linux/kernel/bpf/verifier.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
   5 */
   6#include <uapi/linux/btf.h>
   7#include <linux/kernel.h>
   8#include <linux/types.h>
   9#include <linux/slab.h>
  10#include <linux/bpf.h>
  11#include <linux/btf.h>
  12#include <linux/bpf_verifier.h>
  13#include <linux/filter.h>
  14#include <net/netlink.h>
  15#include <linux/file.h>
  16#include <linux/vmalloc.h>
  17#include <linux/stringify.h>
  18#include <linux/bsearch.h>
  19#include <linux/sort.h>
  20#include <linux/perf_event.h>
  21#include <linux/ctype.h>
  22#include <linux/error-injection.h>
  23#include <linux/bpf_lsm.h>
  24#include <linux/btf_ids.h>
  25
  26#include "disasm.h"
  27
  28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
  29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
  30        [_id] = & _name ## _verifier_ops,
  31#define BPF_MAP_TYPE(_id, _ops)
  32#define BPF_LINK_TYPE(_id, _name)
  33#include <linux/bpf_types.h>
  34#undef BPF_PROG_TYPE
  35#undef BPF_MAP_TYPE
  36#undef BPF_LINK_TYPE
  37};
  38
  39/* bpf_check() is a static code analyzer that walks eBPF program
  40 * instruction by instruction and updates register/stack state.
  41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  42 *
  43 * The first pass is depth-first-search to check that the program is a DAG.
  44 * It rejects the following programs:
  45 * - larger than BPF_MAXINSNS insns
  46 * - if loop is present (detected via back-edge)
  47 * - unreachable insns exist (shouldn't be a forest. program = one function)
  48 * - out of bounds or malformed jumps
  49 * The second pass is all possible path descent from the 1st insn.
  50 * Since it's analyzing all pathes through the program, the length of the
  51 * analysis is limited to 64k insn, which may be hit even if total number of
  52 * insn is less then 4K, but there are too many branches that change stack/regs.
  53 * Number of 'branches to be analyzed' is limited to 1k
  54 *
  55 * On entry to each instruction, each register has a type, and the instruction
  56 * changes the types of the registers depending on instruction semantics.
  57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  58 * copied to R1.
  59 *
  60 * All registers are 64-bit.
  61 * R0 - return register
  62 * R1-R5 argument passing registers
  63 * R6-R9 callee saved registers
  64 * R10 - frame pointer read-only
  65 *
  66 * At the start of BPF program the register R1 contains a pointer to bpf_context
  67 * and has type PTR_TO_CTX.
  68 *
  69 * Verifier tracks arithmetic operations on pointers in case:
  70 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  71 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
  73 * and 2nd arithmetic instruction is pattern matched to recognize
  74 * that it wants to construct a pointer to some element within stack.
  75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
  76 * (and -20 constant is saved for further stack bounds checking).
  77 * Meaning that this reg is a pointer to stack plus known immediate constant.
  78 *
  79 * Most of the time the registers have SCALAR_VALUE type, which
  80 * means the register has some value, but it's not a valid pointer.
  81 * (like pointer plus pointer becomes SCALAR_VALUE type)
  82 *
  83 * When verifier sees load or store instructions the type of base register
  84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
  85 * four pointer types recognized by check_mem_access() function.
  86 *
  87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  88 * and the range of [ptr, ptr + map's value_size) is accessible.
  89 *
  90 * registers used to pass values to function calls are checked against
  91 * function argument constraints.
  92 *
  93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  94 * It means that the register type passed to this function must be
  95 * PTR_TO_STACK and it will be used inside the function as
  96 * 'pointer to map element key'
  97 *
  98 * For example the argument constraints for bpf_map_lookup_elem():
  99 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 100 *   .arg1_type = ARG_CONST_MAP_PTR,
 101 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 102 *
 103 * ret_type says that this function returns 'pointer to map elem value or null'
 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 105 * 2nd argument should be a pointer to stack, which will be used inside
 106 * the helper function as a pointer to map element key.
 107 *
 108 * On the kernel side the helper function looks like:
 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 110 * {
 111 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 112 *    void *key = (void *) (unsigned long) r2;
 113 *    void *value;
 114 *
 115 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 116 *    [key, key + map->key_size) bytes are valid and were initialized on
 117 *    the stack of eBPF program.
 118 * }
 119 *
 120 * Corresponding eBPF program may look like:
 121 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 122 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 123 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 124 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 125 * here verifier looks at prototype of map_lookup_elem() and sees:
 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 128 *
 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 131 * and were initialized prior to this call.
 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 135 * returns ether pointer to map value or NULL.
 136 *
 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 138 * insn, the register holding that pointer in the true branch changes state to
 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 140 * branch. See check_cond_jmp_op().
 141 *
 142 * After the call R0 is set to return type of the function and registers R1-R5
 143 * are set to NOT_INIT to indicate that they are no longer readable.
 144 *
 145 * The following reference types represent a potential reference to a kernel
 146 * resource which, after first being allocated, must be checked and freed by
 147 * the BPF program:
 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
 149 *
 150 * When the verifier sees a helper call return a reference type, it allocates a
 151 * pointer id for the reference and stores it in the current function state.
 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
 154 * passes through a NULL-check conditional. For the branch wherein the state is
 155 * changed to CONST_IMM, the verifier releases the reference.
 156 *
 157 * For each helper function that allocates a reference, such as
 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
 159 * bpf_sk_release(). When a reference type passes into the release function,
 160 * the verifier also releases the reference. If any unchecked or unreleased
 161 * reference remains at the end of the program, the verifier rejects it.
