linux/include/linux/memcontrol.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* memcontrol.h - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 */
  10
  11#ifndef _LINUX_MEMCONTROL_H
  12#define _LINUX_MEMCONTROL_H
  13#include <linux/cgroup.h>
  14#include <linux/vm_event_item.h>
  15#include <linux/hardirq.h>
  16#include <linux/jump_label.h>
  17#include <linux/page_counter.h>
  18#include <linux/vmpressure.h>
  19#include <linux/eventfd.h>
  20#include <linux/mm.h>
  21#include <linux/vmstat.h>
  22#include <linux/writeback.h>
  23#include <linux/page-flags.h>
  24
  25struct mem_cgroup;
  26struct obj_cgroup;
  27struct page;
  28struct mm_struct;
  29struct kmem_cache;
  30
  31/* Cgroup-specific page state, on top of universal node page state */
  32enum memcg_stat_item {
  33        MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
  34        MEMCG_SOCK,
  35        MEMCG_PERCPU_B,
  36        MEMCG_NR_STAT,
  37};
  38
  39enum memcg_memory_event {
  40        MEMCG_LOW,
  41        MEMCG_HIGH,
  42        MEMCG_MAX,
  43        MEMCG_OOM,
  44        MEMCG_OOM_KILL,
  45        MEMCG_SWAP_HIGH,
  46        MEMCG_SWAP_MAX,
  47        MEMCG_SWAP_FAIL,
  48        MEMCG_NR_MEMORY_EVENTS,
  49};
  50
  51struct mem_cgroup_reclaim_cookie {
  52        pg_data_t *pgdat;
  53        unsigned int generation;
  54};
  55
  56#ifdef CONFIG_MEMCG
  57
  58#define MEM_CGROUP_ID_SHIFT     16
  59#define MEM_CGROUP_ID_MAX       USHRT_MAX
  60
  61struct mem_cgroup_id {
  62        int id;
  63        refcount_t ref;
  64};
  65
  66/*
  67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
  68 * it will be incremented by the number of pages. This counter is used
  69 * to trigger some periodic events. This is straightforward and better
  70 * than using jiffies etc. to handle periodic memcg event.
  71 */
  72enum mem_cgroup_events_target {
  73        MEM_CGROUP_TARGET_THRESH,
  74        MEM_CGROUP_TARGET_SOFTLIMIT,
  75        MEM_CGROUP_NTARGETS,
  76};
  77
  78struct memcg_vmstats_percpu {
  79        /* Local (CPU and cgroup) page state & events */
  80        long                    state[MEMCG_NR_STAT];
  81        unsigned long           events[NR_VM_EVENT_ITEMS];
  82
  83        /* Delta calculation for lockless upward propagation */
  84        long                    state_prev[MEMCG_NR_STAT];
  85        unsigned long           events_prev[NR_VM_EVENT_ITEMS];
  86
  87        /* Cgroup1: threshold notifications & softlimit tree updates */
  88        unsigned long           nr_page_events;
  89        unsigned long           targets[MEM_CGROUP_NTARGETS];
  90};
  91
  92struct memcg_vmstats {
  93        /* Aggregated (CPU and subtree) page state & events */
  94        long                    state[MEMCG_NR_STAT];
  95        unsigned long           events[NR_VM_EVENT_ITEMS];
  96
  97        /* Pending child counts during tree propagation */
  98        long                    state_pending[MEMCG_NR_STAT];
  99        unsigned long           events_pending[NR_VM_EVENT_ITEMS];
 100};
 101
 102struct mem_cgroup_reclaim_iter {
 103        struct mem_cgroup *position;
 104        /* scan generation, increased every round-trip */
 105        unsigned int generation;
 106};
 107
 108struct lruvec_stat {
 109        long count[NR_VM_NODE_STAT_ITEMS];
 110};
 111
 112struct batched_lruvec_stat {
 113        s32 count[NR_VM_NODE_STAT_ITEMS];
 114};
 115
 116/*
 117 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
 118 * shrinkers, which have elements charged to this memcg.
 119 */
 120struct shrinker_info {
 121        struct rcu_head rcu;
 122        atomic_long_t *nr_deferred;
 123        unsigned long *map;
 124};
 125
 126/*
 127 * per-node information in memory controller.
 128 */
 129struct mem_cgroup_per_node {
 130        struct lruvec           lruvec;
 131
 132        /*
 133         * Legacy local VM stats. This should be struct lruvec_stat and
 134         * cannot be optimized to struct batched_lruvec_stat. Because
 135         * the threshold of the lruvec_stat_cpu can be as big as
 136         * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
 137         * filed has no upper limit.
 138         */
 139        struct lruvec_stat __percpu *lruvec_stat_local;
 140
 141        /* Subtree VM stats (batched updates) */
 142        struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
 143        atomic_long_t           lruvec_stat[NR_VM_NODE_STAT_ITEMS];
 144
 145        unsigned long           lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
 146
 147        struct mem_cgroup_reclaim_iter  iter;
 148
 149        struct shrinker_info __rcu      *shrinker_info;
 150
 151        struct rb_node          tree_node;      /* RB tree node */
 152        unsigned long           usage_in_excess;/* Set to the value by which */
 153                                                /* the soft limit is exceeded*/
 154        bool                    on_tree;
 155        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 156                                                /* use container_of        */
 157};
 158
 159struct mem_cgroup_threshold {
 160        struct eventfd_ctx *eventfd;
 161        unsigned long threshold;
 162};
 163
 164/* For threshold */
 165struct mem_cgroup_threshold_ary {
 166        /* An array index points to threshold just below or equal to usage. */
 167        int current_threshold;
 168        /* Size of entries[] */
 169        unsigned int size;
 170        /* Array of thresholds */
 171        struct mem_cgroup_threshold entries[];
 172};
 173
 174struct mem_cgroup_thresholds {
 175        /* Primary thresholds array */
 176        struct mem_cgroup_threshold_ary *primary;
 177        /*
 178         * Spare threshold array.
 179         * This is needed to make mem_cgroup_unregister_event() "never fail".
