linux/fs/xfs/libxfs/xfs_rmap_btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2014 Red Hat, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_sb.h"
  13#include "xfs_mount.h"
  14#include "xfs_trans.h"
  15#include "xfs_alloc.h"
  16#include "xfs_btree.h"
  17#include "xfs_btree_staging.h"
  18#include "xfs_rmap.h"
  19#include "xfs_rmap_btree.h"
  20#include "xfs_trace.h"
  21#include "xfs_error.h"
  22#include "xfs_extent_busy.h"
  23#include "xfs_ag_resv.h"
  24
  25/*
  26 * Reverse map btree.
  27 *
  28 * This is a per-ag tree used to track the owner(s) of a given extent. With
  29 * reflink it is possible for there to be multiple owners, which is a departure
  30 * from classic XFS. Owner records for data extents are inserted when the
  31 * extent is mapped and removed when an extent is unmapped.  Owner records for
  32 * all other block types (i.e. metadata) are inserted when an extent is
  33 * allocated and removed when an extent is freed. There can only be one owner
  34 * of a metadata extent, usually an inode or some other metadata structure like
  35 * an AG btree.
  36 *
  37 * The rmap btree is part of the free space management, so blocks for the tree
  38 * are sourced from the agfl. Hence we need transaction reservation support for
  39 * this tree so that the freelist is always large enough. This also impacts on
  40 * the minimum space we need to leave free in the AG.
  41 *
  42 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
  43 * but it is the only way to enforce unique keys when a block can be owned by
  44 * multiple files at any offset. There's no need to order/search by extent
  45 * size for online updating/management of the tree. It is intended that most
  46 * reverse lookups will be to find the owner(s) of a particular block, or to
  47 * try to recover tree and file data from corrupt primary metadata.
  48 */
  49
  50static struct xfs_btree_cur *
  51xfs_rmapbt_dup_cursor(
  52        struct xfs_btree_cur    *cur)
  53{
  54        return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
  55                        cur->bc_ag.agbp, cur->bc_ag.agno);
  56}
  57
  58STATIC void
  59xfs_rmapbt_set_root(
  60        struct xfs_btree_cur    *cur,
  61        union xfs_btree_ptr     *ptr,
  62        int                     inc)
  63{
  64        struct xfs_buf          *agbp = cur->bc_ag.agbp;
  65        struct xfs_agf          *agf = agbp->b_addr;
  66        int                     btnum = cur->bc_btnum;
  67        struct xfs_perag        *pag = agbp->b_pag;
  68
  69        ASSERT(ptr->s != 0);
  70
  71        agf->agf_roots[btnum] = ptr->s;
  72        be32_add_cpu(&agf->agf_levels[btnum], inc);
  73        pag->pagf_levels[btnum] += inc;
  74
  75        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
  76}
  77
  78STATIC int
  79xfs_rmapbt_alloc_block(
  80        struct xfs_btree_cur    *cur,
  81        union xfs_btree_ptr     *start,
  82        union xfs_btree_ptr     *new,
  83        int                     *stat)
  84{
  85        struct xfs_buf          *agbp = cur->bc_ag.agbp;
  86        struct xfs_agf          *agf = agbp->b_addr;
  87        int                     error;
  88        xfs_agblock_t           bno;
  89
  90        /* Allocate the new block from the freelist. If we can't, give up.  */
  91        error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
  92                                       &bno, 1);
  93        if (error)
  94                return error;
  95
  96        trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_ag.agno,
  97                        bno, 1);
  98        if (bno == NULLAGBLOCK) {
  99                *stat = 0;
 100                return 0;
 101        }
 102
 103        xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agno, bno, 1,
 104                        false);
 105
 106        new->s = cpu_to_be32(bno);
 107        be32_add_cpu(&agf->agf_rmap_blocks, 1);
 108        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 109
 110        xfs_ag_resv_rmapbt_alloc(cur->bc_mp, cur->bc_ag.agno);
 111
 112        *stat = 1;
 113        return 0;
 114}
 115
 116STATIC int
 117xfs_rmapbt_free_block(
 118        struct xfs_btree_cur    *cur,
 119        struct xfs_buf          *bp)
 120{
 121        struct xfs_buf          *agbp = cur->bc_ag.agbp;
 122        struct xfs_agf          *agf = agbp->b_addr;
 123        struct xfs_perag        *pag;
 124        xfs_agblock_t           bno;
 125        int                     error;
