linux/include/linux/gfp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __LINUX_GFP_H
   3#define __LINUX_GFP_H
   4
   5#include <linux/mmdebug.h>
   6#include <linux/mmzone.h>
   7#include <linux/stddef.h>
   8#include <linux/linkage.h>
   9#include <linux/topology.h>
  10
  11/* The typedef is in types.h but we want the documentation here */
  12#if 0
  13/**
  14 * typedef gfp_t - Memory allocation flags.
  15 *
  16 * GFP flags are commonly used throughout Linux to indicate how memory
  17 * should be allocated.  The GFP acronym stands for get_free_pages(),
  18 * the underlying memory allocation function.  Not every GFP flag is
  19 * supported by every function which may allocate memory.  Most users
  20 * will want to use a plain ``GFP_KERNEL``.
  21 */
  22typedef unsigned int __bitwise gfp_t;
  23#endif
  24
  25struct vm_area_struct;
  26
  27/*
  28 * In case of changes, please don't forget to update
  29 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
  30 */
  31
  32/* Plain integer GFP bitmasks. Do not use this directly. */
  33#define ___GFP_DMA              0x01u
  34#define ___GFP_HIGHMEM          0x02u
  35#define ___GFP_DMA32            0x04u
  36#define ___GFP_MOVABLE          0x08u
  37#define ___GFP_RECLAIMABLE      0x10u
  38#define ___GFP_HIGH             0x20u
  39#define ___GFP_IO               0x40u
  40#define ___GFP_FS               0x80u
  41#define ___GFP_ZERO             0x100u
  42#define ___GFP_ATOMIC           0x200u
  43#define ___GFP_DIRECT_RECLAIM   0x400u
  44#define ___GFP_KSWAPD_RECLAIM   0x800u
  45#define ___GFP_WRITE            0x1000u
  46#define ___GFP_NOWARN           0x2000u
  47#define ___GFP_RETRY_MAYFAIL    0x4000u
  48#define ___GFP_NOFAIL           0x8000u
  49#define ___GFP_NORETRY          0x10000u
  50#define ___GFP_MEMALLOC         0x20000u
  51#define ___GFP_COMP             0x40000u
  52#define ___GFP_NOMEMALLOC       0x80000u
  53#define ___GFP_HARDWALL         0x100000u
  54#define ___GFP_THISNODE         0x200000u
  55#define ___GFP_ACCOUNT          0x400000u
  56#ifdef CONFIG_LOCKDEP
  57#define ___GFP_NOLOCKDEP        0x800000u
  58#else
  59#define ___GFP_NOLOCKDEP        0
  60#endif
  61/* If the above are modified, __GFP_BITS_SHIFT may need updating */
  62
  63/*
  64 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
  65 *
  66 * Do not put any conditional on these. If necessary modify the definitions
  67 * without the underscores and use them consistently. The definitions here may
  68 * be used in bit comparisons.
  69 */
  70#define __GFP_DMA       ((__force gfp_t)___GFP_DMA)
  71#define __GFP_HIGHMEM   ((__force gfp_t)___GFP_HIGHMEM)
  72#define __GFP_DMA32     ((__force gfp_t)___GFP_DMA32)
  73#define __GFP_MOVABLE   ((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
  74#define GFP_ZONEMASK    (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
  75
  76/**
  77 * DOC: Page mobility and placement hints
  78 *
  79 * Page mobility and placement hints
  80 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  81 *
  82 * These flags provide hints about how mobile the page is. Pages with similar
  83 * mobility are placed within the same pageblocks to minimise problems due
  84 * to external fragmentation.
  85 *
  86 * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
  87 * moved by page migration during memory compaction or can be reclaimed.
  88 *
  89 * %__GFP_RECLAIMABLE is used for slab allocations that specify
  90 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
  91 *
  92 * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
  93 * these pages will be spread between local zones to avoid all the dirty
  94 * pages being in one zone (fair zone allocation policy).
  95 *
  96 * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
  97 *
  98 * %__GFP_THISNODE forces the allocation to be satisfied from the requested
  99 * node with no fallbacks or placement policy enforcements.
