linux/fs/xfs/libxfs/xfs_ialloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_inode.h"
  16#include "xfs_btree.h"
  17#include "xfs_ialloc.h"
  18#include "xfs_ialloc_btree.h"
  19#include "xfs_alloc.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_bmap.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_icreate_item.h"
  26#include "xfs_icache.h"
  27#include "xfs_trace.h"
  28#include "xfs_log.h"
  29#include "xfs_rmap.h"
  30
  31/*
  32 * Lookup a record by ino in the btree given by cur.
  33 */
  34int                                     /* error */
  35xfs_inobt_lookup(
  36        struct xfs_btree_cur    *cur,   /* btree cursor */
  37        xfs_agino_t             ino,    /* starting inode of chunk */
  38        xfs_lookup_t            dir,    /* <=, >=, == */
  39        int                     *stat)  /* success/failure */
  40{
  41        cur->bc_rec.i.ir_startino = ino;
  42        cur->bc_rec.i.ir_holemask = 0;
  43        cur->bc_rec.i.ir_count = 0;
  44        cur->bc_rec.i.ir_freecount = 0;
  45        cur->bc_rec.i.ir_free = 0;
  46        return xfs_btree_lookup(cur, dir, stat);
  47}
  48
  49/*
  50 * Update the record referred to by cur to the value given.
  51 * This either works (return 0) or gets an EFSCORRUPTED error.
  52 */
  53STATIC int                              /* error */
  54xfs_inobt_update(
  55        struct xfs_btree_cur    *cur,   /* btree cursor */
  56        xfs_inobt_rec_incore_t  *irec)  /* btree record */
  57{
  58        union xfs_btree_rec     rec;
  59
  60        rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  61        if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  62                rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  63                rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  64                rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  65        } else {
  66                /* ir_holemask/ir_count not supported on-disk */
  67                rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  68        }
  69        rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  70        return xfs_btree_update(cur, &rec);
  71}
  72
  73/* Convert on-disk btree record to incore inobt record. */
  74void
  75xfs_inobt_btrec_to_irec(
  76        struct xfs_mount                *mp,
  77        union xfs_btree_rec             *rec,
  78        struct xfs_inobt_rec_incore     *irec)
  79{
  80        irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  81        if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
  82                irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
  83                irec->ir_count = rec->inobt.ir_u.sp.ir_count;
  84                irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
  85        } else {
  86                /*
  87                 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
  88                 * values for full inode chunks.
  89                 */
  90                irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
  91                irec->ir_count = XFS_INODES_PER_CHUNK;
  92                irec->ir_freecount =
  93                                be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
  94        }
  95        irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
  96}
  97
  98/*
  99 * Get the data from the pointed-to record.
 100 */
 101int
 102xfs_inobt_get_rec(
 103        struct xfs_btree_cur            *cur,
 104        struct xfs_inobt_rec_incore     *irec,
 105        int                             *stat)
 106{
 107        struct xfs_mount                *mp = cur->bc_mp;
 108        xfs_agnumber_t                  agno = cur->bc_ag.agno;
 109        union xfs_btree_rec             *rec;
 110        int                             error;
 111        uint64_t                        realfree;
 112
 113        error = xfs_btree_get_rec(cur, &rec, stat);
 114        if (error || *stat == 0)
 115                return error;
 116
 117        xfs_inobt_btrec_to_irec(mp, rec, irec);
 118
 119        if (!xfs_verify_agino(mp, agno, irec->ir_startino))
 120                goto out_bad_rec;
 121        if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 122            irec->ir_count > XFS_INODES_PER_CHUNK)
 123                goto out_bad_rec;
 124        if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 125                goto out_bad_rec;
 126
 127        /* if there are no holes, return the first available offset */
 128        if (!xfs_inobt_issparse(irec->ir_holemask))
 129                realfree = irec->ir_free;
 130        else
 131                realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
 132        if (hweight64(realfree) != irec->ir_freecount)
 133                goto out_bad_rec;
 134
 135        return 0;
 136
 137out_bad_rec:
 138        xfs_warn(mp,
 139                "%s Inode BTree record corruption in AG %d detected!",
 140                cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
 141        xfs_warn(mp,
 142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 143                irec->ir_startino, irec->ir_count, irec->ir_freecount,
 144                irec->ir_free, irec->ir_holemask);
 145        return -EFSCORRUPTED;
 146}
 147
 148/*
 149 * Insert a single inobt record. Cursor must already point to desired location.
 150 */
 151int
 152xfs_inobt_insert_rec(
 153        struct xfs_btree_cur    *cur,
 154        uint16_t                holemask,
 155        uint8_t                 count,
 156        int32_t                 freecount,
 157        xfs_inofree_t           free,
 158        int                     *stat)
 159{
 160        cur->bc_rec.i.ir_holemask = holemask;
 161        cur->bc_rec.i.ir_count = count;
 162        cur->bc_rec.i.ir_freecount = freecount;
 163        cur->bc_rec.i.ir_free = free;
 164        return xfs_btree_insert(cur, stat);
 165}
 166
 167/*
 168 * Insert records describing a newly allocated inode chunk into the inobt.
 169 */
 170STATIC int
 171xfs_inobt_insert(
 172        struct xfs_mount        *mp,
 173        struct xfs_trans        *tp,
 174        struct xfs_buf          *agbp,
 175        xfs_agino_t             newino,
 176        xfs_agino_t             newlen,
 177        xfs_btnum_t             btnum)
 178{
 179        struct xfs_btree_cur    *cur;
 180        struct xfs_agi          *agi = agbp->b_addr;
 181        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
 182        xfs_agino_t             thisino;
 183        int                     i;
 184        int                     error;
 185
 186        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 187
 188        for (thisino = newino;
 189             thisino < newino + newlen;
 190             thisino += XFS_INODES_PER_CHUNK) {
 191                error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 192                if (error) {
 193                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 194                        return error;
 195                }
 196                ASSERT(i == 0);
 197
 198                error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 199                                             XFS_INODES_PER_CHUNK,
 200                                             XFS_INODES_PER_CHUNK,
 201                                             XFS_INOBT_ALL_FREE, &i);
 202                if (error) {
 203                        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 204                        return error;
 205                }
 206                ASSERT(i == 1);
 207        }
 208
 209        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 210
 211        return 0;
 212}
 213
 214/*
 215 * Verify that the number of free inodes in the AGI is correct.
 216 */
 217#ifdef DEBUG
 218STATIC int
 219xfs_check_agi_freecount(
 220        struct xfs_btree_cur    *cur,
 221        struct xfs_agi          *agi)
 222{
 223        if (cur->bc_nlevels == 1) {
 224                xfs_inobt_rec_incore_t rec;
 225                int             freecount = 0;
 226                int             error;
 227                int             i;
 228
 229                error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 230                if (error)
 231                        return error;
 232
 233                do {
 234                        error = xfs_inobt_get_rec(cur, &rec, &i);
 235                        if (error)
 236                                return error;
 237
 238                        if (i) {
 239                                freecount += rec.ir_freecount;
 240                                error = xfs_btree_increment(cur, 0, &i);
 241                                if (error)
 242                                        return error;
 243                        }
 244                } while (i == 1);
 245
 246                if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 247                        ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 248        }
 249        return 0;
 250}
 251#else
 252#define xfs_check_agi_freecount(cur, agi)       0
 253#endif
 254
 255/*
 256 * Initialise a new set of inodes. When called without a transaction context
 257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 258 * than logging them (which in a transaction context puts them into the AIL
 259 * for writeback rather than the xfsbufd queue).
 260 */
 261int
 262xfs_ialloc_inode_init(
 263        struct xfs_mount        *mp,
 264        struct xfs_trans        *tp,
 265        struct list_head        *buffer_list,
 266        int                     icount,
 267        xfs_agnumber_t          agno,
 268        xfs_agblock_t           agbno,
 269        xfs_agblock_t           length,
 270        unsigned int            gen)
 271{
 272        struct xfs_buf          *fbuf;
 273        struct xfs_dinode       *free;
 274        int                     nbufs;
 275        int                     version;
 276        int                     i, j;
 277        xfs_daddr_t             d;
 278        xfs_ino_t               ino = 0;
 279        int                     error;
 280
 281        /*
 282         * Loop over the new block(s), filling in the inodes.  For small block
 283         * sizes, manipulate the inodes in buffers  which are multiples of the
 284         * blocks size.
 285         */
 286        nbufs = length / M_IGEO(mp)->blocks_per_cluster;
 287
 288        /*
 289         * Figure out what version number to use in the inodes we create.  If
 290         * the superblock version has caught up to the one that supports the new
 291         * inode format, then use the new inode version.  Otherwise use the old
 292         * version so that old kernels will continue to be able to use the file
 293         * system.
 294         *
 295         * For v3 inodes, we also need to write the inode number into the inode,
 296         * so calculate the first inode number of the chunk here as
 297         * XFS_AGB_TO_AGINO() only works within a filesystem block, not
 298         * across multiple filesystem blocks (such as a cluster) and so cannot
 299         * be used in the cluster buffer loop below.
 300         *
 301         * Further, because we are writing the inode directly into the buffer
 302         * and calculating a CRC on the entire inode, we have ot log the entire
 303         * inode so that the entire range the CRC covers is present in the log.
 304         * That means for v3 inode we log the entire buffer rather than just the
 305         * inode cores.
 306         */
 307        if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 308                version = 3;
 309                ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
 310
 311                /*
 312                 * log the initialisation that is about to take place as an
 313                 * logical operation. This means the transaction does not
 314                 * need to log the physical changes to the inode buffers as log
 315                 * recovery will know what initialisation is actually needed.
 316                 * Hence we only need to log the buffers as "ordered" buffers so
 317                 * they track in the AIL as if they were physically logged.
 318                 */
 319                if (tp)
 320                        xfs_icreate_log(tp, agno, agbno, icount,
 321                                        mp->m_sb.sb_inodesize, length, gen);
 322        } else
 323                version = 2;
 324
 325        for (j = 0; j < nbufs; j++) {
 326                /*
 327                 * Get the block.
 328                 */
 329                d = XFS_AGB_TO_DADDR(mp, agno, agbno +
 330                                (j * M_IGEO(mp)->blocks_per_cluster));
 331                error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 332                                mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
 333                                XBF_UNMAPPED, &fbuf);
 334                if (error)
 335                        return error;
 336
 337                /* Initialize the inode buffers and log them appropriately. */
 338                fbuf->b_ops = &xfs_inode_buf_ops;
 339                xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 340                for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
 341                        int     ioffset = i << mp->m_sb.sb_inodelog;
 342                        uint    isize = XFS_DINODE_SIZE(&mp->m_sb);
 343
 344                        free = xfs_make_iptr(mp, fbuf, i);
 345                        free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 346                        free->di_version = version;
 347                        free->di_gen = cpu_to_be32(gen);
 348                        free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 349
 350                        if (version == 3) {
 351                                free->di_ino = cpu_to_be64(ino);
 352                                ino++;
 353                                uuid_copy(&free->di_uuid,
 354                                          &mp->m_sb.sb_meta_uuid);
 355                                xfs_dinode_calc_crc(mp, free);
 356                        } else if (tp) {
 357                                /* just log the inode core */
 358                                xfs_trans_log_buf(tp, fbuf, ioffset,
 359                                                  ioffset + isize - 1);
 360                        }
 361                }
 362
 363                if (tp) {
 364                        /*
 365                         * Mark the buffer as an inode allocation buffer so it
 366                         * sticks in AIL at the point of this allocation
 367                         * transaction. This ensures the they are on disk before
 368                         * the tail of the log can be moved past this
 369                         * transaction (i.e. by preventing relogging from moving
 370                         * it forward in the log).
 371                         */
 372                        xfs_trans_inode_alloc_buf(tp, fbuf);
 373                        if (version == 3) {
 374                                /*
 375                                 * Mark the buffer as ordered so that they are
 376                                 * not physically logged in the transaction but
 377                                 * still tracked in the AIL as part of the
 378                                 * transaction and pin the log appropriately.