 180         * It must be able to store at least primary->size - 1 entries.
 181         */
 182        struct mem_cgroup_threshold_ary *spare;
 183};
 184
 185enum memcg_kmem_state {
 186        KMEM_NONE,
 187        KMEM_ALLOCATED,
 188        KMEM_ONLINE,
 189};
 190
 191#if defined(CONFIG_SMP)
 192struct memcg_padding {
 193        char x[0];
 194} ____cacheline_internodealigned_in_smp;
 195#define MEMCG_PADDING(name)      struct memcg_padding name;
 196#else
 197#define MEMCG_PADDING(name)
 198#endif
 199
 200/*
 201 * Remember four most recent foreign writebacks with dirty pages in this
 202 * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
 203 * one in a given round, we're likely to catch it later if it keeps
 204 * foreign-dirtying, so a fairly low count should be enough.
 205 *
 206 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
 207 */
 208#define MEMCG_CGWB_FRN_CNT      4
 209
 210struct memcg_cgwb_frn {
 211        u64 bdi_id;                     /* bdi->id of the foreign inode */
 212        int memcg_id;                   /* memcg->css.id of foreign inode */
 213        u64 at;                         /* jiffies_64 at the time of dirtying */
 214        struct wb_completion done;      /* tracks in-flight foreign writebacks */
 215};
 216
 217/*
 218 * Bucket for arbitrarily byte-sized objects charged to a memory
 219 * cgroup. The bucket can be reparented in one piece when the cgroup
 220 * is destroyed, without having to round up the individual references
 221 * of all live memory objects in the wild.
 222 */
 223struct obj_cgroup {
 224        struct percpu_ref refcnt;
 225        struct mem_cgroup *memcg;
 226        atomic_t nr_charged_bytes;
 227        union {
 228                struct list_head list;
 229                struct rcu_head rcu;
 230        };
 231};
 232
 233/*
 234 * The memory controller data structure. The memory controller controls both
 235 * page cache and RSS per cgroup. We would eventually like to provide
 236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 237 * to help the administrator determine what knobs to tune.
 238 */
 239struct mem_cgroup {
 240        struct cgroup_subsys_state css;
 241
 242        /* Private memcg ID. Used to ID objects that outlive the cgroup */
 243        struct mem_cgroup_id id;
 244
 245        /* Accounted resources */
 246        struct page_counter memory;             /* Both v1 & v2 */
 247
 248        union {
 249                struct page_counter swap;       /* v2 only */
 250                struct page_counter memsw;      /* v1 only */
 251        };
 252
 253        /* Legacy consumer-oriented counters */
 254        struct page_counter kmem;               /* v1 only */
 255        struct page_counter tcpmem;             /* v1 only */
 256
 257        /* Range enforcement for interrupt charges */
 258        struct work_struct high_work;
 259
 260        unsigned long soft_limit;
 261
 262        /* vmpressure notifications */
 263        struct vmpressure vmpressure;
 264
 265        /*
 266         * Should the OOM killer kill all belonging tasks, had it kill one?
 267         */
 268        bool oom_group;
 269
 270        /* protected by memcg_oom_lock */
 271        bool            oom_lock;
 272        int             under_oom;
 273
 274        int     swappiness;
 275        /* OOM-Killer disable */
 276        int             oom_kill_disable;
 277
 278        /* memory.events and memory.events.local */
 279        struct cgroup_file events_file;
 280        struct cgroup_file events_local_file;
 281
 282        /* handle for "memory.swap.events" */
 283        struct cgroup_file swap_events_file;
 284
 285        /* protect arrays of thresholds */
 286        struct mutex thresholds_lock;
 287
 288        /* thresholds for memory usage. RCU-protected */
 289        struct mem_cgroup_thresholds thresholds;
 290
 291        /* thresholds for mem+swap usage. RCU-protected */
 292        struct mem_cgroup_thresholds memsw_thresholds;
 293
 294        /* For oom notifier event fd */
 295        struct list_head oom_notify;
 296
 297        /*
 298         * Should we move charges of a task when a task is moved into this
 299         * mem_cgroup ? And what type of charges should we move ?
 300         */
 301        unsigned long move_charge_at_immigrate;
 302        /* taken only while moving_account > 0 */
 303        spinlock_t              move_lock;
 304        unsigned long           move_lock_flags;
 305
 306        MEMCG_PADDING(_pad1_);
 307
 308        /* memory.stat */
 309        struct memcg_vmstats    vmstats;
 310
 311        /* memory.events */
 312        atomic_long_t           memory_events[MEMCG_NR_MEMORY_EVENTS];
 313        atomic_long_t           memory_events_local[MEMCG_NR_MEMORY_EVENTS];
 314
 315        unsigned long           socket_pressure;
 316
 317        /* Legacy tcp memory accounting */
 318        bool                    tcpmem_active;
 319        int                     tcpmem_pressure;
 320
 321#ifdef CONFIG_MEMCG_KMEM
 322        int kmemcg_id;
 323        enum memcg_kmem_state kmem_state;
 324        struct obj_cgroup __rcu *objcg;
 325        struct list_head objcg_list; /* list of inherited objcgs */
 326#endif
 327
 328        MEMCG_PADDING(_pad2_);
 329
 330        /*
 331         * set > 0 if pages under this cgroup are moving to other cgroup.
 332         */
 333        atomic_t                moving_account;
 334        struct task_struct      *move_lock_task;
 335
 336        struct memcg_vmstats_percpu __percpu *vmstats_percpu;
 337
 338#ifdef CONFIG_CGROUP_WRITEBACK
 339        struct list_head cgwb_list;
 340        struct wb_domain cgwb_domain;
 341        struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
 342#endif
 343
 344        /* List of events which userspace want to receive */
 345        struct list_head event_list;
 346        spinlock_t event_list_lock;
 347
 348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 349        struct deferred_split deferred_split_queue;
 350#endif
 351
 352        struct mem_cgroup_per_node *nodeinfo[0];
 353        /* WARNING: nodeinfo must be the last member here */
 354};
 355
 356/*
 357 * size of first charge trial. "32" comes from vmscan.c's magic value.