 162 */
 163
 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
 165struct bpf_verifier_stack_elem {
 166        /* verifer state is 'st'
 167         * before processing instruction 'insn_idx'
 168         * and after processing instruction 'prev_insn_idx'
 169         */
 170        struct bpf_verifier_state st;
 171        int insn_idx;
 172        int prev_insn_idx;
 173        struct bpf_verifier_stack_elem *next;
 174        /* length of verifier log at the time this state was pushed on stack */
 175        u32 log_pos;
 176};
 177
 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ    8192
 179#define BPF_COMPLEXITY_LIMIT_STATES     64
 180
 181#define BPF_MAP_KEY_POISON      (1ULL << 63)
 182#define BPF_MAP_KEY_SEEN        (1ULL << 62)
 183
 184#define BPF_MAP_PTR_UNPRIV      1UL
 185#define BPF_MAP_PTR_POISON      ((void *)((0xeB9FUL << 1) +     \
 186                                          POISON_POINTER_DELTA))
 187#define BPF_MAP_PTR(X)          ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
 188
 189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
 190{
 191        return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
 192}
 193
 194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
 195{
 196        return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
 197}
 198
 199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
 200                              const struct bpf_map *map, bool unpriv)
 201{
 202        BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
 203        unpriv |= bpf_map_ptr_unpriv(aux);
 204        aux->map_ptr_state = (unsigned long)map |
 205                             (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
 206}
 207
 208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
 209{
 210        return aux->map_key_state & BPF_MAP_KEY_POISON;
 211}
 212
 213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
 214{
 215        return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
 216}
 217
 218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
 219{
 220        return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
 221}
 222
 223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
 224{
 225        bool poisoned = bpf_map_key_poisoned(aux);
 226
 227        aux->map_key_state = state | BPF_MAP_KEY_SEEN |
 228                             (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
 229}
 230
 231static bool bpf_pseudo_call(const struct bpf_insn *insn)
 232{
 233        return insn->code == (BPF_JMP | BPF_CALL) &&
 234               insn->src_reg == BPF_PSEUDO_CALL;
 235}
 236
 237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
 238{
 239        return insn->code == (BPF_JMP | BPF_CALL) &&
 240               insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
 241}
 242
 243static bool bpf_pseudo_func(const struct bpf_insn *insn)
 244{
 245        return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
 246               insn->src_reg == BPF_PSEUDO_FUNC;
 247}
 248
 249struct bpf_call_arg_meta {
 250        struct bpf_map *map_ptr;
 251        bool raw_mode;
 252        bool pkt_access;
 253        int regno;
 254        int access_size;
 255        int mem_size;
 256        u64 msize_max_value;
 257        int ref_obj_id;
 258        int func_id;
 259        struct btf *btf;
 260        u32 btf_id;
 261        struct btf *ret_btf;
 262        u32 ret_btf_id;
 263        u32 subprogno;
 264};
 265
 266struct btf *btf_vmlinux;
 267
 268static DEFINE_MUTEX(bpf_verifier_lock);
 269
 270static const struct bpf_line_info *
 271find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
 272{
 273        const struct bpf_line_info *linfo;
 274        const struct bpf_prog *prog;
 275        u32 i, nr_linfo;
 276
 277        prog = env->prog;
 278        nr_linfo = prog->aux->nr_linfo;
 279
 280        if (!nr_linfo || insn_off >= prog->len)
 281                return NULL;
 282
 283        linfo = prog->aux->linfo;
 284        for (i = 1; i < nr_linfo; i++)
 285                if (insn_off < linfo[i].insn_off)
 286                        break;
 287
 288        return &linfo[i - 1];
 289}
 290
 291void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
 292                       va_list args)
 293{
 294        unsigned int n;
 295
 296        n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
 297
 298        WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
 299                  "verifier log line truncated - local buffer too short\n");
 300
 301        n = min(log->len_total - log->len_used - 1, n);
 302        log->kbuf[n] = '\0';
 303
 304        if (log->level == BPF_LOG_KERNEL) {
 305                pr_err("BPF:%s\n", log->kbuf);
 306                return;
 307        }
 308        if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
 309                log->len_used += n;
 310        else
 311                log->ubuf = NULL;
 312}
 313
 314static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
 315{
 316        char zero = 0;
 317
 318        if (!bpf_verifier_log_needed(log))
 319                return;
 320
 321        log->len_used = new_pos;
 322        if (put_user(zero, log->ubuf + new_pos))
 323                log->ubuf = NULL;
 324}
 325
 326/* log_level controls verbosity level of eBPF verifier.
 327 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 328 * so the user can figure out what's wrong with the program
 329 */
 330__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 331                                           const char *fmt, ...)
 332{
 333        va_list args;
 334
 335        if (!bpf_verifier_log_needed(&env->log))
 336                return;
 337
 338        va_start(args, fmt);
 339        bpf_verifier_vlog(&env->log, fmt, args);
 340        va_end(args);
 341}
 342EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
 343
 344__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
 345{
 346        struct bpf_verifier_env *env = private_data;
 347        va_list args;
 348
 349        if (!bpf_verifier_log_needed(&env->log))
 350                return;
 351
 352        va_start(args, fmt);
 353        bpf_verifier_vlog(&env->log, fmt, args);
 354        va_end(args);
 355}
 356
 357__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
 358                            const char *fmt, ...)
 359{
 360        va_list args;
 361
 362        if (!bpf_verifier_log_needed(log))
 363                return;
 364
 365        va_start(args, fmt);
 366        bpf_verifier_vlog(log, fmt, args);
 367        va_end(args);
 368}
 369
 370static const char *ltrim(const char *s)
 371{
 372        while (isspace(*s))
 373                s++;
 374
 375        return s;
 376}
 377
 378__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
 379                                         u32 insn_off,
 380                                         const char *prefix_fmt, ...)
 381{
 382        const struct bpf_line_info *linfo;
 383
 384        if (!bpf_verifier_log_needed(&env->log))
 385                return;
 386
 387        linfo = find_linfo(env, insn_off);
 388        if (!linfo || linfo == env->prev_linfo)
 389                return;
 390
 391        if (prefix_fmt) {
 392                va_list args;
 393
 394                va_start(args, prefix_fmt);
 395                bpf_verifier_vlog(&env->log, prefix_fmt, args);
 396                va_end(args);
 397        }
 398
 399        verbose(env, "%s\n",
 400                ltrim(btf_name_by_offset(env->prog->aux->btf,
 401                                         linfo->line_off)));
 402
 403        env->prev_linfo = linfo;
 404}
 405
 406static void verbose_invalid_scalar(struct bpf_verifier_env *env,
 407                                   struct bpf_reg_state *reg,
 408                                   struct tnum *range, const char *ctx,
 409                                   const char *reg_name)
 410{
 411        char tn_buf[48];
 412
 413        verbose(env, "At %s the register %s ", ctx, reg_name);
 414        if (!tnum_is_unknown(reg->var_off)) {
 415                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 416                verbose(env, "has value %s", tn_buf);
 417        } else {
 418                verbose(env, "has unknown scalar value");
 419        }
 420        tnum_strn(tn_buf, sizeof(tn_buf), *range);
 421        verbose(env, " should have been in %s\n", tn_buf);
 422}
 423
 424static bool type_is_pkt_pointer(enum bpf_reg_type type)
 425{
 426        return type == PTR_TO_PACKET ||
 427               type == PTR_TO_PACKET_META;
 428}
 429
 430static bool type_is_sk_pointer(enum bpf_reg_type type)
 431{
 432        return type == PTR_TO_SOCKET ||
 433                type == PTR_TO_SOCK_COMMON ||
 434                type == PTR_TO_TCP_SOCK ||
 435                type == PTR_TO_XDP_SOCK;
 436}
 437
 438static bool reg_type_not_null(enum bpf_reg_type type)
 439{
 440        return type == PTR_TO_SOCKET ||
 441                type == PTR_TO_TCP_SOCK ||
 442                type == PTR_TO_MAP_VALUE ||
 443                type == PTR_TO_MAP_KEY ||
 444                type == PTR_TO_SOCK_COMMON;
 445}
 446
 447static bool reg_type_may_be_null(enum bpf_reg_type type)
 448{
 449        return type == PTR_TO_MAP_VALUE_OR_NULL ||
 450               type == PTR_TO_SOCKET_OR_NULL ||
 451               type == PTR_TO_SOCK_COMMON_OR_NULL ||
 452               type == PTR_TO_TCP_SOCK_OR_NULL ||
 453               type == PTR_TO_BTF_ID_OR_NULL ||
 454               type == PTR_TO_MEM_OR_NULL ||
 455               type == PTR_TO_RDONLY_BUF_OR_NULL ||
 456               type == PTR_TO_RDWR_BUF_OR_NULL;
 457}
 458
 459static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
 460{
 461        return reg->type == PTR_TO_MAP_VALUE &&
 462                map_value_has_spin_lock(reg->map_ptr);
 463}
 464
 465static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
 466{
 467        return type == PTR_TO_SOCKET ||
 468                type == PTR_TO_SOCKET_OR_NULL ||
 469                type == PTR_TO_TCP_SOCK ||
 470                type == PTR_TO_TCP_SOCK_OR_NULL ||
 471                type == PTR_TO_MEM ||
 472                type == PTR_TO_MEM_OR_NULL;
 473}
 474
 475static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
 476{
 477        return type == ARG_PTR_TO_SOCK_COMMON;
 478}
 479
 480static bool arg_type_may_be_null(enum bpf_arg_type type)
 481{
 482        return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
 483               type == ARG_PTR_TO_MEM_OR_NULL ||
 484               type == ARG_PTR_TO_CTX_OR_NULL ||
 485               type == ARG_PTR_TO_SOCKET_OR_NULL ||
 486               type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
 487               type == ARG_PTR_TO_STACK_OR_NULL;
 488}
 489
 490/* Determine whether the function releases some resources allocated by another
 491 * function call. The first reference type argument will be assumed to be
 492 * released by release_reference().
