linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/highmem.h>
   9#include <linux/pagemap.h>
  10#include <asm/byteorder.h>
  11#include <linux/swap.h>
  12#include <linux/mpage.h>
  13#include <linux/quotaops.h>
  14#include <linux/blkdev.h>
  15#include <linux/uio.h>
  16#include <linux/mm.h>
  17
  18#include <cluster/masklog.h>
  19
  20#include "ocfs2.h"
  21
  22#include "alloc.h"
  23#include "aops.h"
  24#include "dlmglue.h"
  25#include "extent_map.h"
  26#include "file.h"
  27#include "inode.h"
  28#include "journal.h"
  29#include "suballoc.h"
  30#include "super.h"
  31#include "symlink.h"
  32#include "refcounttree.h"
  33#include "ocfs2_trace.h"
  34
  35#include "buffer_head_io.h"
  36#include "dir.h"
  37#include "namei.h"
  38#include "sysfile.h"
  39
  40static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  41                                   struct buffer_head *bh_result, int create)
  42{
  43        int err = -EIO;
  44        int status;
  45        struct ocfs2_dinode *fe = NULL;
  46        struct buffer_head *bh = NULL;
  47        struct buffer_head *buffer_cache_bh = NULL;
  48        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  49        void *kaddr;
  50
  51        trace_ocfs2_symlink_get_block(
  52                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  53                        (unsigned long long)iblock, bh_result, create);
  54
  55        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  56
  57        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  58                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  59                     (unsigned long long)iblock);
  60                goto bail;
  61        }
  62
  63        status = ocfs2_read_inode_block(inode, &bh);
  64        if (status < 0) {
  65                mlog_errno(status);
  66                goto bail;
  67        }
  68        fe = (struct ocfs2_dinode *) bh->b_data;
  69
  70        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  71                                                    le32_to_cpu(fe->i_clusters))) {
  72                err = -ENOMEM;
  73                mlog(ML_ERROR, "block offset is outside the allocated size: "
  74                     "%llu\n", (unsigned long long)iblock);
  75                goto bail;
  76        }
  77
  78        /* We don't use the page cache to create symlink data, so if
  79         * need be, copy it over from the buffer cache. */
  80        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  81                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  82                            iblock;
  83                buffer_cache_bh = sb_getblk(osb->sb, blkno);
  84                if (!buffer_cache_bh) {
  85                        err = -ENOMEM;
  86                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  87                        goto bail;
  88                }
  89
  90                /* we haven't locked out transactions, so a commit
  91                 * could've happened. Since we've got a reference on
  92                 * the bh, even if it commits while we're doing the
  93                 * copy, the data is still good. */
  94                if (buffer_jbd(buffer_cache_bh)
  95                    && ocfs2_inode_is_new(inode)) {
  96                        kaddr = kmap_atomic(bh_result->b_page);
  97                        if (!kaddr) {
  98                                mlog(ML_ERROR, "couldn't kmap!\n");
  99                                goto bail;
 100                        }
 101                        memcpy(kaddr + (bh_result->b_size * iblock),
 102                               buffer_cache_bh->b_data,
 103                               bh_result->b_size);
 104                        kunmap_atomic(kaddr);
 105                        set_buffer_uptodate(bh_result);
 106                }
 107                brelse(buffer_cache_bh);
 108        }
 109
 110        map_bh(bh_result, inode->i_sb,
 111               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 112
 113        err = 0;
 114
 115bail:
 116        brelse(bh);
 117
 118        return err;
 119}
 120
 121static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 122                    struct buffer_head *bh_result, int create)
 123{
 124        int ret = 0;
 125        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 126
 127        down_read(&oi->ip_alloc_sem);
 128        ret = ocfs2_get_block(inode, iblock, bh_result, create);
 129        up_read(&oi->ip_alloc_sem);
 130
 131        return ret;
 132}
 133
 134int ocfs2_get_block(struct inode *inode, sector_t iblock,
 135                    struct buffer_head *bh_result, int create)
 136{
 137        int err = 0;
 138        unsigned int ext_flags;
 139        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 140        u64 p_blkno, count, past_eof;
 141        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 142
 143        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 144                              (unsigned long long)iblock, bh_result, create);
 145
 146        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 147                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 148                     inode, inode->i_ino);
 149
 150        if (S_ISLNK(inode->i_mode)) {
 151                /* this always does I/O for some reason. */
 152                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 153                goto bail;
 154        }
 155
 156        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 157                                          &ext_flags);
 158        if (err) {
 159                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 160                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 161                     (unsigned long long)p_blkno);
 162                goto bail;
 163        }
 164
 165        if (max_blocks < count)
 166                count = max_blocks;
 167
 168        /*
 169         * ocfs2 never allocates in this function - the only time we
 170         * need to use BH_New is when we're extending i_size on a file
 171         * system which doesn't support holes, in which case BH_New
 172         * allows __block_write_begin() to zero.
 173         *
 174         * If we see this on a sparse file system, then a truncate has
 175         * raced us and removed the cluster. In this case, we clear
 176         * the buffers dirty and uptodate bits and let the buffer code
 177         * ignore it as a hole.
 178         */
 179        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 180                clear_buffer_dirty(bh_result);
 181                clear_buffer_uptodate(bh_result);
 182                goto bail;
 183        }
 184
 185        /* Treat the unwritten extent as a hole for zeroing purposes. */
 186        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 187                map_bh(bh_result, inode->i_sb, p_blkno);
 188
 189        bh_result->b_size = count << inode->i_blkbits;
 190
 191        if (!ocfs2_sparse_alloc(osb)) {
 192                if (p_blkno == 0) {
 193                        err = -EIO;
 194                        mlog(ML_ERROR,
 195                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 196                             (unsigned long long)iblock,
 197                             (unsigned long long)p_blkno,
 198                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 199                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 200                        dump_stack();
 201                        goto bail;
 202                }
 203        }
 204
 205        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 206
 207        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 208                                  (unsigned long long)past_eof);
 209        if (create && (iblock >= past_eof))
 210                set_buffer_new(bh_result);
 211
 212bail:
 213        if (err < 0)
 214                err = -EIO;
 215
 216        return err;
 217}
 218
 219int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 220                           struct buffer_head *di_bh)
 221{
 222        void *kaddr;
 223        loff_t size;
 224        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 225
 226        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 227                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 228                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 229                return -EROFS;
 230        }
 231
 232        size = i_size_read(inode);
 233
 234        if (size > PAGE_SIZE ||
 235            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 236                ocfs2_error(inode->i_sb,
 237                            "Inode %llu has with inline data has bad size: %Lu\n",
 238                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 239                            (unsigned long long)size);
 240                return -EROFS;
 241        }
 242
 243        kaddr = kmap_atomic(page);
 244        if (size)
 245                memcpy(kaddr, di->id2.i_data.id_data, size);
 246        /* Clear the remaining part of the page */
 247        memset(kaddr + size, 0, PAGE_SIZE - size);
 248        flush_dcache_page(page);
 249        kunmap_atomic(kaddr);
 250
 251        SetPageUptodate(page);
 252
 253        return 0;
 254}
 255
 256static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 257{
 258        int ret;
 259        struct buffer_head *di_bh = NULL;
 260
 261        BUG_ON(!PageLocked(page));
 262        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 263
 264        ret = ocfs2_read_inode_block(inode, &di_bh);
 265        if (ret) {
 266                mlog_errno(ret);
 267                goto out;
 268        }
 269
 270        ret = ocfs2_read_inline_data(inode, page, di_bh);
 271out:
 272        unlock_page(page);
 273
 274        brelse(di_bh);
 275        return ret;
 276}
 277
 278static int ocfs2_readpage(struct file *file, struct page *page)
 279{
 280        struct inode *inode = page->mapping->host;
 281        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 282        loff_t start = (loff_t)page->index << PAGE_SHIFT;
 283        int ret, unlock = 1;
 284
 285        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 286                             (page ? page->index : 0));
 287
 288        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 289        if (ret != 0) {
 290                if (ret == AOP_TRUNCATED_PAGE)
 291                        unlock = 0;
 292                mlog_errno(ret);
 293                goto out;
 294        }
 295
 296        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 297                /*
 298                 * Unlock the page and cycle ip_alloc_sem so that we don't
 299                 * busyloop waiting for ip_alloc_sem to unlock
 300                 */
 301                ret = AOP_TRUNCATED_PAGE;
 302                unlock_page(page);
 303                unlock = 0;
 304                down_read(&oi->ip_alloc_sem);
 305                up_read(&oi->ip_alloc_sem);
 306                goto out_inode_unlock;
 307        }
 308
 309        /*
 310         * i_size might have just been updated as we grabed the meta lock.  We
 311         * might now be discovering a truncate that hit on another node.
 312         * block_read_full_page->get_block freaks out if it is asked to read
 313         * beyond the end of a file, so we check here.  Callers
 314         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 315         * and notice that the page they just read isn't needed.
 316         *
 317         * XXX sys_readahead() seems to get that wrong?
