linux/include/linux/page-flags.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Macros for manipulating and testing page->flags
   4 */
   5
   6#ifndef PAGE_FLAGS_H
   7#define PAGE_FLAGS_H
   8
   9#include <linux/types.h>
  10#include <linux/bug.h>
  11#include <linux/mmdebug.h>
  12#ifndef __GENERATING_BOUNDS_H
  13#include <linux/mm_types.h>
  14#include <generated/bounds.h>
  15#endif /* !__GENERATING_BOUNDS_H */
  16
  17/*
  18 * Various page->flags bits:
  19 *
  20 * PG_reserved is set for special pages. The "struct page" of such a page
  21 * should in general not be touched (e.g. set dirty) except by its owner.
  22 * Pages marked as PG_reserved include:
  23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
  24 *   initrd, HW tables)
  25 * - Pages reserved or allocated early during boot (before the page allocator
  26 *   was initialized). This includes (depending on the architecture) the
  27 *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
  28 *   much more. Once (if ever) freed, PG_reserved is cleared and they will
  29 *   be given to the page allocator.
  30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
  31 *   to read/write these pages might end badly. Don't touch!
  32 * - The zero page(s)
  33 * - Pages not added to the page allocator when onlining a section because
  34 *   they were excluded via the online_page_callback() or because they are
  35 *   PG_hwpoison.
  36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
  37 *   control pages, vmcoreinfo)
  38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
  39 *   not marked PG_reserved (as they might be in use by somebody else who does
  40 *   not respect the caching strategy).
  41 * - Pages part of an offline section (struct pages of offline sections should
  42 *   not be trusted as they will be initialized when first onlined).
  43 * - MCA pages on ia64
  44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
  45 * - Device memory (e.g. PMEM, DAX, HMM)
  46 * Some PG_reserved pages will be excluded from the hibernation image.
  47 * PG_reserved does in general not hinder anybody from dumping or swapping
  48 * and is no longer required for remap_pfn_range(). ioremap might require it.
  49 * Consequently, PG_reserved for a page mapped into user space can indicate
  50 * the zero page, the vDSO, MMIO pages or device memory.
  51 *
  52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  53 * specific data (which is normally at page->private). It can be used by
  54 * private allocations for its own usage.
  55 *
  56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  58 * is set before writeback starts and cleared when it finishes.
  59 *
  60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  61 * while it is held.
  62 *
  63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  64 * to become unlocked.
  65 *
  66 * PG_swapbacked is set when a page uses swap as a backing storage.  This are
  67 * usually PageAnon or shmem pages but please note that even anonymous pages
  68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
  69 * a result of MADV_FREE).
  70 *
  71 * PG_uptodate tells whether the page's contents is valid.  When a read
  72 * completes, the page becomes uptodate, unless a disk I/O error happened.
  73 *
  74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  75 * file-backed pagecache (see mm/vmscan.c).
  76 *
  77 * PG_error is set to indicate that an I/O error occurred on this page.
  78 *
  79 * PG_arch_1 is an architecture specific page state bit.  The generic code
  80 * guarantees that this bit is cleared for a page when it first is entered into
  81 * the page cache.
  82 *
  83 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  84 * data with incorrect ECC bits that triggered a machine check. Accessing is
  85 * not safe since it may cause another machine check. Don't touch!
  86 */
  87
  88/*
  89 * Don't use the pageflags directly.  Use the PageFoo macros.
  90 *
  91 * The page flags field is split into two parts, the main flags area
  92 * which extends from the low bits upwards, and the fields area which
  93 * extends from the high bits downwards.