 493 */
 494static bool is_release_function(enum bpf_func_id func_id)
 495{
 496        return func_id == BPF_FUNC_sk_release ||
 497               func_id == BPF_FUNC_ringbuf_submit ||
 498               func_id == BPF_FUNC_ringbuf_discard;
 499}
 500
 501static bool may_be_acquire_function(enum bpf_func_id func_id)
 502{
 503        return func_id == BPF_FUNC_sk_lookup_tcp ||
 504                func_id == BPF_FUNC_sk_lookup_udp ||
 505                func_id == BPF_FUNC_skc_lookup_tcp ||
 506                func_id == BPF_FUNC_map_lookup_elem ||
 507                func_id == BPF_FUNC_ringbuf_reserve;
 508}
 509
 510static bool is_acquire_function(enum bpf_func_id func_id,
 511                                const struct bpf_map *map)
 512{
 513        enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
 514
 515        if (func_id == BPF_FUNC_sk_lookup_tcp ||
 516            func_id == BPF_FUNC_sk_lookup_udp ||
 517            func_id == BPF_FUNC_skc_lookup_tcp ||
 518            func_id == BPF_FUNC_ringbuf_reserve)
 519                return true;
 520
 521        if (func_id == BPF_FUNC_map_lookup_elem &&
 522            (map_type == BPF_MAP_TYPE_SOCKMAP ||
 523             map_type == BPF_MAP_TYPE_SOCKHASH))
 524                return true;
 525
 526        return false;
 527}
 528
 529static bool is_ptr_cast_function(enum bpf_func_id func_id)
 530{
 531        return func_id == BPF_FUNC_tcp_sock ||
 532                func_id == BPF_FUNC_sk_fullsock ||
 533                func_id == BPF_FUNC_skc_to_tcp_sock ||
 534                func_id == BPF_FUNC_skc_to_tcp6_sock ||
 535                func_id == BPF_FUNC_skc_to_udp6_sock ||
 536                func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
 537                func_id == BPF_FUNC_skc_to_tcp_request_sock;
 538}
 539
 540static bool is_cmpxchg_insn(const struct bpf_insn *insn)
 541{
 542        return BPF_CLASS(insn->code) == BPF_STX &&
 543               BPF_MODE(insn->code) == BPF_ATOMIC &&
 544               insn->imm == BPF_CMPXCHG;
 545}
 546
 547/* string representation of 'enum bpf_reg_type' */
 548static const char * const reg_type_str[] = {
 549        [NOT_INIT]              = "?",
 550        [SCALAR_VALUE]          = "inv",
 551        [PTR_TO_CTX]            = "ctx",
 552        [CONST_PTR_TO_MAP]      = "map_ptr",
 553        [PTR_TO_MAP_VALUE]      = "map_value",
 554        [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
 555        [PTR_TO_STACK]          = "fp",
 556        [PTR_TO_PACKET]         = "pkt",
 557        [PTR_TO_PACKET_META]    = "pkt_meta",
 558        [PTR_TO_PACKET_END]     = "pkt_end",
 559        [PTR_TO_FLOW_KEYS]      = "flow_keys",
 560        [PTR_TO_SOCKET]         = "sock",
 561        [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
 562        [PTR_TO_SOCK_COMMON]    = "sock_common",
 563        [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
 564        [PTR_TO_TCP_SOCK]       = "tcp_sock",
 565        [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
 566        [PTR_TO_TP_BUFFER]      = "tp_buffer",
 567        [PTR_TO_XDP_SOCK]       = "xdp_sock",
 568        [PTR_TO_BTF_ID]         = "ptr_",
 569        [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
 570        [PTR_TO_PERCPU_BTF_ID]  = "percpu_ptr_",
 571        [PTR_TO_MEM]            = "mem",
 572        [PTR_TO_MEM_OR_NULL]    = "mem_or_null",
 573        [PTR_TO_RDONLY_BUF]     = "rdonly_buf",
 574        [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
 575        [PTR_TO_RDWR_BUF]       = "rdwr_buf",
 576        [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
 577        [PTR_TO_FUNC]           = "func",
 578        [PTR_TO_MAP_KEY]        = "map_key",
 579};
 580
 581static char slot_type_char[] = {
 582        [STACK_INVALID] = '?',
 583        [STACK_SPILL]   = 'r',
 584        [STACK_MISC]    = 'm',
 585        [STACK_ZERO]    = '0',
 586};
 587
 588static void print_liveness(struct bpf_verifier_env *env,
 589                           enum bpf_reg_liveness live)
 590{
 591        if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
 592            verbose(env, "_");
 593        if (live & REG_LIVE_READ)
 594                verbose(env, "r");
 595        if (live & REG_LIVE_WRITTEN)
 596                verbose(env, "w");
 597        if (live & REG_LIVE_DONE)
 598                verbose(env, "D");
 599}
 600
 601static struct bpf_func_state *func(struct bpf_verifier_env *env,
 602                                   const struct bpf_reg_state *reg)
 603{
 604        struct bpf_verifier_state *cur = env->cur_state;
 605
 606        return cur->frame[reg->frameno];
 607}
 608
 609static const char *kernel_type_name(const struct btf* btf, u32 id)
 610{
 611        return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
 612}
 613
 614static void print_verifier_state(struct bpf_verifier_env *env,
 615                                 const struct bpf_func_state *state)
 616{
 617        const struct bpf_reg_state *reg;
 618        enum bpf_reg_type t;
 619        int i;
 620
 621        if (state->frameno)
 622                verbose(env, " frame%d:", state->frameno);
 623        for (i = 0; i < MAX_BPF_REG; i++) {
 624                reg = &state->regs[i];
 625                t = reg->type;
 626                if (t == NOT_INIT)
 627                        continue;
 628                verbose(env, " R%d", i);
 629                print_liveness(env, reg->live);
 630                verbose(env, "=%s", reg_type_str[t]);
 631                if (t == SCALAR_VALUE && reg->precise)
 632                        verbose(env, "P");
 633                if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
 634                    tnum_is_const(reg->var_off)) {
 635                        /* reg->off should be 0 for SCALAR_VALUE */
 636                        verbose(env, "%lld", reg->var_off.value + reg->off);
 637                } else {
 638                        if (t == PTR_TO_BTF_ID ||
 639                            t == PTR_TO_BTF_ID_OR_NULL ||
 640                            t == PTR_TO_PERCPU_BTF_ID)
 641                                verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
 642                        verbose(env, "(id=%d", reg->id);
 643                        if (reg_type_may_be_refcounted_or_null(t))
 644                                verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
 645                        if (t != SCALAR_VALUE)
 646                                verbose(env, ",off=%d", reg->off);
 647                        if (type_is_pkt_pointer(t))
 648                                verbose(env, ",r=%d", reg->range);
 649                        else if (t == CONST_PTR_TO_MAP ||
 650                                 t == PTR_TO_MAP_KEY ||
 651                                 t == PTR_TO_MAP_VALUE ||
 652                                 t == PTR_TO_MAP_VALUE_OR_NULL)
 653                                verbose(env, ",ks=%d,vs=%d",
 654                                        reg->map_ptr->key_size,
 655                                        reg->map_ptr->value_size);
 656                        if (tnum_is_const(reg->var_off)) {
 657                                /* Typically an immediate SCALAR_VALUE, but
 658                                 * could be a pointer whose offset is too big
 659                                 * for reg->off
 660                                 */
 661                                verbose(env, ",imm=%llx", reg->var_off.value);
 662                        } else {
 663                                if (reg->smin_value != reg->umin_value &&
 664                                    reg->smin_value != S64_MIN)
 665                                        verbose(env, ",smin_value=%lld",
 666                                                (long long)reg->smin_value);
 667                                if (reg->smax_value != reg->umax_value &&
 668                                    reg->smax_value != S64_MAX)
 669                                        verbose(env, ",smax_value=%lld",
 670                                                (long long)reg->smax_value);
 671                                if (reg->umin_value != 0)