 318         */
 319        if (start >= i_size_read(inode)) {
 320                zero_user(page, 0, PAGE_SIZE);
 321                SetPageUptodate(page);
 322                ret = 0;
 323                goto out_alloc;
 324        }
 325
 326        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 327                ret = ocfs2_readpage_inline(inode, page);
 328        else
 329                ret = block_read_full_page(page, ocfs2_get_block);
 330        unlock = 0;
 331
 332out_alloc:
 333        up_read(&oi->ip_alloc_sem);
 334out_inode_unlock:
 335        ocfs2_inode_unlock(inode, 0);
 336out:
 337        if (unlock)
 338                unlock_page(page);
 339        return ret;
 340}
 341
 342/*
 343 * This is used only for read-ahead. Failures or difficult to handle
 344 * situations are safe to ignore.
 345 *
 346 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 347 * are quite large (243 extents on 4k blocks), so most inodes don't
 348 * grow out to a tree. If need be, detecting boundary extents could
 349 * trivially be added in a future version of ocfs2_get_block().
 350 */
 351static void ocfs2_readahead(struct readahead_control *rac)
 352{
 353        int ret;
 354        struct inode *inode = rac->mapping->host;
 355        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 356
 357        /*
 358         * Use the nonblocking flag for the dlm code to avoid page
 359         * lock inversion, but don't bother with retrying.
 360         */
 361        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 362        if (ret)
 363                return;
 364
 365        if (down_read_trylock(&oi->ip_alloc_sem) == 0)
 366                goto out_unlock;
 367
 368        /*
 369         * Don't bother with inline-data. There isn't anything
 370         * to read-ahead in that case anyway...
 371         */
 372        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 373                goto out_up;
 374
 375        /*
 376         * Check whether a remote node truncated this file - we just
 377         * drop out in that case as it's not worth handling here.
 378         */
 379        if (readahead_pos(rac) >= i_size_read(inode))
 380                goto out_up;
 381
 382        mpage_readahead(rac, ocfs2_get_block);
 383
 384out_up:
 385        up_read(&oi->ip_alloc_sem);
 386out_unlock:
 387        ocfs2_inode_unlock(inode, 0);
 388}
 389
 390/* Note: Because we don't support holes, our allocation has
 391 * already happened (allocation writes zeros to the file data)
 392 * so we don't have to worry about ordered writes in
 393 * ocfs2_writepage.
 394 *
 395 * ->writepage is called during the process of invalidating the page cache
 396 * during blocked lock processing.  It can't block on any cluster locks
 397 * to during block mapping.  It's relying on the fact that the block
 398 * mapping can't have disappeared under the dirty pages that it is
 399 * being asked to write back.
 400 */
 401static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 402{
 403        trace_ocfs2_writepage(
 404                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 405                page->index);
 406
 407        return block_write_full_page(page, ocfs2_get_block, wbc);
 408}
 409
 410/* Taken from ext3. We don't necessarily need the full blown
 411 * functionality yet, but IMHO it's better to cut and paste the whole
 412 * thing so we can avoid introducing our own bugs (and easily pick up
 413 * their fixes when they happen) --Mark */
 414int walk_page_buffers(  handle_t *handle,
 415                        struct buffer_head *head,
 416                        unsigned from,
 417                        unsigned to,
 418                        int *partial,
 419                        int (*fn)(      handle_t *handle,
 420                                        struct buffer_head *bh))
 421{
 422        struct buffer_head *bh;
 423        unsigned block_start, block_end;
 424        unsigned blocksize = head->b_size;
 425        int err, ret = 0;
 426        struct buffer_head *next;
 427
 428        for (   bh = head, block_start = 0;
 429                ret == 0 && (bh != head || !block_start);
 430                block_start = block_end, bh = next)
 431        {
 432                next = bh->b_this_page;
 433                block_end = block_start + blocksize;
 434                if (block_end <= from || block_start >= to) {
 435                        if (partial && !buffer_uptodate(bh))
 436                                *partial = 1;
 437                        continue;
 438                }
 439                err = (*fn)(handle, bh);
 440                if (!ret)
 441                        ret = err;
 442        }
 443        return ret;
 444}
 445
 446static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 447{
 448        sector_t status;
 449        u64 p_blkno = 0;
 450        int err = 0;
 451        struct inode *inode = mapping->host;
 452
 453        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 454                         (unsigned long long)block);
 455
 456        /*
 457         * The swap code (ab-)uses ->bmap to get a block mapping and then
 458         * bypasseѕ the file system for actual I/O.  We really can't allow
 459         * that on refcounted inodes, so we have to skip out here.  And yes,
 460         * 0 is the magic code for a bmap error..
 461         */
 462        if (ocfs2_is_refcount_inode(inode))
 463                return 0;
 464
 465        /* We don't need to lock journal system files, since they aren't
 466         * accessed concurrently from multiple nodes.
 467         */
 468        if (!INODE_JOURNAL(inode)) {
 469                err = ocfs2_inode_lock(inode, NULL, 0);
 470                if (err) {
 471                        if (err != -ENOENT)
 472                                mlog_errno(err);
 473                        goto bail;
 474                }
 475                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 476        }
 477
 478        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 479                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 480                                                  NULL);
 481
 482        if (!INODE_JOURNAL(inode)) {
 483                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 484                ocfs2_inode_unlock(inode, 0);
 485        }
 486
 487        if (err) {
 488                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 489                     (unsigned long long)block);
 490                mlog_errno(err);
 491                goto bail;
 492        }
 493
 494bail:
 495        status = err ? 0 : p_blkno;
 496
 497        return status;
 498}
 499
 500static int ocfs2_releasepage(struct page *page, gfp_t wait)
 501{
 502        if (!page_has_buffers(page))
 503                return 0;
 504        return try_to_free_buffers(page);
 505}
 506
 507static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 508                                            u32 cpos,
 509                                            unsigned int *start,
 510                                            unsigned int *end)
 511{
 512        unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 513
 514        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 515                unsigned int cpp;
 516
 517                cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 518
 519                cluster_start = cpos % cpp;
 520                cluster_start = cluster_start << osb->s_clustersize_bits;
 521
 522                cluster_end = cluster_start + osb->s_clustersize;
 523        }
 524
 525        BUG_ON(cluster_start > PAGE_SIZE);
 526        BUG_ON(cluster_end > PAGE_SIZE);
 527
 528        if (start)
 529                *start = cluster_start;
 530        if (end)
 531                *end = cluster_end;
 532}
 533
 534/*
 535 * 'from' and 'to' are the region in the page to avoid zeroing.
 536 *
 537 * If pagesize > clustersize, this function will avoid zeroing outside
 538 * of the cluster boundary.
 539 *
 540 * from == to == 0 is code for "zero the entire cluster region"
 541 */
 542static void ocfs2_clear_page_regions(struct page *page,
 543                                     struct ocfs2_super *osb, u32 cpos,
 544                                     unsigned from, unsigned to)
 545{
 546        void *kaddr;
 547        unsigned int cluster_start, cluster_end;
 548
 549        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 550
 551        kaddr = kmap_atomic(page);
 552
 553        if (from || to) {
 554                if (from > cluster_start)
 555                        memset(kaddr + cluster_start, 0, from - cluster_start);
 556                if (to < cluster_end)
 557                        memset(kaddr + to, 0, cluster_end - to);
 558        } else {
 559                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 560        }
 561
 562        kunmap_atomic(kaddr);
 563}
 564
 565/*
 566 * Nonsparse file systems fully allocate before we get to the write
 567 * code. This prevents ocfs2_write() from tagging the write as an
 568 * allocating one, which means ocfs2_map_page_blocks() might try to
 569 * read-in the blocks at the tail of our file. Avoid reading them by
 570 * testing i_size against each block offset.
 571 */
 572static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 573                                 unsigned int block_start)
 574{
 575        u64 offset = page_offset(page) + block_start;
 576
 577        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 578                return 1;
 579
 580        if (i_size_read(inode) > offset)
 581                return 1;
 582
 583        return 0;
 584}
 585
 586/*
 587 * Some of this taken from __block_write_begin(). We already have our
 588 * mapping by now though, and the entire write will be allocating or
 589 * it won't, so not much need to use BH_New.
 590 *
 591 * This will also skip zeroing, which is handled externally.
 592 */
 593int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 594                          struct inode *inode, unsigned int from,
 595                          unsigned int to, int new)
 596{
 597        int ret = 0;
 598        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 599        unsigned int block_end, block_start;
 600        unsigned int bsize = i_blocksize(inode);
 601
 602        if (!page_has_buffers(page))
 603                create_empty_buffers(page, bsize, 0);
 604
 605        head = page_buffers(page);
 606        for (bh = head, block_start = 0; bh != head || !block_start;
 607             bh = bh->b_this_page, block_start += bsize) {
 608                block_end = block_start + bsize;
 609
 610                clear_buffer_new(bh);
 611
 612                /*
 613                 * Ignore blocks outside of our i/o range -
 614                 * they may belong to unallocated clusters.
 615                 */
 616                if (block_start >= to || block_end <= from) {
 617                        if (PageUptodate(page))
 618                                set_buffer_uptodate(bh);
 619                        continue;
 620                }
 621
 622                /*
 623                 * For an allocating write with cluster size >= page
 624                 * size, we always write the entire page.