  94 *
  95 *  | FIELD | ... | FLAGS |
  96 *  N-1           ^       0
  97 *               (NR_PAGEFLAGS)
  98 *
  99 * The fields area is reserved for fields mapping zone, node (for NUMA) and
 100 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
 101 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
 102 */
 103enum pageflags {
 104        PG_locked,              /* Page is locked. Don't touch. */
 105        PG_referenced,
 106        PG_uptodate,
 107        PG_dirty,
 108        PG_lru,
 109        PG_active,
 110        PG_workingset,
 111        PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
 112        PG_error,
 113        PG_slab,
 114        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
 115        PG_arch_1,
 116        PG_reserved,
 117        PG_private,             /* If pagecache, has fs-private data */
 118        PG_private_2,           /* If pagecache, has fs aux data */
 119        PG_writeback,           /* Page is under writeback */
 120        PG_head,                /* A head page */
 121        PG_mappedtodisk,        /* Has blocks allocated on-disk */
 122        PG_reclaim,             /* To be reclaimed asap */
 123        PG_swapbacked,          /* Page is backed by RAM/swap */
 124        PG_unevictable,         /* Page is "unevictable"  */
 125#ifdef CONFIG_MMU
 126        PG_mlocked,             /* Page is vma mlocked */
 127#endif
 128#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 129        PG_uncached,            /* Page has been mapped as uncached */
 130#endif
 131#ifdef CONFIG_MEMORY_FAILURE
 132        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 133#endif
 134#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 135        PG_young,
 136        PG_idle,
 137#endif
 138#ifdef CONFIG_64BIT
 139        PG_arch_2,
 140#endif
 141        __NR_PAGEFLAGS,
 142
 143        /* Filesystems */
 144        PG_checked = PG_owner_priv_1,
 145
 146        /* SwapBacked */
 147        PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
 148
 149        /* Two page bits are conscripted by FS-Cache to maintain local caching
 150         * state.  These bits are set on pages belonging to the netfs's inodes
 151         * when those inodes are being locally cached.
 152         */
 153        PG_fscache = PG_private_2,      /* page backed by cache */
 154
 155        /* XEN */
 156        /* Pinned in Xen as a read-only pagetable page. */
 157        PG_pinned = PG_owner_priv_1,
 158        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 159        PG_savepinned = PG_dirty,
 160        /* Has a grant mapping of another (foreign) domain's page. */
 161        PG_foreign = PG_owner_priv_1,
 162        /* Remapped by swiotlb-xen. */
 163        PG_xen_remapped = PG_owner_priv_1,
 164
 165        /* SLOB */
 166        PG_slob_free = PG_private,
 167
 168        /* Compound pages. Stored in first tail page's flags */
 169        PG_double_map = PG_workingset,
 170
 171        /* non-lru isolated movable page */
 172        PG_isolated = PG_reclaim,
 173
 174        /* Only valid for buddy pages. Used to track pages that are reported */
 175        PG_reported = PG_uptodate,
 176};
 177
 178#ifndef __GENERATING_BOUNDS_H
 179
 180struct page;    /* forward declaration */
 181
 182static inline struct page *compound_head(struct page *page)
 183{
 184        unsigned long head = READ_ONCE(page->compound_head);
 185
 186        if (unlikely(head & 1))
 187                return (struct page *) (head - 1);
 188        return page;
 189}
 190
 191static __always_inline int PageTail(struct page *page)
 192{
 193        return READ_ONCE(page->compound_head) & 1;
 194}
 195
 196static __always_inline int PageCompound(struct page *page)
 197{
 198        return test_bit(PG_head, &page->flags) || PageTail(page);
 199}
 200
 201#define PAGE_POISON_PATTERN     -1l
 202static inline int PagePoisoned(const struct page *page)
 203{
 204        return page->flags == PAGE_POISON_PATTERN;
 205}
 206
 207#ifdef CONFIG_DEBUG_VM
 208void page_init_poison(struct page *page, size_t size);
 209#else
 210static inline void page_init_poison(struct page *page, size_t size)
 211{
 212}
 213#endif
 214
 215/*
 216 * Page flags policies wrt compound pages
 217 *
 218 * PF_POISONED_CHECK
 219 *     check if this struct page poisoned/uninitialized
 220 *
 221 * PF_ANY:
 222 *     the page flag is relevant for small, head and tail pages.
 223 *
 224 * PF_HEAD:
 225 *     for compound page all operations related to the page flag applied to
 226 *     head page.
 227 *
 228 * PF_ONLY_HEAD:
 229 *     for compound page, callers only ever operate on the head page.
 230 *
 231 * PF_NO_TAIL:
 232 *     modifications of the page flag must be done on small or head pages,
 233 *     checks can be done on tail pages too.