 379                                 */
 380                                xfs_trans_ordered_buf(tp, fbuf);
 381                        }
 382                } else {
 383                        fbuf->b_flags |= XBF_DONE;
 384                        xfs_buf_delwri_queue(fbuf, buffer_list);
 385                        xfs_buf_relse(fbuf);
 386                }
 387        }
 388        return 0;
 389}
 390
 391/*
 392 * Align startino and allocmask for a recently allocated sparse chunk such that
 393 * they are fit for insertion (or merge) into the on-disk inode btrees.
 394 *
 395 * Background:
 396 *
 397 * When enabled, sparse inode support increases the inode alignment from cluster
 398 * size to inode chunk size. This means that the minimum range between two
 399 * non-adjacent inode records in the inobt is large enough for a full inode
 400 * record. This allows for cluster sized, cluster aligned block allocation
 401 * without need to worry about whether the resulting inode record overlaps with
 402 * another record in the tree. Without this basic rule, we would have to deal
 403 * with the consequences of overlap by potentially undoing recent allocations in
 404 * the inode allocation codepath.
 405 *
 406 * Because of this alignment rule (which is enforced on mount), there are two
 407 * inobt possibilities for newly allocated sparse chunks. One is that the
 408 * aligned inode record for the chunk covers a range of inodes not already
 409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 410 * other is that a record already exists at the aligned startino that considers
 411 * the newly allocated range as sparse. In the latter case, record content is
 412 * merged in hope that sparse inode chunks fill to full chunks over time.
 413 */
 414STATIC void
 415xfs_align_sparse_ino(
 416        struct xfs_mount                *mp,
 417        xfs_agino_t                     *startino,
 418        uint16_t                        *allocmask)
 419{
 420        xfs_agblock_t                   agbno;
 421        xfs_agblock_t                   mod;
 422        int                             offset;
 423
 424        agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 425        mod = agbno % mp->m_sb.sb_inoalignmt;
 426        if (!mod)
 427                return;
 428
 429        /* calculate the inode offset and align startino */
 430        offset = XFS_AGB_TO_AGINO(mp, mod);
 431        *startino -= offset;
 432
 433        /*
 434         * Since startino has been aligned down, left shift allocmask such that
 435         * it continues to represent the same physical inodes relative to the
 436         * new startino.
 437         */
 438        *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 439}
 440
 441/*
 442 * Determine whether the source inode record can merge into the target. Both
 443 * records must be sparse, the inode ranges must match and there must be no
 444 * allocation overlap between the records.
 445 */
 446STATIC bool
 447__xfs_inobt_can_merge(
 448        struct xfs_inobt_rec_incore     *trec,  /* tgt record */
 449        struct xfs_inobt_rec_incore     *srec)  /* src record */
 450{
 451        uint64_t                        talloc;
 452        uint64_t                        salloc;
 453
 454        /* records must cover the same inode range */
 455        if (trec->ir_startino != srec->ir_startino)
 456                return false;
 457
 458        /* both records must be sparse */
 459        if (!xfs_inobt_issparse(trec->ir_holemask) ||
 460            !xfs_inobt_issparse(srec->ir_holemask))
 461                return false;
 462
 463        /* both records must track some inodes */
 464        if (!trec->ir_count || !srec->ir_count)
 465                return false;
 466
 467        /* can't exceed capacity of a full record */
 468        if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 469                return false;
 470
 471        /* verify there is no allocation overlap */
 472        talloc = xfs_inobt_irec_to_allocmask(trec);
 473        salloc = xfs_inobt_irec_to_allocmask(srec);
 474        if (talloc & salloc)
 475                return false;
 476
 477        return true;
 478}
 479
 480/*
 481 * Merge the source inode record into the target. The caller must call
 482 * __xfs_inobt_can_merge() to ensure the merge is valid.
 483 */
 484STATIC void
 485__xfs_inobt_rec_merge(
 486        struct xfs_inobt_rec_incore     *trec,  /* target */
 487        struct xfs_inobt_rec_incore     *srec)  /* src */
 488{
 489        ASSERT(trec->ir_startino == srec->ir_startino);
 490
 491        /* combine the counts */
 492        trec->ir_count += srec->ir_count;
 493        trec->ir_freecount += srec->ir_freecount;
 494
 495        /*
 496         * Merge the holemask and free mask. For both fields, 0 bits refer to
 497         * allocated inodes. We combine the allocated ranges with bitwise AND.
 498         */
 499        trec->ir_holemask &= srec->ir_holemask;
 500        trec->ir_free &= srec->ir_free;
 501}
 502
 503/*
 504 * Insert a new sparse inode chunk into the associated inode btree. The inode
 505 * record for the sparse chunk is pre-aligned to a startino that should match
 506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 507 * to fill over time.
 508 *
 509 * This function supports two modes of handling preexisting records depending on
 510 * the merge flag. If merge is true, the provided record is merged with the
 511 * existing record and updated in place. The merged record is returned in nrec.
 512 * If merge is false, an existing record is replaced with the provided record.
 513 * If no preexisting record exists, the provided record is always inserted.
 514 *
 515 * It is considered corruption if a merge is requested and not possible. Given
 516 * the sparse inode alignment constraints, this should never happen.
 517 */
 518STATIC int
 519xfs_inobt_insert_sprec(
 520        struct xfs_mount                *mp,
 521        struct xfs_trans                *tp,
 522        struct xfs_buf                  *agbp,
 523        int                             btnum,
 524        struct xfs_inobt_rec_incore     *nrec,  /* in/out: new/merged rec. */
 525        bool                            merge)  /* merge or replace */
 526{
 527        struct xfs_btree_cur            *cur;
 528        struct xfs_agi                  *agi = agbp->b_addr;
 529        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
 530        int                             error;
 531        int                             i;
 532        struct xfs_inobt_rec_incore     rec;
 533
 534        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 535
 536        /* the new record is pre-aligned so we know where to look */
 537        error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 538        if (error)
 539                goto error;
 540        /* if nothing there, insert a new record and return */
 541        if (i == 0) {
 542                error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 543                                             nrec->ir_count, nrec->ir_freecount,
 544                                             nrec->ir_free, &i);
 545                if (error)
 546                        goto error;
 547                if (XFS_IS_CORRUPT(mp, i != 1)) {
 548                        error = -EFSCORRUPTED;
 549                        goto error;
 550                }
 551
 552                goto out;
 553        }
 554
 555        /*
 556         * A record exists at this startino. Merge or replace the record
 557         * depending on what we've been asked to do.
 558         */
 559        if (merge) {
 560                error = xfs_inobt_get_rec(cur, &rec, &i);
 561                if (error)
 562                        goto error;
 563                if (XFS_IS_CORRUPT(mp, i != 1)) {
 564                        error = -EFSCORRUPTED;
 565                        goto error;
 566                }
 567                if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
 568                        error = -EFSCORRUPTED;
 569                        goto error;
 570                }
 571
 572                /*
 573                 * This should never fail. If we have coexisting records that
 574                 * cannot merge, something is seriously wrong.
 575                 */
 576                if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
 577                        error = -EFSCORRUPTED;
 578                        goto error;
 579                }
 580
 581                trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 582                                         rec.ir_holemask, nrec->ir_startino,
 583                                         nrec->ir_holemask);
 584
 585                /* merge to nrec to output the updated record */
 586                __xfs_inobt_rec_merge(nrec, &rec);
 587
 588                trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 589                                          nrec->ir_holemask);
 590
 591                error = xfs_inobt_rec_check_count(mp, nrec);
 592                if (error)
 593                        goto error;
 594        }
 595
 596        error = xfs_inobt_update(cur, nrec);
 597        if (error)
 598                goto error;
 599
 600out:
 601        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 602        return 0;
 603error:
 604        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 605        return error;
 606}
 607
 608/*
 609 * Allocate new inodes in the allocation group specified by agbp.
 610 * Returns 0 if inodes were allocated in this AG; 1 if there was no space
 611 * in this AG; or the usual negative error code.
 612 */
 613STATIC int
 614xfs_ialloc_ag_alloc(
 615        struct xfs_trans        *tp,
 616        struct xfs_buf          *agbp)
 617{
 618        struct xfs_agi          *agi;
 619        struct xfs_alloc_arg    args;
 620        xfs_agnumber_t          agno;
 621        int                     error;
 622        xfs_agino_t             newino;         /* new first inode's number */
 623        xfs_agino_t             newlen;         /* new number of inodes */
 624        int                     isaligned = 0;  /* inode allocation at stripe */
 625                                                /* unit boundary */
 626        /* init. to full chunk */
 627        uint16_t                allocmask = (uint16_t) -1;
 628        struct xfs_inobt_rec_incore rec;
 629        struct xfs_perag        *pag;
 630        struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
 631        int                     do_sparse = 0;
 632
 633        memset(&args, 0, sizeof(args));
 634        args.tp = tp;
 635        args.mp = tp->t_mountp;
 636        args.fsbno = NULLFSBLOCK;
 637        args.oinfo = XFS_RMAP_OINFO_INODES;
 638
 639#ifdef DEBUG
 640        /* randomly do sparse inode allocations */
 641        if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 642            igeo->ialloc_min_blks < igeo->ialloc_blks)
 643                do_sparse = prandom_u32() & 1;
 644#endif
 645
 646        /*
 647         * Locking will ensure that we don't have two callers in here
 648         * at one time.
 649         */
 650        newlen = igeo->ialloc_inos;
 651        if (igeo->maxicount &&
 652            percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 653                                                        igeo->maxicount)
 654                return -ENOSPC;
 655        args.minlen = args.maxlen = igeo->ialloc_blks;
 656        /*
 657         * First try to allocate inodes contiguous with the last-allocated
 658         * chunk of inodes.  If the filesystem is striped, this will fill
 659         * an entire stripe unit with inodes.
 660         */
 661        agi = agbp->b_addr;
 662        newino = be32_to_cpu(agi->agi_newino);
 663        agno = be32_to_cpu(agi->agi_seqno);
 664        args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 665                     igeo->ialloc_blks;
 666        if (do_sparse)
 667                goto sparse_alloc;
 668        if (likely(newino != NULLAGINO &&
 669                  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 670                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 671                args.type = XFS_ALLOCTYPE_THIS_BNO;
 672                args.prod = 1;
 673
 674                /*
 675                 * We need to take into account alignment here to ensure that
 676                 * we don't modify the free list if we fail to have an exact
 677                 * block. If we don't have an exact match, and every oher
 678                 * attempt allocation attempt fails, we'll end up cancelling
 679                 * a dirty transaction and shutting down.
 680                 *
 681                 * For an exact allocation, alignment must be 1,
 682                 * however we need to take cluster alignment into account when
 683                 * fixing up the freelist. Use the minalignslop field to
 684                 * indicate that extra blocks might be required for alignment,
 685                 * but not to use them in the actual exact allocation.
 686                 */
 687                args.alignment = 1;
 688                args.minalignslop = igeo->cluster_align - 1;
 689
 690                /* Allow space for the inode btree to split. */
 691                args.minleft = igeo->inobt_maxlevels;
 692                if ((error = xfs_alloc_vextent(&args)))
 693                        return error;
 694
 695                /*
 696                 * This request might have dirtied the transaction if the AG can
 697                 * satisfy the request, but the exact block was not available.
 698                 * If the allocation did fail, subsequent requests will relax
 699                 * the exact agbno requirement and increase the alignment
 700                 * instead. It is critical that the total size of the request
 701                 * (len + alignment + slop) does not increase from this point
 702                 * on, so reset minalignslop to ensure it is not included in
 703                 * subsequent requests.
 704                 */
 705                args.minalignslop = 0;
 706        }
 707
 708        if (unlikely(args.fsbno == NULLFSBLOCK)) {
 709                /*
 710                 * Set the alignment for the allocation.