 672                                        verbose(env, ",umin_value=%llu",
 673                                                (unsigned long long)reg->umin_value);
 674                                if (reg->umax_value != U64_MAX)
 675                                        verbose(env, ",umax_value=%llu",
 676                                                (unsigned long long)reg->umax_value);
 677                                if (!tnum_is_unknown(reg->var_off)) {
 678                                        char tn_buf[48];
 679
 680                                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 681                                        verbose(env, ",var_off=%s", tn_buf);
 682                                }
 683                                if (reg->s32_min_value != reg->smin_value &&
 684                                    reg->s32_min_value != S32_MIN)
 685                                        verbose(env, ",s32_min_value=%d",
 686                                                (int)(reg->s32_min_value));
 687                                if (reg->s32_max_value != reg->smax_value &&
 688                                    reg->s32_max_value != S32_MAX)
 689                                        verbose(env, ",s32_max_value=%d",
 690                                                (int)(reg->s32_max_value));
 691                                if (reg->u32_min_value != reg->umin_value &&
 692                                    reg->u32_min_value != U32_MIN)
 693                                        verbose(env, ",u32_min_value=%d",
 694                                                (int)(reg->u32_min_value));
 695                                if (reg->u32_max_value != reg->umax_value &&
 696                                    reg->u32_max_value != U32_MAX)
 697                                        verbose(env, ",u32_max_value=%d",
 698                                                (int)(reg->u32_max_value));
 699                        }
 700                        verbose(env, ")");
 701                }
 702        }
 703        for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
 704                char types_buf[BPF_REG_SIZE + 1];
 705                bool valid = false;
 706                int j;
 707
 708                for (j = 0; j < BPF_REG_SIZE; j++) {
 709                        if (state->stack[i].slot_type[j] != STACK_INVALID)
 710                                valid = true;
 711                        types_buf[j] = slot_type_char[
 712                                        state->stack[i].slot_type[j]];
 713                }
 714                types_buf[BPF_REG_SIZE] = 0;
 715                if (!valid)
 716                        continue;
 717                verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 718                print_liveness(env, state->stack[i].spilled_ptr.live);
 719                if (state->stack[i].slot_type[0] == STACK_SPILL) {
 720                        reg = &state->stack[i].spilled_ptr;
 721                        t = reg->type;
 722                        verbose(env, "=%s", reg_type_str[t]);
 723                        if (t == SCALAR_VALUE && reg->precise)
 724                                verbose(env, "P");
 725                        if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
 726                                verbose(env, "%lld", reg->var_off.value + reg->off);
 727                } else {
 728                        verbose(env, "=%s", types_buf);
 729                }
 730        }
 731        if (state->acquired_refs && state->refs[0].id) {
 732                verbose(env, " refs=%d", state->refs[0].id);
 733                for (i = 1; i < state->acquired_refs; i++)
 734                        if (state->refs[i].id)
 735                                verbose(env, ",%d", state->refs[i].id);
 736        }
 737        verbose(env, "\n");
 738}
 739
 740#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)                         \
 741static int copy_##NAME##_state(struct bpf_func_state *dst,              \
 742                               const struct bpf_func_state *src)        \
 743{                                                                       \
 744        if (!src->FIELD)                                                \
 745                return 0;                                               \
 746        if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {                    \
 747                /* internal bug, make state invalid to reject the program */ \
 748                memset(dst, 0, sizeof(*dst));                           \
 749                return -EFAULT;                                         \
 750        }                                                               \
 751        memcpy(dst->FIELD, src->FIELD,                                  \
 752               sizeof(*src->FIELD) * (src->COUNT / SIZE));              \
 753        return 0;                                                       \
 754}
 755/* copy_reference_state() */
 756COPY_STATE_FN(reference, acquired_refs, refs, 1)
 757/* copy_stack_state() */
 758COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
 759#undef COPY_STATE_FN
 760
 761#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)                      \
 762static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
 763                                  bool copy_old)                        \
 764{                                                                       \
 765        u32 old_size = state->COUNT;                                    \
 766        struct bpf_##NAME##_state *new_##FIELD;                         \
 767        int slot = size / SIZE;                                         \
 768                                                                        \
 769        if (size <= old_size || !size) {                                \
 770                if (copy_old)                                           \
 771                        return 0;                                       \
 772                state->COUNT = slot * SIZE;                             \
 773                if (!size && old_size) {                                \
 774                        kfree(state->FIELD);                            \
 775                        state->FIELD = NULL;                            \
 776                }                                                       \
 777                return 0;                                               \
 778        }                                                               \
 779        new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
 780                                    GFP_KERNEL);                        \
 781        if (!new_##FIELD)                                               \
 782                return -ENOMEM;                                         \
 783        if (copy_old) {                                                 \
 784                if (state->FIELD)                                       \
 785                        memcpy(new_##FIELD, state->FIELD,               \
 786                               sizeof(*new_##FIELD) * (old_size / SIZE)); \
 787                memset(new_##FIELD + old_size / SIZE, 0,                \
 788                       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
 789        }                                                               \
 790        state->COUNT = slot * SIZE;                                     \
 791        kfree(state->FIELD);                                            \
 792        state->FIELD = new_##FIELD;                                     \
 793        return 0;                                                       \
 794}
 795/* realloc_reference_state() */
 796REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
 797/* realloc_stack_state() */
 798REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
 799#undef REALLOC_STATE_FN
 800
 801/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 802 * make it consume minimal amount of memory. check_stack_write() access from
 803 * the program calls into realloc_func_state() to grow the stack size.