 234 *
 235 * PF_NO_COMPOUND:
 236 *     the page flag is not relevant for compound pages.
 237 *
 238 * PF_SECOND:
 239 *     the page flag is stored in the first tail page.
 240 */
 241#define PF_POISONED_CHECK(page) ({                                      \
 242                VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);            \
 243                page; })
 244#define PF_ANY(page, enforce)   PF_POISONED_CHECK(page)
 245#define PF_HEAD(page, enforce)  PF_POISONED_CHECK(compound_head(page))
 246#define PF_ONLY_HEAD(page, enforce) ({                                  \
 247                VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
 248                PF_POISONED_CHECK(page); })
 249#define PF_NO_TAIL(page, enforce) ({                                    \
 250                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 251                PF_POISONED_CHECK(compound_head(page)); })
 252#define PF_NO_COMPOUND(page, enforce) ({                                \
 253                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 254                PF_POISONED_CHECK(page); })
 255#define PF_SECOND(page, enforce) ({                                     \
 256                VM_BUG_ON_PGFLAGS(!PageHead(page), page);               \
 257                PF_POISONED_CHECK(&page[1]); })
 258
 259/*
 260 * Macros to create function definitions for page flags
 261 */
 262#define TESTPAGEFLAG(uname, lname, policy)                              \
 263static __always_inline int Page##uname(struct page *page)               \
 264        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 265
 266#define SETPAGEFLAG(uname, lname, policy)                               \
 267static __always_inline void SetPage##uname(struct page *page)           \
 268        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 269
 270#define CLEARPAGEFLAG(uname, lname, policy)                             \
 271static __always_inline void ClearPage##uname(struct page *page)         \
 272        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 273
 274#define __SETPAGEFLAG(uname, lname, policy)                             \
 275static __always_inline void __SetPage##uname(struct page *page)         \
 276        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 277
 278#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 279static __always_inline void __ClearPage##uname(struct page *page)       \
 280        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 281
 282#define TESTSETFLAG(uname, lname, policy)                               \
 283static __always_inline int TestSetPage##uname(struct page *page)        \
 284        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 285
 286#define TESTCLEARFLAG(uname, lname, policy)                             \
 287static __always_inline int TestClearPage##uname(struct page *page)      \
 288        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 289
 290#define PAGEFLAG(uname, lname, policy)                                  \
 291        TESTPAGEFLAG(uname, lname, policy)                              \
 292        SETPAGEFLAG(uname, lname, policy)                               \
 293        CLEARPAGEFLAG(uname, lname, policy)
 294
 295#define __PAGEFLAG(uname, lname, policy)                                \
 296        TESTPAGEFLAG(uname, lname, policy)                              \
 297        __SETPAGEFLAG(uname, lname, policy)                             \
 298        __CLEARPAGEFLAG(uname, lname, policy)
 299
 300#define TESTSCFLAG(uname, lname, policy)                                \
 301        TESTSETFLAG(uname, lname, policy)                               \
 302        TESTCLEARFLAG(uname, lname, policy)
 303
 304#define TESTPAGEFLAG_FALSE(uname)                                       \
 305static inline int Page##uname(const struct page *page) { return 0; }
 306
 307#define SETPAGEFLAG_NOOP(uname)                                         \
 308static inline void SetPage##uname(struct page *page) {  }
 309
 310#define CLEARPAGEFLAG_NOOP(uname)                                       \
 311static inline void ClearPage##uname(struct page *page) {  }
 312
 313#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 314static inline void __ClearPage##uname(struct page *page) {  }
 315
 316#define TESTSETFLAG_FALSE(uname)                                        \
 317static inline int TestSetPage##uname(struct page *page) { return 0; }
 318
 319#define TESTCLEARFLAG_FALSE(uname)                                      \
 320static inline int TestClearPage##uname(struct page *page) { return 0; }
 321
 322#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 323        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 324
 325#define TESTSCFLAG_FALSE(uname)                                         \
 326        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 327
 328__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 329PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
 330PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
 331PAGEFLAG(Referenced, referenced, PF_HEAD)
 332        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 333        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 334PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 335        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 336PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 337        TESTCLEARFLAG(LRU, lru, PF_HEAD)
 338PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 339        TESTCLEARFLAG(Active, active, PF_HEAD)
 340PAGEFLAG(Workingset, workingset, PF_HEAD)
 341        TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
 342__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 343__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 344PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 345
 346/* Xen */
 347PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 348        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 349PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 350PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 351PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 352        TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
 353
 354PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 355        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 356        __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 357PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 358        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 359        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 360
 361/*
 362 * Private page markings that may be used by the filesystem that owns the page
 363 * for its own purposes.
