linux/fs/udf/balloc.c
<<
>>
Prefs
   1/*
   2 * balloc.c
   3 *
   4 * PURPOSE
   5 *      Block allocation handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *      This file is distributed under the terms of the GNU General Public
   9 *      License (GPL). Copies of the GPL can be obtained from:
  10 *              ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *      Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1999-2001 Ben Fennema
  14 *  (C) 1999 Stelias Computing Inc
  15 *
  16 * HISTORY
  17 *
  18 *  02/24/99 blf  Created.
  19 *
  20 */
  21
  22#include "udfdecl.h"
  23
  24#include <linux/bitops.h>
  25
  26#include "udf_i.h"
  27#include "udf_sb.h"
  28
  29#define udf_clear_bit   __test_and_clear_bit_le
  30#define udf_set_bit     __test_and_set_bit_le
  31#define udf_test_bit    test_bit_le
  32#define udf_find_next_one_bit   find_next_bit_le
  33
  34static int read_block_bitmap(struct super_block *sb,
  35                             struct udf_bitmap *bitmap, unsigned int block,
  36                             unsigned long bitmap_nr)
  37{
  38        struct buffer_head *bh = NULL;
  39        int retval = 0;
  40        struct kernel_lb_addr loc;
  41
  42        loc.logicalBlockNum = bitmap->s_extPosition;
  43        loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
  44
  45        bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
  46        if (!bh)
  47                retval = -EIO;
  48
  49        bitmap->s_block_bitmap[bitmap_nr] = bh;
  50        return retval;
  51}
  52
  53static int __load_block_bitmap(struct super_block *sb,
  54                               struct udf_bitmap *bitmap,
  55                               unsigned int block_group)
  56{
  57        int retval = 0;
  58        int nr_groups = bitmap->s_nr_groups;
  59
  60        if (block_group >= nr_groups) {
  61                udf_debug("block_group (%u) > nr_groups (%d)\n",
  62                          block_group, nr_groups);
  63        }
  64
  65        if (bitmap->s_block_bitmap[block_group])
  66                return block_group;
  67
  68        retval = read_block_bitmap(sb, bitmap, block_group, block_group);
  69        if (retval < 0)
  70                return retval;
  71
  72        return block_group;
  73}
  74
  75static inline int load_block_bitmap(struct super_block *sb,
  76                                    struct udf_bitmap *bitmap,
  77                                    unsigned int block_group)
  78{
  79        int slot;
  80
  81        slot = __load_block_bitmap(sb, bitmap, block_group);
  82
  83        if (slot < 0)
  84                return slot;
  85
  86        if (!bitmap->s_block_bitmap[slot])
  87                return -EIO;
  88
  89        return slot;
  90}
  91
  92static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
  93{
  94        struct udf_sb_info *sbi = UDF_SB(sb);
  95        struct logicalVolIntegrityDesc *lvid;
  96
  97        if (!sbi->s_lvid_bh)
  98                return;
  99
 100        lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
 101        le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
 102        udf_updated_lvid(sb);
 103}
 104
 105static void udf_bitmap_free_blocks(struct super_block *sb,
 106                                   struct udf_bitmap *bitmap,
 107                                   struct kernel_lb_addr *bloc,
 108                                   uint32_t offset,
 109                                   uint32_t count)
 110{
 111        struct udf_sb_info *sbi = UDF_SB(sb);
 112        struct buffer_head *bh = NULL;
 113        struct udf_part_map *partmap;
 114        unsigned long block;
 115        unsigned long block_group;
 116        unsigned long bit;
 117        unsigned long i;
 118        int bitmap_nr;
 119        unsigned long overflow;
 120
 121        mutex_lock(&sbi->s_alloc_mutex);
 122        partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
 123        if (bloc->logicalBlockNum + count < count ||
 124            (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
 125                udf_debug("%u < %d || %u + %u > %u\n",
 126                          bloc->logicalBlockNum, 0,
 127                          bloc->logicalBlockNum, count,
 128                          partmap->s_partition_len);
 129                goto error_return;
 130        }
 131
 132        block = bloc->logicalBlockNum + offset +
 133                (sizeof(struct spaceBitmapDesc) << 3);
 134
 135        do {
 136                overflow = 0;
 137                block_group = block >> (sb->s_blocksize_bits + 3);
 138                bit = block % (sb->s_blocksize << 3);
 139
 140                /*
 141                * Check to see if we are freeing blocks across a group boundary.