 804 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 805 * which realloc_stack_state() copies over. It points to previous
 806 * bpf_verifier_state which is never reallocated.
 807 */
 808static int realloc_func_state(struct bpf_func_state *state, int stack_size,
 809                              int refs_size, bool copy_old)
 810{
 811        int err = realloc_reference_state(state, refs_size, copy_old);
 812        if (err)
 813                return err;
 814        return realloc_stack_state(state, stack_size, copy_old);
 815}
 816
 817/* Acquire a pointer id from the env and update the state->refs to include
 818 * this new pointer reference.
 819 * On success, returns a valid pointer id to associate with the register
 820 * On failure, returns a negative errno.
 821 */
 822static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
 823{
 824        struct bpf_func_state *state = cur_func(env);
 825        int new_ofs = state->acquired_refs;
 826        int id, err;
 827
 828        err = realloc_reference_state(state, state->acquired_refs + 1, true);
 829        if (err)
 830                return err;
 831        id = ++env->id_gen;
 832        state->refs[new_ofs].id = id;
 833        state->refs[new_ofs].insn_idx = insn_idx;
 834
 835        return id;
 836}
 837
 838/* release function corresponding to acquire_reference_state(). Idempotent. */
 839static int release_reference_state(struct bpf_func_state *state, int ptr_id)
 840{
 841        int i, last_idx;
 842
 843        last_idx = state->acquired_refs - 1;
 844        for (i = 0; i < state->acquired_refs; i++) {
 845                if (state->refs[i].id == ptr_id) {
 846                        if (last_idx && i != last_idx)
 847                                memcpy(&state->refs[i], &state->refs[last_idx],
 848                                       sizeof(*state->refs));
 849                        memset(&state->refs[last_idx], 0, sizeof(*state->refs));
 850                        state->acquired_refs--;
 851                        return 0;
 852                }
 853        }
 854        return -EINVAL;
 855}
 856
 857static int transfer_reference_state(struct bpf_func_state *dst,
 858                                    struct bpf_func_state *src)
 859{
 860        int err = realloc_reference_state(dst, src->acquired_refs, false);
 861        if (err)
 862                return err;
 863        err = copy_reference_state(dst, src);
 864        if (err)
 865                return err;
 866        return 0;
 867}
 868
 869static void free_func_state(struct bpf_func_state *state)
 870{
 871        if (!state)
 872                return;
 873        kfree(state->refs);
 874        kfree(state->stack);
 875        kfree(state);
 876}
 877
 878static void clear_jmp_history(struct bpf_verifier_state *state)
 879{
 880        kfree(state->jmp_history);
 881        state->jmp_history = NULL;
 882        state->jmp_history_cnt = 0;
 883}
 884
 885static void free_verifier_state(struct bpf_verifier_state *state,
 886                                bool free_self)
 887{
 888        int i;
 889
 890        for (i = 0; i <= state->curframe; i++) {
 891                free_func_state(state->frame[i]);
 892                state->frame[i] = NULL;
 893        }
 894        clear_jmp_history(state);
 895        if (free_self)
 896                kfree(state);
 897}
 898
 899/* copy verifier state from src to dst growing dst stack space
 900 * when necessary to accommodate larger src stack
 901 */
 902static int copy_func_state(struct bpf_func_state *dst,
 903                           const struct bpf_func_state *src)
 904{
 905        int err;
 906
 907        err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
 908                                 false);
 909        if (err)
 910                return err;
 911        memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
 912        err = copy_reference_state(dst, src);
 913        if (err)
 914                return err;
 915        return copy_stack_state(dst, src);
 916}
 917
 918static int copy_verifier_state(struct bpf_verifier_state *dst_state,
 919                               const struct bpf_verifier_state *src)
 920{
 921        struct bpf_func_state *dst;
 922        u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
 923        int i, err;
 924
 925        if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
 926                kfree(dst_state->jmp_history);
 927                dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
 928                if (!dst_state->jmp_history)
 929                        return -ENOMEM;
 930        }
 931        memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
 932        dst_state->jmp_history_cnt = src->jmp_history_cnt;
 933
 934        /* if dst has more stack frames then src frame, free them */
 935        for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
 936                free_func_state(dst_state->frame[i]);
 937                dst_state->frame[i] = NULL;
 938        }
 939        dst_state->speculative = src->speculative;
 940        dst_state->curframe = src->curframe;
 941        dst_state->active_spin_lock = src->active_spin_lock;
 942        dst_state->branches = src->branches;
 943        dst_state->parent = src->parent;
 944        dst_state->first_insn_idx = src->first_insn_idx;
 945        dst_state->last_insn_idx = src->last_insn_idx;
 946        for (i = 0; i <= src->curframe; i++) {
 947                dst = dst_state->frame[i];
 948                if (!dst) {
 949                        dst = kzalloc(sizeof(*dst), GFP_KERNEL);
 950                        if (!dst)
 951                                return -ENOMEM;
 952                        dst_state->frame[i] = dst;
 953                }
 954                err = copy_func_state(dst, src->frame[i]);
 955                if (err)
 956                        return err;
 957        }
 958        return 0;
 959}
 960
 961static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
 962{
 963        while (st) {
 964                u32 br = --st->branches;
 965
 966                /* WARN_ON(br > 1) technically makes sense here,
 967                 * but see comment in push_stack(), hence:
 968                 */
 969                WARN_ONCE((int)br < 0,
 970                          "BUG update_branch_counts:branches_to_explore=%d\n",
 971                          br);
 972                if (br)
 973                        break;
 974                st = st->parent;
 975        }
 976}
 977
 978static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
 979                     int *insn_idx, bool pop_log)
 980{
 981        struct bpf_verifier_state *cur = env->cur_state;
 982        struct bpf_verifier_stack_elem *elem, *head = env->head;
 983        int err;
 984
 985        if (env->head == NULL)
 986                return -ENOENT;
 987
 988        if (cur) {
 989                err = copy_verifier_state(cur, &head->st);
 990                if (err)
 991                        return err;
 992        }
 993        if (pop_log)
 994                bpf_vlog_reset(&env->log, head->log_pos);
 995        if (insn_idx)
 996                *insn_idx = head->insn_idx;
 997        if (prev_insn_idx)
 998                *prev_insn_idx = head->prev_insn_idx;
 999        elem = head->next;
1000        free_verifier_state(&head->st, false);
1001        kfree(head);
1002        env->head = elem;
1003        env->stack_size--;
1004        return 0;
1005}
1006
1007static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1008                                             int insn_idx, int prev_insn_idx,
1009                                             bool speculative)
1010{
1011        struct bpf_verifier_state *cur = env->cur_state;
1012        struct bpf_verifier_stack_elem *elem;
1013        int err;
1014
1015        elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1016        if (!elem)
1017                goto err;
1018
1019        elem->insn_idx = insn_idx;
1020        elem->prev_insn_idx = prev_insn_idx;
1021        elem->next = env->head;
1022        elem->log_pos = env->log.len_used;
1023        env->head = elem;
1024        env->stack_size++;
1025        err = copy_verifier_state(&elem->st, cur);
1026        if (err)
1027                goto err;
1028        elem->st.speculative |= speculative;
1029        if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1030                verbose(env, "The sequence of %d jumps is too complex.\n",
1031                        env->stack_size);
1032                goto err;
1033        }
1034        if (elem->st.parent) {
1035                ++elem->st.parent->branches;
1036                /* WARN_ON(branches > 2) technically makes sense here,
1037                 * but
1038                 * 1. speculative states will bump 'branches' for non-branch
1039                 * instructions
1040                 * 2. is_state_visited() heuristics may decide not to create
1041                 * a new state for a sequence of branches and all such current
1042                 * and cloned states will be pointing to a single parent state
1043                 * which might have large 'branches' count.