 100 *
 101 * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
 102 */
 103#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
 104#define __GFP_WRITE     ((__force gfp_t)___GFP_WRITE)
 105#define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
 106#define __GFP_THISNODE  ((__force gfp_t)___GFP_THISNODE)
 107#define __GFP_ACCOUNT   ((__force gfp_t)___GFP_ACCOUNT)
 108
 109/**
 110 * DOC: Watermark modifiers
 111 *
 112 * Watermark modifiers -- controls access to emergency reserves
 113 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 114 *
 115 * %__GFP_HIGH indicates that the caller is high-priority and that granting
 116 * the request is necessary before the system can make forward progress.
 117 * For example, creating an IO context to clean pages.
 118 *
 119 * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
 120 * high priority. Users are typically interrupt handlers. This may be
 121 * used in conjunction with %__GFP_HIGH
 122 *
 123 * %__GFP_MEMALLOC allows access to all memory. This should only be used when
 124 * the caller guarantees the allocation will allow more memory to be freed
 125 * very shortly e.g. process exiting or swapping. Users either should
 126 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
 127 * Users of this flag have to be extremely careful to not deplete the reserve
 128 * completely and implement a throttling mechanism which controls the
 129 * consumption of the reserve based on the amount of freed memory.
 130 * Usage of a pre-allocated pool (e.g. mempool) should be always considered
 131 * before using this flag.
 132 *
 133 * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
 134 * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
 135 */
 136#define __GFP_ATOMIC    ((__force gfp_t)___GFP_ATOMIC)
 137#define __GFP_HIGH      ((__force gfp_t)___GFP_HIGH)
 138#define __GFP_MEMALLOC  ((__force gfp_t)___GFP_MEMALLOC)
 139#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
 140
 141/**
 142 * DOC: Reclaim modifiers
 143 *
 144 * Reclaim modifiers
 145 * ~~~~~~~~~~~~~~~~~
 146 * Please note that all the following flags are only applicable to sleepable
 147 * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
 148 *
 149 * %__GFP_IO can start physical IO.
 150 *
 151 * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
 152 * allocator recursing into the filesystem which might already be holding
 153 * locks.
 154 *
 155 * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
 156 * This flag can be cleared to avoid unnecessary delays when a fallback
 157 * option is available.
 158 *
 159 * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
 160 * the low watermark is reached and have it reclaim pages until the high
 161 * watermark is reached. A caller may wish to clear this flag when fallback
 162 * options are available and the reclaim is likely to disrupt the system. The
 163 * canonical example is THP allocation where a fallback is cheap but
 164 * reclaim/compaction may cause indirect stalls.
 165 *
 166 * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
 167 *
 168 * The default allocator behavior depends on the request size. We have a concept
 169 * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
 170 * !costly allocations are too essential to fail so they are implicitly
 171 * non-failing by default (with some exceptions like OOM victims might fail so
 172 * the caller still has to check for failures) while costly requests try to be
 173 * not disruptive and back off even without invoking the OOM killer.
 174 * The following three modifiers might be used to override some of these
 175 * implicit rules
 176 *
 177 * %__GFP_NORETRY: The VM implementation will try only very lightweight
 178 * memory direct reclaim to get some memory under memory pressure (thus
 179 * it can sleep). It will avoid disruptive actions like OOM killer. The
 180 * caller must handle the failure which is quite likely to happen under
 181 * heavy memory pressure. The flag is suitable when failure can easily be
 182 * handled at small cost, such as reduced throughput
 183 *
 184 * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
 185 * procedures that have previously failed if there is some indication
 186 * that progress has been made else where.  It can wait for other
 187 * tasks to attempt high level approaches to freeing memory such as
 188 * compaction (which removes fragmentation) and page-out.
 189 * There is still a definite limit to the number of retries, but it is
 190 * a larger limit than with %__GFP_NORETRY.
 191 * Allocations with this flag may fail, but only when there is
 192 * genuinely little unused memory. While these allocations do not
 193 * directly trigger the OOM killer, their failure indicates that
 194 * the system is likely to need to use the OOM killer soon.  The
 195 * caller must handle failure, but can reasonably do so by failing
 196 * a higher-level request, or completing it only in a much less
 197 * efficient manner.
