1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_VERIFIER_H 5#define _LINUX_BPF_VERIFIER_H 1 6 7#include <linux/bpf.h> /* for enum bpf_reg_type */ 8#include <linux/btf.h> /* for struct btf and btf_id() */ 9#include <linux/filter.h> /* for MAX_BPF_STACK */ 10#include <linux/tnum.h> 11 12/* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16#define BPF_MAX_VAR_OFF (1 << 29) 17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20#define BPF_MAX_VAR_SIZ (1 << 29) 21 22/* Liveness marks, used for registers and spilled-regs (in stack slots). 23 * Read marks propagate upwards until they find a write mark; they record that 24 * "one of this state's descendants read this reg" (and therefore the reg is 25 * relevant for states_equal() checks). 26 * Write marks collect downwards and do not propagate; they record that "the 27 * straight-line code that reached this state (from its parent) wrote this reg" 28 * (and therefore that reads propagated from this state or its descendants 29 * should not propagate to its parent). 30 * A state with a write mark can receive read marks; it just won't propagate 31 * them to its parent, since the write mark is a property, not of the state, 32 * but of the link between it and its parent. See mark_reg_read() and 33 * mark_stack_slot_read() in kernel/bpf/verifier.c. 34 */ 35enum bpf_reg_liveness { 36 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 37 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 38 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 39 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 40 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 41 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 42}; 43 44struct bpf_reg_state { 45 /* Ordering of fields matters. See states_equal() */ 46 enum bpf_reg_type type; 47 /* Fixed part of pointer offset, pointer types only */ 48 s32 off; 49 union { 50 /* valid when type == PTR_TO_PACKET */ 51 int range; 52 53 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 54 * PTR_TO_MAP_VALUE_OR_NULL 55 */ 56 struct bpf_map *map_ptr; 57 58 /* for PTR_TO_BTF_ID */ 59 struct { 60 struct btf *btf; 61 u32 btf_id; 62 }; 63 64 u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 65 66 /* Max size from any of the above. */ 67 struct { 68 unsigned long raw1; 69 unsigned long raw2; 70 } raw; 71 72 u32 subprogno; /* for PTR_TO_FUNC */ 73 }; 74 /* For PTR_TO_PACKET, used to find other pointers with the same variable 75 * offset, so they can share range knowledge. 76 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 77 * came from, when one is tested for != NULL. 78 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 79 * for the purpose of tracking that it's freed. 80 * For PTR_TO_SOCKET this is used to share which pointers retain the 81 * same reference to the socket, to determine proper reference freeing. 82 */ 83 u32 id; 84 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 85 * from a pointer-cast helper, bpf_sk_fullsock() and 86 * bpf_tcp_sock(). 87 * 88 * Consider the following where "sk" is a reference counted 89 * pointer returned from "sk = bpf_sk_lookup_tcp();": 90 * 91 * 1: sk = bpf_sk_lookup_tcp(); 92 * 2: if (!sk) { return 0; } 93 * 3: fullsock = bpf_sk_fullsock(sk); 94 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 95 * 5: tp = bpf_tcp_sock(fullsock); 96 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 97 * 7: bpf_sk_release(sk); 98 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 99 * 100 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 101 * "tp" ptr should be invalidated also. In order to do that, 102 * the reg holding "fullsock" and "sk" need to remember 103 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 104 * such that the verifier can reset all regs which have 105 * ref_obj_id matching the sk_reg->id. 106 * 107 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 108 * sk_reg->id will stay as NULL-marking purpose only. 109 * After NULL-marking is done, sk_reg->id can be reset to 0. 110 * 111 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 112 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 113 * 114 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 115 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 116 * which is the same as sk_reg->ref_obj_id. 117 * 118 * From the verifier perspective, if sk, fullsock and tp 119 * are not NULL, they are the same ptr with different 120 * reg->type. In particular, bpf_sk_release(tp) is also 121 * allowed and has the same effect as bpf_sk_release(sk). 