 126
 127        bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
 128        trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_ag.agno,
 129                        bno, 1);
 130        be32_add_cpu(&agf->agf_rmap_blocks, -1);
 131        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 132        error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 133        if (error)
 134                return error;
 135
 136        xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
 137                              XFS_EXTENT_BUSY_SKIP_DISCARD);
 138
 139        pag = cur->bc_ag.agbp->b_pag;
 140        xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
 141        return 0;
 142}
 143
 144STATIC int
 145xfs_rmapbt_get_minrecs(
 146        struct xfs_btree_cur    *cur,
 147        int                     level)
 148{
 149        return cur->bc_mp->m_rmap_mnr[level != 0];
 150}
 151
 152STATIC int
 153xfs_rmapbt_get_maxrecs(
 154        struct xfs_btree_cur    *cur,
 155        int                     level)
 156{
 157        return cur->bc_mp->m_rmap_mxr[level != 0];
 158}
 159
 160STATIC void
 161xfs_rmapbt_init_key_from_rec(
 162        union xfs_btree_key     *key,
 163        union xfs_btree_rec     *rec)
 164{
 165        key->rmap.rm_startblock = rec->rmap.rm_startblock;
 166        key->rmap.rm_owner = rec->rmap.rm_owner;
 167        key->rmap.rm_offset = rec->rmap.rm_offset;
 168}
 169
 170/*
 171 * The high key for a reverse mapping record can be computed by shifting
 172 * the startblock and offset to the highest value that would still map
 173 * to that record.  In practice this means that we add blockcount-1 to
 174 * the startblock for all records, and if the record is for a data/attr
 175 * fork mapping, we add blockcount-1 to the offset too.
 176 */
 177STATIC void
 178xfs_rmapbt_init_high_key_from_rec(
 179        union xfs_btree_key     *key,
 180        union xfs_btree_rec     *rec)
 181{
 182        uint64_t                off;
 183        int                     adj;
 184
 185        adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
 186
 187        key->rmap.rm_startblock = rec->rmap.rm_startblock;
 188        be32_add_cpu(&key->rmap.rm_startblock, adj);
 189        key->rmap.rm_owner = rec->rmap.rm_owner;
 190        key->rmap.rm_offset = rec->rmap.rm_offset;
 191        if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
 192            XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
 193                return;
 194        off = be64_to_cpu(key->rmap.rm_offset);
 195        off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
 196        key->rmap.rm_offset = cpu_to_be64(off);
 197}
 198
 199STATIC void
 200xfs_rmapbt_init_rec_from_cur(
 201        struct xfs_btree_cur    *cur,
 202        union xfs_btree_rec     *rec)
 203{
 204        rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
 205        rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
 206        rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
 207        rec->rmap.rm_offset = cpu_to_be64(
 208                        xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
 209}
 210
 211STATIC void
 212xfs_rmapbt_init_ptr_from_cur(
 213        struct xfs_btree_cur    *cur,
 214        union xfs_btree_ptr     *ptr)
 215{
 216        struct xfs_agf          *agf = cur->bc_ag.agbp->b_addr;
 217
 218        ASSERT(cur->bc_ag.agno == be32_to_cpu(agf->agf_seqno));
 219
 220        ptr->s = agf->agf_roots[cur->bc_btnum];
 221}
 222
 223STATIC int64_t
 224xfs_rmapbt_key_diff(
 225        struct xfs_btree_cur    *cur,
 226        union xfs_btree_key     *key)
 227{
 228        struct xfs_rmap_irec    *rec = &cur->bc_rec.r;
 229        struct xfs_rmap_key     *kp = &key->rmap;
 230        __u64                   x, y;
 231        int64_t                 d;
 232
 233        d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
 234        if (d)
 235                return d;
 236
 237        x = be64_to_cpu(kp->rm_owner);
 238        y = rec->rm_owner;
 239        if (x > y)
 240                return 1;
 241        else if (y > x)
 242                return -1;
 243
 244        x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
 245        y = rec->rm_offset;
 246        if (x > y)
 247                return 1;
 248        else if (y > x)
 249                return -1;
 250        return 0;
 251}
 252
 253STATIC int64_t
 254xfs_rmapbt_diff_two_keys(
 255        struct xfs_btree_cur    *cur,