 198 * If the allocation does fail, and the caller is in a position to
 199 * free some non-essential memory, doing so could benefit the system
 200 * as a whole.
 201 *
 202 * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
 203 * cannot handle allocation failures. The allocation could block
 204 * indefinitely but will never return with failure. Testing for
 205 * failure is pointless.
 206 * New users should be evaluated carefully (and the flag should be
 207 * used only when there is no reasonable failure policy) but it is
 208 * definitely preferable to use the flag rather than opencode endless
 209 * loop around allocator.
 210 * Using this flag for costly allocations is _highly_ discouraged.
 211 */
 212#define __GFP_IO        ((__force gfp_t)___GFP_IO)
 213#define __GFP_FS        ((__force gfp_t)___GFP_FS)
 214#define __GFP_DIRECT_RECLAIM    ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
 215#define __GFP_KSWAPD_RECLAIM    ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
 216#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
 217#define __GFP_RETRY_MAYFAIL     ((__force gfp_t)___GFP_RETRY_MAYFAIL)
 218#define __GFP_NOFAIL    ((__force gfp_t)___GFP_NOFAIL)
 219#define __GFP_NORETRY   ((__force gfp_t)___GFP_NORETRY)
 220
 221/**
 222 * DOC: Action modifiers
 223 *
 224 * Action modifiers
 225 * ~~~~~~~~~~~~~~~~
 226 *
 227 * %__GFP_NOWARN suppresses allocation failure reports.
 228 *
 229 * %__GFP_COMP address compound page metadata.
 230 *
 231 * %__GFP_ZERO returns a zeroed page on success.
 232 */
 233#define __GFP_NOWARN    ((__force gfp_t)___GFP_NOWARN)
 234#define __GFP_COMP      ((__force gfp_t)___GFP_COMP)
 235#define __GFP_ZERO      ((__force gfp_t)___GFP_ZERO)
 236
 237/* Disable lockdep for GFP context tracking */
 238#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
 239
 240/* Room for N __GFP_FOO bits */
 241#define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP))
 242#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
 243
 244/**
 245 * DOC: Useful GFP flag combinations
 246 *
 247 * Useful GFP flag combinations
 248 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 249 *
 250 * Useful GFP flag combinations that are commonly used. It is recommended
 251 * that subsystems start with one of these combinations and then set/clear
 252 * %__GFP_FOO flags as necessary.
 253 *
 254 * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
 255 * watermark is applied to allow access to "atomic reserves".
 256 * The current implementation doesn't support NMI and few other strict
 257 * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT.
 258 *
 259 * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
 260 * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
 261 *
 262 * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
 263 * accounted to kmemcg.
 264 *
 265 * %GFP_NOWAIT is for kernel allocations that should not stall for direct
 266 * reclaim, start physical IO or use any filesystem callback.
 267 *
 268 * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
 269 * that do not require the starting of any physical IO.
 270 * Please try to avoid using this flag directly and instead use
 271 * memalloc_noio_{save,restore} to mark the whole scope which cannot
 272 * perform any IO with a short explanation why. All allocation requests
 273 * will inherit GFP_NOIO implicitly.
 274 *
 275 * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
 276 * Please try to avoid using this flag directly and instead use
 277 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
 278 * recurse into the FS layer with a short explanation why. All allocation
 279 * requests will inherit GFP_NOFS implicitly.
 280 *
 281 * %GFP_USER is for userspace allocations that also need to be directly
 282 * accessibly by the kernel or hardware. It is typically used by hardware
 283 * for buffers that are mapped to userspace (e.g. graphics) that hardware
 284 * still must DMA to. cpuset limits are enforced for these allocations.
 285 *
 286 * %GFP_DMA exists for historical reasons and should be avoided where possible.
 287 * The flags indicates that the caller requires that the lowest zone be
 288 * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
 289 * it would require careful auditing as some users really require it and
 290 * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
 291 * lowest zone as a type of emergency reserve.
 292 *
 293 * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
 294 * address.
 295 *
 296 * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
 297 * do not need to be directly accessible by the kernel but that cannot
 298 * move once in use. An example may be a hardware allocation that maps
 299 * data directly into userspace but has no addressing limitations.
