linux/include/linux/rbtree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3  Red Black Trees
   4  (C) 1999  Andrea Arcangeli <andrea@suse.de>
   5  
   6
   7  linux/include/linux/rbtree.h
   8
   9  To use rbtrees you'll have to implement your own insert and search cores.
  10  This will avoid us to use callbacks and to drop drammatically performances.
  11  I know it's not the cleaner way,  but in C (not in C++) to get
  12  performances and genericity...
  13
  14  See Documentation/core-api/rbtree.rst for documentation and samples.
  15*/
  16
  17#ifndef _LINUX_RBTREE_H
  18#define _LINUX_RBTREE_H
  19
  20#include <linux/kernel.h>
  21#include <linux/stddef.h>
  22#include <linux/rcupdate.h>
  23
  24struct rb_node {
  25        unsigned long  __rb_parent_color;
  26        struct rb_node *rb_right;
  27        struct rb_node *rb_left;
  28} __attribute__((aligned(sizeof(long))));
  29    /* The alignment might seem pointless, but allegedly CRIS needs it */
  30
  31struct rb_root {
  32        struct rb_node *rb_node;
  33};
  34
  35#define rb_parent(r)   ((struct rb_node *)((r)->__rb_parent_color & ~3))
  36
  37#define RB_ROOT (struct rb_root) { NULL, }
  38#define rb_entry(ptr, type, member) container_of(ptr, type, member)
  39
  40#define RB_EMPTY_ROOT(root)  (READ_ONCE((root)->rb_node) == NULL)
  41
  42/* 'empty' nodes are nodes that are known not to be inserted in an rbtree */
  43#define RB_EMPTY_NODE(node)  \
  44        ((node)->__rb_parent_color == (unsigned long)(node))
  45#define RB_CLEAR_NODE(node)  \
  46        ((node)->__rb_parent_color = (unsigned long)(node))
  47
  48
  49extern void rb_insert_color(struct rb_node *, struct rb_root *);
  50extern void rb_erase(struct rb_node *, struct rb_root *);
  51
  52
  53/* Find logical next and previous nodes in a tree */
  54extern struct rb_node *rb_next(const struct rb_node *);
  55extern struct rb_node *rb_prev(const struct rb_node *);
  56extern struct rb_node *rb_first(const struct rb_root *);
  57extern struct rb_node *rb_last(const struct rb_root *);
  58
  59/* Postorder iteration - always visit the parent after its children */
  60extern struct rb_node *rb_first_postorder(const struct rb_root *);
  61extern struct rb_node *rb_next_postorder(const struct rb_node *);
  62
  63/* Fast replacement of a single node without remove/rebalance/add/rebalance */
  64extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
  65                            struct rb_root *root);
  66extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
  67                                struct rb_root *root);
  68
  69static inline void rb_link_node(struct rb_node *node, struct rb_node *parent,
  70                                struct rb_node **rb_link)
  71{
  72        node->__rb_parent_color = (unsigned long)parent;
  73        node->rb_left = node->rb_right = NULL;
  74
  75        *rb_link = node;
  76}
  77
  78static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent,
  79                                    struct rb_node **rb_link)
  80{
  81        node->__rb_parent_color = (unsigned long)parent;
  82        node->rb_left = node->rb_right = NULL;
  83
  84        rcu_assign_pointer(*rb_link, node);
  85}
  86
  87#define rb_entry_safe(ptr, type, member) \
  88        ({ typeof(ptr) ____ptr = (ptr); \
  89           ____ptr ? rb_entry(____ptr, type, member) : NULL; \
  90        })
  91
  92/**
  93 * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of
  94 * given type allowing the backing memory of @pos to be invalidated
  95 *
  96 * @pos:        the 'type *' to use as a loop cursor.
  97 * @n:          another 'type *' to use as temporary storage
  98 * @root:       'rb_root *' of the rbtree.
  99 * @field:      the name of the rb_node field within 'type'.
 100 *
 101 * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as
 102 * list_for_each_entry_safe() and allows the iteration to continue independent
 103 * of changes to @pos by the body of the loop.