 358 * TODO: maybe necessary to use big numbers in big irons.
 359 */
 360#define MEMCG_CHARGE_BATCH 32U
 361
 362extern struct mem_cgroup *root_mem_cgroup;
 363
 364enum page_memcg_data_flags {
 365        /* page->memcg_data is a pointer to an objcgs vector */
 366        MEMCG_DATA_OBJCGS = (1UL << 0),
 367        /* page has been accounted as a non-slab kernel page */
 368        MEMCG_DATA_KMEM = (1UL << 1),
 369        /* the next bit after the last actual flag */
 370        __NR_MEMCG_DATA_FLAGS  = (1UL << 2),
 371};
 372
 373#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
 374
 375static inline bool PageMemcgKmem(struct page *page);
 376
 377/*
 378 * After the initialization objcg->memcg is always pointing at
 379 * a valid memcg, but can be atomically swapped to the parent memcg.
 380 *
 381 * The caller must ensure that the returned memcg won't be released:
 382 * e.g. acquire the rcu_read_lock or css_set_lock.
 383 */
 384static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
 385{
 386        return READ_ONCE(objcg->memcg);
 387}
 388
 389/*
 390 * __page_memcg - get the memory cgroup associated with a non-kmem page
 391 * @page: a pointer to the page struct
 392 *
 393 * Returns a pointer to the memory cgroup associated with the page,
 394 * or NULL. This function assumes that the page is known to have a
 395 * proper memory cgroup pointer. It's not safe to call this function
 396 * against some type of pages, e.g. slab pages or ex-slab pages or
 397 * kmem pages.
 398 */
 399static inline struct mem_cgroup *__page_memcg(struct page *page)
 400{
 401        unsigned long memcg_data = page->memcg_data;
 402
 403        VM_BUG_ON_PAGE(PageSlab(page), page);
 404        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
 405        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 406
 407        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 408}
 409
 410/*
 411 * __page_objcg - get the object cgroup associated with a kmem page
 412 * @page: a pointer to the page struct
 413 *
 414 * Returns a pointer to the object cgroup associated with the page,
 415 * or NULL. This function assumes that the page is known to have a
 416 * proper object cgroup pointer. It's not safe to call this function
 417 * against some type of pages, e.g. slab pages or ex-slab pages or
 418 * LRU pages.
 419 */
 420static inline struct obj_cgroup *__page_objcg(struct page *page)
 421{
 422        unsigned long memcg_data = page->memcg_data;
 423
 424        VM_BUG_ON_PAGE(PageSlab(page), page);
 425        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
 426        VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
 427
 428        return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 429}
 430
 431/*
 432 * page_memcg - get the memory cgroup associated with a page
 433 * @page: a pointer to the page struct
 434 *
 435 * Returns a pointer to the memory cgroup associated with the page,
 436 * or NULL. This function assumes that the page is known to have a
 437 * proper memory cgroup pointer. It's not safe to call this function
 438 * against some type of pages, e.g. slab pages or ex-slab pages.
 439 *
 440 * For a non-kmem page any of the following ensures page and memcg binding
 441 * stability:
 442 *
 443 * - the page lock
 444 * - LRU isolation
 445 * - lock_page_memcg()
 446 * - exclusive reference
 447 *
 448 * For a kmem page a caller should hold an rcu read lock to protect memcg
 449 * associated with a kmem page from being released.
 450 */
 451static inline struct mem_cgroup *page_memcg(struct page *page)
 452{
 453        if (PageMemcgKmem(page))
 454                return obj_cgroup_memcg(__page_objcg(page));
 455        else
 456                return __page_memcg(page);
 457}
 458
 459/*
 460 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
 461 * @page: a pointer to the page struct
 462 *
 463 * Returns a pointer to the memory cgroup associated with the page,
 464 * or NULL. This function assumes that the page is known to have a
 465 * proper memory cgroup pointer. It's not safe to call this function
 466 * against some type of pages, e.g. slab pages or ex-slab pages.
 467 */
 468static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
 469{
 470        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 471
 472        VM_BUG_ON_PAGE(PageSlab(page), page);
 473        WARN_ON_ONCE(!rcu_read_lock_held());
 474
 475        if (memcg_data & MEMCG_DATA_KMEM) {
 476                struct obj_cgroup *objcg;
 477
 478                objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 479                return obj_cgroup_memcg(objcg);
 480        }
 481
 482        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 483}
 484
 485/*
 486 * page_memcg_check - get the memory cgroup associated with a page
 487 * @page: a pointer to the page struct
 488 *
 489 * Returns a pointer to the memory cgroup associated with the page,
 490 * or NULL. This function unlike page_memcg() can take any page
 491 * as an argument. It has to be used in cases when it's not known if a page
 492 * has an associated memory cgroup pointer or an object cgroups vector or
 493 * an object cgroup.
 494 *
 495 * For a non-kmem page any of the following ensures page and memcg binding
 496 * stability:
 497 *
 498 * - the page lock
 499 * - LRU isolation
 500 * - lock_page_memcg()
 501 * - exclusive reference
 502 *
 503 * For a kmem page a caller should hold an rcu read lock to protect memcg
 504 * associated with a kmem page from being released.
 505 */
 506static inline struct mem_cgroup *page_memcg_check(struct page *page)
 507{
 508        /*
 509         * Because page->memcg_data might be changed asynchronously
 510         * for slab pages, READ_ONCE() should be used here.
 511         */
 512        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 513
 514        if (memcg_data & MEMCG_DATA_OBJCGS)
 515                return NULL;
 516
 517        if (memcg_data & MEMCG_DATA_KMEM) {
 518                struct obj_cgroup *objcg;
 519
 520                objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 521                return obj_cgroup_memcg(objcg);
 522        }
 523
 524        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 525}
 526
 527#ifdef CONFIG_MEMCG_KMEM
 528/*
 529 * PageMemcgKmem - check if the page has MemcgKmem flag set
 530 * @page: a pointer to the page struct
 531 *
 532 * Checks if the page has MemcgKmem flag set. The caller must ensure that
 533 * the page has an associated memory cgroup. It's not safe to call this function
 534 * against some types of pages, e.g. slab pages.