 142                */
 143                if (bit + count > (sb->s_blocksize << 3)) {
 144                        overflow = bit + count - (sb->s_blocksize << 3);
 145                        count -= overflow;
 146                }
 147                bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
 148                if (bitmap_nr < 0)
 149                        goto error_return;
 150
 151                bh = bitmap->s_block_bitmap[bitmap_nr];
 152                for (i = 0; i < count; i++) {
 153                        if (udf_set_bit(bit + i, bh->b_data)) {
 154                                udf_debug("bit %lu already set\n", bit + i);
 155                                udf_debug("byte=%2x\n",
 156                                          ((__u8 *)bh->b_data)[(bit + i) >> 3]);
 157                        }
 158                }
 159                udf_add_free_space(sb, sbi->s_partition, count);
 160                mark_buffer_dirty(bh);
 161                if (overflow) {
 162                        block += count;
 163                        count = overflow;
 164                }
 165        } while (overflow);
 166
 167error_return:
 168        mutex_unlock(&sbi->s_alloc_mutex);
 169}
 170
 171static int udf_bitmap_prealloc_blocks(struct super_block *sb,
 172                                      struct udf_bitmap *bitmap,
 173                                      uint16_t partition, uint32_t first_block,
 174                                      uint32_t block_count)
 175{
 176        struct udf_sb_info *sbi = UDF_SB(sb);
 177        int alloc_count = 0;
 178        int bit, block, block_group;
 179        int bitmap_nr;
 180        struct buffer_head *bh;
 181        __u32 part_len;
 182
 183        mutex_lock(&sbi->s_alloc_mutex);
 184        part_len = sbi->s_partmaps[partition].s_partition_len;
 185        if (first_block >= part_len)
 186                goto out;
 187
 188        if (first_block + block_count > part_len)
 189                block_count = part_len - first_block;
 190
 191        do {
 192                block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
 193                block_group = block >> (sb->s_blocksize_bits + 3);
 194
 195                bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
 196                if (bitmap_nr < 0)
 197                        goto out;
 198                bh = bitmap->s_block_bitmap[bitmap_nr];
 199
 200                bit = block % (sb->s_blocksize << 3);
 201
 202                while (bit < (sb->s_blocksize << 3) && block_count > 0) {
 203                        if (!udf_clear_bit(bit, bh->b_data))
 204                                goto out;
 205                        block_count--;
 206                        alloc_count++;
 207                        bit++;
 208                        block++;
 209                }
 210                mark_buffer_dirty(bh);
 211        } while (block_count > 0);
 212
 213out:
 214        udf_add_free_space(sb, partition, -alloc_count);
 215        mutex_unlock(&sbi->s_alloc_mutex);
 216        return alloc_count;
 217}
 218
 219static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
 220                                struct udf_bitmap *bitmap, uint16_t partition,
 221                                uint32_t goal, int *err)
 222{
 223        struct udf_sb_info *sbi = UDF_SB(sb);
 224        int newbit, bit = 0;
 225        udf_pblk_t block;
 226        int block_group, group_start;
 227        int end_goal, nr_groups, bitmap_nr, i;
 228        struct buffer_head *bh = NULL;
 229        char *ptr;
 230        udf_pblk_t newblock = 0;
 231
 232        *err = -ENOSPC;
 233        mutex_lock(&sbi->s_alloc_mutex);
 234
 235repeat:
 236        if (goal >= sbi->s_partmaps[partition].s_partition_len)
 237                goal = 0;
 238
 239        nr_groups = bitmap->s_nr_groups;
 240        block = goal + (sizeof(struct spaceBitmapDesc) << 3);
 241        block_group = block >> (sb->s_blocksize_bits + 3);
 242        group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
 243
 244        bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
 245        if (bitmap_nr < 0)
 246                goto error_return;
 247        bh = bitmap->s_block_bitmap[bitmap_nr];
 248        ptr = memscan((char *)bh->b_data + group_start, 0xFF,
 249                      sb->s_blocksize - group_start);
 250
 251        if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
 252                bit = block % (sb->s_blocksize << 3);
 253                if (udf_test_bit(bit, bh->b_data))