 104 *
 105 * Note, however, that it cannot handle other modifications that re-order the
 106 * rbtree it is iterating over. This includes calling rb_erase() on @pos, as
 107 * rb_erase() may rebalance the tree, causing us to miss some nodes.
 108 */
 109#define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
 110        for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
 111             pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \
 112                        typeof(*pos), field); 1; }); \
 113             pos = n)
 114
 115/*
 116 * Leftmost-cached rbtrees.
 117 *
 118 * We do not cache the rightmost node based on footprint
 119 * size vs number of potential users that could benefit
 120 * from O(1) rb_last(). Just not worth it, users that want
 121 * this feature can always implement the logic explicitly.
 122 * Furthermore, users that want to cache both pointers may
 123 * find it a bit asymmetric, but that's ok.
 124 */
 125struct rb_root_cached {
 126        struct rb_root rb_root;
 127        struct rb_node *rb_leftmost;
 128};
 129
 130#define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL }
 131
 132/* Same as rb_first(), but O(1) */
 133#define rb_first_cached(root) (root)->rb_leftmost
 134
 135static inline void rb_insert_color_cached(struct rb_node *node,
 136                                          struct rb_root_cached *root,
 137                                          bool leftmost)
 138{
 139        if (leftmost)
 140                root->rb_leftmost = node;
 141        rb_insert_color(node, &root->rb_root);
 142}
 143
 144
 145static inline struct rb_node *
 146rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
 147{
 148        struct rb_node *leftmost = NULL;
 149
 150        if (root->rb_leftmost == node)
 151                leftmost = root->rb_leftmost = rb_next(node);
 152
 153        rb_erase(node, &root->rb_root);
 154
 155        return leftmost;
 156}
 157
 158static inline void rb_replace_node_cached(struct rb_node *victim,
 159                                          struct rb_node *new,
 160                                          struct rb_root_cached *root)
 161{
 162        if (root->rb_leftmost == victim)
 163                root->rb_leftmost = new;
 164        rb_replace_node(victim, new, &root->rb_root);
 165}
 166
 167/*
 168 * The below helper functions use 2 operators with 3 different
 169 * calling conventions. The operators are related like:
 170 *
 171 *      comp(a->key,b) < 0  := less(a,b)
 172 *      comp(a->key,b) > 0  := less(b,a)
 173 *      comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
 174 *
 175 * If these operators define a partial order on the elements we make no
 176 * guarantee on which of the elements matching the key is found. See
 177 * rb_find().
 178 *
 179 * The reason for this is to allow the find() interface without requiring an
 180 * on-stack dummy object, which might not be feasible due to object size.
 181 */
 182
 183/**
 184 * rb_add_cached() - insert @node into the leftmost cached tree @tree
 185 * @node: node to insert
 186 * @tree: leftmost cached tree to insert @node into
 187 * @less: operator defining the (partial) node order
 188 *
 189 * Returns @node when it is the new leftmost, or NULL.
 190 */
 191static __always_inline struct rb_node *
 192rb_add_cached(struct rb_node *node, struct rb_root_cached *tree,
 193              bool (*less)(struct rb_node *, const struct rb_node *))
 194{
 195        struct rb_node **link = &tree->rb_root.rb_node;
 196        struct rb_node *parent = NULL;
 197        bool leftmost = true;
 198
 199        while (*link) {
 200                parent = *link;
 201                if (less(node, parent)) {
 202                        link = &parent->rb_left;
 203                } else {
 204                        link = &parent->rb_right;
 205                        leftmost = false;
 206                }
 207        }
 208
 209        rb_link_node(node, parent, link);
 210        rb_insert_color_cached(node, tree, leftmost);
 211
 212        return leftmost ? node : NULL;
 213}
 214
 215/**
 216 * rb_add() - insert @node into @tree
 217 * @node: node to insert
 218 * @tree: tree to insert @node into
 219 * @less: operator defining the (partial) node order
 220 */
 221static __always_inline void
 222rb_add(struct rb_node *node, struct rb_root *tree,
 223       bool (*less)(struct rb_node *, const struct rb_node *))
 224{
 225        struct rb_node **link = &tree->rb_node;
 226        struct rb_node *parent = NULL;
 227
 228        while (*link) {
 229                parent = *link;
 230                if (less(node, parent))
 231                        link = &parent->rb_left;
 232                else
 233                        link = &parent->rb_right;
 234        }
 235
 236        rb_link_node(node, parent, link);
 237        rb_insert_color(node, tree);
 238}
 239
 240/**
 241 * rb_find_add() - find equivalent @node in @tree, or add @node
 242 * @node: node to look-for / insert
 243 * @tree: tree to search / modify
 244 * @cmp: operator defining the node order
 245 *
 246 * Returns the rb_node matching @node, or NULL when no match is found and @node
 247 * is inserted.