122 */ 123 u32 ref_obj_id; 124 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 125 * the actual value. 126 * For pointer types, this represents the variable part of the offset 127 * from the pointed-to object, and is shared with all bpf_reg_states 128 * with the same id as us. 129 */ 130 struct tnum var_off; 131 /* Used to determine if any memory access using this register will 132 * result in a bad access. 133 * These refer to the same value as var_off, not necessarily the actual 134 * contents of the register. 135 */ 136 s64 smin_value; /* minimum possible (s64)value */ 137 s64 smax_value; /* maximum possible (s64)value */ 138 u64 umin_value; /* minimum possible (u64)value */ 139 u64 umax_value; /* maximum possible (u64)value */ 140 s32 s32_min_value; /* minimum possible (s32)value */ 141 s32 s32_max_value; /* maximum possible (s32)value */ 142 u32 u32_min_value; /* minimum possible (u32)value */ 143 u32 u32_max_value; /* maximum possible (u32)value */ 144 /* parentage chain for liveness checking */ 145 struct bpf_reg_state *parent; 146 /* Inside the callee two registers can be both PTR_TO_STACK like 147 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 148 * while another to the caller's stack. To differentiate them 'frameno' 149 * is used which is an index in bpf_verifier_state->frame[] array 150 * pointing to bpf_func_state. 151 */ 152 u32 frameno; 153 /* Tracks subreg definition. The stored value is the insn_idx of the 154 * writing insn. This is safe because subreg_def is used before any insn 155 * patching which only happens after main verification finished. 156 */ 157 s32 subreg_def; 158 enum bpf_reg_liveness live; 159 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 160 bool precise; 161}; 162 163enum bpf_stack_slot_type { 164 STACK_INVALID, /* nothing was stored in this stack slot */ 165 STACK_SPILL, /* register spilled into stack */ 166 STACK_MISC, /* BPF program wrote some data into this slot */ 167 STACK_ZERO, /* BPF program wrote constant zero */ 168}; 169 170#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 171 172struct bpf_stack_state { 173 struct bpf_reg_state spilled_ptr; 174 u8 slot_type[BPF_REG_SIZE]; 175}; 176 177struct bpf_reference_state { 178 /* Track each reference created with a unique id, even if the same 179 * instruction creates the reference multiple times (eg, via CALL). 180 */ 181 int id; 182 /* Instruction where the allocation of this reference occurred. This 183 * is used purely to inform the user of a reference leak. 184 */ 185 int insn_idx; 186}; 187 188/* state of the program: 189 * type of all registers and stack info 190 */ 191struct bpf_func_state { 192 struct bpf_reg_state regs[MAX_BPF_REG]; 193 /* index of call instruction that called into this func */ 194 int callsite; 195 /* stack frame number of this function state from pov of 196 * enclosing bpf_verifier_state. 197 * 0 = main function, 1 = first callee. 198 */ 199 u32 frameno; 200 /* subprog number == index within subprog_info 201 * zero == main subprog 202 */ 203 u32 subprogno; 204 205 /* The following fields should be last. See copy_func_state() */ 206 int acquired_refs; 207 struct bpf_reference_state *refs; 208 int allocated_stack; 209 bool in_callback_fn; 210 struct bpf_stack_state *stack; 211}; 212 213struct bpf_idx_pair { 214 u32 prev_idx; 215 u32 idx; 216}; 217 218#define MAX_CALL_FRAMES 8 219struct bpf_verifier_state { 220 /* call stack tracking */ 221 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 222 struct bpf_verifier_state *parent; 223 /* 224 * 'branches' field is the number of branches left to explore: 225 * 0 - all possible paths from this state reached bpf_exit or 226 * were safely pruned 227 * 1 - at least one path is being explored. 228 * This state hasn't reached bpf_exit 229 * 2 - at least two paths are being explored. 230 * This state is an immediate parent of two children. 231 * One is fallthrough branch with branches==1 and another 232 * state is pushed into stack (to be explored later) also with 233 * branches==1. The parent of this state has branches==1. 234 * The verifier state tree connected via 'parent' pointer looks like: 235 * 1 236 * 1 237 * 2 -> 1 (first 'if' pushed into stack) 238 * 1 239 * 2 -> 1 (second 'if' pushed into stack) 240 * 1 241 * 1 242 * 1 bpf_exit. 243 * 244 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 245 * and the verifier state tree will look: 246 * 1 247 * 1 248 * 2 -> 1 (first 'if' pushed into stack) 249 * 1 250 * 1 -> 1 (second 'if' pushed into stack) 251 * 0 252 * 0 253 * 0 bpf_exit. 254 * After pop_stack() the do_check() will resume at second 'if'. 