 256        union xfs_btree_key     *k1,
 257        union xfs_btree_key     *k2)
 258{
 259        struct xfs_rmap_key     *kp1 = &k1->rmap;
 260        struct xfs_rmap_key     *kp2 = &k2->rmap;
 261        int64_t                 d;
 262        __u64                   x, y;
 263
 264        d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
 265                       be32_to_cpu(kp2->rm_startblock);
 266        if (d)
 267                return d;
 268
 269        x = be64_to_cpu(kp1->rm_owner);
 270        y = be64_to_cpu(kp2->rm_owner);
 271        if (x > y)
 272                return 1;
 273        else if (y > x)
 274                return -1;
 275
 276        x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
 277        y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
 278        if (x > y)
 279                return 1;
 280        else if (y > x)
 281                return -1;
 282        return 0;
 283}
 284
 285static xfs_failaddr_t
 286xfs_rmapbt_verify(
 287        struct xfs_buf          *bp)
 288{
 289        struct xfs_mount        *mp = bp->b_mount;
 290        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 291        struct xfs_perag        *pag = bp->b_pag;
 292        xfs_failaddr_t          fa;
 293        unsigned int            level;
 294
 295        /*
 296         * magic number and level verification
 297         *
 298         * During growfs operations, we can't verify the exact level or owner as
 299         * the perag is not fully initialised and hence not attached to the
 300         * buffer.  In this case, check against the maximum tree depth.
 301         *
 302         * Similarly, during log recovery we will have a perag structure
 303         * attached, but the agf information will not yet have been initialised
 304         * from the on disk AGF. Again, we can only check against maximum limits
 305         * in this case.
 306         */
 307        if (!xfs_verify_magic(bp, block->bb_magic))
 308                return __this_address;
 309
 310        if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 311                return __this_address;
 312        fa = xfs_btree_sblock_v5hdr_verify(bp);
 313        if (fa)
 314                return fa;
 315
 316        level = be16_to_cpu(block->bb_level);
 317        if (pag && pag->pagf_init) {
 318                if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
 319                        return __this_address;
 320        } else if (level >= mp->m_rmap_maxlevels)
 321                return __this_address;
 322
 323        return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
 324}
 325
 326static void
 327xfs_rmapbt_read_verify(
 328        struct xfs_buf  *bp)
 329{
 330        xfs_failaddr_t  fa;
 331
 332        if (!xfs_btree_sblock_verify_crc(bp))
 333                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 334        else {
 335                fa = xfs_rmapbt_verify(bp);
 336                if (fa)
 337                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 338        }
 339
 340        if (bp->b_error)
 341                trace_xfs_btree_corrupt(bp, _RET_IP_);
 342}
 343
 344static void
 345xfs_rmapbt_write_verify(
 346        struct xfs_buf  *bp)
 347{
 348        xfs_failaddr_t  fa;
 349
 350        fa = xfs_rmapbt_verify(bp);
 351        if (fa) {
 352                trace_xfs_btree_corrupt(bp, _RET_IP_);
 353                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 354                return;
 355        }
 356        xfs_btree_sblock_calc_crc(bp);
 357
 358}
 359
 360const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
 361        .name                   = "xfs_rmapbt",
 362        .magic                  = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
 363        .verify_read            = xfs_rmapbt_read_verify,
 364        .verify_write           = xfs_rmapbt_write_verify,
 365        .verify_struct          = xfs_rmapbt_verify,
 366};
 367
 368STATIC int
 369xfs_rmapbt_keys_inorder(
 370        struct xfs_btree_cur    *cur,
 371        union xfs_btree_key     *k1,
 372        union xfs_btree_key     *k2)
 373{
 374        uint32_t                x;
 375        uint32_t                y;
 376        uint64_t                a;
 377        uint64_t                b;
 378
 379        x = be32_to_cpu(k1->rmap.rm_startblock);
 380        y = be32_to_cpu(k2->rmap.rm_startblock);
 381        if (x < y)
 382                return 1;
 383        else if (x > y)
 384                return 0;