 535 */
 536static inline bool PageMemcgKmem(struct page *page)
 537{
 538        VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
 539        return page->memcg_data & MEMCG_DATA_KMEM;
 540}
 541
 542/*
 543 * page_objcgs - get the object cgroups vector associated with a page
 544 * @page: a pointer to the page struct
 545 *
 546 * Returns a pointer to the object cgroups vector associated with the page,
 547 * or NULL. This function assumes that the page is known to have an
 548 * associated object cgroups vector. It's not safe to call this function
 549 * against pages, which might have an associated memory cgroup: e.g.
 550 * kernel stack pages.
 551 */
 552static inline struct obj_cgroup **page_objcgs(struct page *page)
 553{
 554        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 555
 556        VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
 557        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 558
 559        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 560}
 561
 562/*
 563 * page_objcgs_check - get the object cgroups vector associated with a page
 564 * @page: a pointer to the page struct
 565 *
 566 * Returns a pointer to the object cgroups vector associated with the page,
 567 * or NULL. This function is safe to use if the page can be directly associated
 568 * with a memory cgroup.
 569 */
 570static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 571{
 572        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 573
 574        if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
 575                return NULL;
 576
 577        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 578
 579        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 580}
 581
 582#else
 583static inline bool PageMemcgKmem(struct page *page)
 584{
 585        return false;
 586}
 587
 588static inline struct obj_cgroup **page_objcgs(struct page *page)
 589{
 590        return NULL;
 591}
 592
 593static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 594{
 595        return NULL;
 596}
 597#endif
 598
 599static __always_inline bool memcg_stat_item_in_bytes(int idx)
 600{
 601        if (idx == MEMCG_PERCPU_B)
 602                return true;
 603        return vmstat_item_in_bytes(idx);
 604}
 605
 606static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 607{
 608        return (memcg == root_mem_cgroup);
 609}
 610
 611static inline bool mem_cgroup_disabled(void)
 612{
 613        return !cgroup_subsys_enabled(memory_cgrp_subsys);
 614}
 615
 616static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
 617                                                  struct mem_cgroup *memcg,
 618                                                  bool in_low_reclaim)
 619{
 620        if (mem_cgroup_disabled())
 621                return 0;
 622
 623        /*
 624         * There is no reclaim protection applied to a targeted reclaim.
 625         * We are special casing this specific case here because
 626         * mem_cgroup_protected calculation is not robust enough to keep
 627         * the protection invariant for calculated effective values for
 628         * parallel reclaimers with different reclaim target. This is
 629         * especially a problem for tail memcgs (as they have pages on LRU)
 630         * which would want to have effective values 0 for targeted reclaim
 631         * but a different value for external reclaim.
 632         *
 633         * Example
 634         * Let's have global and A's reclaim in parallel:
 635         *  |
 636         *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
 637         *  |\
 638         *  | C (low = 1G, usage = 2.5G)
 639         *  B (low = 1G, usage = 0.5G)
 640         *
 641         * For the global reclaim
 642         * A.elow = A.low
 643         * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 644         * C.elow = min(C.usage, C.low)
 645         *
 646         * With the effective values resetting we have A reclaim
 647         * A.elow = 0
 648         * B.elow = B.low
 649         * C.elow = C.low
 650         *
 651         * If the global reclaim races with A's reclaim then
 652         * B.elow = C.elow = 0 because children_low_usage > A.elow)
 653         * is possible and reclaiming B would be violating the protection.
 654         *
 655         */
 656        if (root == memcg)
 657                return 0;
 658
 659        if (in_low_reclaim)
 660                return READ_ONCE(memcg->memory.emin);
 661
 662        return max(READ_ONCE(memcg->memory.emin),
 663                   READ_ONCE(memcg->memory.elow));
 664}
 665
 666void mem_cgroup_calculate_protection(struct mem_cgroup *root,
 667                                     struct mem_cgroup *memcg);
 668
 669static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
 670{
 671        /*
 672         * The root memcg doesn't account charges, and doesn't support
 673         * protection.
 674         */
 675        return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
 676
 677}
 678
 679static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
 680{
 681        if (!mem_cgroup_supports_protection(memcg))
 682                return false;
 683
 684        return READ_ONCE(memcg->memory.elow) >=
 685                page_counter_read(&memcg->memory);
 686}
 687
 688static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
 689{
 690        if (!mem_cgroup_supports_protection(memcg))
 691                return false;
 692
 693        return READ_ONCE(memcg->memory.emin) >=
 694                page_counter_read(&memcg->memory);
 695}
 696
 697int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
 698int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
 699                                  gfp_t gfp, swp_entry_t entry);
 700void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
 701
 702void mem_cgroup_uncharge(struct page *page);
 703void mem_cgroup_uncharge_list(struct list_head *page_list);
 704
 705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
 706
 707/**
 708 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
 709 * @memcg: memcg of the wanted lruvec
 710 * @pgdat: pglist_data
 711 *
 712 * Returns the lru list vector holding pages for a given @memcg &
 713 * @pgdat combination. This can be the node lruvec, if the memory
 714 * controller is disabled.
 715 */
 716static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
 717                                               struct pglist_data *pgdat)
 718{
 719        struct mem_cgroup_per_node *mz;
 720        struct lruvec *lruvec;
 721
 722        if (mem_cgroup_disabled()) {
 723                lruvec = &pgdat->__lruvec;
 724                goto out;
 725        }
 726
 727        if (!memcg)
 728                memcg = root_mem_cgroup;
 729
 730        mz = memcg->nodeinfo[pgdat->node_id];
 731        lruvec = &mz->lruvec;
 732out:
 733        /*
 734         * Since a node can be onlined after the mem_cgroup was created,
 735         * we have to be prepared to initialize lruvec->pgdat here;
 736         * and if offlined then reonlined, we need to reinitialize it.