1044                 */
1045        }
1046        return &elem->st;
1047err:
1048        free_verifier_state(env->cur_state, true);
1049        env->cur_state = NULL;
1050        /* pop all elements and return */
1051        while (!pop_stack(env, NULL, NULL, false));
1052        return NULL;
1053}
1054
1055#define CALLER_SAVED_REGS 6
1056static const int caller_saved[CALLER_SAVED_REGS] = {
1057        BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1058};
1059
1060static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1061                                struct bpf_reg_state *reg);
1062
1063/* This helper doesn't clear reg->id */
1064static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1065{
1066        reg->var_off = tnum_const(imm);
1067        reg->smin_value = (s64)imm;
1068        reg->smax_value = (s64)imm;
1069        reg->umin_value = imm;
1070        reg->umax_value = imm;
1071
1072        reg->s32_min_value = (s32)imm;
1073        reg->s32_max_value = (s32)imm;
1074        reg->u32_min_value = (u32)imm;
1075        reg->u32_max_value = (u32)imm;
1076}
1077
1078/* Mark the unknown part of a register (variable offset or scalar value) as
1079 * known to have the value @imm.
1080 */
1081static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1082{
1083        /* Clear id, off, and union(map_ptr, range) */
1084        memset(((u8 *)reg) + sizeof(reg->type), 0,
1085               offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1086        ___mark_reg_known(reg, imm);
1087}
1088
1089static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1090{
1091        reg->var_off = tnum_const_subreg(reg->var_off, imm);
1092        reg->s32_min_value = (s32)imm;
1093        reg->s32_max_value = (s32)imm;
1094        reg->u32_min_value = (u32)imm;
1095        reg->u32_max_value = (u32)imm;
1096}
1097
1098/* Mark the 'variable offset' part of a register as zero.  This should be
1099 * used only on registers holding a pointer type.
1100 */
1101static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1102{
1103        __mark_reg_known(reg, 0);
1104}
1105
1106static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1107{
1108        __mark_reg_known(reg, 0);
1109        reg->type = SCALAR_VALUE;
1110}
1111
1112static void mark_reg_known_zero(struct bpf_verifier_env *env,
1113                                struct bpf_reg_state *regs, u32 regno)
1114{
1115        if (WARN_ON(regno >= MAX_BPF_REG)) {
1116                verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1117                /* Something bad happened, let's kill all regs */
1118                for (regno = 0; regno < MAX_BPF_REG; regno++)
1119                        __mark_reg_not_init(env, regs + regno);
1120                return;
1121        }
1122        __mark_reg_known_zero(regs + regno);
1123}
1124
1125static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1126{
1127        switch (reg->type) {
1128        case PTR_TO_MAP_VALUE_OR_NULL: {
1129                const struct bpf_map *map = reg->map_ptr;
1130
1131                if (map->inner_map_meta) {
1132                        reg->type = CONST_PTR_TO_MAP;
1133                        reg->map_ptr = map->inner_map_meta;
1134                } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1135                        reg->type = PTR_TO_XDP_SOCK;
1136                } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1137                           map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1138                        reg->type = PTR_TO_SOCKET;
1139                } else {
1140                        reg->type = PTR_TO_MAP_VALUE;
1141                }
1142                break;
1143        }
1144        case PTR_TO_SOCKET_OR_NULL:
1145                reg->type = PTR_TO_SOCKET;
1146                break;
1147        case PTR_TO_SOCK_COMMON_OR_NULL:
1148                reg->type = PTR_TO_SOCK_COMMON;
1149                break;
1150        case PTR_TO_TCP_SOCK_OR_NULL:
1151                reg->type = PTR_TO_TCP_SOCK;
1152                break;
1153        case PTR_TO_BTF_ID_OR_NULL:
1154                reg->type = PTR_TO_BTF_ID;
1155                break;
1156        case PTR_TO_MEM_OR_NULL:
1157                reg->type = PTR_TO_MEM;
1158                break;
1159        case PTR_TO_RDONLY_BUF_OR_NULL:
1160                reg->type = PTR_TO_RDONLY_BUF;
1161                break;
1162        case PTR_TO_RDWR_BUF_OR_NULL:
1163                reg->type = PTR_TO_RDWR_BUF;
1164                break;
1165        default:
1166                WARN_ONCE(1, "unknown nullable register type");
1167        }
1168}
1169
1170static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1171{
1172        return type_is_pkt_pointer(reg->type);
1173}
1174
1175static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1176{
1177        return reg_is_pkt_pointer(reg) ||
1178               reg->type == PTR_TO_PACKET_END;
1179}
1180
1181/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1182static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1183                                    enum bpf_reg_type which)
1184{
1185        /* The register can already have a range from prior markings.
1186         * This is fine as long as it hasn't been advanced from its
1187         * origin.