 711                 * If stripe alignment is turned on then align at stripe unit
 712                 * boundary.
 713                 * If the cluster size is smaller than a filesystem block
 714                 * then we're doing I/O for inodes in filesystem block size
 715                 * pieces, so don't need alignment anyway.
 716                 */
 717                isaligned = 0;
 718                if (igeo->ialloc_align) {
 719                        ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 720                        args.alignment = args.mp->m_dalign;
 721                        isaligned = 1;
 722                } else
 723                        args.alignment = igeo->cluster_align;
 724                /*
 725                 * Need to figure out where to allocate the inode blocks.
 726                 * Ideally they should be spaced out through the a.g.
 727                 * For now, just allocate blocks up front.
 728                 */
 729                args.agbno = be32_to_cpu(agi->agi_root);
 730                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 731                /*
 732                 * Allocate a fixed-size extent of inodes.
 733                 */
 734                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 735                args.prod = 1;
 736                /*
 737                 * Allow space for the inode btree to split.
 738                 */
 739                args.minleft = igeo->inobt_maxlevels;
 740                if ((error = xfs_alloc_vextent(&args)))
 741                        return error;
 742        }
 743
 744        /*
 745         * If stripe alignment is turned on, then try again with cluster
 746         * alignment.
 747         */
 748        if (isaligned && args.fsbno == NULLFSBLOCK) {
 749                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 750                args.agbno = be32_to_cpu(agi->agi_root);
 751                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 752                args.alignment = igeo->cluster_align;
 753                if ((error = xfs_alloc_vextent(&args)))
 754                        return error;
 755        }
 756
 757        /*
 758         * Finally, try a sparse allocation if the filesystem supports it and
 759         * the sparse allocation length is smaller than a full chunk.
 760         */
 761        if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 762            igeo->ialloc_min_blks < igeo->ialloc_blks &&
 763            args.fsbno == NULLFSBLOCK) {
 764sparse_alloc:
 765                args.type = XFS_ALLOCTYPE_NEAR_BNO;
 766                args.agbno = be32_to_cpu(agi->agi_root);
 767                args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 768                args.alignment = args.mp->m_sb.sb_spino_align;
 769                args.prod = 1;
 770
 771                args.minlen = igeo->ialloc_min_blks;
 772                args.maxlen = args.minlen;
 773
 774                /*
 775                 * The inode record will be aligned to full chunk size. We must
 776                 * prevent sparse allocation from AG boundaries that result in
 777                 * invalid inode records, such as records that start at agbno 0
 778                 * or extend beyond the AG.
 779                 *
 780                 * Set min agbno to the first aligned, non-zero agbno and max to
 781                 * the last aligned agbno that is at least one full chunk from
 782                 * the end of the AG.
 783                 */
 784                args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 785                args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 786                                            args.mp->m_sb.sb_inoalignmt) -
 787                                 igeo->ialloc_blks;
 788
 789                error = xfs_alloc_vextent(&args);
 790                if (error)
 791                        return error;
 792
 793                newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
 794                ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 795                allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 796        }
 797
 798        if (args.fsbno == NULLFSBLOCK)
 799                return 1;
 800
 801        ASSERT(args.len == args.minlen);
 802
 803        /*
 804         * Stamp and write the inode buffers.
 805         *
 806         * Seed the new inode cluster with a random generation number. This
 807         * prevents short-term reuse of generation numbers if a chunk is
 808         * freed and then immediately reallocated. We use random numbers
 809         * rather than a linear progression to prevent the next generation
 810         * number from being easily guessable.
 811         */
 812        error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 813                        args.agbno, args.len, prandom_u32());
 814
 815        if (error)
 816                return error;
 817        /*
 818         * Convert the results.
 819         */
 820        newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
 821
 822        if (xfs_inobt_issparse(~allocmask)) {
 823                /*
 824                 * We've allocated a sparse chunk. Align the startino and mask.
 825                 */
 826                xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 827
 828                rec.ir_startino = newino;
 829                rec.ir_holemask = ~allocmask;
 830                rec.ir_count = newlen;
 831                rec.ir_freecount = newlen;
 832                rec.ir_free = XFS_INOBT_ALL_FREE;
 833
 834                /*
 835                 * Insert the sparse record into the inobt and allow for a merge
 836                 * if necessary. If a merge does occur, rec is updated to the
 837                 * merged record.
 838                 */
 839                error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 840                                               &rec, true);
 841                if (error == -EFSCORRUPTED) {
 842                        xfs_alert(args.mp,
 843        "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 844                                  XFS_AGINO_TO_INO(args.mp, agno,
 845                                                   rec.ir_startino),
 846                                  rec.ir_holemask, rec.ir_count);
 847                        xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 848                }
 849                if (error)
 850                        return error;
 851
 852                /*
 853                 * We can't merge the part we've just allocated as for the inobt
 854                 * due to finobt semantics. The original record may or may not
 855                 * exist independent of whether physical inodes exist in this
 856                 * sparse chunk.
 857                 *
 858                 * We must update the finobt record based on the inobt record.
 859                 * rec contains the fully merged and up to date inobt record
 860                 * from the previous call. Set merge false to replace any
 861                 * existing record with this one.
 862                 */
 863                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 864                        error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 865                                                       XFS_BTNUM_FINO, &rec,
 866                                                       false);
 867                        if (error)
 868                                return error;
 869                }
 870        } else {
 871                /* full chunk - insert new records to both btrees */
 872                error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 873                                         XFS_BTNUM_INO);
 874                if (error)
 875                        return error;
 876
 877                if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 878                        error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 879                                                 newlen, XFS_BTNUM_FINO);
 880                        if (error)
 881                                return error;
 882                }
 883        }
 884
 885        /*
 886         * Update AGI counts and newino.
 887         */
 888        be32_add_cpu(&agi->agi_count, newlen);
 889        be32_add_cpu(&agi->agi_freecount, newlen);
 890        pag = agbp->b_pag;
 891        pag->pagi_freecount += newlen;
 892        pag->pagi_count += newlen;
 893        agi->agi_newino = cpu_to_be32(newino);
 894
 895        /*
 896         * Log allocation group header fields
 897         */
 898        xfs_ialloc_log_agi(tp, agbp,
 899                XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 900        /*
 901         * Modify/log superblock values for inode count and inode free count.
 902         */
 903        xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 904        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 905        return 0;
 906}
 907
 908STATIC xfs_agnumber_t
 909xfs_ialloc_next_ag(
 910        xfs_mount_t     *mp)
 911{
 912        xfs_agnumber_t  agno;
 913
 914        spin_lock(&mp->m_agirotor_lock);
 915        agno = mp->m_agirotor;
 916        if (++mp->m_agirotor >= mp->m_maxagi)
 917                mp->m_agirotor = 0;
 918        spin_unlock(&mp->m_agirotor_lock);
 919
 920        return agno;
 921}
 922
 923/*
 924 * Select an allocation group to look for a free inode in, based on the parent
 925 * inode and the mode.  Return the allocation group buffer.
 926 */
 927STATIC xfs_agnumber_t
 928xfs_ialloc_ag_select(
 929        xfs_trans_t     *tp,            /* transaction pointer */
 930        xfs_ino_t       parent,         /* parent directory inode number */
 931        umode_t         mode)           /* bits set to indicate file type */
 932{
 933        xfs_agnumber_t  agcount;        /* number of ag's in the filesystem */
 934        xfs_agnumber_t  agno;           /* current ag number */
 935        int             flags;          /* alloc buffer locking flags */
 936        xfs_extlen_t    ineed;          /* blocks needed for inode allocation */
 937        xfs_extlen_t    longest = 0;    /* longest extent available */
 938        xfs_mount_t     *mp;            /* mount point structure */
 939        int             needspace;      /* file mode implies space allocated */
 940        xfs_perag_t     *pag;           /* per allocation group data */
 941        xfs_agnumber_t  pagno;          /* parent (starting) ag number */
 942        int             error;
 943
 944        /*
 945         * Files of these types need at least one block if length > 0
 946         * (and they won't fit in the inode, but that's hard to figure out).
 947         */
 948        needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 949        mp = tp->t_mountp;
 950        agcount = mp->m_maxagi;
 951        if (S_ISDIR(mode))
 952                pagno = xfs_ialloc_next_ag(mp);
 953        else {
 954                pagno = XFS_INO_TO_AGNO(mp, parent);
 955                if (pagno >= agcount)
 956                        pagno = 0;
 957        }
 958
 959        ASSERT(pagno < agcount);
 960
 961        /*
 962         * Loop through allocation groups, looking for one with a little
 963         * free space in it.  Note we don't look for free inodes, exactly.
 964         * Instead, we include whether there is a need to allocate inodes
 965         * to mean that blocks must be allocated for them,
 966         * if none are currently free.
 967         */
 968        agno = pagno;
 969        flags = XFS_ALLOC_FLAG_TRYLOCK;
 970        for (;;) {
 971                pag = xfs_perag_get(mp, agno);
 972                if (!pag->pagi_inodeok) {
 973                        xfs_ialloc_next_ag(mp);
 974                        goto nextag;
 975                }
 976
 977                if (!pag->pagi_init) {
 978                        error = xfs_ialloc_pagi_init(mp, tp, agno);
 979                        if (error)
 980                                goto nextag;
 981                }
 982
 983                if (pag->pagi_freecount) {
 984                        xfs_perag_put(pag);
 985                        return agno;
 986                }
 987
 988                if (!pag->pagf_init) {
 989                        error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 990                        if (error)
 991                                goto nextag;
 992                }
 993
 994                /*
 995                 * Check that there is enough free space for the file plus a
 996                 * chunk of inodes if we need to allocate some. If this is the
 997                 * first pass across the AGs, take into account the potential
 998                 * space needed for alignment of inode chunks when checking the
 999                 * longest contiguous free space in the AG - this prevents us
1000                 * from getting ENOSPC because we have free space larger than
1001                 * ialloc_blks but alignment constraints prevent us from using
1002                 * it.
1003                 *
1004                 * If we can't find an AG with space for full alignment slack to
1005                 * be taken into account, we must be near ENOSPC in all AGs.
1006                 * Hence we don't include alignment for the second pass and so
1007                 * if we fail allocation due to alignment issues then it is most
1008                 * likely a real ENOSPC condition.
1009                 */
1010                ineed = M_IGEO(mp)->ialloc_min_blks;
1011                if (flags && ineed > 1)
1012                        ineed += M_IGEO(mp)->cluster_align;
1013                longest = pag->pagf_longest;
1014                if (!longest)
1015                        longest = pag->pagf_flcount > 0;
1016
1017                if (pag->pagf_freeblks >= needspace + ineed &&
1018                    longest >= ineed) {
1019                        xfs_perag_put(pag);
1020                        return agno;
1021                }
1022nextag:
1023                xfs_perag_put(pag);
1024                /*
1025                 * No point in iterating over the rest, if we're shutting
1026                 * down.
1027                 */
1028                if (XFS_FORCED_SHUTDOWN(mp))
1029                        return NULLAGNUMBER;
1030                agno++;
1031                if (agno >= agcount)
1032                        agno = 0;
1033                if (agno == pagno) {
1034                        if (flags == 0)
1035                                return NULLAGNUMBER;
1036                        flags = 0;
1037                }
1038        }
1039}
1040
1041/*
1042 * Try to retrieve the next record to the left/right from the current one.