 385        a = be64_to_cpu(k1->rmap.rm_owner);
 386        b = be64_to_cpu(k2->rmap.rm_owner);
 387        if (a < b)
 388                return 1;
 389        else if (a > b)
 390                return 0;
 391        a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
 392        b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
 393        if (a <= b)
 394                return 1;
 395        return 0;
 396}
 397
 398STATIC int
 399xfs_rmapbt_recs_inorder(
 400        struct xfs_btree_cur    *cur,
 401        union xfs_btree_rec     *r1,
 402        union xfs_btree_rec     *r2)
 403{
 404        uint32_t                x;
 405        uint32_t                y;
 406        uint64_t                a;
 407        uint64_t                b;
 408
 409        x = be32_to_cpu(r1->rmap.rm_startblock);
 410        y = be32_to_cpu(r2->rmap.rm_startblock);
 411        if (x < y)
 412                return 1;
 413        else if (x > y)
 414                return 0;
 415        a = be64_to_cpu(r1->rmap.rm_owner);
 416        b = be64_to_cpu(r2->rmap.rm_owner);
 417        if (a < b)
 418                return 1;
 419        else if (a > b)
 420                return 0;
 421        a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
 422        b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
 423        if (a <= b)
 424                return 1;
 425        return 0;
 426}
 427
 428static const struct xfs_btree_ops xfs_rmapbt_ops = {
 429        .rec_len                = sizeof(struct xfs_rmap_rec),
 430        .key_len                = 2 * sizeof(struct xfs_rmap_key),
 431
 432        .dup_cursor             = xfs_rmapbt_dup_cursor,
 433        .set_root               = xfs_rmapbt_set_root,
 434        .alloc_block            = xfs_rmapbt_alloc_block,
 435        .free_block             = xfs_rmapbt_free_block,
 436        .get_minrecs            = xfs_rmapbt_get_minrecs,
 437        .get_maxrecs            = xfs_rmapbt_get_maxrecs,
 438        .init_key_from_rec      = xfs_rmapbt_init_key_from_rec,
 439        .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
 440        .init_rec_from_cur      = xfs_rmapbt_init_rec_from_cur,
 441        .init_ptr_from_cur      = xfs_rmapbt_init_ptr_from_cur,
 442        .key_diff               = xfs_rmapbt_key_diff,
 443        .buf_ops                = &xfs_rmapbt_buf_ops,
 444        .diff_two_keys          = xfs_rmapbt_diff_two_keys,
 445        .keys_inorder           = xfs_rmapbt_keys_inorder,
 446        .recs_inorder           = xfs_rmapbt_recs_inorder,
 447};
 448
 449static struct xfs_btree_cur *
 450xfs_rmapbt_init_common(
 451        struct xfs_mount        *mp,
 452        struct xfs_trans        *tp,
 453        xfs_agnumber_t          agno)
 454{
 455        struct xfs_btree_cur    *cur;
 456
 457        cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
 458        cur->bc_tp = tp;
 459        cur->bc_mp = mp;
 460        /* Overlapping btree; 2 keys per pointer. */
 461        cur->bc_btnum = XFS_BTNUM_RMAP;
 462        cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
 463        cur->bc_blocklog = mp->m_sb.sb_blocklog;
 464        cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
 465        cur->bc_ag.agno = agno;
 466        cur->bc_ops = &xfs_rmapbt_ops;
 467
 468        return cur;
 469}
 470
 471/* Create a new reverse mapping btree cursor. */
 472struct xfs_btree_cur *
 473xfs_rmapbt_init_cursor(
 474        struct xfs_mount        *mp,
 475        struct xfs_trans        *tp,
 476        struct xfs_buf          *agbp,
 477        xfs_agnumber_t          agno)
 478{
 479        struct xfs_agf          *agf = agbp->b_addr;
 480        struct xfs_btree_cur    *cur;
 481
 482        cur = xfs_rmapbt_init_common(mp, tp, agno);
 483        cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
 484        cur->bc_ag.agbp = agbp;
 485        return cur;
 486}
 487
 488/* Create a new reverse mapping btree cursor with a fake root for staging. */
 489struct xfs_btree_cur *
 490xfs_rmapbt_stage_cursor(
 491        struct xfs_mount        *mp,
 492        struct xbtree_afakeroot *afake,
 493        xfs_agnumber_t          agno)
 494{
 495        struct xfs_btree_cur    *cur;
 496
 497        cur = xfs_rmapbt_init_common(mp, NULL, agno);
 498        xfs_btree_stage_afakeroot(cur, afake);
 499        return cur;
 500}
 501
 502/*
 503 * Install a new reverse mapping btree root.  Caller is responsible for
 504 * invalidating and freeing the old btree blocks.