 737         */
 738        if (unlikely(lruvec->pgdat != pgdat))
 739                lruvec->pgdat = pgdat;
 740        return lruvec;
 741}
 742
 743/**
 744 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 745 * @page: the page
 746 * @pgdat: pgdat of the page
 747 *
 748 * This function relies on page->mem_cgroup being stable.
 749 */
 750static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
 751                                                struct pglist_data *pgdat)
 752{
 753        struct mem_cgroup *memcg = page_memcg(page);
 754
 755        VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
 756        return mem_cgroup_lruvec(memcg, pgdat);
 757}
 758
 759static inline bool lruvec_holds_page_lru_lock(struct page *page,
 760                                              struct lruvec *lruvec)
 761{
 762        pg_data_t *pgdat = page_pgdat(page);
 763        const struct mem_cgroup *memcg;
 764        struct mem_cgroup_per_node *mz;
 765
 766        if (mem_cgroup_disabled())
 767                return lruvec == &pgdat->__lruvec;
 768
 769        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 770        memcg = page_memcg(page) ? : root_mem_cgroup;
 771
 772        return lruvec->pgdat == pgdat && mz->memcg == memcg;
 773}
 774
 775struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
 776
 777struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
 778
 779struct lruvec *lock_page_lruvec(struct page *page);
 780struct lruvec *lock_page_lruvec_irq(struct page *page);
 781struct lruvec *lock_page_lruvec_irqsave(struct page *page,
 782                                                unsigned long *flags);
 783
 784#ifdef CONFIG_DEBUG_VM
 785void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
 786#else
 787static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
 788{
 789}
 790#endif
 791
 792static inline
 793struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
 794        return css ? container_of(css, struct mem_cgroup, css) : NULL;
 795}
 796
 797static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
 798{
 799        return percpu_ref_tryget(&objcg->refcnt);
 800}
 801
 802static inline void obj_cgroup_get(struct obj_cgroup *objcg)
 803{
 804        percpu_ref_get(&objcg->refcnt);
 805}
 806
 807static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
 808                                       unsigned long nr)
 809{
 810        percpu_ref_get_many(&objcg->refcnt, nr);
 811}
 812
 813static inline void obj_cgroup_put(struct obj_cgroup *objcg)
 814{
 815        percpu_ref_put(&objcg->refcnt);
 816}
 817
 818static inline void mem_cgroup_put(struct mem_cgroup *memcg)
 819{
 820        if (memcg)
 821                css_put(&memcg->css);
 822}
 823
 824#define mem_cgroup_from_counter(counter, member)        \
 825        container_of(counter, struct mem_cgroup, member)
 826
 827struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
 828                                   struct mem_cgroup *,
 829                                   struct mem_cgroup_reclaim_cookie *);
 830void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
 831int mem_cgroup_scan_tasks(struct mem_cgroup *,
 832                          int (*)(struct task_struct *, void *), void *);
 833
 834static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 835{
 836        if (mem_cgroup_disabled())
 837                return 0;
 838
 839        return memcg->id.id;
 840}
 841struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
 842
 843static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
 844{
 845        return mem_cgroup_from_css(seq_css(m));
 846}
 847
 848static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
 849{
 850        struct mem_cgroup_per_node *mz;
 851
 852        if (mem_cgroup_disabled())
 853                return NULL;
 854
 855        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 856        return mz->memcg;
 857}
 858
 859/**
 860 * parent_mem_cgroup - find the accounting parent of a memcg
 861 * @memcg: memcg whose parent to find
 862 *
 863 * Returns the parent memcg, or NULL if this is the root or the memory
 864 * controller is in legacy no-hierarchy mode.
 865 */
 866static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 867{
 868        if (!memcg->memory.parent)
 869                return NULL;
 870        return mem_cgroup_from_counter(memcg->memory.parent, memory);
 871}
 872
 873static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
 874                              struct mem_cgroup *root)
 875{
 876        if (root == memcg)
 877                return true;
 878        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
 879}
 880
 881static inline bool mm_match_cgroup(struct mm_struct *mm,
 882                                   struct mem_cgroup *memcg)
 883{
 884        struct mem_cgroup *task_memcg;
 885        bool match = false;
 886
 887        rcu_read_lock();
 888        task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 889        if (task_memcg)
 890                match = mem_cgroup_is_descendant(task_memcg, memcg);
 891        rcu_read_unlock();
 892        return match;
 893}
 894
 895struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
 896ino_t page_cgroup_ino(struct page *page);
 897
 898static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
 899{
 900        if (mem_cgroup_disabled())
 901                return true;
 902        return !!(memcg->css.flags & CSS_ONLINE);
 903}
 904
 905/*
 906 * For memory reclaim.