1043 */
1044STATIC int
1045xfs_ialloc_next_rec(
1046        struct xfs_btree_cur    *cur,
1047        xfs_inobt_rec_incore_t  *rec,
1048        int                     *done,
1049        int                     left)
1050{
1051        int                     error;
1052        int                     i;
1053
1054        if (left)
1055                error = xfs_btree_decrement(cur, 0, &i);
1056        else
1057                error = xfs_btree_increment(cur, 0, &i);
1058
1059        if (error)
1060                return error;
1061        *done = !i;
1062        if (i) {
1063                error = xfs_inobt_get_rec(cur, rec, &i);
1064                if (error)
1065                        return error;
1066                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1067                        return -EFSCORRUPTED;
1068        }
1069
1070        return 0;
1071}
1072
1073STATIC int
1074xfs_ialloc_get_rec(
1075        struct xfs_btree_cur    *cur,
1076        xfs_agino_t             agino,
1077        xfs_inobt_rec_incore_t  *rec,
1078        int                     *done)
1079{
1080        int                     error;
1081        int                     i;
1082
1083        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1084        if (error)
1085                return error;
1086        *done = !i;
1087        if (i) {
1088                error = xfs_inobt_get_rec(cur, rec, &i);
1089                if (error)
1090                        return error;
1091                if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1092                        return -EFSCORRUPTED;
1093        }
1094
1095        return 0;
1096}
1097
1098/*
1099 * Return the offset of the first free inode in the record. If the inode chunk
1100 * is sparsely allocated, we convert the record holemask to inode granularity
1101 * and mask off the unallocated regions from the inode free mask.
1102 */
1103STATIC int
1104xfs_inobt_first_free_inode(
1105        struct xfs_inobt_rec_incore     *rec)
1106{
1107        xfs_inofree_t                   realfree;
1108
1109        /* if there are no holes, return the first available offset */
1110        if (!xfs_inobt_issparse(rec->ir_holemask))
1111                return xfs_lowbit64(rec->ir_free);
1112
1113        realfree = xfs_inobt_irec_to_allocmask(rec);
1114        realfree &= rec->ir_free;
1115
1116        return xfs_lowbit64(realfree);
1117}
1118
1119/*
1120 * Allocate an inode using the inobt-only algorithm.
1121 */
1122STATIC int
1123xfs_dialloc_ag_inobt(
1124        struct xfs_trans        *tp,
1125        struct xfs_buf          *agbp,
1126        xfs_ino_t               parent,
1127        xfs_ino_t               *inop)
1128{
1129        struct xfs_mount        *mp = tp->t_mountp;
1130        struct xfs_agi          *agi = agbp->b_addr;
1131        xfs_agnumber_t          agno = be32_to_cpu(agi->agi_seqno);
1132        xfs_agnumber_t          pagno = XFS_INO_TO_AGNO(mp, parent);
1133        xfs_agino_t             pagino = XFS_INO_TO_AGINO(mp, parent);
1134        struct xfs_perag        *pag = agbp->b_pag;
1135        struct xfs_btree_cur    *cur, *tcur;
1136        struct xfs_inobt_rec_incore rec, trec;
1137        xfs_ino_t               ino;
1138        int                     error;
1139        int                     offset;
1140        int                     i, j;
1141        int                     searchdistance = 10;
1142
1143        ASSERT(pag->pagi_init);
1144        ASSERT(pag->pagi_inodeok);
1145        ASSERT(pag->pagi_freecount > 0);
1146
1147 restart_pagno:
1148        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1149        /*
1150         * If pagino is 0 (this is the root inode allocation) use newino.
1151         * This must work because we've just allocated some.
1152         */
1153        if (!pagino)
1154                pagino = be32_to_cpu(agi->agi_newino);
1155
1156        error = xfs_check_agi_freecount(cur, agi);
1157        if (error)
1158                goto error0;
1159
1160        /*
1161         * If in the same AG as the parent, try to get near the parent.
1162         */
1163        if (pagno == agno) {
1164                int             doneleft;       /* done, to the left */
1165                int             doneright;      /* done, to the right */
1166
1167                error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1168                if (error)
1169                        goto error0;
1170                if (XFS_IS_CORRUPT(mp, i != 1)) {
1171                        error = -EFSCORRUPTED;
1172                        goto error0;
1173                }
1174
1175                error = xfs_inobt_get_rec(cur, &rec, &j);
1176                if (error)
1177                        goto error0;
1178                if (XFS_IS_CORRUPT(mp, j != 1)) {
1179                        error = -EFSCORRUPTED;
1180                        goto error0;
1181                }
1182
1183                if (rec.ir_freecount > 0) {
1184                        /*
1185                         * Found a free inode in the same chunk
1186                         * as the parent, done.
1187                         */
1188                        goto alloc_inode;
1189                }
1190
1191
1192                /*
1193                 * In the same AG as parent, but parent's chunk is full.
1194                 */
1195
1196                /* duplicate the cursor, search left & right simultaneously */
1197                error = xfs_btree_dup_cursor(cur, &tcur);
1198                if (error)
1199                        goto error0;
1200
1201                /*
1202                 * Skip to last blocks looked up if same parent inode.
1203                 */
1204                if (pagino != NULLAGINO &&
1205                    pag->pagl_pagino == pagino &&
1206                    pag->pagl_leftrec != NULLAGINO &&
1207                    pag->pagl_rightrec != NULLAGINO) {
1208                        error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1209                                                   &trec, &doneleft);
1210                        if (error)
1211                                goto error1;
1212
1213                        error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1214                                                   &rec, &doneright);
1215                        if (error)
1216                                goto error1;
1217                } else {
1218                        /* search left with tcur, back up 1 record */
1219                        error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1220                        if (error)
1221                                goto error1;
1222
1223                        /* search right with cur, go forward 1 record. */
1224                        error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1225                        if (error)
1226                                goto error1;
1227                }
1228
1229                /*
1230                 * Loop until we find an inode chunk with a free inode.
1231                 */
1232                while (--searchdistance > 0 && (!doneleft || !doneright)) {
1233                        int     useleft;  /* using left inode chunk this time */
1234
1235                        /* figure out the closer block if both are valid. */
1236                        if (!doneleft && !doneright) {
1237                                useleft = pagino -
1238                                 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1239                                  rec.ir_startino - pagino;
1240                        } else {
1241                                useleft = !doneleft;
1242                        }
1243
1244                        /* free inodes to the left? */
1245                        if (useleft && trec.ir_freecount) {
1246                                xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1247                                cur = tcur;
1248
1249                                pag->pagl_leftrec = trec.ir_startino;
1250                                pag->pagl_rightrec = rec.ir_startino;
1251                                pag->pagl_pagino = pagino;
1252                                rec = trec;
1253                                goto alloc_inode;
1254                        }
1255
1256                        /* free inodes to the right? */
1257                        if (!useleft && rec.ir_freecount) {
1258                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1259
1260                                pag->pagl_leftrec = trec.ir_startino;
1261                                pag->pagl_rightrec = rec.ir_startino;
1262                                pag->pagl_pagino = pagino;
1263                                goto alloc_inode;
1264                        }
1265
1266                        /* get next record to check */
1267                        if (useleft) {
1268                                error = xfs_ialloc_next_rec(tcur, &trec,
1269                                                                 &doneleft, 1);
1270                        } else {
1271                                error = xfs_ialloc_next_rec(cur, &rec,
1272                                                                 &doneright, 0);
1273                        }
1274                        if (error)
1275                                goto error1;
1276                }
1277
1278                if (searchdistance <= 0) {
1279                        /*
1280                         * Not in range - save last search
1281                         * location and allocate a new inode
1282                         */
1283                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1284                        pag->pagl_leftrec = trec.ir_startino;
1285                        pag->pagl_rightrec = rec.ir_startino;
1286                        pag->pagl_pagino = pagino;
1287
1288                } else {
1289                        /*
1290                         * We've reached the end of the btree. because
1291                         * we are only searching a small chunk of the
1292                         * btree each search, there is obviously free
1293                         * inodes closer to the parent inode than we
1294                         * are now. restart the search again.
1295                         */
1296                        pag->pagl_pagino = NULLAGINO;
1297                        pag->pagl_leftrec = NULLAGINO;
1298                        pag->pagl_rightrec = NULLAGINO;
1299                        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1300                        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1301                        goto restart_pagno;
1302                }
1303        }
1304
1305        /*
1306         * In a different AG from the parent.
1307         * See if the most recently allocated block has any free.
1308         */
1309        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1310                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1311                                         XFS_LOOKUP_EQ, &i);
1312                if (error)
1313                        goto error0;
1314
1315                if (i == 1) {
1316                        error = xfs_inobt_get_rec(cur, &rec, &j);
1317                        if (error)
1318                                goto error0;
1319
1320                        if (j == 1 && rec.ir_freecount > 0) {
1321                                /*
1322                                 * The last chunk allocated in the group
1323                                 * still has a free inode.
1324                                 */
1325                                goto alloc_inode;
1326                        }
1327                }
1328        }
1329
1330        /*
1331         * None left in the last group, search the whole AG
1332         */
1333        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1334        if (error)
1335                goto error0;
1336        if (XFS_IS_CORRUPT(mp, i != 1)) {
1337                error = -EFSCORRUPTED;
1338                goto error0;
1339        }
1340
1341        for (;;) {
1342                error = xfs_inobt_get_rec(cur, &rec, &i);
1343                if (error)
1344                        goto error0;
1345                if (XFS_IS_CORRUPT(mp, i != 1)) {
1346                        error = -EFSCORRUPTED;
1347                        goto error0;
1348                }
1349                if (rec.ir_freecount > 0)
1350                        break;
1351                error = xfs_btree_increment(cur, 0, &i);
1352                if (error)
1353                        goto error0;
1354                if (XFS_IS_CORRUPT(mp, i != 1)) {
1355                        error = -EFSCORRUPTED;
1356                        goto error0;
1357                }
1358        }
1359
1360alloc_inode:
1361        offset = xfs_inobt_first_free_inode(&rec);
1362        ASSERT(offset >= 0);
1363        ASSERT(offset < XFS_INODES_PER_CHUNK);
1364        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1365                                   XFS_INODES_PER_CHUNK) == 0);
1366        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1367        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1368        rec.ir_freecount--;
1369        error = xfs_inobt_update(cur, &rec);
1370        if (error)
1371                goto error0;
1372        be32_add_cpu(&agi->agi_freecount, -1);
1373        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1374        pag->pagi_freecount--;
1375
1376        error = xfs_check_agi_freecount(cur, agi);
1377        if (error)
1378                goto error0;
1379
1380        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1381        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1382        *inop = ino;
1383        return 0;
1384error1:
1385        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1386error0:
1387        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1388        return error;
1389}
1390
1391/*
1392 * Use the free inode btree to allocate an inode based on distance from the
1393 * parent. Note that the provided cursor may be deleted and replaced.
1394 */
1395STATIC int
1396xfs_dialloc_ag_finobt_near(
1397        xfs_agino_t                     pagino,
1398        struct xfs_btree_cur            **ocur,
1399        struct xfs_inobt_rec_incore     *rec)
1400{
1401        struct xfs_btree_cur            *lcur = *ocur;  /* left search cursor */
1402        struct xfs_btree_cur            *rcur;  /* right search cursor */
1403        struct xfs_inobt_rec_incore     rrec;
1404        int                             error;
1405        int                             i, j;
1406
1407        error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1408        if (error)
1409                return error;
1410
1411        if (i == 1) {
1412                error = xfs_inobt_get_rec(lcur, rec, &i);
1413                if (error)
1414                        return error;
1415                if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1416                        return -EFSCORRUPTED;
1417
1418                /*
1419                 * See if we've landed in the parent inode record. The finobt
1420                 * only tracks chunks with at least one free inode, so record
1421                 * existence is enough.
1422                 */
1423                if (pagino >= rec->ir_startino &&
1424                    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1425                        return 0;
1426        }
1427
1428        error = xfs_btree_dup_cursor(lcur, &rcur);
1429        if (error)
1430                return error;
1431
1432        error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1433        if (error)
1434                goto error_rcur;
1435        if (j == 1) {
1436                error = xfs_inobt_get_rec(rcur, &rrec, &j);
1437                if (error)
1438                        goto error_rcur;
1439                if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1440                        error = -EFSCORRUPTED;
1441                        goto error_rcur;
1442                }
1443        }
1444
1445        if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1446                error = -EFSCORRUPTED;
1447                goto error_rcur;
1448        }
1449        if (i == 1 && j == 1) {
1450                /*
1451                 * Both the left and right records are valid. Choose the closer
1452                 * inode chunk to the target.