 505 */
 506void
 507xfs_rmapbt_commit_staged_btree(
 508        struct xfs_btree_cur    *cur,
 509        struct xfs_trans        *tp,
 510        struct xfs_buf          *agbp)
 511{
 512        struct xfs_agf          *agf = agbp->b_addr;
 513        struct xbtree_afakeroot *afake = cur->bc_ag.afake;
 514
 515        ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
 516
 517        agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
 518        agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
 519        agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
 520        xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
 521                                    XFS_AGF_RMAP_BLOCKS);
 522        xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
 523}
 524
 525/*
 526 * Calculate number of records in an rmap btree block.
 527 */
 528int
 529xfs_rmapbt_maxrecs(
 530        int                     blocklen,
 531        int                     leaf)
 532{
 533        blocklen -= XFS_RMAP_BLOCK_LEN;
 534
 535        if (leaf)
 536                return blocklen / sizeof(struct xfs_rmap_rec);
 537        return blocklen /
 538                (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
 539}
 540
 541/* Compute the maximum height of an rmap btree. */
 542void
 543xfs_rmapbt_compute_maxlevels(
 544        struct xfs_mount                *mp)
 545{
 546        /*
 547         * On a non-reflink filesystem, the maximum number of rmap
 548         * records is the number of blocks in the AG, hence the max
 549         * rmapbt height is log_$maxrecs($agblocks).  However, with
 550         * reflink each AG block can have up to 2^32 (per the refcount
 551         * record format) owners, which means that theoretically we
 552         * could face up to 2^64 rmap records.
 553         *
 554         * That effectively means that the max rmapbt height must be
 555         * XFS_BTREE_MAXLEVELS.  "Fortunately" we'll run out of AG
 556         * blocks to feed the rmapbt long before the rmapbt reaches
 557         * maximum height.  The reflink code uses ag_resv_critical to
 558         * disallow reflinking when less than 10% of the per-AG metadata
 559         * block reservation since the fallback is a regular file copy.
 560         */
 561        if (xfs_sb_version_hasreflink(&mp->m_sb))
 562                mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
 563        else
 564                mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
 565                                mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
 566}
 567
 568/* Calculate the refcount btree size for some records. */
 569xfs_extlen_t
 570xfs_rmapbt_calc_size(
 571        struct xfs_mount        *mp,
 572        unsigned long long      len)
 573{
 574        return xfs_btree_calc_size(mp->m_rmap_mnr, len);
 575}
 576
 577/*
 578 * Calculate the maximum refcount btree size.
 579 */
 580xfs_extlen_t
 581xfs_rmapbt_max_size(
 582        struct xfs_mount        *mp,
 583        xfs_agblock_t           agblocks)
 584{
 585        /* Bail out if we're uninitialized, which can happen in mkfs. */
 586        if (mp->m_rmap_mxr[0] == 0)
 587                return 0;
 588
 589        return xfs_rmapbt_calc_size(mp, agblocks);
 590}
 591
 592/*
 593 * Figure out how many blocks to reserve and how many are used by this btree.
 594 */
 595int
 596xfs_rmapbt_calc_reserves(
 597        struct xfs_mount        *mp,
 598        struct xfs_trans        *tp,
 599        xfs_agnumber_t          agno,
 600        xfs_extlen_t            *ask,
 601        xfs_extlen_t            *used)
 602{
 603        struct xfs_buf          *agbp;
 604        struct xfs_agf          *agf;
 605        xfs_agblock_t           agblocks;
 606        xfs_extlen_t            tree_len;
 607        int                     error;
 608
 609        if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 610                return 0;
 611
 612        error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
 613        if (error)
 614                return error;
 615
 616        agf = agbp->b_addr;
 617        agblocks = be32_to_cpu(agf->agf_length);
 618        tree_len = be32_to_cpu(agf->agf_rmap_blocks);
 619        xfs_trans_brelse(tp, agbp);
 620
 621        /*
 622         * The log is permanently allocated, so the space it occupies will
 623         * never be available for the kinds of things that would require btree
 624         * expansion.  We therefore can pretend the space isn't there.
 625         */
 626        if (mp->m_sb.sb_logstart &&
 627            XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno)
 628                agblocks -= mp->m_sb.sb_logblocks;
 629
 630        /* Reserve 1% of the AG or enough for 1 block per record. */
 631        *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
 632        *used += tree_len;
 633
 634        return error;
 635}
 636