 254                        goto got_block;
 255
 256                end_goal = (bit + 63) & ~63;
 257                bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
 258                if (bit < end_goal)
 259                        goto got_block;
 260
 261                ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
 262                              sb->s_blocksize - ((bit + 7) >> 3));
 263                newbit = (ptr - ((char *)bh->b_data)) << 3;
 264                if (newbit < sb->s_blocksize << 3) {
 265                        bit = newbit;
 266                        goto search_back;
 267                }
 268
 269                newbit = udf_find_next_one_bit(bh->b_data,
 270                                               sb->s_blocksize << 3, bit);
 271                if (newbit < sb->s_blocksize << 3) {
 272                        bit = newbit;
 273                        goto got_block;
 274                }
 275        }
 276
 277        for (i = 0; i < (nr_groups * 2); i++) {
 278                block_group++;
 279                if (block_group >= nr_groups)
 280                        block_group = 0;
 281                group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
 282
 283                bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
 284                if (bitmap_nr < 0)
 285                        goto error_return;
 286                bh = bitmap->s_block_bitmap[bitmap_nr];
 287                if (i < nr_groups) {
 288                        ptr = memscan((char *)bh->b_data + group_start, 0xFF,
 289                                      sb->s_blocksize - group_start);
 290                        if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
 291                                bit = (ptr - ((char *)bh->b_data)) << 3;
 292                                break;
 293                        }
 294                } else {
 295                        bit = udf_find_next_one_bit(bh->b_data,
 296                                                    sb->s_blocksize << 3,
 297                                                    group_start << 3);
 298                        if (bit < sb->s_blocksize << 3)
 299                                break;
 300                }
 301        }
 302        if (i >= (nr_groups * 2)) {
 303                mutex_unlock(&sbi->s_alloc_mutex);
 304                return newblock;
 305        }
 306        if (bit < sb->s_blocksize << 3)
 307                goto search_back;
 308        else
 309                bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
 310                                            group_start << 3);
 311        if (bit >= sb->s_blocksize << 3) {
 312                mutex_unlock(&sbi->s_alloc_mutex);
 313                return 0;
 314        }
 315
 316search_back:
 317        i = 0;
 318        while (i < 7 && bit > (group_start << 3) &&
 319               udf_test_bit(bit - 1, bh->b_data)) {
 320                ++i;
 321                --bit;
 322        }
 323
 324got_block:
 325        newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
 326                (sizeof(struct spaceBitmapDesc) << 3);
 327
 328        if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
 329                /*
 330                 * Ran off the end of the bitmap, and bits following are
 331                 * non-compliant (not all zero)
 332                 */
 333                udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
 334                        " as free, partition length is %u)\n", partition,
 335                        newblock, sbi->s_partmaps[partition].s_partition_len);
 336                goto error_return;
 337        }
 338
 339        if (!udf_clear_bit(bit, bh->b_data)) {
 340                udf_debug("bit already cleared for block %d\n", bit);
 341                goto repeat;
 342        }
 343
 344        mark_buffer_dirty(bh);
 345
 346        udf_add_free_space(sb, partition, -1);
 347        mutex_unlock(&sbi->s_alloc_mutex);
 348        *err = 0;
 349        return newblock;
 350
 351error_return:
 352        *err = -EIO;
 353        mutex_unlock(&sbi->s_alloc_mutex);
 354        return 0;
 355}
 356
 357static void udf_table_free_blocks(struct super_block *sb,
 358                                  struct inode *table,
 359                                  struct kernel_lb_addr *bloc,
 360                                  uint32_t offset,
 361                                  uint32_t count)
 362{
 363        struct udf_sb_info *sbi = UDF_SB(sb);
 364        struct udf_part_map *partmap;