1453                 */
1454                if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1455                    (rrec.ir_startino - pagino)) {
1456                        *rec = rrec;
1457                        xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1458                        *ocur = rcur;
1459                } else {
1460                        xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1461                }
1462        } else if (j == 1) {
1463                /* only the right record is valid */
1464                *rec = rrec;
1465                xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1466                *ocur = rcur;
1467        } else if (i == 1) {
1468                /* only the left record is valid */
1469                xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1470        }
1471
1472        return 0;
1473
1474error_rcur:
1475        xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1476        return error;
1477}
1478
1479/*
1480 * Use the free inode btree to find a free inode based on a newino hint. If
1481 * the hint is NULL, find the first free inode in the AG.
1482 */
1483STATIC int
1484xfs_dialloc_ag_finobt_newino(
1485        struct xfs_agi                  *agi,
1486        struct xfs_btree_cur            *cur,
1487        struct xfs_inobt_rec_incore     *rec)
1488{
1489        int error;
1490        int i;
1491
1492        if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1493                error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1494                                         XFS_LOOKUP_EQ, &i);
1495                if (error)
1496                        return error;
1497                if (i == 1) {
1498                        error = xfs_inobt_get_rec(cur, rec, &i);
1499                        if (error)
1500                                return error;
1501                        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1502                                return -EFSCORRUPTED;
1503                        return 0;
1504                }
1505        }
1506
1507        /*
1508         * Find the first inode available in the AG.
1509         */
1510        error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1511        if (error)
1512                return error;
1513        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1514                return -EFSCORRUPTED;
1515
1516        error = xfs_inobt_get_rec(cur, rec, &i);
1517        if (error)
1518                return error;
1519        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1520                return -EFSCORRUPTED;
1521
1522        return 0;
1523}
1524
1525/*
1526 * Update the inobt based on a modification made to the finobt. Also ensure that
1527 * the records from both trees are equivalent post-modification.
1528 */
1529STATIC int
1530xfs_dialloc_ag_update_inobt(
1531        struct xfs_btree_cur            *cur,   /* inobt cursor */
1532        struct xfs_inobt_rec_incore     *frec,  /* finobt record */
1533        int                             offset) /* inode offset */
1534{
1535        struct xfs_inobt_rec_incore     rec;
1536        int                             error;
1537        int                             i;
1538
1539        error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1540        if (error)
1541                return error;
1542        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1543                return -EFSCORRUPTED;
1544
1545        error = xfs_inobt_get_rec(cur, &rec, &i);
1546        if (error)
1547                return error;
1548        if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1549                return -EFSCORRUPTED;
1550        ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1551                                   XFS_INODES_PER_CHUNK) == 0);
1552
1553        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1554        rec.ir_freecount--;
1555
1556        if (XFS_IS_CORRUPT(cur->bc_mp,
1557                           rec.ir_free != frec->ir_free ||
1558                           rec.ir_freecount != frec->ir_freecount))
1559                return -EFSCORRUPTED;
1560
1561        return xfs_inobt_update(cur, &rec);
1562}
1563
1564/*
1565 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1566 * back to the inobt search algorithm.
1567 *
1568 * The caller selected an AG for us, and made sure that free inodes are
1569 * available.
1570 */
1571int
1572xfs_dialloc_ag(
1573        struct xfs_trans        *tp,
1574        struct xfs_buf          *agbp,
1575        xfs_ino_t               parent,
1576        xfs_ino_t               *inop)
1577{
1578        struct xfs_mount                *mp = tp->t_mountp;
1579        struct xfs_agi                  *agi = agbp->b_addr;
1580        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1581        xfs_agnumber_t                  pagno = XFS_INO_TO_AGNO(mp, parent);
1582        xfs_agino_t                     pagino = XFS_INO_TO_AGINO(mp, parent);
1583        struct xfs_btree_cur            *cur;   /* finobt cursor */
1584        struct xfs_btree_cur            *icur;  /* inobt cursor */
1585        struct xfs_inobt_rec_incore     rec;
1586        xfs_ino_t                       ino;
1587        int                             error;
1588        int                             offset;
1589        int                             i;
1590
1591        if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1592                return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1593
1594        /*
1595         * If pagino is 0 (this is the root inode allocation) use newino.
1596         * This must work because we've just allocated some.
1597         */
1598        if (!pagino)
1599                pagino = be32_to_cpu(agi->agi_newino);
1600
1601        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1602
1603        error = xfs_check_agi_freecount(cur, agi);
1604        if (error)
1605                goto error_cur;
1606
1607        /*
1608         * The search algorithm depends on whether we're in the same AG as the
1609         * parent. If so, find the closest available inode to the parent. If
1610         * not, consider the agi hint or find the first free inode in the AG.
1611         */
1612        if (agno == pagno)
1613                error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1614        else
1615                error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1616        if (error)
1617                goto error_cur;
1618
1619        offset = xfs_inobt_first_free_inode(&rec);
1620        ASSERT(offset >= 0);
1621        ASSERT(offset < XFS_INODES_PER_CHUNK);
1622        ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1623                                   XFS_INODES_PER_CHUNK) == 0);
1624        ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1625
1626        /*
1627         * Modify or remove the finobt record.
1628         */
1629        rec.ir_free &= ~XFS_INOBT_MASK(offset);
1630        rec.ir_freecount--;
1631        if (rec.ir_freecount)
1632                error = xfs_inobt_update(cur, &rec);
1633        else
1634                error = xfs_btree_delete(cur, &i);
1635        if (error)
1636                goto error_cur;
1637
1638        /*
1639         * The finobt has now been updated appropriately. We haven't updated the
1640         * agi and superblock yet, so we can create an inobt cursor and validate
1641         * the original freecount. If all is well, make the equivalent update to
1642         * the inobt using the finobt record and offset information.
1643         */
1644        icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1645
1646        error = xfs_check_agi_freecount(icur, agi);
1647        if (error)
1648                goto error_icur;
1649
1650        error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1651        if (error)
1652                goto error_icur;
1653
1654        /*
1655         * Both trees have now been updated. We must update the perag and
1656         * superblock before we can check the freecount for each btree.
1657         */
1658        be32_add_cpu(&agi->agi_freecount, -1);
1659        xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1660        agbp->b_pag->pagi_freecount--;
1661
1662        xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1663
1664        error = xfs_check_agi_freecount(icur, agi);
1665        if (error)
1666                goto error_icur;
1667        error = xfs_check_agi_freecount(cur, agi);
1668        if (error)
1669                goto error_icur;
1670
1671        xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1672        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1673        *inop = ino;
1674        return 0;
1675
1676error_icur:
1677        xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1678error_cur:
1679        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1680        return error;
1681}
1682
1683static int
1684xfs_dialloc_roll(
1685        struct xfs_trans        **tpp,
1686        struct xfs_buf          *agibp)
1687{
1688        struct xfs_trans        *tp = *tpp;
1689        struct xfs_dquot_acct   *dqinfo;
1690        int                     error;
1691
1692        /*
1693         * Hold to on to the agibp across the commit so no other allocation can
1694         * come in and take the free inodes we just allocated for our caller.
1695         */
1696        xfs_trans_bhold(tp, agibp);
1697
1698        /*
1699         * We want the quota changes to be associated with the next transaction,
1700         * NOT this one. So, detach the dqinfo from this and attach it to the
1701         * next transaction.
1702         */
1703        dqinfo = tp->t_dqinfo;
1704        tp->t_dqinfo = NULL;
1705
1706        error = xfs_trans_roll(&tp);
1707
1708        /* Re-attach the quota info that we detached from prev trx. */
1709        tp->t_dqinfo = dqinfo;
1710
1711        *tpp = tp;
1712        if (error)
1713                return error;
1714        xfs_trans_bjoin(tp, agibp);
1715        return 0;
1716}
1717
1718/*
1719 * Select and prepare an AG for inode allocation.
1720 *
1721 * Mode is used to tell whether the new inode is a directory and hence where to
1722 * locate it.
1723 *
1724 * This function will ensure that the selected AG has free inodes available to
1725 * allocate from. The selected AGI will be returned locked to the caller, and it
1726 * will allocate more free inodes if required. If no free inodes are found or
1727 * can be allocated, no AGI will be returned.
1728 */
1729int
1730xfs_dialloc_select_ag(
1731        struct xfs_trans        **tpp,
1732        xfs_ino_t               parent,
1733        umode_t                 mode,
1734        struct xfs_buf          **IO_agbp)
1735{
1736        struct xfs_mount        *mp = (*tpp)->t_mountp;
1737        struct xfs_buf          *agbp;
1738        xfs_agnumber_t          agno;
1739        int                     error;
1740        bool                    noroom = false;
1741        xfs_agnumber_t          start_agno;
1742        struct xfs_perag        *pag;
1743        struct xfs_ino_geometry *igeo = M_IGEO(mp);
1744        bool                    okalloc = true;
1745
1746        *IO_agbp = NULL;
1747
1748        /*
1749         * We do not have an agbp, so select an initial allocation
1750         * group for inode allocation.
1751         */
1752        start_agno = xfs_ialloc_ag_select(*tpp, parent, mode);
1753        if (start_agno == NULLAGNUMBER)
1754                return 0;
1755
1756        /*
1757         * If we have already hit the ceiling of inode blocks then clear
1758         * okalloc so we scan all available agi structures for a free
1759         * inode.
1760         *
1761         * Read rough value of mp->m_icount by percpu_counter_read_positive,
1762         * which will sacrifice the preciseness but improve the performance.
1763         */
1764        if (igeo->maxicount &&
1765            percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1766                                                        > igeo->maxicount) {
1767                noroom = true;
1768                okalloc = false;
1769        }
1770
1771        /*
1772         * Loop until we find an allocation group that either has free inodes
1773         * or in which we can allocate some inodes.  Iterate through the
1774         * allocation groups upward, wrapping at the end.
1775         */
1776        agno = start_agno;
1777        for (;;) {
1778                pag = xfs_perag_get(mp, agno);
1779                if (!pag->pagi_inodeok) {
1780                        xfs_ialloc_next_ag(mp);
1781                        goto nextag;
1782                }
1783
1784                if (!pag->pagi_init) {
1785                        error = xfs_ialloc_pagi_init(mp, *tpp, agno);
1786                        if (error)
1787                                break;
1788                }
1789
1790                /*
1791                 * Do a first racy fast path check if this AG is usable.
1792                 */
1793                if (!pag->pagi_freecount && !okalloc)
1794                        goto nextag;
1795
1796                /*
1797                 * Then read in the AGI buffer and recheck with the AGI buffer
1798                 * lock held.
1799                 */
1800                error = xfs_ialloc_read_agi(mp, *tpp, agno, &agbp);
1801                if (error)
1802                        break;
1803
1804                if (pag->pagi_freecount) {
1805                        xfs_perag_put(pag);
1806                        goto found_ag;
1807                }
1808
1809                if (!okalloc)
1810                        goto nextag_relse_buffer;
1811
1812                error = xfs_ialloc_ag_alloc(*tpp, agbp);
1813                if (error < 0) {
1814                        xfs_trans_brelse(*tpp, agbp);
1815
1816                        if (error == -ENOSPC)
1817                                error = 0;
1818                        break;
1819                }
1820
1821                if (error == 0) {
1822                        /*
1823                         * We successfully allocated space for an inode cluster
1824                         * in this AG.  Roll the transaction so that we can
1825                         * allocate one of the new inodes.