 364 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 365 */
 366PAGEFLAG(Private, private, PF_ANY)
 367PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 368PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 369        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 370
 371/*
 372 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 373 * risky: they bypass page accounting.
 374 */
 375TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
 376        TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
 377PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
 378
 379/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 380PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
 381        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
 382PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 383        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 384
 385#ifdef CONFIG_HIGHMEM
 386/*
 387 * Must use a macro here due to header dependency issues. page_zone() is not
 388 * available at this point.
 389 */
 390#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 391#else
 392PAGEFLAG_FALSE(HighMem)
 393#endif
 394
 395#ifdef CONFIG_SWAP
 396static __always_inline int PageSwapCache(struct page *page)
 397{
 398#ifdef CONFIG_THP_SWAP
 399        page = compound_head(page);
 400#endif
 401        return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
 402
 403}
 404SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 405CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
 406#else
 407PAGEFLAG_FALSE(SwapCache)
 408#endif
 409
 410PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 411        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 412        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 413
 414#ifdef CONFIG_MMU
 415PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 416        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 417        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 418#else
 419PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 420        TESTSCFLAG_FALSE(Mlocked)
 421#endif
 422
 423#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 424PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 425#else
 426PAGEFLAG_FALSE(Uncached)
 427#endif
 428
 429#ifdef CONFIG_MEMORY_FAILURE
 430PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 431TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 432#define __PG_HWPOISON (1UL << PG_hwpoison)
 433extern bool take_page_off_buddy(struct page *page);
 434#else
 435PAGEFLAG_FALSE(HWPoison)
 436#define __PG_HWPOISON 0
 437#endif
 438
 439#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 440TESTPAGEFLAG(Young, young, PF_ANY)
 441SETPAGEFLAG(Young, young, PF_ANY)
 442TESTCLEARFLAG(Young, young, PF_ANY)
 443PAGEFLAG(Idle, idle, PF_ANY)
 444#endif
 445
 446/*
 447 * PageReported() is used to track reported free pages within the Buddy
 448 * allocator. We can use the non-atomic version of the test and set
 449 * operations as both should be shielded with the zone lock to prevent
 450 * any possible races on the setting or clearing of the bit.
 451 */
 452__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
 453
 454/*
 455 * On an anonymous page mapped into a user virtual memory area,
 456 * page->mapping points to its anon_vma, not to a struct address_space;
 457 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 458 *
 459 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 460 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
 461 * bit; and then page->mapping points, not to an anon_vma, but to a private
 462 * structure which KSM associates with that merged page.  See ksm.h.
 463 *
 464 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
 465 * page and then page->mapping points a struct address_space.
 466 *
 467 * Please note that, confusingly, "page_mapping" refers to the inode
 468 * address_space which maps the page from disk; whereas "page_mapped"
 469 * refers to user virtual address space into which the page is mapped.
 470 */
 471#define PAGE_MAPPING_ANON       0x1
 472#define PAGE_MAPPING_MOVABLE    0x2
 473#define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 474#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
 475
 476static __always_inline int PageMappingFlags(struct page *page)
 477{
 478        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
 479}
 480
 481static __always_inline int PageAnon(struct page *page)
 482{
 483        page = compound_head(page);
 484        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 485}
 486
 487static __always_inline int __PageMovable(struct page *page)
 488{
 489        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 490                                PAGE_MAPPING_MOVABLE;
 491}
 492
 493#ifdef CONFIG_KSM
 494/*
 495 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 496 * which KSM maps into multiple mms, wherever identical anonymous page content
 497 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 498 * anon_vma, but to that page's node of the stable tree.