 365        uint32_t start, end;
 366        uint32_t elen;
 367        struct kernel_lb_addr eloc;
 368        struct extent_position oepos, epos;
 369        int8_t etype;
 370        struct udf_inode_info *iinfo;
 371
 372        mutex_lock(&sbi->s_alloc_mutex);
 373        partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
 374        if (bloc->logicalBlockNum + count < count ||
 375            (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
 376                udf_debug("%u < %d || %u + %u > %u\n",
 377                          bloc->logicalBlockNum, 0,
 378                          bloc->logicalBlockNum, count,
 379                          partmap->s_partition_len);
 380                goto error_return;
 381        }
 382
 383        iinfo = UDF_I(table);
 384        udf_add_free_space(sb, sbi->s_partition, count);
 385
 386        start = bloc->logicalBlockNum + offset;
 387        end = bloc->logicalBlockNum + offset + count - 1;
 388
 389        epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
 390        elen = 0;
 391        epos.block = oepos.block = iinfo->i_location;
 392        epos.bh = oepos.bh = NULL;
 393
 394        while (count &&
 395               (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
 396                if (((eloc.logicalBlockNum +
 397                        (elen >> sb->s_blocksize_bits)) == start)) {
 398                        if ((0x3FFFFFFF - elen) <
 399                                        (count << sb->s_blocksize_bits)) {
 400                                uint32_t tmp = ((0x3FFFFFFF - elen) >>
 401                                                        sb->s_blocksize_bits);
 402                                count -= tmp;
 403                                start += tmp;
 404                                elen = (etype << 30) |
 405                                        (0x40000000 - sb->s_blocksize);
 406                        } else {
 407                                elen = (etype << 30) |
 408                                        (elen +
 409                                        (count << sb->s_blocksize_bits));
 410                                start += count;
 411                                count = 0;
 412                        }
 413                        udf_write_aext(table, &oepos, &eloc, elen, 1);
 414                } else if (eloc.logicalBlockNum == (end + 1)) {
 415                        if ((0x3FFFFFFF - elen) <
 416                                        (count << sb->s_blocksize_bits)) {
 417                                uint32_t tmp = ((0x3FFFFFFF - elen) >>
 418                                                sb->s_blocksize_bits);
 419                                count -= tmp;
 420                                end -= tmp;
 421                                eloc.logicalBlockNum -= tmp;
 422                                elen = (etype << 30) |
 423                                        (0x40000000 - sb->s_blocksize);
 424                        } else {
 425                                eloc.logicalBlockNum = start;
 426                                elen = (etype << 30) |
 427                                        (elen +
 428                                        (count << sb->s_blocksize_bits));
 429                                end -= count;
 430                                count = 0;
 431                        }
 432                        udf_write_aext(table, &oepos, &eloc, elen, 1);
 433                }
 434
 435                if (epos.bh != oepos.bh) {
 436                        oepos.block = epos.block;
 437                        brelse(oepos.bh);
 438                        get_bh(epos.bh);
 439                        oepos.bh = epos.bh;
 440                        oepos.offset = 0;
 441                } else {
 442                        oepos.offset = epos.offset;
 443                }
 444        }
 445
 446        if (count) {
 447                /*
 448                 * NOTE: we CANNOT use udf_add_aext here, as it can try to
 449                 * allocate a new block, and since we hold the super block
 450                 * lock already very bad things would happen :)
 451                 *
 452                 * We copy the behavior of udf_add_aext, but instead of
 453                 * trying to allocate a new block close to the existing one,
 454                 * we just steal a block from the extent we are trying to add.
 455                 *
 456                 * It would be nice if the blocks were close together, but it
 457                 * isn't required.