 907 */
 908int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
 909
 910void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 911                int zid, int nr_pages);
 912
 913static inline
 914unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
 915                enum lru_list lru, int zone_idx)
 916{
 917        struct mem_cgroup_per_node *mz;
 918
 919        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 920        return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
 921}
 922
 923void mem_cgroup_handle_over_high(void);
 924
 925unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
 926
 927unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
 928
 929void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
 930                                struct task_struct *p);
 931
 932void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
 933
 934static inline void mem_cgroup_enter_user_fault(void)
 935{
 936        WARN_ON(current->in_user_fault);
 937        current->in_user_fault = 1;
 938}
 939
 940static inline void mem_cgroup_exit_user_fault(void)
 941{
 942        WARN_ON(!current->in_user_fault);
 943        current->in_user_fault = 0;
 944}
 945
 946static inline bool task_in_memcg_oom(struct task_struct *p)
 947{
 948        return p->memcg_in_oom;
 949}
 950
 951bool mem_cgroup_oom_synchronize(bool wait);
 952struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
 953                                            struct mem_cgroup *oom_domain);
 954void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
 955
 956#ifdef CONFIG_MEMCG_SWAP
 957extern bool cgroup_memory_noswap;
 958#endif
 959
 960void lock_page_memcg(struct page *page);
 961void unlock_page_memcg(struct page *page);
 962
 963void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
 964
 965/* idx can be of type enum memcg_stat_item or node_stat_item */
 966static inline void mod_memcg_state(struct mem_cgroup *memcg,
 967                                   int idx, int val)
 968{
 969        unsigned long flags;
 970
 971        local_irq_save(flags);
 972        __mod_memcg_state(memcg, idx, val);
 973        local_irq_restore(flags);
 974}
 975
 976static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
 977                                              enum node_stat_item idx)
 978{
 979        struct mem_cgroup_per_node *pn;
 980        long x;
 981
 982        if (mem_cgroup_disabled())
 983                return node_page_state(lruvec_pgdat(lruvec), idx);
 984
 985        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 986        x = atomic_long_read(&pn->lruvec_stat[idx]);
 987#ifdef CONFIG_SMP
 988        if (x < 0)
 989                x = 0;
 990#endif
 991        return x;
 992}
 993
 994static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
 995                                                    enum node_stat_item idx)
 996{
 997        struct mem_cgroup_per_node *pn;
 998        long x = 0;
 999        int cpu;
1000
1001        if (mem_cgroup_disabled())
1002                return node_page_state(lruvec_pgdat(lruvec), idx);
1003
1004        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1005        for_each_possible_cpu(cpu)
1006                x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
1007#ifdef CONFIG_SMP
1008        if (x < 0)
1009                x = 0;
1010#endif
1011        return x;
1012}
1013
1014void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1015                              int val);
1016void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1017
1018static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1019                                         int val)
1020{
1021        unsigned long flags;
1022
1023        local_irq_save(flags);
1024        __mod_lruvec_kmem_state(p, idx, val);
1025        local_irq_restore(flags);
1026}
1027
1028static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1029                                          enum node_stat_item idx, int val)
1030{
1031        unsigned long flags;
1032
1033        local_irq_save(flags);
1034        __mod_memcg_lruvec_state(lruvec, idx, val);
1035        local_irq_restore(flags);
1036}
1037
1038void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1039                          unsigned long count);
1040
1041static inline void count_memcg_events(struct mem_cgroup *memcg,
1042                                      enum vm_event_item idx,
1043                                      unsigned long count)
1044{
1045        unsigned long flags;
1046
1047        local_irq_save(flags);
1048        __count_memcg_events(memcg, idx, count);
1049        local_irq_restore(flags);
1050}
1051
1052static inline void count_memcg_page_event(struct page *page,
1053                                          enum vm_event_item idx)
1054{
1055        struct mem_cgroup *memcg = page_memcg(page);
1056
1057        if (memcg)
1058                count_memcg_events(memcg, idx, 1);
1059}
1060
1061static inline void count_memcg_event_mm(struct mm_struct *mm,
1062                                        enum vm_event_item idx)
1063{
1064        struct mem_cgroup *memcg;
1065
1066        if (mem_cgroup_disabled())
1067                return;
1068
1069        rcu_read_lock();
1070        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1071        if (likely(memcg))
1072                count_memcg_events(memcg, idx, 1);
1073        rcu_read_unlock();
1074}
1075
1076static inline void memcg_memory_event(struct mem_cgroup *memcg,
1077                                      enum memcg_memory_event event)
1078{
1079        bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1080                          event == MEMCG_SWAP_FAIL;
1081
1082        atomic_long_inc(&memcg->memory_events_local[event]);
1083        if (!swap_event)
1084                cgroup_file_notify(&memcg->events_local_file);
1085
1086        do {
1087                atomic_long_inc(&memcg->memory_events[event]);
1088                if (swap_event)
1089                        cgroup_file_notify(&memcg->swap_events_file);
1090                else
1091                        cgroup_file_notify(&memcg->events_file);
1092
1093                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1094                        break;
1095                if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1096                        break;
1097        } while ((memcg = parent_mem_cgroup(memcg)) &&
1098                 !mem_cgroup_is_root(memcg));
1099}
1100
1101static inline void memcg_memory_event_mm(struct mm_struct *mm,
1102                                         enum memcg_memory_event event)
1103{
1104        struct mem_cgroup *memcg;
1105
1106        if (mem_cgroup_disabled())
1107                return;
1108
1109        rcu_read_lock();
1110        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1111        if (likely(memcg))
1112                memcg_memory_event(memcg, event);
1113        rcu_read_unlock();
1114}
1115
1116void split_page_memcg(struct page *head, unsigned int nr);
1117
1118unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1119                                                gfp_t gfp_mask,
1120                                                unsigned long *total_scanned);
1121
1122#else /* CONFIG_MEMCG */
1123
1124#define MEM_CGROUP_ID_SHIFT     0
1125#define MEM_CGROUP_ID_MAX       0
1126
1127static inline struct mem_cgroup *page_memcg(struct page *page)
1128{
1129        return NULL;
1130}
1131
1132static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1133{
1134        WARN_ON_ONCE(!rcu_read_lock_held());
1135        return NULL;
1136}
1137
1138static inline struct mem_cgroup *page_memcg_check(struct page *page)
1139{
1140        return NULL;
1141}
1142
1143static inline bool PageMemcgKmem(struct page *page)
1144{
1145        return false;
1146}
1147
1148static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1149{
1150        return true;
1151}
1152
1153static inline bool mem_cgroup_disabled(void)
1154{
1155        return true;
1156}
1157
1158static inline void memcg_memory_event(struct mem_cgroup *memcg,
1159                                      enum memcg_memory_event event)
1160{
1161}
1162
