linux/include/linux/pstore.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Persistent Storage - pstore.h
   4 *
   5 * Copyright (C) 2010 Intel Corporation <tony.luck@intel.com>
   6 *
   7 * This code is the generic layer to export data records from platform
   8 * level persistent storage via a file system.
   9 */
  10#ifndef _LINUX_PSTORE_H
  11#define _LINUX_PSTORE_H
  12
  13#include <linux/compiler.h>
  14#include <linux/errno.h>
  15#include <linux/kmsg_dump.h>
  16#include <linux/mutex.h>
  17#include <linux/semaphore.h>
  18#include <linux/time.h>
  19#include <linux/types.h>
  20
  21struct module;
  22
  23/*
  24 * pstore record types (see fs/pstore/platform.c for pstore_type_names[])
  25 * These values may be written to storage (see EFI vars backend), so
  26 * they are kind of an ABI. Be careful changing the mappings.
  27 */
  28enum pstore_type_id {
  29        /* Frontend storage types */
  30        PSTORE_TYPE_DMESG       = 0,
  31        PSTORE_TYPE_MCE         = 1,
  32        PSTORE_TYPE_CONSOLE     = 2,
  33        PSTORE_TYPE_FTRACE      = 3,
  34
  35        /* PPC64-specific partition types */
  36        PSTORE_TYPE_PPC_RTAS    = 4,
  37        PSTORE_TYPE_PPC_OF      = 5,
  38        PSTORE_TYPE_PPC_COMMON  = 6,
  39        PSTORE_TYPE_PMSG        = 7,
  40        PSTORE_TYPE_PPC_OPAL    = 8,
  41
  42        /* End of the list */
  43        PSTORE_TYPE_MAX
  44};
  45
  46const char *pstore_type_to_name(enum pstore_type_id type);
  47enum pstore_type_id pstore_name_to_type(const char *name);
  48
  49struct pstore_info;
  50/**
  51 * struct pstore_record - details of a pstore record entry
  52 * @psi:        pstore backend driver information
  53 * @type:       pstore record type
  54 * @id:         per-type unique identifier for record
  55 * @time:       timestamp of the record
  56 * @buf:        pointer to record contents
  57 * @size:       size of @buf
  58 * @ecc_notice_size:
  59 *              ECC information for @buf
  60 *
  61 * Valid for PSTORE_TYPE_DMESG @type:
  62 *
  63 * @count:      Oops count since boot
  64 * @reason:     kdump reason for notification
  65 * @part:       position in a multipart record
  66 * @compressed: whether the buffer is compressed
  67 *
  68 */
  69struct pstore_record {
  70        struct pstore_info      *psi;
  71        enum pstore_type_id     type;
  72        u64                     id;
  73        struct timespec64       time;
  74        char                    *buf;
  75        ssize_t                 size;
  76        ssize_t                 ecc_notice_size;
  77
  78        int                     count;
  79        enum kmsg_dump_reason   reason;
  80        unsigned int            part;
  81        bool                    compressed;
  82};
  83
  84/**
  85 * struct pstore_info - backend pstore driver structure
  86 *
  87 * @owner:      module which is responsible for this backend driver
  88 * @name:       name of the backend driver
  89 *
  90 * @buf_lock:   semaphore to serialize access to @buf
  91 * @buf:        preallocated crash dump buffer
  92 * @bufsize:    size of @buf available for crash dump bytes (must match
  93 *              smallest number of bytes available for writing to a
  94 *              backend entry, since compressed bytes don't take kindly
  95 *              to being truncated)
  96 *
  97 * @read_mutex: serializes @open, @read, @close, and @erase callbacks
  98 * @flags:      bitfield of frontends the backend can accept writes for
  99 * @max_reason: Used when PSTORE_FLAGS_DMESG is set. Contains the
 100 *              kmsg_dump_reason enum value. KMSG_DUMP_UNDEF means
 101 *              "use existing kmsg_dump() filtering, based on the
 102 *              printk.always_kmsg_dump boot param" (which is either
 103 *              KMSG_DUMP_OOPS when false, or KMSG_DUMP_MAX when
 104 *              true); see printk.always_kmsg_dump for more details.
 105 * @data:       backend-private pointer passed back during callbacks
 106 *
 107 * Callbacks:
 108 *
 109 * @open:
 110 *      Notify backend that pstore is starting a full read of backend
 111 *      records. Followed by one or more @read calls, and a final @close.
 112 *
 113 *      @psi:   in: pointer to the struct pstore_info for the backend
 114 *
 115 *      Returns 0 on success, and non-zero on error.
 116 *
 117 * @close:
 118 *      Notify backend that pstore has finished a full read of backend
 119 *      records. Always preceded by an @open call and one or more @read
 120 *      calls.
 121 *
 122 *      @psi:   in: pointer to the struct pstore_info for the backend
 123 *
 124 *      Returns 0 on success, and non-zero on error. (Though pstore will
 125 *      ignore the error.)
 126 *
 127 * @read:
 128 *      Read next available backend record. Called after a successful
 129 *      @open.
 130 *
 131 *      @record:
 132 *              pointer to record to populate. @buf should be allocated
 133 *              by the backend and filled. At least @type and @id should
 134 *              be populated, since these are used when creating pstorefs
 135 *              file names.
 136 *
 137 *      Returns record size on success, zero when no more records are
 138 *      available, or negative on error.