 300 *
 301 * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
 302 * need direct access to but can use kmap() when access is required. They
 303 * are expected to be movable via page reclaim or page migration. Typically,
 304 * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
 305 *
 306 * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
 307 * are compound allocations that will generally fail quickly if memory is not
 308 * available and will not wake kswapd/kcompactd on failure. The _LIGHT
 309 * version does not attempt reclaim/compaction at all and is by default used
 310 * in page fault path, while the non-light is used by khugepaged.
 311 */
 312#define GFP_ATOMIC      (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
 313#define GFP_KERNEL      (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
 314#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
 315#define GFP_NOWAIT      (__GFP_KSWAPD_RECLAIM)
 316#define GFP_NOIO        (__GFP_RECLAIM)
 317#define GFP_NOFS        (__GFP_RECLAIM | __GFP_IO)
 318#define GFP_USER        (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
 319#define GFP_DMA         __GFP_DMA
 320#define GFP_DMA32       __GFP_DMA32
 321#define GFP_HIGHUSER    (GFP_USER | __GFP_HIGHMEM)
 322#define GFP_HIGHUSER_MOVABLE    (GFP_HIGHUSER | __GFP_MOVABLE)
 323#define GFP_TRANSHUGE_LIGHT     ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
 324                         __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
 325#define GFP_TRANSHUGE   (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
 326
 327/* Convert GFP flags to their corresponding migrate type */
 328#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
 329#define GFP_MOVABLE_SHIFT 3
 330
 331static inline int gfp_migratetype(const gfp_t gfp_flags)
 332{
 333        VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
 334        BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
 335        BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
 336
 337        if (unlikely(page_group_by_mobility_disabled))
 338                return MIGRATE_UNMOVABLE;
 339
 340        /* Group based on mobility */
 341        return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
 342}
 343#undef GFP_MOVABLE_MASK
 344#undef GFP_MOVABLE_SHIFT
 345
 346static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
 347{
 348        return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
 349}
 350
 351/**
 352 * gfpflags_normal_context - is gfp_flags a normal sleepable context?
 353 * @gfp_flags: gfp_flags to test
 354 *
 355 * Test whether @gfp_flags indicates that the allocation is from the
 356 * %current context and allowed to sleep.
 357 *
 358 * An allocation being allowed to block doesn't mean it owns the %current
 359 * context.  When direct reclaim path tries to allocate memory, the
 360 * allocation context is nested inside whatever %current was doing at the
 361 * time of the original allocation.  The nested allocation may be allowed
 362 * to block but modifying anything %current owns can corrupt the outer
 363 * context's expectations.
 364 *
 365 * %true result from this function indicates that the allocation context
 366 * can sleep and use anything that's associated with %current.
 367 */
 368static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
 369{
 370        return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
 371                __GFP_DIRECT_RECLAIM;
 372}
 373
 374#ifdef CONFIG_HIGHMEM
 375#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
 376#else
 377#define OPT_ZONE_HIGHMEM ZONE_NORMAL
 378#endif
 379
 380#ifdef CONFIG_ZONE_DMA
 381#define OPT_ZONE_DMA ZONE_DMA
 382#else
 383#define OPT_ZONE_DMA ZONE_NORMAL
 384#endif
 385
 386#ifdef CONFIG_ZONE_DMA32
 387#define OPT_ZONE_DMA32 ZONE_DMA32
 388#else
 389#define OPT_ZONE_DMA32 ZONE_NORMAL
 390#endif
 391
 392/*
 393 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
 394 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
 395 * bits long and there are 16 of them to cover all possible combinations of
 396 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
 397 *
 398 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
 399 * But GFP_MOVABLE is not only a zone specifier but also an allocation
 400 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
 401 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
 402 *
 403 *       bit       result
 404 *       =================
 405 *       0x0    => NORMAL
 406 *       0x1    => DMA or NORMAL
 407 *       0x2    => HIGHMEM or NORMAL
 408 *       0x3    => BAD (DMA+HIGHMEM)
 409 *       0x4    => DMA32 or NORMAL
 410 *       0x5    => BAD (DMA+DMA32)
 411 *       0x6    => BAD (HIGHMEM+DMA32)
 412 *       0x7    => BAD (HIGHMEM+DMA32+DMA)
 413 *       0x8    => NORMAL (MOVABLE+0)
 414 *       0x9    => DMA or NORMAL (MOVABLE+DMA)
 415 *       0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
 416 *       0xb    => BAD (MOVABLE+HIGHMEM+DMA)
 417 *       0xc    => DMA32 or NORMAL (MOVABLE+DMA32)
 418 *       0xd    => BAD (MOVABLE+DMA32+DMA)
