856                if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2857                        mask |= MAY_WRITE;
2858                if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2859                        mask |= MAY_EXEC;
2860        } else if (access_result & NFS_MAY_WRITE)
2861                        mask |= MAY_WRITE;
2862        return mask;
2863}
2864
2865void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2866{
2867        entry->mask = access_result;
2868}
2869EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2870
2871static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2872{
2873        struct nfs_access_entry cache;
2874        bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2875        int cache_mask = -1;
2876        int status;
2877
2878        trace_nfs_access_enter(inode);
2879
2880        status = nfs_access_get_cached(inode, cred, &cache, may_block);
2881        if (status == 0)
2882                goto out_cached;
2883
2884        status = -ECHILD;
2885        if (!may_block)
2886                goto out;
2887
2888        /*
2889         * Determine which access bits we want to ask for...
2890         */
2891        cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2892        if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2893                cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2894                    NFS_ACCESS_XALIST;
2895        }
2896        if (S_ISDIR(inode->i_mode))
2897                cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2898        else
2899                cache.mask |= NFS_ACCESS_EXECUTE;
2900        cache.cred = cred;
2901        status = NFS_PROTO(inode)->access(inode, &cache);
2902        if (status != 0) {
2903                if (status == -ESTALE) {
2904                        if (!S_ISDIR(inode->i_mode))
2905                                nfs_set_inode_stale(inode);
2906                        else
2907                                nfs_zap_caches(inode);
2908                }
2909                goto out;
2910        }
2911        nfs_access_add_cache(inode, &cache);
2912out_cached:
2913        cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2914        if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2915                status = -EACCES;
2916out:
2917        trace_nfs_access_exit(inode, mask, cache_mask, status);
2918        return status;
2919}
2920
2921static int nfs_open_permission_mask(int openflags)
2922{
2923        int mask = 0;
2924
2925        if (openflags & __FMODE_EXEC) {
2926                /* ONLY check exec rights */
2927                mask = MAY_EXEC;
2928        } else {
2929                if ((openflags & O_ACCMODE) != O_WRONLY)
2930                        mask |= MAY_READ;
2931                if ((openflags & O_ACCMODE) != O_RDONLY)
2932                        mask |= MAY_WRITE;
2933        }
2934
2935        return mask;
2936}
2937
2938int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2939{
2940        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2941}
2942EXPORT_SYMBOL_GPL(nfs_may_open);
2943
2944static int nfs_execute_ok(struct inode *inode, int mask)
2945{
2946        struct nfs_server *server = NFS_SERVER(inode);
2947        int ret = 0;
2948
2949        if (S_ISDIR(inode->i_mode))
2950                return 0;
2951        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2952                if (mask & MAY_NOT_BLOCK)
2953                        return -ECHILD;
2954                ret = __nfs_revalidate_inode(server, inode);
2955        }
2956        if (ret == 0 && !execute_ok(inode))
2957                ret = -EACCES;
2958        return ret;
2959}
2960
2961int nfs_permission(struct user_namespace *mnt_userns,
2962                   struct inode *inode,
2963                   int mask)
2964{
2965        const struct cred *cred = current_cred();
2966        int res = 0;
2967
2968        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2969
2970        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2971                goto out;
2972        /* Is this sys_access() ? */
2973        if (mask & (MAY_ACCESS | MAY_CHDIR))
2974                goto force_lookup;
2975
2976        switch (inode->i_mode & S_IFMT) {
2977                case S_IFLNK:
2978                        goto out;
2979                case S_IFREG:
2980                        if ((mask & MAY_OPEN) &&
2981                           nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2982                                return 0;
2983                        break;
2984                case S_IFDIR:
2985                        /*
2986                         * Optimize away all write operations, since the server
2987                         * will check permissions when we perform the op.
2988                         */
2989                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2990                                goto out;
2991        }
2992
2993force_lookup:
2994        if (!NFS_PROTO(inode)->access)
2995                goto out_notsup;
2996
2997        res = nfs_do_access(inode, cred, mask);
2998out:
2999        if (!res && (mask & MAY_EXEC))
3000                res = nfs_execute_ok(inode, mask);
3001
3002        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3003                inode->i_sb->s_id, inode->i_ino, mask, res);
3004        return res;
3005out_notsup:
3006        if (mask & MAY_NOT_BLOCK)
3007                return -ECHILD;
3008
3009        res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3010                                                  NFS_INO_INVALID_OTHER);
3011        if (res == 0)
3012                res = generic_permission(&init_user_ns, inode, mask);
3013        goto out;
3014}
3015EXPORT_SYMBOL_GPL(nfs_permission);
3016