1188         */
1189        return reg->type == which &&
1190               reg->id == 0 &&
1191               reg->off == 0 &&
1192               tnum_equals_const(reg->var_off, 0);
1193}
1194
1195/* Reset the min/max bounds of a register */
1196static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1197{
1198        reg->smin_value = S64_MIN;
1199        reg->smax_value = S64_MAX;
1200        reg->umin_value = 0;
1201        reg->umax_value = U64_MAX;
1202
1203        reg->s32_min_value = S32_MIN;
1204        reg->s32_max_value = S32_MAX;
1205        reg->u32_min_value = 0;
1206        reg->u32_max_value = U32_MAX;
1207}
1208
1209static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1210{
1211        reg->smin_value = S64_MIN;
1212        reg->smax_value = S64_MAX;
1213        reg->umin_value = 0;
1214        reg->umax_value = U64_MAX;
1215}
1216
1217static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1218{
1219        reg->s32_min_value = S32_MIN;
1220        reg->s32_max_value = S32_MAX;
1221        reg->u32_min_value = 0;
1222        reg->u32_max_value = U32_MAX;
1223}
1224
1225static void __update_reg32_bounds(struct bpf_reg_state *reg)
1226{
1227        struct tnum var32_off = tnum_subreg(reg->var_off);
1228
1229        /* min signed is max(sign bit) | min(other bits) */
1230        reg->s32_min_value = max_t(s32, reg->s32_min_value,
1231                        var32_off.value | (var32_off.mask & S32_MIN));
1232        /* max signed is min(sign bit) | max(other bits) */
1233        reg->s32_max_value = min_t(s32, reg->s32_max_value,
1234                        var32_off.value | (var32_off.mask & S32_MAX));
1235        reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1236        reg->u32_max_value = min(reg->u32_max_value,
1237                                 (u32)(var32_off.value | var32_off.mask));
1238}
1239
1240static void __update_reg64_bounds(struct bpf_reg_state *reg)
1241{
1242        /* min signed is max(sign bit) | min(other bits) */
1243        reg->smin_value = max_t(s64, reg->smin_value,
1244                                reg->var_off.value | (reg->var_off.mask & S64_MIN));
1245        /* max signed is min(sign bit) | max(other bits) */
1246        reg->smax_value = min_t(s64, reg->smax_value,
1247                                reg->var_off.value | (reg->var_off.mask & S64_MAX));
1248        reg->umin_value = max(reg->umin_value, reg->var_off.value);
1249        reg->umax_value = min(reg->umax_value,
1250                              reg->var_off.value | reg->var_off.mask);
1251}
1252
1253static void __update_reg_bounds(struct bpf_reg_state *reg)
1254{
1255        __update_reg32_bounds(reg);
1256        __update_reg64_bounds(reg);
1257}
1258
1259/* Uses signed min/max values to inform unsigned, and vice-versa */
1260static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1261{
1262        /* Learn sign from signed bounds.
1263         * If we cannot cross the sign boundary, then signed and unsigned bounds
1264         * are the same, so combine.  This works even in the negative case, e.g.
1265         * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1266         */
1267        if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1268                reg->s32_min_value = reg->u32_min_value =
1269                        max_t(u32, reg->s32_min_value, reg->u32_min_value);
1270                reg->s32_max_value = reg->u32_max_value =
1271                        min_t(u32, reg->s32_max_value, reg->u32_max_value);
1272                return;
1273        }
1274        /* Learn sign from unsigned bounds.  Signed bounds cross the sign
1275         * boundary, so we must be careful.
1276         */
1277        if ((s32)reg->u32_max_value >= 0) {
1278                /* Positive.  We can't learn anything from the smin, but smax
1279                 * is positive, hence safe.
1280                 */
1281                reg->s32_min_value = reg->u32_min_value;
1282                reg->s32_max_value = reg->u32_max_value =
1283                        min_t(u32, reg->s32_max_value, reg->u32_max_value);
1284        } else if ((s32)reg->u32_min_value < 0) {
1285                /* Negative.  We can't learn anything from the smax, but smin
1286                 * is negative, hence safe.
1287                 */
1288                reg->s32_min_value = reg->u32_min_value =
1289                        max_t(u32, reg->s32_min_value, reg->u32_min_value);
1290                reg->s32_max_value = reg->u32_max_value;
1291        }
1292}
1293
1294static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1295{
1296        /* Learn sign from signed bounds.
1297         * If we cannot cross the sign boundary, then signed and unsigned bounds
1298         * are the same, so combine.  This works even in the negative case, e.g.
1299         * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1300         */
1301        if (reg->smin_value >= 0 || reg->smax_value < 0) {
1302                reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1303                                                          reg->umin_value);
1304                reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1305                                                          reg->umax_value);
1306                return;
1307        }
1308        /* Learn sign from unsigned bounds.  Signed bounds cross the sign
1309         * boundary, so we must be careful.
1310         */
1311        if ((s64)reg->umax_value >= 0) {
1312                /* Positive.  We can't learn anything from the smin, but smax
1313                 * is positive, hence safe.
1314                 */
1315                reg->smin_value = reg->umin_value;
1316                reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1317                                                          reg->umax_value);
1318        } else if ((s64)reg->umin_value < 0) {
1319                /* Negative.  We can't learn anything from the smax, but smin
1320                 * is negative, hence safe.
1321                 */
1322                reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1323                                                          reg->umin_value);
1324                reg->smax_value = reg->umax_value;
1325        }
1326}
1327
1328static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1329{
1330        __reg32_deduce_bounds(reg);
1331        __reg64_deduce_bounds(reg);
1332}
1333
1334/* Attempts to improve var_off based on unsigned min/max information */
1335static void __reg_bound_offset(struct bpf_reg_state *reg)
1336{
1337        struct tnum var64_off = tnum_intersect(reg->var_off,
1338                                               tnum_range(reg->umin_value,
1339                                                          reg->umax_value));
1340        struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1341                                                tnum_range(reg->u32_min_value,
1342                                                           reg->u32_max_value));
1343
1344        reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1345}
1346
1347static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1348{
1349        reg->umin_value = reg->u32_min_value;
1350        reg->umax_value = reg->u32_max_value;
1351        /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1352         * but must be positive otherwise set to worse case bounds
1353         * and refine later from tnum.
1354         */
1355        if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1356                reg->smax_value = reg->s32_max_value;
1357        else
1358                reg->smax_value = U32_MAX;
1359        if (reg->s32_min_value >= 0)
1360                reg->smin_value = reg->s32_min_value;
1361        else
1362                reg->smin_value = 0;
1363}
1364
1365static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1366{
1367        /* special case when 64-bit register has upper 32-bit register
1368         * zeroed. Typically happens after zext or <<32, >>32 sequence
1369         * allowing us to use 32-bit bounds directly,
1370         */
1371        if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1372                __reg_assign_32_into_64(reg);
1373        } else {
1374                /* Otherwise the best we can do is push lower 32bit known and
1375                 * unknown bits into register (var_off set from jmp logic)
1376                 * then learn as much as possible from the 64-bit tnum
1377                 * known and unknown bits. The previous smin/smax bounds are
1378                 * invalid here because of jmp32 compare so mark them unknown
1379                 * so they do not impact tnum bounds calculation.
1380                 */
1381                __mark_reg64_unbounded(reg);
1382                __update_reg_bounds(reg);
1383        }
1384
1385        /* Intersecting with the old var_off might have improved our bounds
1386         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1387         * then new var_off is (0; 0x7f...fc) which improves our umax.
1388         */
1389        __reg_deduce_bounds(reg);
1390        __reg_bound_offset(reg);
1391        __update_reg_bounds(reg);
1392}
1393
1394static bool __reg64_bound_s32(s64 a)
1395{
1396        return a > S32_MIN && a < S32_MAX;
1397}
1398
1399static bool __reg64_bound_u32(u64 a)
1400{
1401        return a > U32_MIN && a < U32_MAX;
1402}
1403
1404static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1405{
1406        __mark_reg32_unbounded(reg);
1407
1408        if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1409                reg->s32_min_value = (s32)reg->smin_value;
1410                reg->s32_max_value = (s32)reg->smax_value;
1411        }
1412        if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1413                reg->u32_min_value = (u32)reg->umin_value;
1414                reg->u32_max_value = (u32)reg->umax_value;
1415        }
1416
1417        /* Intersecting with the old var_off might have improved our bounds
1418         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1419         * then new var_off is (0; 0x7f...fc) which improves our umax.