 458                 */
 459
 460                int adsize;
 461
 462                eloc.logicalBlockNum = start;
 463                elen = EXT_RECORDED_ALLOCATED |
 464                        (count << sb->s_blocksize_bits);
 465
 466                if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 467                        adsize = sizeof(struct short_ad);
 468                else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 469                        adsize = sizeof(struct long_ad);
 470                else {
 471                        brelse(oepos.bh);
 472                        brelse(epos.bh);
 473                        goto error_return;
 474                }
 475
 476                if (epos.offset + (2 * adsize) > sb->s_blocksize) {
 477                        /* Steal a block from the extent being free'd */
 478                        udf_setup_indirect_aext(table, eloc.logicalBlockNum,
 479                                                &epos);
 480
 481                        eloc.logicalBlockNum++;
 482                        elen -= sb->s_blocksize;
 483                }
 484
 485                /* It's possible that stealing the block emptied the extent */
 486                if (elen)
 487                        __udf_add_aext(table, &epos, &eloc, elen, 1);
 488        }
 489
 490        brelse(epos.bh);
 491        brelse(oepos.bh);
 492
 493error_return:
 494        mutex_unlock(&sbi->s_alloc_mutex);
 495        return;
 496}
 497
 498static int udf_table_prealloc_blocks(struct super_block *sb,
 499                                     struct inode *table, uint16_t partition,
 500                                     uint32_t first_block, uint32_t block_count)
 501{
 502        struct udf_sb_info *sbi = UDF_SB(sb);
 503        int alloc_count = 0;
 504        uint32_t elen, adsize;
 505        struct kernel_lb_addr eloc;
 506        struct extent_position epos;
 507        int8_t etype = -1;
 508        struct udf_inode_info *iinfo;
 509
 510        if (first_block >= sbi->s_partmaps[partition].s_partition_len)
 511                return 0;
 512
 513        iinfo = UDF_I(table);
 514        if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 515                adsize = sizeof(struct short_ad);
 516        else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 517                adsize = sizeof(struct long_ad);
 518        else
 519                return 0;
 520
 521        mutex_lock(&sbi->s_alloc_mutex);
 522        epos.offset = sizeof(struct unallocSpaceEntry);
 523        epos.block = iinfo->i_location;
 524        epos.bh = NULL;
 525        eloc.logicalBlockNum = 0xFFFFFFFF;
 526
 527        while (first_block != eloc.logicalBlockNum &&
 528               (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
 529                udf_debug("eloc=%u, elen=%u, first_block=%u\n",
 530                          eloc.logicalBlockNum, elen, first_block);
 531                ; /* empty loop body */
 532        }
 533
 534        if (first_block == eloc.logicalBlockNum) {
 535                epos.offset -= adsize;
 536
 537                alloc_count = (elen >> sb->s_blocksize_bits);
 538                if (alloc_count > block_count) {
 539                        alloc_count = block_count;
 540                        eloc.logicalBlockNum += alloc_count;
 541                        elen -= (alloc_count << sb->s_blocksize_bits);
 542                        udf_write_aext(table, &epos, &eloc,
 543                                        (etype << 30) | elen, 1);
 544                } else
 545                        udf_delete_aext(table, epos);
 546        } else {
 547                alloc_count = 0;
 548        }
 549
 550        brelse(epos.bh);
 551
 552        if (alloc_count)
 553                udf_add_free_space(sb, partition, -alloc_count);
 554        mutex_unlock(&sbi->s_alloc_mutex);
 555        return alloc_count;
 556}
 557
 558static udf_pblk_t udf_table_new_block(struct super_block *sb,
 559                               struct inode *table, uint16_t partition,
 560                               uint32_t goal, int *err)
 561{
 562        struct udf_sb_info *sbi = UDF_SB(sb);
 563        uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
 564        udf_pblk_t newblock = 0;
 565        uint32_t adsize;
 566        uint32_t elen, goal_elen = 0;
 567        struct kernel_lb_addr eloc, goal_eloc;
 568        struct extent_position epos, goal_epos;
 569        int8_t etype;
 570        struct udf_inode_info *iinfo = UDF_I(table);
 571
 572        *err = -ENOSPC;
 573
 574        if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 575                adsize = sizeof(struct short_ad);
 576        else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 577                adsize = sizeof(struct long_ad);
 578        else
 579                return newblock;
 580
 581        mutex_lock(&sbi->s_alloc_mutex);
 582        if (goal >= sbi->s_partmaps[partition].s_partition_len)
 583                goal = 0;
 584
 585        /* We search for the closest matching block to goal. If we find
 586           a exact hit, we stop. Otherwise we keep going till we run out
 587           of extents. We store the buffer_head, bloc, and extoffset
 588           of the current closest match and use that when we are done.