 625                 */
 626                if (new)
 627                        set_buffer_new(bh);
 628
 629                if (!buffer_mapped(bh)) {
 630                        map_bh(bh, inode->i_sb, *p_blkno);
 631                        clean_bdev_bh_alias(bh);
 632                }
 633
 634                if (PageUptodate(page)) {
 635                        if (!buffer_uptodate(bh))
 636                                set_buffer_uptodate(bh);
 637                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 638                           !buffer_new(bh) &&
 639                           ocfs2_should_read_blk(inode, page, block_start) &&
 640                           (block_start < from || block_end > to)) {
 641                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 642                        *wait_bh++=bh;
 643                }
 644
 645                *p_blkno = *p_blkno + 1;
 646        }
 647
 648        /*
 649         * If we issued read requests - let them complete.
 650         */
 651        while(wait_bh > wait) {
 652                wait_on_buffer(*--wait_bh);
 653                if (!buffer_uptodate(*wait_bh))
 654                        ret = -EIO;
 655        }
 656
 657        if (ret == 0 || !new)
 658                return ret;
 659
 660        /*
 661         * If we get -EIO above, zero out any newly allocated blocks
 662         * to avoid exposing stale data.
 663         */
 664        bh = head;
 665        block_start = 0;
 666        do {
 667                block_end = block_start + bsize;
 668                if (block_end <= from)
 669                        goto next_bh;
 670                if (block_start >= to)
 671                        break;
 672
 673                zero_user(page, block_start, bh->b_size);
 674                set_buffer_uptodate(bh);
 675                mark_buffer_dirty(bh);
 676
 677next_bh:
 678                block_start = block_end;
 679                bh = bh->b_this_page;
 680        } while (bh != head);
 681
 682        return ret;
 683}
 684
 685#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 686#define OCFS2_MAX_CTXT_PAGES    1
 687#else
 688#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 689#endif
 690
 691#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 692
 693struct ocfs2_unwritten_extent {
 694        struct list_head        ue_node;
 695        struct list_head        ue_ip_node;
 696        u32                     ue_cpos;
 697        u32                     ue_phys;
 698};
 699
 700/*
 701 * Describe the state of a single cluster to be written to.
 702 */
 703struct ocfs2_write_cluster_desc {
 704        u32             c_cpos;
 705        u32             c_phys;
 706        /*
 707         * Give this a unique field because c_phys eventually gets
 708         * filled.
 709         */
 710        unsigned        c_new;
 711        unsigned        c_clear_unwritten;
 712        unsigned        c_needs_zero;
 713};
 714
 715struct ocfs2_write_ctxt {
 716        /* Logical cluster position / len of write */
 717        u32                             w_cpos;
 718        u32                             w_clen;
 719
 720        /* First cluster allocated in a nonsparse extend */
 721        u32                             w_first_new_cpos;
 722
 723        /* Type of caller. Must be one of buffer, mmap, direct.  */
 724        ocfs2_write_type_t              w_type;
 725
 726        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 727
 728        /*
 729         * This is true if page_size > cluster_size.
 730         *
 731         * It triggers a set of special cases during write which might
 732         * have to deal with allocating writes to partial pages.
 733         */
 734        unsigned int                    w_large_pages;
 735
 736        /*
 737         * Pages involved in this write.
 738         *
 739         * w_target_page is the page being written to by the user.
 740         *
 741         * w_pages is an array of pages which always contains
 742         * w_target_page, and in the case of an allocating write with
 743         * page_size < cluster size, it will contain zero'd and mapped
 744         * pages adjacent to w_target_page which need to be written
 745         * out in so that future reads from that region will get
 746         * zero's.
 747         */
 748        unsigned int                    w_num_pages;
 749        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 750        struct page                     *w_target_page;
 751
 752        /*
 753         * w_target_locked is used for page_mkwrite path indicating no unlocking
 754         * against w_target_page in ocfs2_write_end_nolock.
 755         */
 756        unsigned int                    w_target_locked:1;
 757
 758        /*
 759         * ocfs2_write_end() uses this to know what the real range to
 760         * write in the target should be.
 761         */
 762        unsigned int                    w_target_from;
 763        unsigned int                    w_target_to;
 764
 765        /*
 766         * We could use journal_current_handle() but this is cleaner,
 767         * IMHO -Mark
 768         */
 769        handle_t                        *w_handle;
 770
 771        struct buffer_head              *w_di_bh;
 772
 773        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 774
 775        struct list_head                w_unwritten_list;
 776        unsigned int                    w_unwritten_count;
 777};
 778
 779void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 780{
 781        int i;
 782
 783        for(i = 0; i < num_pages; i++) {
 784                if (pages[i]) {
 785                        unlock_page(pages[i]);
 786                        mark_page_accessed(pages[i]);
 787                        put_page(pages[i]);
 788                }
 789        }
 790}
 791
 792static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 793{
 794        int i;
 795
 796        /*
 797         * w_target_locked is only set to true in the page_mkwrite() case.
 798         * The intent is to allow us to lock the target page from write_begin()
 799         * to write_end(). The caller must hold a ref on w_target_page.
 800         */
 801        if (wc->w_target_locked) {
 802                BUG_ON(!wc->w_target_page);
 803                for (i = 0; i < wc->w_num_pages; i++) {
 804                        if (wc->w_target_page == wc->w_pages[i]) {
 805                                wc->w_pages[i] = NULL;
 806                                break;
 807                        }
 808                }
 809                mark_page_accessed(wc->w_target_page);
 810                put_page(wc->w_target_page);
 811        }
 812        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 813}
 814
 815static void ocfs2_free_unwritten_list(struct inode *inode,
 816                                 struct list_head *head)
 817{
 818        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 819        struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 820
 821        list_for_each_entry_safe(ue, tmp, head, ue_node) {
 822                list_del(&ue->ue_node);
 823                spin_lock(&oi->ip_lock);
 824                list_del(&ue->ue_ip_node);
 825                spin_unlock(&oi->ip_lock);
 826                kfree(ue);
 827        }
 828}
 829
 830static void ocfs2_free_write_ctxt(struct inode *inode,
 831                                  struct ocfs2_write_ctxt *wc)
 832{
 833        ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 834        ocfs2_unlock_pages(wc);
 835        brelse(wc->w_di_bh);
 836        kfree(wc);
 837}
 838
 839static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 840                                  struct ocfs2_super *osb, loff_t pos,
 841                                  unsigned len, ocfs2_write_type_t type,
 842                                  struct buffer_head *di_bh)
 843{
 844        u32 cend;
 845        struct ocfs2_write_ctxt *wc;
 846
 847        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 848        if (!wc)
 849                return -ENOMEM;
 850
 851        wc->w_cpos = pos >> osb->s_clustersize_bits;
 852        wc->w_first_new_cpos = UINT_MAX;
 853        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 854        wc->w_clen = cend - wc->w_cpos + 1;
 855        get_bh(di_bh);
 856        wc->w_di_bh = di_bh;
 857        wc->w_type = type;
 858
 859        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 860                wc->w_large_pages = 1;
 861        else
 862                wc->w_large_pages = 0;
 863
 864        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 865        INIT_LIST_HEAD(&wc->w_unwritten_list);
 866
 867        *wcp = wc;
 868
 869        return 0;
 870}
 871
 872/*
 873 * If a page has any new buffers, zero them out here, and mark them uptodate
 874 * and dirty so they'll be written out (in order to prevent uninitialised
 875 * block data from leaking). And clear the new bit.
 876 */
 877static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 878{
 879        unsigned int block_start, block_end;
 880        struct buffer_head *head, *bh;
 881
 882        BUG_ON(!PageLocked(page));
 883        if (!page_has_buffers(page))
 884                return;
 885
 886        bh = head = page_buffers(page);
 887        block_start = 0;
 888        do {
 889                block_end = block_start + bh->b_size;
 890
 891                if (buffer_new(bh)) {
 892                        if (block_end > from && block_start < to) {
 893                                if (!PageUptodate(page)) {
 894                                        unsigned start, end;
 895
 896                                        start = max(from, block_start);
 897                                        end = min(to, block_end);
 898
 899                                        zero_user_segment(page, start, end);
 900                                        set_buffer_uptodate(bh);
 901                                }
 902
 903                                clear_buffer_new(bh);
 904                                mark_buffer_dirty(bh);
 905                        }
 906                }
 907
 908                block_start = block_end;
 909                bh = bh->b_this_page;
 910        } while (bh != head);
 911}
 912
 913/*
 914 * Only called when we have a failure during allocating write to write
 915 * zero's to the newly allocated region.
 916 */
 917static void ocfs2_write_failure(struct inode *inode,
 918                                struct ocfs2_write_ctxt *wc,
 919                                loff_t user_pos, unsigned user_len)
 920{
 921        int i;
 922        unsigned from = user_pos & (PAGE_SIZE - 1),
 923                to = user_pos + user_len;
 924        struct page *tmppage;
 925
 926        if (wc->w_target_page)
 927                ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 928
 929        for(i = 0; i < wc->w_num_pages; i++) {
 930                tmppage = wc->w_pages[i];
 931
 932                if (tmppage && page_has_buffers(tmppage)) {
 933                        if (ocfs2_should_order_data(inode))
 934                                ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
 935                                                           user_pos, user_len);
 936
 937                        block_commit_write(tmppage, from, to);
 938                }
 939        }
 940}
 941
 942static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 943                                        struct ocfs2_write_ctxt *wc,
 944                                        struct page *page, u32 cpos,
 945                                        loff_t user_pos, unsigned user_len,
 946                                        int new)
 947{
 948        int ret;
 949        unsigned int map_from = 0, map_to = 0;
 950        unsigned int cluster_start, cluster_end;
 951        unsigned int user_data_from = 0, user_data_to = 0;
 952
 953        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 954                                        &cluster_start, &cluster_end);
 955
 956        /* treat the write as new if the a hole/lseek spanned across
 957         * the page boundary.