 248 */
 249static __always_inline struct rb_node *
 250rb_find_add(struct rb_node *node, struct rb_root *tree,
 251            int (*cmp)(struct rb_node *, const struct rb_node *))
 252{
 253        struct rb_node **link = &tree->rb_node;
 254        struct rb_node *parent = NULL;
 255        int c;
 256
 257        while (*link) {
 258                parent = *link;
 259                c = cmp(node, parent);
 260
 261                if (c < 0)
 262                        link = &parent->rb_left;
 263                else if (c > 0)
 264                        link = &parent->rb_right;
 265                else
 266                        return parent;
 267        }
 268
 269        rb_link_node(node, parent, link);
 270        rb_insert_color(node, tree);
 271        return NULL;
 272}
 273
 274/**
 275 * rb_find() - find @key in tree @tree
 276 * @key: key to match
 277 * @tree: tree to search
 278 * @cmp: operator defining the node order
 279 *
 280 * Returns the rb_node matching @key or NULL.
 281 */
 282static __always_inline struct rb_node *
 283rb_find(const void *key, const struct rb_root *tree,
 284        int (*cmp)(const void *key, const struct rb_node *))
 285{
 286        struct rb_node *node = tree->rb_node;
 287
 288        while (node) {
 289                int c = cmp(key, node);
 290
 291                if (c < 0)
 292                        node = node->rb_left;
 293                else if (c > 0)
 294                        node = node->rb_right;
 295                else
 296                        return node;
 297        }
 298
 299        return NULL;
 300}
 301
 302/**
 303 * rb_find_first() - find the first @key in @tree
 304 * @key: key to match
 305 * @tree: tree to search
 306 * @cmp: operator defining node order
 307 *
 308 * Returns the leftmost node matching @key, or NULL.
 309 */
 310static __always_inline struct rb_node *
 311rb_find_first(const void *key, const struct rb_root *tree,
 312              int (*cmp)(const void *key, const struct rb_node *))
 313{
 314        struct rb_node *node = tree->rb_node;
 315        struct rb_node *match = NULL;
 316
 317        while (node) {
 318                int c = cmp(key, node);
 319
 320                if (c <= 0) {
 321                        if (!c)
 322                                match = node;
 323                        node = node->rb_left;
 324                } else if (c > 0) {
 325                        node = node->rb_right;
 326                }
 327        }
 328
 329        return match;
 330}
 331
 332/**
 333 * rb_next_match() - find the next @key in @tree
 334 * @key: key to match
 335 * @tree: tree to search
 336 * @cmp: operator defining node order
 337 *
 338 * Returns the next node matching @key, or NULL.
 339 */
 340static __always_inline struct rb_node *
 341rb_next_match(const void *key, struct rb_node *node,
 342              int (*cmp)(const void *key, const struct rb_node *))
 343{
 344        node = rb_next(node);
 345        if (node && cmp(key, node))
 346                node = NULL;
 347        return node;
 348}
 349
 350/**
 351 * rb_for_each() - iterates a subtree matching @key
 352 * @node: iterator
 353 * @key: key to match
 354 * @tree: tree to search
 355 * @cmp: operator defining node order
 356 */
 357#define rb_for_each(node, key, tree, cmp) \
 358        for ((node) = rb_find_first((key), (tree), (cmp)); \
 359             (node); (node) = rb_next_match((key), (node), (cmp)))
 360
 361#endif  /* _LINUX_RBTREE_H */
 362