 499 */
 500static __always_inline int PageKsm(struct page *page)
 501{
 502        page = compound_head(page);
 503        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 504                                PAGE_MAPPING_KSM;
 505}
 506#else
 507TESTPAGEFLAG_FALSE(Ksm)
 508#endif
 509
 510u64 stable_page_flags(struct page *page);
 511
 512static inline int PageUptodate(struct page *page)
 513{
 514        int ret;
 515        page = compound_head(page);
 516        ret = test_bit(PG_uptodate, &(page)->flags);
 517        /*
 518         * Must ensure that the data we read out of the page is loaded
 519         * _after_ we've loaded page->flags to check for PageUptodate.
 520         * We can skip the barrier if the page is not uptodate, because
 521         * we wouldn't be reading anything from it.
 522         *
 523         * See SetPageUptodate() for the other side of the story.
 524         */
 525        if (ret)
 526                smp_rmb();
 527
 528        return ret;
 529}
 530
 531static __always_inline void __SetPageUptodate(struct page *page)
 532{
 533        VM_BUG_ON_PAGE(PageTail(page), page);
 534        smp_wmb();
 535        __set_bit(PG_uptodate, &page->flags);
 536}
 537
 538static __always_inline void SetPageUptodate(struct page *page)
 539{
 540        VM_BUG_ON_PAGE(PageTail(page), page);
 541        /*
 542         * Memory barrier must be issued before setting the PG_uptodate bit,
 543         * so that all previous stores issued in order to bring the page
 544         * uptodate are actually visible before PageUptodate becomes true.
 545         */
 546        smp_wmb();
 547        set_bit(PG_uptodate, &page->flags);
 548}
 549
 550CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 551
 552int test_clear_page_writeback(struct page *page);
 553int __test_set_page_writeback(struct page *page, bool keep_write);
 554
 555#define test_set_page_writeback(page)                   \
 556        __test_set_page_writeback(page, false)
 557#define test_set_page_writeback_keepwrite(page) \
 558        __test_set_page_writeback(page, true)
 559
 560static inline void set_page_writeback(struct page *page)
 561{
 562        test_set_page_writeback(page);
 563}
 564
 565static inline void set_page_writeback_keepwrite(struct page *page)
 566{
 567        test_set_page_writeback_keepwrite(page);
 568}
 569
 570__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 571
 572static __always_inline void set_compound_head(struct page *page, struct page *head)
 573{
 574        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 575}
 576
 577static __always_inline void clear_compound_head(struct page *page)
 578{
 579        WRITE_ONCE(page->compound_head, 0);
 580}
 581
 582#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 583static inline void ClearPageCompound(struct page *page)
 584{
 585        BUG_ON(!PageHead(page));
 586        ClearPageHead(page);
 587}
 588#endif
 589
 590#define PG_head_mask ((1UL << PG_head))
 591
 592#ifdef CONFIG_HUGETLB_PAGE
 593int PageHuge(struct page *page);
 594int PageHeadHuge(struct page *page);
 595#else
 596TESTPAGEFLAG_FALSE(Huge)
 597TESTPAGEFLAG_FALSE(HeadHuge)
 598#endif
 599
 600
 601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 602/*
 603 * PageHuge() only returns true for hugetlbfs pages, but not for
 604 * normal or transparent huge pages.
 605 *
 606 * PageTransHuge() returns true for both transparent huge and
 607 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 608 * called only in the core VM paths where hugetlbfs pages can't exist.
 609 */
 610static inline int PageTransHuge(struct page *page)
 611{
 612        VM_BUG_ON_PAGE(PageTail(page), page);
 613        return PageHead(page);
 614}
 615
 616/*
 617 * PageTransCompound returns true for both transparent huge pages
 618 * and hugetlbfs pages, so it should only be called when it's known
 619 * that hugetlbfs pages aren't involved.
 620 */
 621static inline int PageTransCompound(struct page *page)
 622{
 623        return PageCompound(page);
 624}
 625
 626/*
 627 * PageTransCompoundMap is the same as PageTransCompound, but it also
 628 * guarantees the primary MMU has the entire compound page mapped
 629 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
 630 * can also map the entire compound page. This allows the secondary
 631 * MMUs to call get_user_pages() only once for each compound page and
 632 * to immediately map the entire compound page with a single secondary
 633 * MMU fault. If there will be a pmd split later, the secondary MMUs
 634 * will get an update through the MMU notifier invalidation through
 635 * split_huge_pmd().