255 * 256 * If is_state_visited() sees a state with branches > 0 it means 257 * there is a loop. If such state is exactly equal to the current state 258 * it's an infinite loop. Note states_equal() checks for states 259 * equvalency, so two states being 'states_equal' does not mean 260 * infinite loop. The exact comparison is provided by 261 * states_maybe_looping() function. It's a stronger pre-check and 262 * much faster than states_equal(). 263 * 264 * This algorithm may not find all possible infinite loops or 265 * loop iteration count may be too high. 266 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 267 */ 268 u32 branches; 269 u32 insn_idx; 270 u32 curframe; 271 u32 active_spin_lock; 272 bool speculative; 273 274 /* first and last insn idx of this verifier state */ 275 u32 first_insn_idx; 276 u32 last_insn_idx; 277 /* jmp history recorded from first to last. 278 * backtracking is using it to go from last to first. 279 * For most states jmp_history_cnt is [0-3]. 280 * For loops can go up to ~40. 281 */ 282 struct bpf_idx_pair *jmp_history; 283 u32 jmp_history_cnt; 284}; 285 286#define bpf_get_spilled_reg(slot, frame) \ 287 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 288 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 289 ? &frame->stack[slot].spilled_ptr : NULL) 290 291/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 292#define bpf_for_each_spilled_reg(iter, frame, reg) \ 293 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 294 iter < frame->allocated_stack / BPF_REG_SIZE; \ 295 iter++, reg = bpf_get_spilled_reg(iter, frame)) 296 297/* linked list of verifier states used to prune search */ 298struct bpf_verifier_state_list { 299 struct bpf_verifier_state state; 300 struct bpf_verifier_state_list *next; 301 int miss_cnt, hit_cnt; 302}; 303 304/* Possible states for alu_state member. */ 305#define BPF_ALU_SANITIZE_SRC (1U << 0) 306#define BPF_ALU_SANITIZE_DST (1U << 1) 307#define BPF_ALU_NEG_VALUE (1U << 2) 308#define BPF_ALU_NON_POINTER (1U << 3) 309#define BPF_ALU_IMMEDIATE (1U << 4) 310#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 311 BPF_ALU_SANITIZE_DST) 312 313struct bpf_insn_aux_data { 314 union { 315 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 316 unsigned long map_ptr_state; /* pointer/poison value for maps */ 317 s32 call_imm; /* saved imm field of call insn */ 318 u32 alu_limit; /* limit for add/sub register with pointer */ 319 struct { 320 u32 map_index; /* index into used_maps[] */ 321 u32 map_off; /* offset from value base address */ 322 }; 323 struct { 324 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 325 union { 326 struct { 327 struct btf *btf; 328 u32 btf_id; /* btf_id for struct typed var */ 329 }; 330 u32 mem_size; /* mem_size for non-struct typed var */ 331 }; 332 } btf_var; 333 }; 334 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 335 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 336 int sanitize_stack_off; /* stack slot to be cleared */ 337 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 338 bool zext_dst; /* this insn zero extends dst reg */ 339 u8 alu_state; /* used in combination with alu_limit */ 340 341 /* below fields are initialized once */ 342 unsigned int orig_idx; /* original instruction index */ 343 bool prune_point; 344}; 345 346#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 347#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 348 349#define BPF_VERIFIER_TMP_LOG_SIZE 1024 350 351struct bpf_verifier_log { 352 u32 level; 353 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 354 char __user *ubuf; 355 u32 len_used; 356 u32 len_total; 357}; 358 359static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 360{ 361 return log->len_used >= log->len_total - 1; 362} 363 364#define BPF_LOG_LEVEL1 1 365#define BPF_LOG_LEVEL2 2 366#define BPF_LOG_STATS 4 367#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 368#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS) 369#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 370 371static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 372{ 373 return log && 374 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) || 375 log->level == BPF_LOG_KERNEL); 376} 377 378#define BPF_MAX_SUBPROGS 256 379 380struct bpf_subprog_info { 381 /* 'start' has to be