 139 *
 140 * @write:
 141 *      A newly generated record needs to be written to backend storage.
 142 *
 143 *      @record:
 144 *              pointer to record metadata. When @type is PSTORE_TYPE_DMESG,
 145 *              @buf will be pointing to the preallocated @psi.buf, since
 146 *              memory allocation may be broken during an Oops. Regardless,
 147 *              @buf must be proccesed or copied before returning. The
 148 *              backend is also expected to write @id with something that
 149 *              can help identify this record to a future @erase callback.
 150 *              The @time field will be prepopulated with the current time,
 151 *              when available. The @size field will have the size of data
 152 *              in @buf.
 153 *
 154 *      Returns 0 on success, and non-zero on error.
 155 *
 156 * @write_user:
 157 *      Perform a frontend write to a backend record, using a specified
 158 *      buffer that is coming directly from userspace, instead of the
 159 *      @record @buf.
 160 *
 161 *      @record:        pointer to record metadata.
 162 *      @buf:           pointer to userspace contents to write to backend
 163 *
 164 *      Returns 0 on success, and non-zero on error.
 165 *
 166 * @erase:
 167 *      Delete a record from backend storage.  Different backends
 168 *      identify records differently, so entire original record is
 169 *      passed back to assist in identification of what the backend
 170 *      should remove from storage.
 171 *
 172 *      @record:        pointer to record metadata.
 173 *
 174 *      Returns 0 on success, and non-zero on error.
 175 *
 176 */
 177struct pstore_info {
 178        struct module   *owner;
 179        const char      *name;
 180
 181        struct semaphore buf_lock;
 182        char            *buf;
 183        size_t          bufsize;
 184
 185        struct mutex    read_mutex;
 186
 187        int             flags;
 188        int             max_reason;
 189        void            *data;
 190
 191        int             (*open)(struct pstore_info *psi);
 192        int             (*close)(struct pstore_info *psi);
 193        ssize_t         (*read)(struct pstore_record *record);
 194        int             (*write)(struct pstore_record *record);
 195        int             (*write_user)(struct pstore_record *record,
 196                                      const char __user *buf);
 197        int             (*erase)(struct pstore_record *record);
 198};
 199
 200/* Supported frontends */
 201#define PSTORE_FLAGS_DMESG      BIT(0)
 202#define PSTORE_FLAGS_CONSOLE    BIT(1)
 203#define PSTORE_FLAGS_FTRACE     BIT(2)
 204#define PSTORE_FLAGS_PMSG       BIT(3)
 205
 206extern int pstore_register(struct pstore_info *);
 207extern void pstore_unregister(struct pstore_info *);
 208
 209struct pstore_ftrace_record {
 210        unsigned long ip;
 211        unsigned long parent_ip;
 212        u64 ts;
 213};
 214
 215/*
 216 * ftrace related stuff: Both backends and frontends need these so expose
 217 * them here.
 218 */
 219
 220#if NR_CPUS <= 2 && defined(CONFIG_ARM_THUMB)
 221#define PSTORE_CPU_IN_IP 0x1
 222#elif NR_CPUS <= 4 && defined(CONFIG_ARM)
 223#define PSTORE_CPU_IN_IP 0x3
 224#endif
 225
 226#define TS_CPU_SHIFT 8
 227#define TS_CPU_MASK (BIT(TS_CPU_SHIFT) - 1)
 228
 229/*
 230 * If CPU number can be stored in IP, store it there, otherwise store it in
 231 * the time stamp. This means more timestamp resolution is available when
 232 * the CPU can be stored in the IP.
 233 */
 234#ifdef PSTORE_CPU_IN_IP
 235static inline void
 236pstore_ftrace_encode_cpu(struct pstore_ftrace_record *rec, unsigned int cpu)
 237{
 238        rec->ip |= cpu;
 239}
 240
 241static inline unsigned int
 242pstore_ftrace_decode_cpu(struct pstore_ftrace_record *rec)
 243{
 244        return rec->ip & PSTORE_CPU_IN_IP;
 245}
 246
 247static inline u64
 248pstore_ftrace_read_timestamp(struct pstore_ftrace_record *rec)
 249{
 250        return rec->ts;
 251}
 252
 253static inline void
 254pstore_ftrace_write_timestamp(struct pstore_ftrace_record *rec, u64 val)
 255{
 256        rec->ts = val;
 257}
 258#else
 259static inline void
 260pstore_ftrace_encode_cpu(struct pstore_ftrace_record *rec, unsigned int cpu)
 261{
 262        rec->ts &= ~(TS_CPU_MASK);
 263        rec->ts |= cpu;
 264}
 265
 266static inline unsigned int
 267pstore_ftrace_decode_cpu(struct pstore_ftrace_record *rec)
 268{
 269        return rec->ts & TS_CPU_MASK;
 270}
 271
 272static inline u64
 273pstore_ftrace_read_timestamp(struct pstore_ftrace_record *rec)
 274{
 275        return rec->ts >> TS_CPU_SHIFT;
 276}
 277
 278static inline void
 279pstore_ftrace_write_timestamp(struct pstore_ftrace_record *rec, u64 val)
 280{
 281        rec->ts = (rec->ts & TS_CPU_MASK) | (val << TS_CPU_SHIFT);
 282}
 283#endif
 284
 285#endif /*_LINUX_PSTORE_H*/
 286