 419 *       0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
 420 *       0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
 421 *
 422 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
 423 */
 424
 425#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
 426/* ZONE_DEVICE is not a valid GFP zone specifier */
 427#define GFP_ZONES_SHIFT 2
 428#else
 429#define GFP_ZONES_SHIFT ZONES_SHIFT
 430#endif
 431
 432#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
 433#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
 434#endif
 435
 436#define GFP_ZONE_TABLE ( \
 437        (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT)                                   \
 438        | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT)                       \
 439        | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT)               \
 440        | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT)                   \
 441        | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT)                    \
 442        | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT)    \
 443        | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
 444        | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
 445)
 446
 447/*
 448 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
 449 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
 450 * entry starting with bit 0. Bit is set if the combination is not
 451 * allowed.
 452 */
 453#define GFP_ZONE_BAD ( \
 454        1 << (___GFP_DMA | ___GFP_HIGHMEM)                                    \
 455        | 1 << (___GFP_DMA | ___GFP_DMA32)                                    \
 456        | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM)                                \
 457        | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM)                   \
 458        | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA)                 \
 459        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA)                   \
 460        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM)               \
 461        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM)  \
 462)
 463
 464static inline enum zone_type gfp_zone(gfp_t flags)
 465{
 466        enum zone_type z;
 467        int bit = (__force int) (flags & GFP_ZONEMASK);
 468
 469        z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
 470                                         ((1 << GFP_ZONES_SHIFT) - 1);
 471        VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
 472        return z;
 473}
 474
 475/*
 476 * There is only one page-allocator function, and two main namespaces to
 477 * it. The alloc_page*() variants return 'struct page *' and as such
 478 * can allocate highmem pages, the *get*page*() variants return
 479 * virtual kernel addresses to the allocated page(s).
 480 */
 481
 482static inline int gfp_zonelist(gfp_t flags)
 483{
 484#ifdef CONFIG_NUMA
 485        if (unlikely(flags & __GFP_THISNODE))
 486                return ZONELIST_NOFALLBACK;
 487#endif
 488        return ZONELIST_FALLBACK;
 489}
 490
 491/*
 492 * We get the zone list from the current node and the gfp_mask.
 493 * This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
 494 * There are two zonelists per node, one for all zones with memory and
 495 * one containing just zones from the node the zonelist belongs to.
 496 *
 497 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
 498 * optimized to &contig_page_data at compile-time.
 499 */
 500static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
 501{
 502        return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
 503}
 504
 505#ifndef HAVE_ARCH_FREE_PAGE
 506static inline void arch_free_page(struct page *page, int order) { }
 507#endif
 508#ifndef HAVE_ARCH_ALLOC_PAGE
 509static inline void arch_alloc_page(struct page *page, int order) { }
 510#endif
 511#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
 512static inline int arch_make_page_accessible(struct page *page)
 513{
 514        return 0;
 515}
 516#endif
 517
 518struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
 519                nodemask_t *nodemask);
 520
 521unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
 522                                nodemask_t *nodemask, int nr_pages,
 523                                struct list_head *page_list,
 524                                struct page **page_array);
 525
 526/* Bulk allocate order-0 pages */
 527static inline unsigned long
 528alloc_pages_bulk_list(gfp_t gfp, unsigned long nr_pages, struct list_head *list)
 529{
 530        return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, list, NULL);
 531}
 532
 533static inline unsigned long
 534alloc_pages_bulk_array(gfp_t gfp, unsigned long nr_pages, struct page **page_array)
 535{
 536        return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, NULL, page_array);
 537}
 538
 539/*
 540 * Allocate pages, preferring the node given as nid. The node must be valid and
 541 * online. For more general interface, see alloc_pages_node().