 958         */
 959        new = new | ((i_size_read(inode) <= page_offset(page)) &&
 960                        (page_offset(page) <= user_pos));
 961
 962        if (page == wc->w_target_page) {
 963                map_from = user_pos & (PAGE_SIZE - 1);
 964                map_to = map_from + user_len;
 965
 966                if (new)
 967                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 968                                                    cluster_start, cluster_end,
 969                                                    new);
 970                else
 971                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 972                                                    map_from, map_to, new);
 973                if (ret) {
 974                        mlog_errno(ret);
 975                        goto out;
 976                }
 977
 978                user_data_from = map_from;
 979                user_data_to = map_to;
 980                if (new) {
 981                        map_from = cluster_start;
 982                        map_to = cluster_end;
 983                }
 984        } else {
 985                /*
 986                 * If we haven't allocated the new page yet, we
 987                 * shouldn't be writing it out without copying user
 988                 * data. This is likely a math error from the caller.
 989                 */
 990                BUG_ON(!new);
 991
 992                map_from = cluster_start;
 993                map_to = cluster_end;
 994
 995                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 996                                            cluster_start, cluster_end, new);
 997                if (ret) {
 998                        mlog_errno(ret);
 999                        goto out;
1000                }
1001        }
1002
1003        /*
1004         * Parts of newly allocated pages need to be zero'd.
1005         *
1006         * Above, we have also rewritten 'to' and 'from' - as far as
1007         * the rest of the function is concerned, the entire cluster
1008         * range inside of a page needs to be written.
1009         *
1010         * We can skip this if the page is up to date - it's already
1011         * been zero'd from being read in as a hole.
1012         */
1013        if (new && !PageUptodate(page))
1014                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1015                                         cpos, user_data_from, user_data_to);
1016
1017        flush_dcache_page(page);
1018
1019out:
1020        return ret;
1021}
1022
1023/*
1024 * This function will only grab one clusters worth of pages.
1025 */
1026static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027                                      struct ocfs2_write_ctxt *wc,
1028                                      u32 cpos, loff_t user_pos,
1029                                      unsigned user_len, int new,
1030                                      struct page *mmap_page)
1031{
1032        int ret = 0, i;
1033        unsigned long start, target_index, end_index, index;
1034        struct inode *inode = mapping->host;
1035        loff_t last_byte;
1036
1037        target_index = user_pos >> PAGE_SHIFT;
1038
1039        /*
1040         * Figure out how many pages we'll be manipulating here. For
1041         * non allocating write, we just change the one
1042         * page. Otherwise, we'll need a whole clusters worth.  If we're
1043         * writing past i_size, we only need enough pages to cover the
1044         * last page of the write.
1045         */
1046        if (new) {
1047                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1049                /*
1050                 * We need the index *past* the last page we could possibly
1051                 * touch.  This is the page past the end of the write or
1052                 * i_size, whichever is greater.
1053                 */
1054                last_byte = max(user_pos + user_len, i_size_read(inode));
1055                BUG_ON(last_byte < 1);
1056                end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1057                if ((start + wc->w_num_pages) > end_index)
1058                        wc->w_num_pages = end_index - start;
1059        } else {
1060                wc->w_num_pages = 1;
1061                start = target_index;
1062        }
1063        end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1064
1065        for(i = 0; i < wc->w_num_pages; i++) {
1066                index = start + i;
1067
1068                if (index >= target_index && index <= end_index &&
1069                    wc->w_type == OCFS2_WRITE_MMAP) {
1070                        /*
1071                         * ocfs2_pagemkwrite() is a little different
1072                         * and wants us to directly use the page
1073                         * passed in.
1074                         */
1075                        lock_page(mmap_page);
1076
1077                        /* Exit and let the caller retry */
1078                        if (mmap_page->mapping != mapping) {
1079                                WARN_ON(mmap_page->mapping);
1080                                unlock_page(mmap_page);
1081                                ret = -EAGAIN;
1082                                goto out;
1083                        }
1084
1085                        get_page(mmap_page);
1086                        wc->w_pages[i] = mmap_page;
1087                        wc->w_target_locked = true;
1088                } else if (index >= target_index && index <= end_index &&
1089                           wc->w_type == OCFS2_WRITE_DIRECT) {
1090                        /* Direct write has no mapping page. */
1091                        wc->w_pages[i] = NULL;
1092                        continue;
1093                } else {
1094                        wc->w_pages[i] = find_or_create_page(mapping, index,
1095                                                             GFP_NOFS);
1096                        if (!wc->w_pages[i]) {
1097                                ret = -ENOMEM;
1098                                mlog_errno(ret);
1099                                goto out;
1100                        }
1101                }
1102                wait_for_stable_page(wc->w_pages[i]);
1103
1104                if (index == target_index)
1105                        wc->w_target_page = wc->w_pages[i];
1106        }
1107out:
1108        if (ret)
1109                wc->w_target_locked = false;
1110        return ret;
1111}
1112
1113/*
1114 * Prepare a single cluster for write one cluster into the file.
1115 */
1116static int ocfs2_write_cluster(struct address_space *mapping,
1117                               u32 *phys, unsigned int new,
1118                               unsigned int clear_unwritten,
1119                               unsigned int should_zero,
1120                               struct ocfs2_alloc_context *data_ac,
1121                               struct ocfs2_alloc_context *meta_ac,
1122                               struct ocfs2_write_ctxt *wc, u32 cpos,
1123                               loff_t user_pos, unsigned user_len)
1124{
1125        int ret, i;
1126        u64 p_blkno;
1127        struct inode *inode = mapping->host;
1128        struct ocfs2_extent_tree et;
1129        int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1130
1131        if (new) {
1132                u32 tmp_pos;
1133
1134                /*
1135                 * This is safe to call with the page locks - it won't take
1136                 * any additional semaphores or cluster locks.
1137                 */
1138                tmp_pos = cpos;
1139                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1140                                           &tmp_pos, 1, !clear_unwritten,
1141                                           wc->w_di_bh, wc->w_handle,
1142                                           data_ac, meta_ac, NULL);
1143                /*
1144                 * This shouldn't happen because we must have already
1145                 * calculated the correct meta data allocation required. The
1146                 * internal tree allocation code should know how to increase
1147                 * transaction credits itself.
1148                 *
1149                 * If need be, we could handle -EAGAIN for a
1150                 * RESTART_TRANS here.
1151                 */
1152                mlog_bug_on_msg(ret == -EAGAIN,
1153                                "Inode %llu: EAGAIN return during allocation.\n",
1154                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1155                if (ret < 0) {
1156                        mlog_errno(ret);
1157                        goto out;
1158                }
1159        } else if (clear_unwritten) {
1160                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161                                              wc->w_di_bh);
1162                ret = ocfs2_mark_extent_written(inode, &et,
1163                                                wc->w_handle, cpos, 1, *phys,
1164                                                meta_ac, &wc->w_dealloc);
1165                if (ret < 0) {
1166                        mlog_errno(ret);
1167                        goto out;
1168                }
1169        }
1170
1171        /*
1172         * The only reason this should fail is due to an inability to
1173         * find the extent added.
1174         */
1175        ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1176        if (ret < 0) {
1177                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1178                            "at logical cluster %u",
1179                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1180                goto out;
1181        }
1182
1183        BUG_ON(*phys == 0);
1184
1185        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186        if (!should_zero)
1187                p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1188
1189        for(i = 0; i < wc->w_num_pages; i++) {
1190                int tmpret;
1191
1192                /* This is the direct io target page. */
1193                if (wc->w_pages[i] == NULL) {
1194                        p_blkno++;
1195                        continue;
1196                }
1197
1198                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199                                                      wc->w_pages[i], cpos,
1200                                                      user_pos, user_len,
1201                                                      should_zero);
1202                if (tmpret) {
1203                        mlog_errno(tmpret);
1204                        if (ret == 0)
1205                                ret = tmpret;
1206                }
1207        }
1208
1209        /*
1210         * We only have cleanup to do in case of allocating write.
1211         */
1212        if (ret && new)
1213                ocfs2_write_failure(inode, wc, user_pos, user_len);
1214
1215out:
1216
1217        return ret;
1218}
1219
1220static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221                                       struct ocfs2_alloc_context *data_ac,
1222                                       struct ocfs2_alloc_context *meta_ac,
1223                                       struct ocfs2_write_ctxt *wc,
1224                                       loff_t pos, unsigned len)
1225{
1226        int ret, i;
1227        loff_t cluster_off;
1228        unsigned int local_len = len;
1229        struct ocfs2_write_cluster_desc *desc;
1230        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1231
1232        for (i = 0; i < wc->w_clen; i++) {
1233                desc = &wc->w_desc[i];
1234
1235                /*
1236                 * We have to make sure that the total write passed in
1237                 * doesn't extend past a single cluster.