1826                         */
1827                        ASSERT(pag->pagi_freecount > 0);
1828                        xfs_perag_put(pag);
1829
1830                        error = xfs_dialloc_roll(tpp, agbp);
1831                        if (error) {
1832                                xfs_buf_relse(agbp);
1833                                return error;
1834                        }
1835                        goto found_ag;
1836                }
1837
1838nextag_relse_buffer:
1839                xfs_trans_brelse(*tpp, agbp);
1840nextag:
1841                xfs_perag_put(pag);
1842                if (++agno == mp->m_sb.sb_agcount)
1843                        agno = 0;
1844                if (agno == start_agno)
1845                        return noroom ? -ENOSPC : 0;
1846        }
1847
1848        xfs_perag_put(pag);
1849        return error;
1850found_ag:
1851        *IO_agbp = agbp;
1852        return 0;
1853}
1854
1855/*
1856 * Free the blocks of an inode chunk. We must consider that the inode chunk
1857 * might be sparse and only free the regions that are allocated as part of the
1858 * chunk.
1859 */
1860STATIC void
1861xfs_difree_inode_chunk(
1862        struct xfs_trans                *tp,
1863        xfs_agnumber_t                  agno,
1864        struct xfs_inobt_rec_incore     *rec)
1865{
1866        struct xfs_mount                *mp = tp->t_mountp;
1867        xfs_agblock_t                   sagbno = XFS_AGINO_TO_AGBNO(mp,
1868                                                        rec->ir_startino);
1869        int                             startidx, endidx;
1870        int                             nextbit;
1871        xfs_agblock_t                   agbno;
1872        int                             contigblk;
1873        DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1874
1875        if (!xfs_inobt_issparse(rec->ir_holemask)) {
1876                /* not sparse, calculate extent info directly */
1877                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1878                                  M_IGEO(mp)->ialloc_blks,
1879                                  &XFS_RMAP_OINFO_INODES);
1880                return;
1881        }
1882
1883        /* holemask is only 16-bits (fits in an unsigned long) */
1884        ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1885        holemask[0] = rec->ir_holemask;
1886
1887        /*
1888         * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1889         * holemask and convert the start/end index of each range to an extent.
1890         * We start with the start and end index both pointing at the first 0 in
1891         * the mask.
1892         */
1893        startidx = endidx = find_first_zero_bit(holemask,
1894                                                XFS_INOBT_HOLEMASK_BITS);
1895        nextbit = startidx + 1;
1896        while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1897                nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1898                                             nextbit);
1899                /*
1900                 * If the next zero bit is contiguous, update the end index of
1901                 * the current range and continue.
1902                 */
1903                if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1904                    nextbit == endidx + 1) {
1905                        endidx = nextbit;
1906                        goto next;
1907                }
1908
1909                /*
1910                 * nextbit is not contiguous with the current end index. Convert
1911                 * the current start/end to an extent and add it to the free
1912                 * list.
1913                 */
1914                agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1915                                  mp->m_sb.sb_inopblock;
1916                contigblk = ((endidx - startidx + 1) *
1917                             XFS_INODES_PER_HOLEMASK_BIT) /
1918                            mp->m_sb.sb_inopblock;
1919
1920                ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1921                ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1922                xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1923                                  contigblk, &XFS_RMAP_OINFO_INODES);
1924
1925                /* reset range to current bit and carry on... */
1926                startidx = endidx = nextbit;
1927
1928next:
1929                nextbit++;
1930        }
1931}
1932
1933STATIC int
1934xfs_difree_inobt(
1935        struct xfs_mount                *mp,
1936        struct xfs_trans                *tp,
1937        struct xfs_buf                  *agbp,
1938        xfs_agino_t                     agino,
1939        struct xfs_icluster             *xic,
1940        struct xfs_inobt_rec_incore     *orec)
1941{
1942        struct xfs_agi                  *agi = agbp->b_addr;
1943        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
1944        struct xfs_btree_cur            *cur;
1945        struct xfs_inobt_rec_incore     rec;
1946        int                             ilen;
1947        int                             error;
1948        int                             i;
1949        int                             off;
1950
1951        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1952        ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1953
1954        /*
1955         * Initialize the cursor.
1956         */
1957        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1958
1959        error = xfs_check_agi_freecount(cur, agi);
1960        if (error)
1961                goto error0;
1962
1963        /*
1964         * Look for the entry describing this inode.
1965         */
1966        if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1967                xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1968                        __func__, error);
1969                goto error0;
1970        }
1971        if (XFS_IS_CORRUPT(mp, i != 1)) {
1972                error = -EFSCORRUPTED;
1973                goto error0;
1974        }
1975        error = xfs_inobt_get_rec(cur, &rec, &i);
1976        if (error) {
1977                xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1978                        __func__, error);
1979                goto error0;
1980        }
1981        if (XFS_IS_CORRUPT(mp, i != 1)) {
1982                error = -EFSCORRUPTED;
1983                goto error0;
1984        }
1985        /*
1986         * Get the offset in the inode chunk.
1987         */
1988        off = agino - rec.ir_startino;
1989        ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1990        ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1991        /*
1992         * Mark the inode free & increment the count.
1993         */
1994        rec.ir_free |= XFS_INOBT_MASK(off);
1995        rec.ir_freecount++;
1996
1997        /*
1998         * When an inode chunk is free, it becomes eligible for removal. Don't
1999         * remove the chunk if the block size is large enough for multiple inode
2000         * chunks (that might not be free).
2001         */
2002        if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
2003            rec.ir_free == XFS_INOBT_ALL_FREE &&
2004            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2005                struct xfs_perag        *pag = agbp->b_pag;
2006
2007                xic->deleted = true;
2008                xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
2009                xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2010
2011                /*
2012                 * Remove the inode cluster from the AGI B+Tree, adjust the
2013                 * AGI and Superblock inode counts, and mark the disk space
2014                 * to be freed when the transaction is committed.
2015                 */
2016                ilen = rec.ir_freecount;
2017                be32_add_cpu(&agi->agi_count, -ilen);
2018                be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2019                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2020                pag->pagi_freecount -= ilen - 1;
2021                pag->pagi_count -= ilen;
2022                xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2023                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2024
2025                if ((error = xfs_btree_delete(cur, &i))) {
2026                        xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2027                                __func__, error);
2028                        goto error0;
2029                }
2030
2031                xfs_difree_inode_chunk(tp, agno, &rec);
2032        } else {
2033                xic->deleted = false;
2034
2035                error = xfs_inobt_update(cur, &rec);
2036                if (error) {
2037                        xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2038                                __func__, error);
2039                        goto error0;
2040                }
2041
2042                /* 
2043                 * Change the inode free counts and log the ag/sb changes.
2044                 */
2045                be32_add_cpu(&agi->agi_freecount, 1);
2046                xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2047                agbp->b_pag->pagi_freecount++;
2048                xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2049        }
2050
2051        error = xfs_check_agi_freecount(cur, agi);
2052        if (error)
2053                goto error0;
2054
2055        *orec = rec;
2056        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2057        return 0;
2058
2059error0:
2060        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2061        return error;
2062}
2063
2064/*
2065 * Free an inode in the free inode btree.
2066 */
2067STATIC int
2068xfs_difree_finobt(
2069        struct xfs_mount                *mp,
2070        struct xfs_trans                *tp,
2071        struct xfs_buf                  *agbp,
2072        xfs_agino_t                     agino,
2073        struct xfs_inobt_rec_incore     *ibtrec) /* inobt record */
2074{
2075        struct xfs_agi                  *agi = agbp->b_addr;
2076        xfs_agnumber_t                  agno = be32_to_cpu(agi->agi_seqno);
2077        struct xfs_btree_cur            *cur;
2078        struct xfs_inobt_rec_incore     rec;
2079        int                             offset = agino - ibtrec->ir_startino;
2080        int                             error;
2081        int                             i;
2082
2083        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2084
2085        error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2086        if (error)
2087                goto error;
2088        if (i == 0) {
2089                /*
2090                 * If the record does not exist in the finobt, we must have just
2091                 * freed an inode in a previously fully allocated chunk. If not,
2092                 * something is out of sync.
2093                 */
2094                if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2095                        error = -EFSCORRUPTED;
2096                        goto error;
2097                }
2098
2099                error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2100                                             ibtrec->ir_count,
2101                                             ibtrec->ir_freecount,
2102                                             ibtrec->ir_free, &i);
2103                if (error)
2104                        goto error;
2105                ASSERT(i == 1);
2106
2107                goto out;
2108        }
2109
2110        /*
2111         * Read and update the existing record. We could just copy the ibtrec
2112         * across here, but that would defeat the purpose of having redundant
2113         * metadata. By making the modifications independently, we can catch
2114         * corruptions that we wouldn't see if we just copied from one record
2115         * to another.
2116         */
2117        error = xfs_inobt_get_rec(cur, &rec, &i);
2118        if (error)
2119                goto error;
2120        if (XFS_IS_CORRUPT(mp, i != 1)) {
2121                error = -EFSCORRUPTED;
2122                goto error;
2123        }
2124
2125        rec.ir_free |= XFS_INOBT_MASK(offset);
2126        rec.ir_freecount++;
2127
2128        if (XFS_IS_CORRUPT(mp,
2129                           rec.ir_free != ibtrec->ir_free ||
2130                           rec.ir_freecount != ibtrec->ir_freecount)) {
2131                error = -EFSCORRUPTED;
2132                goto error;
2133        }
2134
2135        /*
2136         * The content of inobt records should always match between the inobt
2137         * and finobt. The lifecycle of records in the finobt is different from
2138         * the inobt in that the finobt only tracks records with at least one
2139         * free inode. Hence, if all of the inodes are free and we aren't
2140         * keeping inode chunks permanently on disk, remove the record.
2141         * Otherwise, update the record with the new information.
2142         *
2143         * Note that we currently can't free chunks when the block size is large
2144         * enough for multiple chunks. Leave the finobt record to remain in sync
2145         * with the inobt.
2146         */
2147        if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2148            mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2149            !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2150                error = xfs_btree_delete(cur, &i);
2151                if (error)
2152                        goto error;
2153                ASSERT(i == 1);
2154        } else {
2155                error = xfs_inobt_update(cur, &rec);
2156                if (error)
2157                        goto error;
2158        }
2159
2160out:
2161        error = xfs_check_agi_freecount(cur, agi);
2162        if (error)
2163                goto error;
2164
2165        xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2166        return 0;
2167
2168error:
2169        xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2170        return error;
2171}
2172
2173/*
2174 * Free disk inode.  Carefully avoids touching the incore inode, all
2175 * manipulations incore are the caller's responsibility.
2176 * The on-disk inode is not changed by this operation, only the
2177 * btree (free inode mask) is changed.
2178 */
2179int
2180xfs_difree(
2181        struct xfs_trans        *tp,            /* transaction pointer */
2182        xfs_ino_t               inode,          /* inode to be freed */
2183        struct xfs_icluster     *xic)   /* cluster info if deleted */
2184{
2185        /* REFERENCED */
2186        xfs_agblock_t           agbno;  /* block number containing inode */
2187        struct xfs_buf          *agbp;  /* buffer for allocation group header */
2188        xfs_agino_t             agino;  /* allocation group inode number */
2189        xfs_agnumber_t          agno;   /* allocation group number */
2190        int                     error;  /* error return value */
2191        struct xfs_mount        *mp;    /* mount structure for filesystem */
2192        struct xfs_inobt_rec_incore rec;/* btree record */
2193
2194        mp = tp->t_mountp;
2195
2196        /*
2197         * Break up inode number into its components.
2198         */
2199        agno = XFS_INO_TO_AGNO(mp, inode);
2200        if (agno >= mp->m_sb.sb_agcount)  {
2201                xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2202                        __func__, agno, mp->m_sb.sb_agcount);
2203                ASSERT(0);
2204                return -EINVAL;
2205        }
2206        agino = XFS_INO_TO_AGINO(mp, inode);
2207        if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2208                xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2209                        __func__, (unsigned long long)inode,
2210                        (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2211                ASSERT(0);
2212                return -EINVAL;
2213        }
2214        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2215        if (agbno >= mp->m_sb.sb_agblocks)  {
2216                xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2217                        __func__, agbno, mp->m_sb.sb_agblocks);
2218                ASSERT(0);
2219                return -EINVAL;
2220        }
2221        /*
2222         * Get the allocation group header.