the first field otherwise find_subprog() won't work */ 382 u32 start; /* insn idx of function entry point */ 383 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 384 u16 stack_depth; /* max. stack depth used by this function */ 385 bool has_tail_call; 386 bool tail_call_reachable; 387 bool has_ld_abs; 388}; 389 390/* single container for all structs 391 * one verifier_env per bpf_check() call 392 */ 393struct bpf_verifier_env { 394 u32 insn_idx; 395 u32 prev_insn_idx; 396 struct bpf_prog *prog; /* eBPF program being verified */ 397 const struct bpf_verifier_ops *ops; 398 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 399 int stack_size; /* number of states to be processed */ 400 bool strict_alignment; /* perform strict pointer alignment checks */ 401 bool test_state_freq; /* test verifier with different pruning frequency */ 402 struct bpf_verifier_state *cur_state; /* current verifier state */ 403 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 404 struct bpf_verifier_state_list *free_list; 405 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 406 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 407 u32 used_map_cnt; /* number of used maps */ 408 u32 used_btf_cnt; /* number of used BTF objects */ 409 u32 id_gen; /* used to generate unique reg IDs */ 410 bool allow_ptr_leaks; 411 bool allow_uninit_stack; 412 bool allow_ptr_to_map_access; 413 bool bpf_capable; 414 bool bypass_spec_v1; 415 bool bypass_spec_v4; 416 bool seen_direct_write; 417 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 418 const struct bpf_line_info *prev_linfo; 419 struct bpf_verifier_log log; 420 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 421 struct { 422 int *insn_state; 423 int *insn_stack; 424 int cur_stack; 425 } cfg; 426 u32 pass_cnt; /* number of times do_check() was called */ 427 u32 subprog_cnt; 428 /* number of instructions analyzed by the verifier */ 429 u32 prev_insn_processed, insn_processed; 430 /* number of jmps, calls, exits analyzed so far */ 431 u32 prev_jmps_processed, jmps_processed; 432 /* total verification time */ 433 u64 verification_time; 434 /* maximum number of verifier states kept in 'branching' instructions */ 435 u32 max_states_per_insn; 436 /* total number of allocated verifier states */ 437 u32 total_states; 438 /* some states are freed during program analysis. 439 * this is peak number of states. this number dominates kernel 440 * memory consumption during verification 441 */ 442 u32 peak_states; 443 /* longest register parentage chain walked for liveness marking */ 444 u32 longest_mark_read_walk; 445}; 446 447__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 448 const char *fmt, va_list args); 449__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 450 const char *fmt, ...); 451__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 452 const char *fmt, ...); 453 454static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 455{ 456 struct bpf_verifier_state *cur = env->cur_state; 457 458 return cur->frame[cur->curframe]; 459} 460 461static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 462{ 463 return cur_func(env)->regs; 464} 465 466int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 467int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 468 int insn_idx, int prev_insn_idx); 469int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 470void 471bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 472 struct bpf_insn *insn); 473void 474bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 475 476int check_ctx_reg(struct bpf_verifier_env *env, 477 const struct bpf_reg_state *reg, int regno); 478int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 479 u32 regno, u32 mem_size); 480 481/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 482static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 483 struct btf *btf, u32 btf_id) 484{ 485 if (tgt_prog) 486 return ((u64)tgt_prog->aux->id << 32) | btf_id; 487 else 488 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 489} 490 491/* unpack the IDs from the key as constructed above */ 492static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 493{ 494 if (obj_id) 495 *obj_id = key >> 32; 496 if (btf_id) 497 *btf_id = key & 0x7FFFFFFF; 498} 499 500int bpf_check_attach_target(struct bpf_verifier_log *log, 501 const struct bpf_prog *prog, 502 const struct bpf_prog *tgt_prog, 503 u32 btf_id, 504 struct bpf_attach_target_info *tgt_info); 505 506#endif /* _LINUX_BPF_VERIFIER_H */ 507