1238                 */
1239                local_len = len;
1240                cluster_off = pos & (osb->s_clustersize - 1);
1241                if ((cluster_off + local_len) > osb->s_clustersize)
1242                        local_len = osb->s_clustersize - cluster_off;
1243
1244                ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1245                                          desc->c_new,
1246                                          desc->c_clear_unwritten,
1247                                          desc->c_needs_zero,
1248                                          data_ac, meta_ac,
1249                                          wc, desc->c_cpos, pos, local_len);
1250                if (ret) {
1251                        mlog_errno(ret);
1252                        goto out;
1253                }
1254
1255                len -= local_len;
1256                pos += local_len;
1257        }
1258
1259        ret = 0;
1260out:
1261        return ret;
1262}
1263
1264/*
1265 * ocfs2_write_end() wants to know which parts of the target page it
1266 * should complete the write on. It's easiest to compute them ahead of
1267 * time when a more complete view of the write is available.
1268 */
1269static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270                                        struct ocfs2_write_ctxt *wc,
1271                                        loff_t pos, unsigned len, int alloc)
1272{
1273        struct ocfs2_write_cluster_desc *desc;
1274
1275        wc->w_target_from = pos & (PAGE_SIZE - 1);
1276        wc->w_target_to = wc->w_target_from + len;
1277
1278        if (alloc == 0)
1279                return;
1280
1281        /*
1282         * Allocating write - we may have different boundaries based
1283         * on page size and cluster size.
1284         *
1285         * NOTE: We can no longer compute one value from the other as
1286         * the actual write length and user provided length may be
1287         * different.
1288         */
1289
1290        if (wc->w_large_pages) {
1291                /*
1292                 * We only care about the 1st and last cluster within
1293                 * our range and whether they should be zero'd or not. Either
1294                 * value may be extended out to the start/end of a
1295                 * newly allocated cluster.
1296                 */
1297                desc = &wc->w_desc[0];
1298                if (desc->c_needs_zero)
1299                        ocfs2_figure_cluster_boundaries(osb,
1300                                                        desc->c_cpos,
1301                                                        &wc->w_target_from,
1302                                                        NULL);
1303
1304                desc = &wc->w_desc[wc->w_clen - 1];
1305                if (desc->c_needs_zero)
1306                        ocfs2_figure_cluster_boundaries(osb,
1307                                                        desc->c_cpos,
1308                                                        NULL,
1309                                                        &wc->w_target_to);
1310        } else {
1311                wc->w_target_from = 0;
1312                wc->w_target_to = PAGE_SIZE;
1313        }
1314}
1315
1316/*
1317 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319 * by the direct io procedure.
1320 * If this is a new extent that allocated by direct io, we should mark it in
1321 * the ip_unwritten_list.
1322 */
1323static int ocfs2_unwritten_check(struct inode *inode,
1324                                 struct ocfs2_write_ctxt *wc,
1325                                 struct ocfs2_write_cluster_desc *desc)
1326{
1327        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1328        struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1329        int ret = 0;
1330
1331        if (!desc->c_needs_zero)
1332                return 0;
1333
1334retry:
1335        spin_lock(&oi->ip_lock);
1336        /* Needs not to zero no metter buffer or direct. The one who is zero
1337         * the cluster is doing zero. And he will clear unwritten after all
1338         * cluster io finished. */
1339        list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340                if (desc->c_cpos == ue->ue_cpos) {
1341                        BUG_ON(desc->c_new);
1342                        desc->c_needs_zero = 0;
1343                        desc->c_clear_unwritten = 0;
1344                        goto unlock;
1345                }
1346        }
1347
1348        if (wc->w_type != OCFS2_WRITE_DIRECT)
1349                goto unlock;
1350
1351        if (new == NULL) {
1352                spin_unlock(&oi->ip_lock);
1353                new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354                             GFP_NOFS);
1355                if (new == NULL) {
1356                        ret = -ENOMEM;
1357                        goto out;
1358                }
1359                goto retry;
1360        }
1361        /* This direct write will doing zero. */
1362        new->ue_cpos = desc->c_cpos;
1363        new->ue_phys = desc->c_phys;
1364        desc->c_clear_unwritten = 0;
1365        list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366        list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1367        wc->w_unwritten_count++;
1368        new = NULL;
1369unlock:
1370        spin_unlock(&oi->ip_lock);
1371out:
1372        kfree(new);
1373        return ret;
1374}
1375
1376/*
1377 * Populate each single-cluster write descriptor in the write context
1378 * with information about the i/o to be done.
1379 *
1380 * Returns the number of clusters that will have to be allocated, as
1381 * well as a worst case estimate of the number of extent records that
1382 * would have to be created during a write to an unwritten region.
1383 */
1384static int ocfs2_populate_write_desc(struct inode *inode,
1385                                     struct ocfs2_write_ctxt *wc,
1386                                     unsigned int *clusters_to_alloc,
1387                                     unsigned int *extents_to_split)
1388{
1389        int ret;
1390        struct ocfs2_write_cluster_desc *desc;
1391        unsigned int num_clusters = 0;
1392        unsigned int ext_flags = 0;
1393        u32 phys = 0;
1394        int i;
1395
1396        *clusters_to_alloc = 0;
1397        *extents_to_split = 0;
1398
1399        for (i = 0; i < wc->w_clen; i++) {
1400                desc = &wc->w_desc[i];
1401                desc->c_cpos = wc->w_cpos + i;
1402
1403                if (num_clusters == 0) {
1404                        /*
1405                         * Need to look up the next extent record.
1406                         */
1407                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1408                                                 &num_clusters, &ext_flags);
1409                        if (ret) {
1410                                mlog_errno(ret);
1411                                goto out;
1412                        }
1413
1414                        /* We should already CoW the refcountd extent. */
1415                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416
1417                        /*
1418                         * Assume worst case - that we're writing in
1419                         * the middle of the extent.
1420                         *
1421                         * We can assume that the write proceeds from
1422                         * left to right, in which case the extent
1423                         * insert code is smart enough to coalesce the
1424                         * next splits into the previous records created.
1425                         */
1426                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427                                *extents_to_split = *extents_to_split + 2;
1428                } else if (phys) {
1429                        /*
1430                         * Only increment phys if it doesn't describe
1431                         * a hole.
1432                         */
1433                        phys++;
1434                }
1435
1436                /*
1437                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438                 * file that got extended.  w_first_new_cpos tells us
1439                 * where the newly allocated clusters are so we can
1440                 * zero them.
1441                 */
1442                if (desc->c_cpos >= wc->w_first_new_cpos) {
1443                        BUG_ON(phys == 0);
1444                        desc->c_needs_zero = 1;
1445                }
1446
1447                desc->c_phys = phys;
1448                if (phys == 0) {
1449                        desc->c_new = 1;
1450                        desc->c_needs_zero = 1;
1451                        desc->c_clear_unwritten = 1;
1452                        *clusters_to_alloc = *clusters_to_alloc + 1;
1453                }
1454
1455                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1456                        desc->c_clear_unwritten = 1;
1457                        desc->c_needs_zero = 1;
1458                }
1459
1460                ret = ocfs2_unwritten_check(inode, wc, desc);
1461                if (ret) {
1462                        mlog_errno(ret);
1463                        goto out;
1464                }
1465
1466                num_clusters--;
1467        }
1468
1469        ret = 0;
1470out:
1471        return ret;
1472}
1473
1474static int ocfs2_write_begin_inline(struct address_space *mapping,
1475                                    struct inode *inode,
1476                                    struct ocfs2_write_ctxt *wc)
1477{
1478        int ret;
1479        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480        struct page *page;
1481        handle_t *handle;
1482        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485        if (IS_ERR(handle)) {
1486                ret = PTR_ERR(handle);
1487                mlog_errno(ret);
1488                goto out;
1489        }
1490
1491        page = find_or_create_page(mapping, 0, GFP_NOFS);
1492        if (!page) {
1493                ocfs2_commit_trans(osb, handle);
1494                ret = -ENOMEM;
1495                mlog_errno(ret);
1496                goto out;
1497        }
1498        /*
1499         * If we don't set w_num_pages then this page won't get unlocked
1500         * and freed on cleanup of the write context.
1501         */
1502        wc->w_pages[0] = wc->w_target_page = page;
1503        wc->w_num_pages = 1;
1504
1505        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506                                      OCFS2_JOURNAL_ACCESS_WRITE);
1507        if (ret) {
1508                ocfs2_commit_trans(osb, handle);
1509
1510                mlog_errno(ret);
1511                goto out;
1512        }
1513
1514        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515                ocfs2_set_inode_data_inline(inode, di);
1516
1517        if (!PageUptodate(page)) {
1518                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519                if (ret) {
1520                        ocfs2_commit_trans(osb, handle);
1521
1522                        goto out;
1523                }
1524        }
1525
1526        wc->w_handle = handle;
1527out:
1528        return ret;
1529}
1530
1531int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532{
1533        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
1535        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536                return 1;
1537        return 0;
1538}
1539
1540static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541                                          struct inode *inode, loff_t pos,
1542                                          unsigned len, struct page *mmap_page,
1543                                          struct ocfs2_write_ctxt *wc)
1544{
1545        int ret, written = 0;
1546        loff_t end = pos + len;
1547        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548        struct ocfs2_dinode *di = NULL;
1549
1550        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551                                             len, (unsigned long long)pos,
1552                                             oi->ip_dyn_features);
1553
1554        /*
1555         * Handle inodes which already have inline data 1st.