2223         */
2224        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2225        if (error) {
2226                xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2227                        __func__, error);
2228                return error;
2229        }
2230
2231        /*
2232         * Fix up the inode allocation btree.
2233         */
2234        error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2235        if (error)
2236                goto error0;
2237
2238        /*
2239         * Fix up the free inode btree.
2240         */
2241        if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2242                error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2243                if (error)
2244                        goto error0;
2245        }
2246
2247        return 0;
2248
2249error0:
2250        return error;
2251}
2252
2253STATIC int
2254xfs_imap_lookup(
2255        struct xfs_mount        *mp,
2256        struct xfs_trans        *tp,
2257        xfs_agnumber_t          agno,
2258        xfs_agino_t             agino,
2259        xfs_agblock_t           agbno,
2260        xfs_agblock_t           *chunk_agbno,
2261        xfs_agblock_t           *offset_agbno,
2262        int                     flags)
2263{
2264        struct xfs_inobt_rec_incore rec;
2265        struct xfs_btree_cur    *cur;
2266        struct xfs_buf          *agbp;
2267        int                     error;
2268        int                     i;
2269
2270        error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2271        if (error) {
2272                xfs_alert(mp,
2273                        "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2274                        __func__, error, agno);
2275                return error;
2276        }
2277
2278        /*
2279         * Lookup the inode record for the given agino. If the record cannot be
2280         * found, then it's an invalid inode number and we should abort. Once
2281         * we have a record, we need to ensure it contains the inode number
2282         * we are looking up.
2283         */
2284        cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2285        error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2286        if (!error) {
2287                if (i)
2288                        error = xfs_inobt_get_rec(cur, &rec, &i);
2289                if (!error && i == 0)
2290                        error = -EINVAL;
2291        }
2292
2293        xfs_trans_brelse(tp, agbp);
2294        xfs_btree_del_cursor(cur, error);
2295        if (error)
2296                return error;
2297
2298        /* check that the returned record contains the required inode */
2299        if (rec.ir_startino > agino ||
2300            rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2301                return -EINVAL;
2302
2303        /* for untrusted inodes check it is allocated first */
2304        if ((flags & XFS_IGET_UNTRUSTED) &&
2305            (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2306                return -EINVAL;
2307
2308        *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2309        *offset_agbno = agbno - *chunk_agbno;
2310        return 0;
2311}
2312
2313/*
2314 * Return the location of the inode in imap, for mapping it into a buffer.
2315 */
2316int
2317xfs_imap(
2318        xfs_mount_t      *mp,   /* file system mount structure */
2319        xfs_trans_t      *tp,   /* transaction pointer */
2320        xfs_ino_t       ino,    /* inode to locate */
2321        struct xfs_imap *imap,  /* location map structure */
2322        uint            flags)  /* flags for inode btree lookup */
2323{
2324        xfs_agblock_t   agbno;  /* block number of inode in the alloc group */
2325        xfs_agino_t     agino;  /* inode number within alloc group */
2326        xfs_agnumber_t  agno;   /* allocation group number */
2327        xfs_agblock_t   chunk_agbno;    /* first block in inode chunk */
2328        xfs_agblock_t   cluster_agbno;  /* first block in inode cluster */
2329        int             error;  /* error code */
2330        int             offset; /* index of inode in its buffer */
2331        xfs_agblock_t   offset_agbno;   /* blks from chunk start to inode */
2332
2333        ASSERT(ino != NULLFSINO);
2334
2335        /*
2336         * Split up the inode number into its parts.
2337         */
2338        agno = XFS_INO_TO_AGNO(mp, ino);
2339        agino = XFS_INO_TO_AGINO(mp, ino);
2340        agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2341        if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2342            ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2343#ifdef DEBUG
2344                /*
2345                 * Don't output diagnostic information for untrusted inodes
2346                 * as they can be invalid without implying corruption.
2347                 */
2348                if (flags & XFS_IGET_UNTRUSTED)
2349                        return -EINVAL;
2350                if (agno >= mp->m_sb.sb_agcount) {
2351                        xfs_alert(mp,
2352                                "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2353                                __func__, agno, mp->m_sb.sb_agcount);
2354                }
2355                if (agbno >= mp->m_sb.sb_agblocks) {
2356                        xfs_alert(mp,
2357                "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2358                                __func__, (unsigned long long)agbno,
2359                                (unsigned long)mp->m_sb.sb_agblocks);
2360                }
2361                if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2362                        xfs_alert(mp,
2363                "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2364                                __func__, ino,
2365                                XFS_AGINO_TO_INO(mp, agno, agino));
2366                }
2367                xfs_stack_trace();
2368#endif /* DEBUG */
2369                return -EINVAL;
2370        }
2371
2372        /*
2373         * For bulkstat and handle lookups, we have an untrusted inode number
2374         * that we have to verify is valid. We cannot do this just by reading
2375         * the inode buffer as it may have been unlinked and removed leaving
2376         * inodes in stale state on disk. Hence we have to do a btree lookup
2377         * in all cases where an untrusted inode number is passed.
2378         */
2379        if (flags & XFS_IGET_UNTRUSTED) {
2380                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2381                                        &chunk_agbno, &offset_agbno, flags);
2382                if (error)
2383                        return error;
2384                goto out_map;
2385        }
2386
2387        /*
2388         * If the inode cluster size is the same as the blocksize or
2389         * smaller we get to the buffer by simple arithmetics.
2390         */
2391        if (M_IGEO(mp)->blocks_per_cluster == 1) {
2392                offset = XFS_INO_TO_OFFSET(mp, ino);
2393                ASSERT(offset < mp->m_sb.sb_inopblock);
2394
2395                imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2396                imap->im_len = XFS_FSB_TO_BB(mp, 1);
2397                imap->im_boffset = (unsigned short)(offset <<
2398                                                        mp->m_sb.sb_inodelog);
2399                return 0;
2400        }
2401
2402        /*
2403         * If the inode chunks are aligned then use simple maths to
2404         * find the location. Otherwise we have to do a btree
2405         * lookup to find the location.
2406         */
2407        if (M_IGEO(mp)->inoalign_mask) {
2408                offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2409                chunk_agbno = agbno - offset_agbno;
2410        } else {
2411                error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2412                                        &chunk_agbno, &offset_agbno, flags);
2413                if (error)
2414                        return error;
2415        }
2416
2417out_map:
2418        ASSERT(agbno >= chunk_agbno);
2419        cluster_agbno = chunk_agbno +
2420                ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2421                 M_IGEO(mp)->blocks_per_cluster);
2422        offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2423                XFS_INO_TO_OFFSET(mp, ino);
2424
2425        imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2426        imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2427        imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2428
2429        /*
2430         * If the inode number maps to a block outside the bounds
2431         * of the file system then return NULL rather than calling
2432         * read_buf and panicing when we get an error from the
2433         * driver.
2434         */
2435        if ((imap->im_blkno + imap->im_len) >
2436            XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2437                xfs_alert(mp,
2438        "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2439                        __func__, (unsigned long long) imap->im_blkno,
2440                        (unsigned long long) imap->im_len,
2441                        XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2442                return -EINVAL;
2443        }
2444        return 0;
2445}
2446
2447/*
2448 * Log specified fields for the ag hdr (inode section). The growth of the agi
2449 * structure over time requires that we interpret the buffer as two logical
2450 * regions delineated by the end of the unlinked list. This is due to the size
2451 * of the hash table and its location in the middle of the agi.
2452 *
2453 * For example, a request to log a field before agi_unlinked and a field after
2454 * agi_unlinked could cause us to log the entire hash table and use an excessive
2455 * amount of log space. To avoid this behavior, log the region up through
2456 * agi_unlinked in one call and the region after agi_unlinked through the end of
2457 * the structure in another.
2458 */
2459void
2460xfs_ialloc_log_agi(
2461        xfs_trans_t     *tp,            /* transaction pointer */
2462        struct xfs_buf  *bp,            /* allocation group header buffer */
2463        int             fields)         /* bitmask of fields to log */
2464{
2465        int                     first;          /* first byte number */
2466        int                     last;           /* last byte number */
2467        static const short      offsets[] = {   /* field starting offsets */
2468                                        /* keep in sync with bit definitions */
2469                offsetof(xfs_agi_t, agi_magicnum),
2470                offsetof(xfs_agi_t, agi_versionnum),
2471                offsetof(xfs_agi_t, agi_seqno),
2472                offsetof(xfs_agi_t, agi_length),
2473                offsetof(xfs_agi_t, agi_count),
2474                offsetof(xfs_agi_t, agi_root),
2475                offsetof(xfs_agi_t, agi_level),
2476                offsetof(xfs_agi_t, agi_freecount),
2477                offsetof(xfs_agi_t, agi_newino),
2478                offsetof(xfs_agi_t, agi_dirino),
2479                offsetof(xfs_agi_t, agi_unlinked),
2480                offsetof(xfs_agi_t, agi_free_root),
2481                offsetof(xfs_agi_t, agi_free_level),
2482                offsetof(xfs_agi_t, agi_iblocks),
2483                sizeof(xfs_agi_t)
2484        };
2485#ifdef DEBUG
2486        struct xfs_agi          *agi = bp->b_addr;
2487
2488        ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2489#endif
2490
2491        /*
2492         * Compute byte offsets for the first and last fields in the first
2493         * region and log the agi buffer. This only logs up through
2494         * agi_unlinked.
2495         */
2496        if (fields & XFS_AGI_ALL_BITS_R1) {
2497                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2498                                  &first, &last);
2499                xfs_trans_log_buf(tp, bp, first, last);
2500        }
2501
2502        /*
2503         * Mask off the bits in the first region and calculate the first and
2504         * last field offsets for any bits in the second region.
2505         */
2506        fields &= ~XFS_AGI_ALL_BITS_R1;
2507        if (fields) {
2508                xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2509                                  &first, &last);
2510                xfs_trans_log_buf(tp, bp, first, last);
2511        }
2512}
2513
2514static xfs_failaddr_t
2515xfs_agi_verify(
2516        struct xfs_buf  *bp)
2517{
2518        struct xfs_mount *mp = bp->b_mount;
2519        struct xfs_agi  *agi = bp->b_addr;
2520        int             i;
2521
2522        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2523                if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2524                        return __this_address;
2525                if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2526                        return __this_address;
2527        }
2528
2529        /*
2530         * Validate the magic number of the agi block.
2531         */
2532        if (!xfs_verify_magic(bp, agi->agi_magicnum))
2533                return __this_address;
2534        if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2535                return __this_address;
2536
2537        if (be32_to_cpu(agi->agi_level) < 1 ||
2538            be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2539                return __this_address;
2540
2541        if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2542            (be32_to_cpu(agi->agi_free_level) < 1 ||
2543             be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2544                return __this_address;
2545
2546        /*
2547         * during growfs operations, the perag is not fully initialised,
2548         * so we can't use it for any useful checking. growfs ensures we can't
2549         * use it by using uncached buffers that don't have the perag attached
2550         * so we can detect and avoid this problem.