1163static inline void memcg_memory_event_mm(struct mm_struct *mm,
1164                                         enum memcg_memory_event event)
1165{
1166}
1167
1168static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1169                                                  struct mem_cgroup *memcg,
1170                                                  bool in_low_reclaim)
1171{
1172        return 0;
1173}
1174
1175static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1176                                                   struct mem_cgroup *memcg)
1177{
1178}
1179
1180static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1181{
1182        return false;
1183}
1184
1185static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1186{
1187        return false;
1188}
1189
1190static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1191                                    gfp_t gfp_mask)
1192{
1193        return 0;
1194}
1195
1196static inline int mem_cgroup_swapin_charge_page(struct page *page,
1197                        struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1198{
1199        return 0;
1200}
1201
1202static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1203{
1204}
1205
1206static inline void mem_cgroup_uncharge(struct page *page)
1207{
1208}
1209
1210static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1211{
1212}
1213
1214static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1215{
1216}
1217
1218static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1219                                               struct pglist_data *pgdat)
1220{
1221        return &pgdat->__lruvec;
1222}
1223
1224static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1225                                                    struct pglist_data *pgdat)
1226{
1227        return &pgdat->__lruvec;
1228}
1229
1230static inline bool lruvec_holds_page_lru_lock(struct page *page,
1231                                              struct lruvec *lruvec)
1232{
1233        pg_data_t *pgdat = page_pgdat(page);
1234
1235        return lruvec == &pgdat->__lruvec;
1236}
1237
1238static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1239{
1240}
1241
1242static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1243{
1244        return NULL;
1245}
1246
1247static inline bool mm_match_cgroup(struct mm_struct *mm,
1248                struct mem_cgroup *memcg)
1249{
1250        return true;
1251}
1252
1253static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1254{
1255        return NULL;
1256}
1257
1258static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1259{
1260}
1261
1262static inline struct lruvec *lock_page_lruvec(struct page *page)
1263{
1264        struct pglist_data *pgdat = page_pgdat(page);
1265
1266        spin_lock(&pgdat->__lruvec.lru_lock);
1267        return &pgdat->__lruvec;
1268}
1269
1270static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1271{
1272        struct pglist_data *pgdat = page_pgdat(page);
1273
1274        spin_lock_irq(&pgdat->__lruvec.lru_lock);
1275        return &pgdat->__lruvec;
1276}
1277
1278static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1279                unsigned long *flagsp)
1280{
1281        struct pglist_data *pgdat = page_pgdat(page);
1282
1283        spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1284        return &pgdat->__lruvec;
1285}
1286
1287static inline struct mem_cgroup *
1288mem_cgroup_iter(struct mem_cgroup *root,
1289                struct mem_cgroup *prev,
1290                struct mem_cgroup_reclaim_cookie *reclaim)
1291{
1292        return NULL;
1293}
1294
1295static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1296                                         struct mem_cgroup *prev)
1297{
1298}
1299
1300static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1301                int (*fn)(struct task_struct *, void *), void *arg)
1302{
1303        return 0;
1304}
1305
1306static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1307{
1308        return 0;
1309}
1310
1311static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1312{
1313        WARN_ON_ONCE(id);
1314        /* XXX: This should always return root_mem_cgroup */
1315        return NULL;
1316}
1317
1318static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1319{
1320        return NULL;
1321}
1322
1323static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1324{
1325        return NULL;
1326}
1327
1328static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1329{
1330        return true;
1331}
1332
1333static inline
1334unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1335                enum lru_list lru, int zone_idx)
1336{
1337        return 0;
1338}
1339
1340static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1341{
1342        return 0;
1343}
1344
1345static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1346{
1347        return 0;
1348}
1349
1350static inline void
1351mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1352{
1353}
1354
1355static inline void
1356mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1357{
1358}
1359
1360static inline void lock_page_memcg(struct page *page)
1361{
1362}
1363
1364static inline void unlock_page_memcg(struct page *page)
1365{
1366}
1367
1368static inline void mem_cgroup_handle_over_high(void)
1369{
1370}
1371
1372static inline void mem_cgroup_enter_user_fault(void)
1373{
1374}
1375
1376static inline void mem_cgroup_exit_user_fault(void)
1377{
1378}
1379
1380static inline bool task_in_memcg_oom(struct task_struct *p)
1381{
1382        return false;
1383}
1384
1385static inline bool mem_cgroup_oom_synchronize(bool wait)
1386{
1387        return false;
1388}
1389
1390static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1391        struct task_struct *victim, struct mem_cgroup *oom_domain)
1392{
1393        return NULL;
1394}
1395
1396static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1397{
1398}
1399
1400static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1401                                     int idx,
1402                                     int nr)
1403{
1404}
1405
1406static inline void mod_memcg_state(struct mem_cgroup *memcg,
1407                                   int idx,
1408                                   int nr)
1409{
1410}
1411
1412static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1413                                              enum node_stat_item idx)
1414{
1415        return node_page_state(lruvec_pgdat(lruvec), idx);
1416}
1417
1418static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1419                                                    enum node_stat_item idx)
1420{
1421        return node_page_state(lruvec_pgdat(lruvec), idx);
1422}
1423
1424static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1425                                            enum node_stat_item idx, int val)
1426{
1427}
1428
1429static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1430                                           int val)
1431{
1432        struct page *page = virt_to_head_page(p);
1433
1434        __mod_node_page_state(page_pgdat(page), idx, val);
1435}
1436
1437static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1438                                         int val)
1439{
1440        struct page *page = virt_to_head_page(p);
1441
1442        mod_node_page_state(page_pgdat(page), idx, val);
1443}
1444
1445static inline void count_memcg_events(struct mem_cgroup *memcg,
1446                                      enum vm_event_item idx,
1447                                      unsigned long count)
1448{
1449}
1450
1451static inline void __count_memcg_events(struct mem_cgroup *memcg,
1452                                        enum vm_event_item idx,
1453                                        unsigned long count)
1454{
1455}
1456
1457static inline void count_memcg_page_event(struct page *page,
1458                                          int idx)
1459{
1460}
1461
1462static inline
1463void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1464{
1465}
1466
1467static inline void split_page_memcg(struct page *head, unsigned int nr)
1468{
1469}
1470
1471static inline