1556         */
1557        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558                if (mmap_page == NULL &&
1559                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560                        goto do_inline_write;
1561
1562                /*
1563                 * The write won't fit - we have to give this inode an
1564                 * inline extent list now.
1565                 */
1566                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567                if (ret)
1568                        mlog_errno(ret);
1569                goto out;
1570        }
1571
1572        /*
1573         * Check whether the inode can accept inline data.
1574         */
1575        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576                return 0;
1577
1578        /*
1579         * Check whether the write can fit.
1580         */
1581        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582        if (mmap_page ||
1583            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584                return 0;
1585
1586do_inline_write:
1587        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588        if (ret) {
1589                mlog_errno(ret);
1590                goto out;
1591        }
1592
1593        /*
1594         * This signals to the caller that the data can be written
1595         * inline.
1596         */
1597        written = 1;
1598out:
1599        return written ? written : ret;
1600}
1601
1602/*
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1605 *
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1610 */
1611static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612                                        struct buffer_head *di_bh,
1613                                        loff_t pos, unsigned len,
1614                                        struct ocfs2_write_ctxt *wc)
1615{
1616        int ret;
1617        loff_t newsize = pos + len;
1618
1619        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620
1621        if (newsize <= i_size_read(inode))
1622                return 0;
1623
1624        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625        if (ret)
1626                mlog_errno(ret);
1627
1628        /* There is no wc if this is call from direct. */
1629        if (wc)
1630                wc->w_first_new_cpos =
1631                        ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1632
1633        return ret;
1634}
1635
1636static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637                           loff_t pos)
1638{
1639        int ret = 0;
1640
1641        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642        if (pos > i_size_read(inode))
1643                ret = ocfs2_zero_extend(inode, di_bh, pos);
1644
1645        return ret;
1646}
1647
1648int ocfs2_write_begin_nolock(struct address_space *mapping,
1649                             loff_t pos, unsigned len, ocfs2_write_type_t type,
1650                             struct page **pagep, void **fsdata,
1651                             struct buffer_head *di_bh, struct page *mmap_page)
1652{
1653        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1654        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1655        struct ocfs2_write_ctxt *wc;
1656        struct inode *inode = mapping->host;
1657        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1658        struct ocfs2_dinode *di;
1659        struct ocfs2_alloc_context *data_ac = NULL;
1660        struct ocfs2_alloc_context *meta_ac = NULL;
1661        handle_t *handle;
1662        struct ocfs2_extent_tree et;
1663        int try_free = 1, ret1;
1664
1665try_again:
1666        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1667        if (ret) {
1668                mlog_errno(ret);
1669                return ret;
1670        }
1671
1672        if (ocfs2_supports_inline_data(osb)) {
1673                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1674                                                     mmap_page, wc);
1675                if (ret == 1) {
1676                        ret = 0;
1677                        goto success;
1678                }
1679                if (ret < 0) {
1680                        mlog_errno(ret);
1681                        goto out;
1682                }
1683        }
1684
1685        /* Direct io change i_size late, should not zero tail here. */
1686        if (type != OCFS2_WRITE_DIRECT) {
1687                if (ocfs2_sparse_alloc(osb))
1688                        ret = ocfs2_zero_tail(inode, di_bh, pos);
1689                else
1690                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1691                                                           len, wc);
1692                if (ret) {
1693                        mlog_errno(ret);
1694                        goto out;
1695                }
1696        }
1697
1698        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1699        if (ret < 0) {
1700                mlog_errno(ret);
1701                goto out;
1702        } else if (ret == 1) {
1703                clusters_need = wc->w_clen;
1704                ret = ocfs2_refcount_cow(inode, di_bh,
1705                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1706                if (ret) {
1707                        mlog_errno(ret);
1708                        goto out;
1709                }
1710        }
1711
1712        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1713                                        &extents_to_split);
1714        if (ret) {
1715                mlog_errno(ret);
1716                goto out;
1717        }
1718        clusters_need += clusters_to_alloc;
1719
1720        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1721
1722        trace_ocfs2_write_begin_nolock(
1723                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
1724                        (long long)i_size_read(inode),
1725                        le32_to_cpu(di->i_clusters),
1726                        pos, len, type, mmap_page,
1727                        clusters_to_alloc, extents_to_split);
1728
1729        /*
1730         * We set w_target_from, w_target_to here so that
1731         * ocfs2_write_end() knows which range in the target page to
1732         * write out. An allocation requires that we write the entire
1733         * cluster range.
1734         */
1735        if (clusters_to_alloc || extents_to_split) {
1736                /*
1737                 * XXX: We are stretching the limits of
1738                 * ocfs2_lock_allocators(). It greatly over-estimates
1739                 * the work to be done.
1740                 */
1741                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1742                                              wc->w_di_bh);
1743                ret = ocfs2_lock_allocators(inode, &et,
1744                                            clusters_to_alloc, extents_to_split,
1745                                            &data_ac, &meta_ac);
1746                if (ret) {
1747                        mlog_errno(ret);
1748                        goto out;
1749                }
1750
1751                if (data_ac)
1752                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1753
1754                credits = ocfs2_calc_extend_credits(inode->i_sb,
1755                                                    &di->id2.i_list);
1756        } else if (type == OCFS2_WRITE_DIRECT)
1757                /* direct write needs not to start trans if no extents alloc. */
1758                goto success;
1759
1760        /*
1761         * We have to zero sparse allocated clusters, unwritten extent clusters,
1762         * and non-sparse clusters we just extended.  For non-sparse writes,
1763         * we know zeros will only be needed in the first and/or last cluster.
1764         */
1765        if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1766                           wc->w_desc[wc->w_clen - 1].c_needs_zero))
1767                cluster_of_pages = 1;
1768        else
1769                cluster_of_pages = 0;
1770
1771        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1772
1773        handle = ocfs2_start_trans(osb, credits);
1774        if (IS_ERR(handle)) {
1775                ret = PTR_ERR(handle);
1776                mlog_errno(ret);
1777                goto out;
1778        }
1779
1780        wc->w_handle = handle;
1781
1782        if (clusters_to_alloc) {
1783                ret = dquot_alloc_space_nodirty(inode,
1784                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1785                if (ret)
1786                        goto out_commit;
1787        }
1788
1789        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1790                                      OCFS2_JOURNAL_ACCESS_WRITE);
1791        if (ret) {
1792                mlog_errno(ret);
1793                goto out_quota;
1794        }
1795
1796        /*
1797         * Fill our page array first. That way we've grabbed enough so
1798         * that we can zero and flush if we error after adding the
1799         * extent.
1800         */
1801        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1802                                         cluster_of_pages, mmap_page);
1803        if (ret && ret != -EAGAIN) {
1804                mlog_errno(ret);
1805                goto out_quota;
1806        }
1807
1808        /*
1809         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1810         * the target page. In this case, we exit with no error and no target
1811         * page. This will trigger the caller, page_mkwrite(), to re-try
1812         * the operation.
1813         */
1814        if (ret == -EAGAIN) {
1815                BUG_ON(wc->w_target_page);
1816                ret = 0;
1817                goto out_quota;
1818        }
1819
1820        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1821                                          len);
1822        if (ret) {
1823                mlog_errno(ret);
1824                goto out_quota;
1825        }
1826
1827        if (data_ac)
1828                ocfs2_free_alloc_context(data_ac);
1829        if (meta_ac)
1830                ocfs2_free_alloc_context(meta_ac);
1831
1832success:
1833        if (pagep)
1834                *pagep = wc->w_target_page;
1835        *fsdata = wc;
1836        return 0;
1837out_quota:
1838        if (clusters_to_alloc)
1839                dquot_free_space(inode,
1840                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1841out_commit:
1842        ocfs2_commit_trans(osb, handle);
1843
1844out:
1845        /*
1846         * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1847         * even in case of error here like ENOSPC and ENOMEM. So, we need
1848         * to unlock the target page manually to prevent deadlocks when
1849         * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1850         * to VM code.
1851         */
1852        if (wc->w_target_locked)
1853                unlock_page(mmap_page);
1854
1855        ocfs2_free_write_ctxt(inode, wc);
1856
1857        if (data_ac) {
1858                ocfs2_free_alloc_context(data_ac);
1859                data_ac = NULL;
1860        }
1861        if (meta_ac) {
1862                ocfs2_free_alloc_context(meta_ac);
1863                meta_ac = NULL;
1864        }
1865
1866        if (ret == -ENOSPC && try_free) {
1867                /*
1868                 * Try to free some truncate log so that we can have enough
1869                 * clusters to allocate.