 636 *
 637 * Unlike PageTransCompound, this is safe to be called only while
 638 * split_huge_pmd() cannot run from under us, like if protected by the
 639 * MMU notifier, otherwise it may result in page->_mapcount check false
 640 * positives.
 641 *
 642 * We have to treat page cache THP differently since every subpage of it
 643 * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
 644 * mapped in the current process so comparing subpage's _mapcount to
 645 * compound_mapcount to filter out PTE mapped case.
 646 */
 647static inline int PageTransCompoundMap(struct page *page)
 648{
 649        struct page *head;
 650
 651        if (!PageTransCompound(page))
 652                return 0;
 653
 654        if (PageAnon(page))
 655                return atomic_read(&page->_mapcount) < 0;
 656
 657        head = compound_head(page);
 658        /* File THP is PMD mapped and not PTE mapped */
 659        return atomic_read(&page->_mapcount) ==
 660               atomic_read(compound_mapcount_ptr(head));
 661}
 662
 663/*
 664 * PageTransTail returns true for both transparent huge pages
 665 * and hugetlbfs pages, so it should only be called when it's known
 666 * that hugetlbfs pages aren't involved.
 667 */
 668static inline int PageTransTail(struct page *page)
 669{
 670        return PageTail(page);
 671}
 672
 673/*
 674 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 675 * as PMDs.
 676 *
 677 * This is required for optimization of rmap operations for THP: we can postpone
 678 * per small page mapcount accounting (and its overhead from atomic operations)
 679 * until the first PMD split.
 680 *
 681 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 682 * by one. This reference will go away with last compound_mapcount.
 683 *
 684 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 685 */
 686PAGEFLAG(DoubleMap, double_map, PF_SECOND)
 687        TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
 688#else
 689TESTPAGEFLAG_FALSE(TransHuge)
 690TESTPAGEFLAG_FALSE(TransCompound)
 691TESTPAGEFLAG_FALSE(TransCompoundMap)
 692TESTPAGEFLAG_FALSE(TransTail)
 693PAGEFLAG_FALSE(DoubleMap)
 694        TESTSCFLAG_FALSE(DoubleMap)
 695#endif
 696
 697/*
 698 * For pages that are never mapped to userspace (and aren't PageSlab),
 699 * page_type may be used.  Because it is initialised to -1, we invert the
 700 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
 701 * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
 702 * low bits so that an underflow or overflow of page_mapcount() won't be
 703 * mistaken for a page type value.
 704 */
 705
 706#define PAGE_TYPE_BASE  0xf0000000
 707/* Reserve              0x0000007f to catch underflows of page_mapcount */
 708#define PAGE_MAPCOUNT_RESERVE   -128
 709#define PG_buddy        0x00000080
 710#define PG_offline      0x00000100
 711#define PG_table        0x00000200
 712#define PG_guard        0x00000400
 713
 714#define PageType(page, flag)                                            \
 715        ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
 716
 717static inline int page_has_type(struct page *page)
 718{
 719        return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
 720}
 721
 722#define PAGE_TYPE_OPS(uname, lname)                                     \
 723static __always_inline int Page##uname(struct page *page)               \
 724{                                                                       \
 725        return PageType(page, PG_##lname);                              \
 726}                                                                       \
 727static __always_inline void __SetPage##uname(struct page *page)         \
 728{                                                                       \
 729        VM_BUG_ON_PAGE(!PageType(page, 0), page);                       \
 730        page->page_type &= ~PG_##lname;                                 \
 731}                                                                       \
 732static __always_inline void __ClearPage##uname(struct page *page)       \
 733{                                                                       \
 734        VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
 735        page->page_type |= PG_##lname;                                  \
 736}
 737
 738/*
 739 * PageBuddy() indicates that the page is free and in the buddy system
 740 * (see mm/page_alloc.c).
 741 */
 742PAGE_TYPE_OPS(Buddy, buddy)
 743
 744/*
 745 * PageOffline() indicates that the page is logically offline although the
 746 * containing section is online. (e.g. inflated in a balloon driver or
 747 * not onlined when onlining the section).