 589         */
 590        epos.offset = sizeof(struct unallocSpaceEntry);
 591        epos.block = iinfo->i_location;
 592        epos.bh = goal_epos.bh = NULL;
 593
 594        while (spread &&
 595               (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
 596                if (goal >= eloc.logicalBlockNum) {
 597                        if (goal < eloc.logicalBlockNum +
 598                                        (elen >> sb->s_blocksize_bits))
 599                                nspread = 0;
 600                        else
 601                                nspread = goal - eloc.logicalBlockNum -
 602                                        (elen >> sb->s_blocksize_bits);
 603                } else {
 604                        nspread = eloc.logicalBlockNum - goal;
 605                }
 606
 607                if (nspread < spread) {
 608                        spread = nspread;
 609                        if (goal_epos.bh != epos.bh) {
 610                                brelse(goal_epos.bh);
 611                                goal_epos.bh = epos.bh;
 612                                get_bh(goal_epos.bh);
 613                        }
 614                        goal_epos.block = epos.block;
 615                        goal_epos.offset = epos.offset - adsize;
 616                        goal_eloc = eloc;
 617                        goal_elen = (etype << 30) | elen;
 618                }
 619        }
 620
 621        brelse(epos.bh);
 622
 623        if (spread == 0xFFFFFFFF) {
 624                brelse(goal_epos.bh);
 625                mutex_unlock(&sbi->s_alloc_mutex);
 626                return 0;
 627        }
 628
 629        /* Only allocate blocks from the beginning of the extent.
 630           That way, we only delete (empty) extents, never have to insert an
 631           extent because of splitting */
 632        /* This works, but very poorly.... */
 633
 634        newblock = goal_eloc.logicalBlockNum;
 635        goal_eloc.logicalBlockNum++;
 636        goal_elen -= sb->s_blocksize;
 637
 638        if (goal_elen)
 639                udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
 640        else
 641                udf_delete_aext(table, goal_epos);
 642        brelse(goal_epos.bh);
 643
 644        udf_add_free_space(sb, partition, -1);
 645
 646        mutex_unlock(&sbi->s_alloc_mutex);
 647        *err = 0;
 648        return newblock;
 649}
 650
 651void udf_free_blocks(struct super_block *sb, struct inode *inode,
 652                     struct kernel_lb_addr *bloc, uint32_t offset,
 653                     uint32_t count)
 654{
 655        uint16_t partition = bloc->partitionReferenceNum;
 656        struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 657
 658        if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
 659                udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
 660                                       bloc, offset, count);
 661        } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
 662                udf_table_free_blocks(sb, map->s_uspace.s_table,
 663                                      bloc, offset, count);
 664        }
 665
 666        if (inode) {
 667                inode_sub_bytes(inode,
 668                                ((sector_t)count) << sb->s_blocksize_bits);
 669        }
 670}
 671
 672inline int udf_prealloc_blocks(struct super_block *sb,
 673                               struct inode *inode,
 674                               uint16_t partition, uint32_t first_block,
 675                               uint32_t block_count)
 676{
 677        struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 678        int allocated;
 679
 680        if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 681                allocated = udf_bitmap_prealloc_blocks(sb,
 682                                                       map->s_uspace.s_bitmap,
 683                                                       partition, first_block,
 684                                                       block_count);
 685        else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 686                allocated = udf_table_prealloc_blocks(sb,
 687                                                      map->s_uspace.s_table,
 688                                                      partition, first_block,
 689                                                      block_count);
 690        else
 691                return 0;
 692
 693        if (inode && allocated > 0)
 694                inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
 695        return allocated;
 696}
 697
 698inline udf_pblk_t udf_new_block(struct super_block *sb,
 699                         struct inode *inode,
 700                         uint16_t partition, uint32_t goal, int *err)
 701{
 702        struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 703        udf_pblk_t block;
 704
 705        if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 706                block = udf_bitmap_new_block(sb,
 707                                             map->s_uspace.s_bitmap,
 708                                             partition, goal, err);
 709        else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 710                block = udf_table_new_block(sb,
 711                                            map->s_uspace.s_table,
 712                                            partition, goal, err);
 713        else {
 714                *err = -EIO;
 715                return 0;
 716        }
 717        if (inode && block)
 718                inode_add_bytes(inode, sb->s_blocksize);
 719        return block;
 720}
 721