1870                 */
1871                try_free = 0;
1872
1873                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1874                if (ret1 == 1)
1875                        goto try_again;
1876
1877                if (ret1 < 0)
1878                        mlog_errno(ret1);
1879        }
1880
1881        return ret;
1882}
1883
1884static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1885                             loff_t pos, unsigned len, unsigned flags,
1886                             struct page **pagep, void **fsdata)
1887{
1888        int ret;
1889        struct buffer_head *di_bh = NULL;
1890        struct inode *inode = mapping->host;
1891
1892        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1893        if (ret) {
1894                mlog_errno(ret);
1895                return ret;
1896        }
1897
1898        /*
1899         * Take alloc sem here to prevent concurrent lookups. That way
1900         * the mapping, zeroing and tree manipulation within
1901         * ocfs2_write() will be safe against ->readpage(). This
1902         * should also serve to lock out allocation from a shared
1903         * writeable region.
1904         */
1905        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1906
1907        ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1908                                       pagep, fsdata, di_bh, NULL);
1909        if (ret) {
1910                mlog_errno(ret);
1911                goto out_fail;
1912        }
1913
1914        brelse(di_bh);
1915
1916        return 0;
1917
1918out_fail:
1919        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1920
1921        brelse(di_bh);
1922        ocfs2_inode_unlock(inode, 1);
1923
1924        return ret;
1925}
1926
1927static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1928                                   unsigned len, unsigned *copied,
1929                                   struct ocfs2_dinode *di,
1930                                   struct ocfs2_write_ctxt *wc)
1931{
1932        void *kaddr;
1933
1934        if (unlikely(*copied < len)) {
1935                if (!PageUptodate(wc->w_target_page)) {
1936                        *copied = 0;
1937                        return;
1938                }
1939        }
1940
1941        kaddr = kmap_atomic(wc->w_target_page);
1942        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1943        kunmap_atomic(kaddr);
1944
1945        trace_ocfs2_write_end_inline(
1946             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1947             (unsigned long long)pos, *copied,
1948             le16_to_cpu(di->id2.i_data.id_count),
1949             le16_to_cpu(di->i_dyn_features));
1950}
1951
1952int ocfs2_write_end_nolock(struct address_space *mapping,
1953                           loff_t pos, unsigned len, unsigned copied, void *fsdata)
1954{
1955        int i, ret;
1956        unsigned from, to, start = pos & (PAGE_SIZE - 1);
1957        struct inode *inode = mapping->host;
1958        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1959        struct ocfs2_write_ctxt *wc = fsdata;
1960        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1961        handle_t *handle = wc->w_handle;
1962        struct page *tmppage;
1963
1964        BUG_ON(!list_empty(&wc->w_unwritten_list));
1965
1966        if (handle) {
1967                ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1968                                wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1969                if (ret) {
1970                        copied = ret;
1971                        mlog_errno(ret);
1972                        goto out;
1973                }
1974        }
1975
1976        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1977                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1978                goto out_write_size;
1979        }
1980
1981        if (unlikely(copied < len) && wc->w_target_page) {
1982                if (!PageUptodate(wc->w_target_page))
1983                        copied = 0;
1984
1985                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1986                                       start+len);
1987        }
1988        if (wc->w_target_page)
1989                flush_dcache_page(wc->w_target_page);
1990
1991        for(i = 0; i < wc->w_num_pages; i++) {
1992                tmppage = wc->w_pages[i];
1993
1994                /* This is the direct io target page. */
1995                if (tmppage == NULL)
1996                        continue;
1997
1998                if (tmppage == wc->w_target_page) {
1999                        from = wc->w_target_from;
2000                        to = wc->w_target_to;
2001
2002                        BUG_ON(from > PAGE_SIZE ||
2003                               to > PAGE_SIZE ||
2004                               to < from);
2005                } else {
2006                        /*
2007                         * Pages adjacent to the target (if any) imply
2008                         * a hole-filling write in which case we want
2009                         * to flush their entire range.
2010                         */
2011                        from = 0;
2012                        to = PAGE_SIZE;
2013                }
2014
2015                if (page_has_buffers(tmppage)) {
2016                        if (handle && ocfs2_should_order_data(inode)) {
2017                                loff_t start_byte =
2018                                        ((loff_t)tmppage->index << PAGE_SHIFT) +
2019                                        from;
2020                                loff_t length = to - from;
2021                                ocfs2_jbd2_inode_add_write(handle, inode,
2022                                                           start_byte, length);
2023                        }
2024                        block_commit_write(tmppage, from, to);
2025                }
2026        }
2027
2028out_write_size:
2029        /* Direct io do not update i_size here. */
2030        if (wc->w_type != OCFS2_WRITE_DIRECT) {
2031                pos += copied;
2032                if (pos > i_size_read(inode)) {
2033                        i_size_write(inode, pos);
2034                        mark_inode_dirty(inode);
2035                }
2036                inode->i_blocks = ocfs2_inode_sector_count(inode);
2037                di->i_size = cpu_to_le64((u64)i_size_read(inode));
2038                inode->i_mtime = inode->i_ctime = current_time(inode);
2039                di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2040                di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2041                if (handle)
2042                        ocfs2_update_inode_fsync_trans(handle, inode, 1);
2043        }
2044        if (handle)
2045                ocfs2_journal_dirty(handle, wc->w_di_bh);
2046
2047out:
2048        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2049         * lock, or it will cause a deadlock since journal commit threads holds
2050         * this lock and will ask for the page lock when flushing the data.
2051         * put it here to preserve the unlock order.
2052         */
2053        ocfs2_unlock_pages(wc);
2054
2055        if (handle)
2056                ocfs2_commit_trans(osb, handle);
2057
2058        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2059
2060        brelse(wc->w_di_bh);
2061        kfree(wc);
2062
2063        return copied;
2064}
2065
2066static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2067                           loff_t pos, unsigned len, unsigned copied,
2068                           struct page *page, void *fsdata)
2069{
2070        int ret;
2071        struct inode *inode = mapping->host;
2072
2073        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2074
2075        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2076        ocfs2_inode_unlock(inode, 1);
2077
2078        return ret;
2079}
2080
2081struct ocfs2_dio_write_ctxt {
2082        struct list_head        dw_zero_list;
2083        unsigned                dw_zero_count;
2084        int                     dw_orphaned;
2085        pid_t                   dw_writer_pid;
2086};
2087
2088static struct ocfs2_dio_write_ctxt *
2089ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2090{
2091        struct ocfs2_dio_write_ctxt *dwc = NULL;
2092
2093        if (bh->b_private)
2094                return bh->b_private;
2095
2096        dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2097        if (dwc == NULL)
2098                return NULL;
2099        INIT_LIST_HEAD(&dwc->dw_zero_list);
2100        dwc->dw_zero_count = 0;
2101        dwc->dw_orphaned = 0;
2102        dwc->dw_writer_pid = task_pid_nr(current);
2103        bh->b_private = dwc;
2104        *alloc = 1;
2105
2106        return dwc;
2107}
2108
2109static void ocfs2_dio_free_write_ctx(struct inode *inode,
2110                                     struct ocfs2_dio_write_ctxt *dwc)
2111{
2112        ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2113        kfree(dwc);
2114}
2115
2116/*
2117 * TODO: Make this into a generic get_blocks function.
2118 *
2119 * From do_direct_io in direct-io.c:
2120 *  "So what we do is to permit the ->get_blocks function to populate
2121 *   bh.b_size with the size of IO which is permitted at this offset and
2122 *   this i_blkbits."
2123 *
2124 * This function is called directly from get_more_blocks in direct-io.c.
2125 *
2126 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2127 *                                      fs_count, map_bh, dio->rw == WRITE);
2128 */
2129static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2130                               struct buffer_head *bh_result, int create)
2131{
2132        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2133        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2134        struct ocfs2_write_ctxt *wc;
2135        struct ocfs2_write_cluster_desc *desc = NULL;
2136        struct ocfs2_dio_write_ctxt *dwc = NULL;
2137        struct buffer_head *di_bh = NULL;
2138        u64 p_blkno;
2139        unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2140        loff_t pos = iblock << i_blkbits;
2141        sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2142        unsigned len, total_len = bh_result->b_size;
2143        int ret = 0, first_get_block = 0;
2144
2145        len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2146        len = min(total_len, len);
2147
2148        /*
2149         * bh_result->b_size is count in get_more_blocks according to write
2150         * "pos" and "end", we need map twice to return different buffer state:
2151         * 1. area in file size, not set NEW;
2152         * 2. area out file size, set  NEW.
2153         *
2154         *                 iblock    endblk
2155         * |--------|---------|---------|---------
2156         * |<-------area in file------->|
2157         */
2158
2159        if ((iblock <= endblk) &&
2160            ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2161                len = (endblk - iblock + 1) << i_blkbits;
2162
2163        mlog(0, "get block of %lu at %llu:%u req %u\n",
2164                        inode->i_ino, pos, len, total_len);
2165
2166        /*
2167         * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168         * we may need to add it to orphan dir. So can not fall to fast path
2169         * while file size will be changed.