1472unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1473                                            gfp_t gfp_mask,
1474                                            unsigned long *total_scanned)
1475{
1476        return 0;
1477}
1478#endif /* CONFIG_MEMCG */
1479
1480static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1481{
1482        __mod_lruvec_kmem_state(p, idx, 1);
1483}
1484
1485static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1486{
1487        __mod_lruvec_kmem_state(p, idx, -1);
1488}
1489
1490static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1491{
1492        struct mem_cgroup *memcg;
1493
1494        memcg = lruvec_memcg(lruvec);
1495        if (!memcg)
1496                return NULL;
1497        memcg = parent_mem_cgroup(memcg);
1498        if (!memcg)
1499                return NULL;
1500        return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1501}
1502
1503static inline void unlock_page_lruvec(struct lruvec *lruvec)
1504{
1505        spin_unlock(&lruvec->lru_lock);
1506}
1507
1508static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1509{
1510        spin_unlock_irq(&lruvec->lru_lock);
1511}
1512
1513static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1514                unsigned long flags)
1515{
1516        spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1517}
1518
1519/* Don't lock again iff page's lruvec locked */
1520static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1521                struct lruvec *locked_lruvec)
1522{
1523        if (locked_lruvec) {
1524                if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1525                        return locked_lruvec;
1526
1527                unlock_page_lruvec_irq(locked_lruvec);
1528        }
1529
1530        return lock_page_lruvec_irq(page);
1531}
1532
1533/* Don't lock again iff page's lruvec locked */
1534static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1535                struct lruvec *locked_lruvec, unsigned long *flags)
1536{
1537        if (locked_lruvec) {
1538                if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1539                        return locked_lruvec;
1540
1541                unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1542        }
1543
1544        return lock_page_lruvec_irqsave(page, flags);
1545}
1546
1547#ifdef CONFIG_CGROUP_WRITEBACK
1548
1549struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1550void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1551                         unsigned long *pheadroom, unsigned long *pdirty,
1552                         unsigned long *pwriteback);
1553
1554void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1555                                             struct bdi_writeback *wb);
1556
1557static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1558                                                  struct bdi_writeback *wb)
1559{
1560        if (mem_cgroup_disabled())
1561                return;
1562
1563        if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1564                mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1565}
1566
1567void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1568
1569#else   /* CONFIG_CGROUP_WRITEBACK */
1570
1571static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1572{
1573        return NULL;
1574}
1575
1576static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1577                                       unsigned long *pfilepages,
1578                                       unsigned long *pheadroom,
1579                                       unsigned long *pdirty,
1580                                       unsigned long *pwriteback)
1581{
1582}
1583
1584static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1585                                                  struct bdi_writeback *wb)
1586{
1587}
1588
1589static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1590{
1591}
1592
1593#endif  /* CONFIG_CGROUP_WRITEBACK */
1594
1595struct sock;
1596bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1597void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1598#ifdef CONFIG_MEMCG
1599extern struct static_key_false memcg_sockets_enabled_key;
1600#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1601void mem_cgroup_sk_alloc(struct sock *sk);
1602void mem_cgroup_sk_free(struct sock *sk);
1603static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1604{
1605        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1606                return true;
1607        do {
1608                if (time_before(jiffies, memcg->socket_pressure))
1609                        return true;
1610        } while ((memcg = parent_mem_cgroup(memcg)));
1611        return false;
1612}
1613
1614int alloc_shrinker_info(struct mem_cgroup *memcg);
1615void free_shrinker_info(struct mem_cgroup *memcg);
1616void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1617void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1618#else
1619#define mem_cgroup_sockets_enabled 0
1620static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1621static inline void mem_cgroup_sk_free(struct sock *sk) { };
1622static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1623{
1624        return false;
1625}
1626
1627static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1628                                    int nid, int shrinker_id)
1629{
1630}
1631#endif
1632
1633#ifdef CONFIG_MEMCG_KMEM
1634int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1635void __memcg_kmem_uncharge_page(struct page *page, int order);
1636
1637struct obj_cgroup *get_obj_cgroup_from_current(void);
1638
1639int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1640void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1641
1642extern struct static_key_false memcg_kmem_enabled_key;
1643
1644extern int memcg_nr_cache_ids;
1645void memcg_get_cache_ids(void);
1646void memcg_put_cache_ids(void);
1647
1648/*
1649 * Helper macro to loop through all memcg-specific caches. Callers must still
1650 * check if the cache is valid (it is either valid or NULL).
1651 * the slab_mutex must be held when looping through those caches
1652 */
1653#define for_each_memcg_cache_index(_idx)        \
1654        for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1655
1656static inline bool memcg_kmem_enabled(void)
1657{
1658        return static_branch_likely(&memcg_kmem_enabled_key);
1659}
1660
1661static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1662                                         int order)
1663{
1664        if (memcg_kmem_enabled())
1665                return __memcg_kmem_charge_page(page, gfp, order);
1666        return 0;
1667}
1668
1669static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1670{
1671        if (memcg_kmem_enabled())
1672                __memcg_kmem_uncharge_page(page, order);
1673}
1674
1675/*
1676 * A helper for accessing memcg's kmem_id, used for getting
1677 * corresponding LRU lists.
1678 */
1679static inline int memcg_cache_id(struct mem_cgroup *memcg)
1680{
1681        return memcg ? memcg->kmemcg_id : -1;
1682}
1683
1684struct mem_cgroup *mem_cgroup_from_obj(void *p);
1685
1686#else
1687
1688static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1689                                         int order)
1690{
1691        return 0;
1692}
1693
1694static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1695{
1696}
1697
1698static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1699                                           int order)
1700{
1701        return 0;
1702}
1703
1704static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1705{
1706}
1707
1708#define for_each_memcg_cache_index(_idx)        \
1709        for (; NULL; )
1710
1711static inline bool memcg_kmem_enabled(void)
1712{
1713        return false;
1714}
1715
1716static inline int memcg_cache_id(struct mem_cgroup *memcg)
1717{
1718        return -1;
1719}
1720
1721static inline void memcg_get_cache_ids(void)
1722{
1723}
1724
1725static inline void memcg_put_cache_ids(void)
1726{
1727}
1728
1729static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1730{
1731       return NULL;
1732}
1733
1734#endif /* CONFIG_MEMCG_KMEM */
1735
1736#endif /* _LINUX_MEMCONTROL_H */
1737