 748 * The content of these pages is effectively stale. Such pages should not
 749 * be touched (read/write/dump/save) except by their owner.
 750 *
 751 * If a driver wants to allow to offline unmovable PageOffline() pages without
 752 * putting them back to the buddy, it can do so via the memory notifier by
 753 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
 754 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
 755 * pages (now with a reference count of zero) are treated like free pages,
 756 * allowing the containing memory block to get offlined. A driver that
 757 * relies on this feature is aware that re-onlining the memory block will
 758 * require to re-set the pages PageOffline() and not giving them to the
 759 * buddy via online_page_callback_t.
 760 */
 761PAGE_TYPE_OPS(Offline, offline)
 762
 763/*
 764 * Marks pages in use as page tables.
 765 */
 766PAGE_TYPE_OPS(Table, table)
 767
 768/*
 769 * Marks guardpages used with debug_pagealloc.
 770 */
 771PAGE_TYPE_OPS(Guard, guard)
 772
 773extern bool is_free_buddy_page(struct page *page);
 774
 775__PAGEFLAG(Isolated, isolated, PF_ANY);
 776
 777/*
 778 * If network-based swap is enabled, sl*b must keep track of whether pages
 779 * were allocated from pfmemalloc reserves.
 780 */
 781static inline int PageSlabPfmemalloc(struct page *page)
 782{
 783        VM_BUG_ON_PAGE(!PageSlab(page), page);
 784        return PageActive(page);
 785}
 786
 787static inline void SetPageSlabPfmemalloc(struct page *page)
 788{
 789        VM_BUG_ON_PAGE(!PageSlab(page), page);
 790        SetPageActive(page);
 791}
 792
 793static inline void __ClearPageSlabPfmemalloc(struct page *page)
 794{
 795        VM_BUG_ON_PAGE(!PageSlab(page), page);
 796        __ClearPageActive(page);
 797}
 798
 799static inline void ClearPageSlabPfmemalloc(struct page *page)
 800{
 801        VM_BUG_ON_PAGE(!PageSlab(page), page);
 802        ClearPageActive(page);
 803}
 804
 805#ifdef CONFIG_MMU
 806#define __PG_MLOCKED            (1UL << PG_mlocked)
 807#else
 808#define __PG_MLOCKED            0
 809#endif
 810
 811/*
 812 * Flags checked when a page is freed.  Pages being freed should not have
 813 * these flags set.  If they are, there is a problem.
 814 */
 815#define PAGE_FLAGS_CHECK_AT_FREE                                \
 816        (1UL << PG_lru          | 1UL << PG_locked      |       \
 817         1UL << PG_private      | 1UL << PG_private_2   |       \
 818         1UL << PG_writeback    | 1UL << PG_reserved    |       \
 819         1UL << PG_slab         | 1UL << PG_active      |       \
 820         1UL << PG_unevictable  | __PG_MLOCKED)
 821
 822/*
 823 * Flags checked when a page is prepped for return by the page allocator.
 824 * Pages being prepped should not have these flags set.  If they are set,
 825 * there has been a kernel bug or struct page corruption.
 826 *
 827 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 828 * alloc-free cycle to prevent from reusing the page.
 829 */
 830#define PAGE_FLAGS_CHECK_AT_PREP        \
 831        (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
 832
 833#define PAGE_FLAGS_PRIVATE                              \
 834        (1UL << PG_private | 1UL << PG_private_2)
 835/**
 836 * page_has_private - Determine if page has private stuff
 837 * @page: The page to be checked
 838 *
 839 * Determine if a page has private stuff, indicating that release routines
 840 * should be invoked upon it.
 841 */
 842static inline int page_has_private(struct page *page)
 843{
 844        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 845}
 846
 847#undef PF_ANY
 848#undef PF_HEAD
 849#undef PF_ONLY_HEAD
 850#undef PF_NO_TAIL
 851#undef PF_NO_COMPOUND
 852#undef PF_SECOND
 853#endif /* !__GENERATING_BOUNDS_H */
 854
 855#endif  /* PAGE_FLAGS_H */
 856