2170         */
2171        if (pos + total_len <= i_size_read(inode)) {
2172
2173                /* This is the fast path for re-write. */
2174                ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2175                if (buffer_mapped(bh_result) &&
2176                    !buffer_new(bh_result) &&
2177                    ret == 0)
2178                        goto out;
2179
2180                /* Clear state set by ocfs2_get_block. */
2181                bh_result->b_state = 0;
2182        }
2183
2184        dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185        if (unlikely(dwc == NULL)) {
2186                ret = -ENOMEM;
2187                mlog_errno(ret);
2188                goto out;
2189        }
2190
2191        if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192            ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193            !dwc->dw_orphaned) {
2194                /*
2195                 * when we are going to alloc extents beyond file size, add the
2196                 * inode to orphan dir, so we can recall those spaces when
2197                 * system crashed during write.
2198                 */
2199                ret = ocfs2_add_inode_to_orphan(osb, inode);
2200                if (ret < 0) {
2201                        mlog_errno(ret);
2202                        goto out;
2203                }
2204                dwc->dw_orphaned = 1;
2205        }
2206
2207        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208        if (ret) {
2209                mlog_errno(ret);
2210                goto out;
2211        }
2212
2213        down_write(&oi->ip_alloc_sem);
2214
2215        if (first_get_block) {
2216                if (ocfs2_sparse_alloc(osb))
2217                        ret = ocfs2_zero_tail(inode, di_bh, pos);
2218                else
2219                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220                                                           total_len, NULL);
2221                if (ret < 0) {
2222                        mlog_errno(ret);
2223                        goto unlock;
2224                }
2225        }
2226
2227        ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228                                       OCFS2_WRITE_DIRECT, NULL,
2229                                       (void **)&wc, di_bh, NULL);
2230        if (ret) {
2231                mlog_errno(ret);
2232                goto unlock;
2233        }
2234
2235        desc = &wc->w_desc[0];
2236
2237        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238        BUG_ON(p_blkno == 0);
2239        p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241        map_bh(bh_result, inode->i_sb, p_blkno);
2242        bh_result->b_size = len;
2243        if (desc->c_needs_zero)
2244                set_buffer_new(bh_result);
2245
2246        if (iblock > endblk)
2247                set_buffer_new(bh_result);
2248
2249        /* May sleep in end_io. It should not happen in a irq context. So defer
2250         * it to dio work queue. */
2251        set_buffer_defer_completion(bh_result);
2252
2253        if (!list_empty(&wc->w_unwritten_list)) {
2254                struct ocfs2_unwritten_extent *ue = NULL;
2255
2256                ue = list_first_entry(&wc->w_unwritten_list,
2257                                      struct ocfs2_unwritten_extent,
2258                                      ue_node);
2259                BUG_ON(ue->ue_cpos != desc->c_cpos);
2260                /* The physical address may be 0, fill it. */
2261                ue->ue_phys = desc->c_phys;
2262
2263                list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2264                dwc->dw_zero_count += wc->w_unwritten_count;
2265        }
2266
2267        ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2268        BUG_ON(ret != len);
2269        ret = 0;
2270unlock:
2271        up_write(&oi->ip_alloc_sem);
2272        ocfs2_inode_unlock(inode, 1);
2273        brelse(di_bh);
2274out:
2275        if (ret < 0)
2276                ret = -EIO;
2277        return ret;
2278}
2279
2280static int ocfs2_dio_end_io_write(struct inode *inode,
2281                                  struct ocfs2_dio_write_ctxt *dwc,
2282                                  loff_t offset,
2283                                  ssize_t bytes)
2284{
2285        struct ocfs2_cached_dealloc_ctxt dealloc;
2286        struct ocfs2_extent_tree et;
2287        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2288        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2289        struct ocfs2_unwritten_extent *ue = NULL;
2290        struct buffer_head *di_bh = NULL;
2291        struct ocfs2_dinode *di;
2292        struct ocfs2_alloc_context *data_ac = NULL;
2293        struct ocfs2_alloc_context *meta_ac = NULL;
2294        handle_t *handle = NULL;
2295        loff_t end = offset + bytes;
2296        int ret = 0, credits = 0;
2297
2298        ocfs2_init_dealloc_ctxt(&dealloc);
2299
2300        /* We do clear unwritten, delete orphan, change i_size here. If neither
2301         * of these happen, we can skip all this. */
2302        if (list_empty(&dwc->dw_zero_list) &&
2303            end <= i_size_read(inode) &&
2304            !dwc->dw_orphaned)
2305                goto out;
2306
2307        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2308        if (ret < 0) {
2309                mlog_errno(ret);
2310                goto out;
2311        }
2312
2313        down_write(&oi->ip_alloc_sem);
2314
2315        /* Delete orphan before acquire i_mutex. */
2316        if (dwc->dw_orphaned) {
2317                BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2318
2319                end = end > i_size_read(inode) ? end : 0;
2320
2321                ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2322                                !!end, end);
2323                if (ret < 0)
2324                        mlog_errno(ret);
2325        }
2326
2327        di = (struct ocfs2_dinode *)di_bh->b_data;
2328
2329        ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2330
2331        /* Attach dealloc with extent tree in case that we may reuse extents
2332         * which are already unlinked from current extent tree due to extent
2333         * rotation and merging.
2334         */
2335        et.et_dealloc = &dealloc;
2336
2337        ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2338                                    &data_ac, &meta_ac);
2339        if (ret) {
2340                mlog_errno(ret);
2341                goto unlock;
2342        }
2343
2344        credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2345
2346        handle = ocfs2_start_trans(osb, credits);
2347        if (IS_ERR(handle)) {
2348                ret = PTR_ERR(handle);
2349                mlog_errno(ret);
2350                goto unlock;
2351        }
2352        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2353                                      OCFS2_JOURNAL_ACCESS_WRITE);
2354        if (ret) {
2355                mlog_errno(ret);
2356                goto commit;
2357        }
2358
2359        list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2360                ret = ocfs2_mark_extent_written(inode, &et, handle,
2361                                                ue->ue_cpos, 1,
2362                                                ue->ue_phys,
2363                                                meta_ac, &dealloc);
2364                if (ret < 0) {
2365                        mlog_errno(ret);
2366                        break;
2367                }
2368        }
2369
2370        if (end > i_size_read(inode)) {
2371                ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2372                if (ret < 0)
2373                        mlog_errno(ret);
2374        }
2375commit:
2376        ocfs2_commit_trans(osb, handle);
2377unlock:
2378        up_write(&oi->ip_alloc_sem);
2379        ocfs2_inode_unlock(inode, 1);
2380        brelse(di_bh);
2381out:
2382        if (data_ac)
2383                ocfs2_free_alloc_context(data_ac);
2384        if (meta_ac)
2385                ocfs2_free_alloc_context(meta_ac);
2386        ocfs2_run_deallocs(osb, &dealloc);
2387        ocfs2_dio_free_write_ctx(inode, dwc);
2388
2389        return ret;
2390}
2391
2392/*
2393 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2394 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2395 * to protect io on one node from truncation on another.
2396 */
2397static int ocfs2_dio_end_io(struct kiocb *iocb,
2398                            loff_t offset,
2399                            ssize_t bytes,
2400                            void *private)
2401{
2402        struct inode *inode = file_inode(iocb->ki_filp);
2403        int level;
2404        int ret = 0;
2405
2406        /* this io's submitter should not have unlocked this before we could */
2407        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2408
2409        if (bytes <= 0)
2410                mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2411                                 (long long)bytes);
2412        if (private) {
2413                if (bytes > 0)
2414                        ret = ocfs2_dio_end_io_write(inode, private, offset,
2415                                                     bytes);
2416                else
2417                        ocfs2_dio_free_write_ctx(inode, private);
2418        }
2419
2420        ocfs2_iocb_clear_rw_locked(iocb);
2421
2422        level = ocfs2_iocb_rw_locked_level(iocb);
2423        ocfs2_rw_unlock(inode, level);
2424        return ret;
2425}
2426
2427static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2428{
2429        struct file *file = iocb->ki_filp;
2430        struct inode *inode = file->f_mapping->host;
2431        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2432        get_block_t *get_block;
2433
2434        /*
2435         * Fallback to buffered I/O if we see an inode without
2436         * extents.
2437         */
2438        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2439                return 0;
2440
2441        /* Fallback to buffered I/O if we do not support append dio. */
2442        if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2443            !ocfs2_supports_append_dio(osb))
2444                return 0;
2445
2446        if (iov_iter_rw(iter) == READ)
2447                get_block = ocfs2_lock_get_block;
2448        else
2449                get_block = ocfs2_dio_wr_get_block;
2450
2451        return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2452                                    iter, get_block,
2453                                    ocfs2_dio_end_io, NULL, 0);
2454}
2455
2456const struct address_space_operations ocfs2_aops = {
2457        .readpage               = ocfs2_readpage,
2458        .readahead              = ocfs2_readahead,
2459        .writepage              = ocfs2_writepage,
2460        .write_begin            = ocfs2_write_begin,
2461        .write_end              = ocfs2_write_end,
2462        .bmap                   = ocfs2_bmap,
2463        .direct_IO              = ocfs2_direct_IO,
2464        .invalidatepage         = block_invalidatepage,
2465        .releasepage            = ocfs2_releasepage,
2466        .migratepage            = buffer_migrate_page,
2467        .is_partially_uptodate  = block_is_partially_uptodate,
2468        .error_remove_page      = generic_error_remove_page,
2469};
2470