 542 */
 543static inline struct page *
 544__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
 545{
 546        VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
 547        VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
 548
 549        return __alloc_pages(gfp_mask, order, nid, NULL);
 550}
 551
 552/*
 553 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
 554 * prefer the current CPU's closest node. Otherwise node must be valid and
 555 * online.
 556 */
 557static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
 558                                                unsigned int order)
 559{
 560        if (nid == NUMA_NO_NODE)
 561                nid = numa_mem_id();
 562
 563        return __alloc_pages_node(nid, gfp_mask, order);
 564}
 565
 566#ifdef CONFIG_NUMA
 567struct page *alloc_pages(gfp_t gfp, unsigned int order);
 568extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
 569                        struct vm_area_struct *vma, unsigned long addr,
 570                        int node, bool hugepage);
 571#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
 572        alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
 573#else
 574static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
 575{
 576        return alloc_pages_node(numa_node_id(), gfp_mask, order);
 577}
 578#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
 579        alloc_pages(gfp_mask, order)
 580#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
 581        alloc_pages(gfp_mask, order)
 582#endif
 583#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
 584#define alloc_page_vma(gfp_mask, vma, addr)                     \
 585        alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
 586
 587extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
 588extern unsigned long get_zeroed_page(gfp_t gfp_mask);
 589
 590void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
 591void free_pages_exact(void *virt, size_t size);
 592void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
 593
 594#define __get_free_page(gfp_mask) \
 595                __get_free_pages((gfp_mask), 0)
 596
 597#define __get_dma_pages(gfp_mask, order) \
 598                __get_free_pages((gfp_mask) | GFP_DMA, (order))
 599
 600extern void __free_pages(struct page *page, unsigned int order);
 601extern void free_pages(unsigned long addr, unsigned int order);
 602
 603struct page_frag_cache;
 604extern void __page_frag_cache_drain(struct page *page, unsigned int count);
 605extern void *page_frag_alloc_align(struct page_frag_cache *nc,
 606                                   unsigned int fragsz, gfp_t gfp_mask,
 607                                   unsigned int align_mask);
 608
 609static inline void *page_frag_alloc(struct page_frag_cache *nc,
 610                             unsigned int fragsz, gfp_t gfp_mask)
 611{
 612        return page_frag_alloc_align(nc, fragsz, gfp_mask, ~0u);
 613}
 614
 615extern void page_frag_free(void *addr);
 616
 617#define __free_page(page) __free_pages((page), 0)
 618#define free_page(addr) free_pages((addr), 0)
 619
 620void page_alloc_init(void);
 621void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
 622void drain_all_pages(struct zone *zone);
 623void drain_local_pages(struct zone *zone);
 624
 625void page_alloc_init_late(void);
 626
 627/*
 628 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
 629 * GFP flags are used before interrupts are enabled. Once interrupts are
 630 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
 631 * hibernation, it is used by PM to avoid I/O during memory allocation while
 632 * devices are suspended.
 633 */
 634extern gfp_t gfp_allowed_mask;
 635
 636/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
 637bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
 638
 639extern void pm_restrict_gfp_mask(void);
 640extern void pm_restore_gfp_mask(void);
 641
 642extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
 643
 644#ifdef CONFIG_PM_SLEEP
 645extern bool pm_suspended_storage(void);
 646#else
 647static inline bool pm_suspended_storage(void)
 648{
 649        return false;
 650}
 651#endif /* CONFIG_PM_SLEEP */
 652
 653#ifdef CONFIG_CONTIG_ALLOC
 654/* The below functions must be run on a range from a single zone. */
 655extern int alloc_contig_range(unsigned long start, unsigned long end,
 656                              unsigned migratetype, gfp_t gfp_mask);
 657extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
 658                                       int nid, nodemask_t *nodemask);
 659#endif
 660void free_contig_range(unsigned long pfn, unsigned long nr_pages);
 661
 662#ifdef CONFIG_CMA
 663/* CMA stuff */
 664extern void init_cma_reserved_pageblock(struct page *page);
 665#endif
 666
 667#endif /* __LINUX_GFP_H */
 668