2551         */
2552        if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2553                return __this_address;
2554
2555        for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2556                if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2557                        continue;
2558                if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2559                        return __this_address;
2560        }
2561
2562        return NULL;
2563}
2564
2565static void
2566xfs_agi_read_verify(
2567        struct xfs_buf  *bp)
2568{
2569        struct xfs_mount *mp = bp->b_mount;
2570        xfs_failaddr_t  fa;
2571
2572        if (xfs_sb_version_hascrc(&mp->m_sb) &&
2573            !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2574                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2575        else {
2576                fa = xfs_agi_verify(bp);
2577                if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2578                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2579        }
2580}
2581
2582static void
2583xfs_agi_write_verify(
2584        struct xfs_buf  *bp)
2585{
2586        struct xfs_mount        *mp = bp->b_mount;
2587        struct xfs_buf_log_item *bip = bp->b_log_item;
2588        struct xfs_agi          *agi = bp->b_addr;
2589        xfs_failaddr_t          fa;
2590
2591        fa = xfs_agi_verify(bp);
2592        if (fa) {
2593                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2594                return;
2595        }
2596
2597        if (!xfs_sb_version_hascrc(&mp->m_sb))
2598                return;
2599
2600        if (bip)
2601                agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2602        xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2603}
2604
2605const struct xfs_buf_ops xfs_agi_buf_ops = {
2606        .name = "xfs_agi",
2607        .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2608        .verify_read = xfs_agi_read_verify,
2609        .verify_write = xfs_agi_write_verify,
2610        .verify_struct = xfs_agi_verify,
2611};
2612
2613/*
2614 * Read in the allocation group header (inode allocation section)
2615 */
2616int
2617xfs_read_agi(
2618        struct xfs_mount        *mp,    /* file system mount structure */
2619        struct xfs_trans        *tp,    /* transaction pointer */
2620        xfs_agnumber_t          agno,   /* allocation group number */
2621        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2622{
2623        int                     error;
2624
2625        trace_xfs_read_agi(mp, agno);
2626
2627        ASSERT(agno != NULLAGNUMBER);
2628        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2629                        XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2630                        XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2631        if (error)
2632                return error;
2633        if (tp)
2634                xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2635
2636        xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2637        return 0;
2638}
2639
2640int
2641xfs_ialloc_read_agi(
2642        struct xfs_mount        *mp,    /* file system mount structure */
2643        struct xfs_trans        *tp,    /* transaction pointer */
2644        xfs_agnumber_t          agno,   /* allocation group number */
2645        struct xfs_buf          **bpp)  /* allocation group hdr buf */
2646{
2647        struct xfs_agi          *agi;   /* allocation group header */
2648        struct xfs_perag        *pag;   /* per allocation group data */
2649        int                     error;
2650
2651        trace_xfs_ialloc_read_agi(mp, agno);
2652
2653        error = xfs_read_agi(mp, tp, agno, bpp);
2654        if (error)
2655                return error;
2656
2657        agi = (*bpp)->b_addr;
2658        pag = (*bpp)->b_pag;
2659        if (!pag->pagi_init) {
2660                pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2661                pag->pagi_count = be32_to_cpu(agi->agi_count);
2662                pag->pagi_init = 1;
2663        }
2664
2665        /*
2666         * It's possible for these to be out of sync if
2667         * we are in the middle of a forced shutdown.
2668         */
2669        ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2670                XFS_FORCED_SHUTDOWN(mp));
2671        return 0;
2672}
2673
2674/*
2675 * Read in the agi to initialise the per-ag data in the mount structure
2676 */
2677int
2678xfs_ialloc_pagi_init(
2679        xfs_mount_t     *mp,            /* file system mount structure */
2680        xfs_trans_t     *tp,            /* transaction pointer */
2681        xfs_agnumber_t  agno)           /* allocation group number */
2682{
2683        struct xfs_buf  *bp = NULL;
2684        int             error;
2685
2686        error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2687        if (error)
2688                return error;
2689        if (bp)
2690                xfs_trans_brelse(tp, bp);
2691        return 0;
2692}
2693
2694/* Is there an inode record covering a given range of inode numbers? */
2695int
2696xfs_ialloc_has_inode_record(
2697        struct xfs_btree_cur    *cur,
2698        xfs_agino_t             low,
2699        xfs_agino_t             high,
2700        bool                    *exists)
2701{
2702        struct xfs_inobt_rec_incore     irec;
2703        xfs_agino_t             agino;
2704        uint16_t                holemask;
2705        int                     has_record;
2706        int                     i;
2707        int                     error;
2708
2709        *exists = false;
2710        error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2711        while (error == 0 && has_record) {
2712                error = xfs_inobt_get_rec(cur, &irec, &has_record);
2713                if (error || irec.ir_startino > high)
2714                        break;
2715
2716                agino = irec.ir_startino;
2717                holemask = irec.ir_holemask;
2718                for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2719                                i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2720                        if (holemask & 1)
2721                                continue;
2722                        if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2723                                        agino <= high) {
2724                                *exists = true;
2725                                return 0;
2726                        }
2727                }
2728
2729                error = xfs_btree_increment(cur, 0, &has_record);
2730        }
2731        return error;
2732}
2733
2734/* Is there an inode record covering a given extent? */
2735int
2736xfs_ialloc_has_inodes_at_extent(
2737        struct xfs_btree_cur    *cur,
2738        xfs_agblock_t           bno,
2739        xfs_extlen_t            len,
2740        bool                    *exists)
2741{
2742        xfs_agino_t             low;
2743        xfs_agino_t             high;
2744
2745        low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2746        high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2747
2748        return xfs_ialloc_has_inode_record(cur, low, high, exists);
2749}
2750
2751struct xfs_ialloc_count_inodes {
2752        xfs_agino_t                     count;
2753        xfs_agino_t                     freecount;
2754};
2755
2756/* Record inode counts across all inobt records. */
2757STATIC int
2758xfs_ialloc_count_inodes_rec(
2759        struct xfs_btree_cur            *cur,
2760        union xfs_btree_rec             *rec,
2761        void                            *priv)
2762{
2763        struct xfs_inobt_rec_incore     irec;
2764        struct xfs_ialloc_count_inodes  *ci = priv;
2765
2766        xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2767        ci->count += irec.ir_count;
2768        ci->freecount += irec.ir_freecount;
2769
2770        return 0;
2771}
2772
2773/* Count allocated and free inodes under an inobt. */
2774int
2775xfs_ialloc_count_inodes(
2776        struct xfs_btree_cur            *cur,
2777        xfs_agino_t                     *count,
2778        xfs_agino_t                     *freecount)
2779{
2780        struct xfs_ialloc_count_inodes  ci = {0};
2781        int                             error;
2782
2783        ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2784        error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2785        if (error)
2786                return error;
2787
2788        *count = ci.count;
2789        *freecount = ci.freecount;
2790        return 0;
2791}
2792
2793/*
2794 * Initialize inode-related geometry information.
2795 *
2796 * Compute the inode btree min and max levels and set maxicount.
2797 *
2798 * Set the inode cluster size.  This may still be overridden by the file
2799 * system block size if it is larger than the chosen cluster size.
2800 *
2801 * For v5 filesystems, scale the cluster size with the inode size to keep a
2802 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2803 * inode alignment value appropriately for larger cluster sizes.
2804 *
2805 * Then compute the inode cluster alignment information.
2806 */
2807void
2808xfs_ialloc_setup_geometry(
2809        struct xfs_mount        *mp)
2810{
2811        struct xfs_sb           *sbp = &mp->m_sb;
2812        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2813        uint64_t                icount;
2814        uint                    inodes;
2815
2816        igeo->new_diflags2 = 0;
2817        if (xfs_sb_version_hasbigtime(&mp->m_sb))
2818                igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2819
2820        /* Compute inode btree geometry. */
2821        igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2822        igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2823        igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2824        igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2825        igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2826
2827        igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2828                        sbp->sb_inopblock);
2829        igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2830
2831        if (sbp->sb_spino_align)
2832                igeo->ialloc_min_blks = sbp->sb_spino_align;
2833        else
2834                igeo->ialloc_min_blks = igeo->ialloc_blks;
2835
2836        /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2837        inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2838        igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2839                        inodes);
2840
2841        /*
2842         * Set the maximum inode count for this filesystem, being careful not
2843         * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2844         * users should never get here due to failing sb verification, but
2845         * certain users (xfs_db) need to be usable even with corrupt metadata.
2846         */
2847        if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2848                /*
2849                 * Make sure the maximum inode count is a multiple
2850                 * of the units we allocate inodes in.
2851                 */
2852                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2853                do_div(icount, 100);
2854                do_div(icount, igeo->ialloc_blks);
2855                igeo->maxicount = XFS_FSB_TO_INO(mp,
2856                                icount * igeo->ialloc_blks);
2857        } else {
2858                igeo->maxicount = 0;
2859        }
2860
2861        /*
2862         * Compute the desired size of an inode cluster buffer size, which
2863         * starts at 8K and (on v5 filesystems) scales up with larger inode
2864         * sizes.
2865         *
2866         * Preserve the desired inode cluster size because the sparse inodes
2867         * feature uses that desired size (not the actual size) to compute the
2868         * sparse inode alignment.  The mount code validates this value, so we
2869         * cannot change the behavior.
2870         */
2871        igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2872        if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2873                int     new_size = igeo->inode_cluster_size_raw;
2874
2875                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2876                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2877                        igeo->inode_cluster_size_raw = new_size;
2878        }
2879
2880        /* Calculate inode cluster ratios. */
2881        if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2882                igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2883                                igeo->inode_cluster_size_raw);
2884        else
2885                igeo->blocks_per_cluster = 1;
2886        igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2887        igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2888
2889        /* Calculate inode cluster alignment. */
2890        if (xfs_sb_version_hasalign(&mp->m_sb) &&
2891            mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2892                igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2893        else
2894                igeo->cluster_align = 1;
2895        igeo->inoalign_mask = igeo->cluster_align - 1;
2896        igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2897
2898        /*
2899         * If we are using stripe alignment, check whether
2900         * the stripe unit is a multiple of the inode alignment
2901         */
2902        if (mp->m_dalign && igeo->inoalign_mask &&
2903            !(mp->m_dalign & igeo->inoalign_mask))
2904                igeo->ialloc_align = mp->m_dalign;
2905        else
2906                igeo->ialloc_align = 0;
2907}
2908
2909/* Compute the location of the root directory inode that is laid out by mkfs. */
2910xfs_ino_t
2911xfs_ialloc_calc_rootino(
2912        struct xfs_mount        *mp,
2913        int                     sunit)
2914{
2915        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2916        xfs_agblock_t           first_bno;
2917
2918        /*
2919         * Pre-calculate the geometry of AG 0.  We know what it looks like
2920         * because libxfs knows how to create allocation groups now.
2921         *
2922         * first_bno is the first block in which mkfs could possibly have
2923         * allocated the root directory inode, once we factor in the metadata
2924         * that mkfs formats before it.  Namely, the four AG headers...
2925         */
2926        first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2927
2928        /* ...the two free space btree roots... */
2929        first_bno += 2;
2930
2931        /* ...the inode btree root... */
2932        first_bno += 1;
2933
2934        /* ...the initial AGFL... */
2935        first_bno += xfs_alloc_min_freelist(mp, NULL);
2936
2937        /* ...the free inode btree root... */
2938        if (xfs_sb_version_hasfinobt(&mp->m_sb))
2939                first_bno++;
2940
2941        /* ...the reverse mapping btree root... */
2942        if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2943                first_bno++;
2944
2945        /* ...the reference count btree... */
2946        if (xfs_sb_version_hasreflink(&mp->m_sb))
2947                first_bno++;
2948
2949        /*
2950         * ...and the log, if it is allocated in the first allocation group.
2951         *
2952         * This can happen with filesystems that only have a single
2953         * allocation group, or very odd geometries created by old mkfs
2954         * versions on very small filesystems.
2955         */
2956        if (mp->m_sb.sb_logstart &&
2957            XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2958                 first_bno += mp->m_sb.sb_logblocks;
2959
2960        /*
2961         * Now round first_bno up to whatever allocation alignment is given
2962         * by the filesystem or was passed in.
2963         */
2964        if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2965                first_bno = roundup(first_bno, sunit);
2966        else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2967                        mp->m_sb.sb_inoalignmt > 1)
2968                first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2969
2970        return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2971}
2972