1420         */
1421        __reg_deduce_bounds(reg);
1422        __reg_bound_offset(reg);
1423        __update_reg_bounds(reg);
1424}
1425
1426/* Mark a register as having a completely unknown (scalar) value. */
1427static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1428                               struct bpf_reg_state *reg)
1429{
1430        /*
1431         * Clear type, id, off, and union(map_ptr, range) and
1432         * padding between 'type' and union
1433         */
1434        memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1435        reg->type = SCALAR_VALUE;
1436        reg->var_off = tnum_unknown;
1437        reg->frameno = 0;
1438        reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1439        __mark_reg_unbounded(reg);
1440}
1441
1442static void mark_reg_unknown(struct bpf_verifier_env *env,
1443                             struct bpf_reg_state *regs, u32 regno)
1444{
1445        if (WARN_ON(regno >= MAX_BPF_REG)) {
1446                verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1447                /* Something bad happened, let's kill all regs except FP */
1448                for (regno = 0; regno < BPF_REG_FP; regno++)
1449                        __mark_reg_not_init(env, regs + regno);
1450                return;
1451        }
1452        __mark_reg_unknown(env, regs + regno);
1453}
1454
1455static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1456                                struct bpf_reg_state *reg)
1457{
1458        __mark_reg_unknown(env, reg);
1459        reg->type = NOT_INIT;
1460}
1461
1462static void mark_reg_not_init(struct bpf_verifier_env *env,
1463                              struct bpf_reg_state *regs, u32 regno)
1464{
1465        if (WARN_ON(regno >= MAX_BPF_REG)) {
1466                verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1467                /* Something bad happened, let's kill all regs except FP */
1468                for (regno = 0; regno < BPF_REG_FP; regno++)
1469                        __mark_reg_not_init(env, regs + regno);
1470                return;
1471        }
1472        __mark_reg_not_init(env, regs + regno);
1473}
1474
1475static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1476                            struct bpf_reg_state *regs, u32 regno,
1477                            enum bpf_reg_type reg_type,
1478                            struct btf *btf, u32 btf_id)
1479{
1480        if (reg_type == SCALAR_VALUE) {
1481                mark_reg_unknown(env, regs, regno);
1482                return;
1483        }
1484        mark_reg_known_zero(env, regs, regno);
1485        regs[regno].type = PTR_TO_BTF_ID;
1486        regs[regno].btf = btf;
1487        regs[regno].btf_id = btf_id;
1488}
1489
1490#define DEF_NOT_SUBREG  (0)
1491static void init_reg_state(struct bpf_verifier_env *env,
1492                           struct bpf_func_state *state)
1493{
1494        struct bpf_reg_state *regs = state->regs;
1495        int i;
1496
1497        for (i = 0; i < MAX_BPF_REG; i++) {
1498                mark_reg_not_init(env, regs, i);
1499                regs[i].live = REG_LIVE_NONE;
1500                regs[i].parent = NULL;
1501                regs[i].subreg_def = DEF_NOT_SUBREG;
1502        }
1503
1504        /* frame pointer */
1505        regs[BPF_REG_FP].type = PTR_TO_STACK;
1506        mark_reg_known_zero(env, regs, BPF_REG_FP);
1507        regs[BPF_REG_FP].frameno = state->frameno;
1508}
1509
1510#define BPF_MAIN_FUNC (-1)
1511static void init_func_state(struct bpf_verifier_env *env,
1512                            struct bpf_func_state *state,
1513                            int callsite, int frameno, int subprogno)
1514{
1515        state->callsite = callsite;
1516        state->frameno = frameno;
1517        state->subprogno = subprogno;
1518        init_reg_state(env, state);
1519}
1520
1521enum reg_arg_type {
1522        SRC_OP,         /* register is used as source operand */
1523        DST_OP,         /* register is used as destination operand */
1524        DST_OP_NO_MARK  /* same as above, check only, don't mark */
1525};
1526
1527static int cmp_subprogs(const void *a, const void *b)
1528{
1529        return ((struct bpf_subprog_info *)a)->start -
1530               ((struct bpf_subprog_info *)b)->start;
1531}
1532
1533static int find_subprog(struct bpf_verifier_env *env, int off)
1534{
1535        struct bpf_subprog_info *p;
1536
1537        p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1538                    sizeof(env->subprog_info[0]), cmp_subprogs);
1539        if (!p)
1540                return -ENOENT;
1541        return p - env->subprog_info;
1542
1543}
1544
1545static int add_subprog(struct bpf_verifier_env *env, int off)
1546{
1547        int insn_cnt = env->prog->len;
1548        int ret;
1549
1550        if (off >= insn_cnt || off < 0) {
1551                verbose(env, "call to invalid destination\n");
1552                return -EINVAL;
1553        }
1554        ret = find_subprog(env, off);
1555        if (ret >= 0)
1556                return ret;
1557        if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1558                verbose(env, "too many subprograms\n");
1559                return -E2BIG;
1560        }
1561        /* determine subprog starts. The end is one before the next starts */
1562        env->subprog_info[env->subprog_cnt++].start = off;
1563        sort(env->subprog_info, env->subprog_cnt,
1564             sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1565        return env->subprog_cnt - 1;
1566}
1567
1568struct bpf_kfunc_desc {
1569        struct btf_func_model func_model;
1570        u32 func_id;
1571        s32 imm;
1572};
1573
1574#define MAX_KFUNC_DESCS 256
1575struct bpf_kfunc_desc_tab {
1576        struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1577        u32 nr_descs;
1578};
1579
1580static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1581{
1582        const struct bpf_kfunc_desc *d0 = a;
1583        const struct bpf_kfunc_desc *d1 = b;
1584
1585        /* func_id is not greater than BTF_MAX_TYPE */
1586        return d0->func_id - d1->func_id;
1587}
1588
1589static const struct bpf_kfunc_desc *
1590find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1591{
1592        struct bpf_kfunc_desc desc = {
1593                .func_id = func_id,
1594        };
1595        struct bpf_kfunc_desc_tab *tab;
1596
1597        tab = prog->aux->kfunc_tab;
1598        return bsearch(&desc, tab->descs, tab->nr_descs,
1599                       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1600}
1601
1602static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1603{
1604        const struct btf_type *func, *func_proto;
1605        struct bpf_kfunc_desc_tab *tab;
1606        struct bpf_prog_aux *prog_aux;
1607        struct bpf_kfunc_desc *desc;
1608        const char *func_name;
1609        unsigned long addr;
1610        int err;
1611
1612        prog_aux = env->prog->aux;
1613        tab = prog_aux->kfunc_tab;
1614        if (!tab) {
1615                if (!btf_vmlinux) {
1616                        verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1617                        return -ENOTSUPP;
1618                }
1619
1620                if (!env->prog->jit_requested) {
1621                        verbose(env, "JIT is required for calling kernel function\n");
1622                        return -ENOTSUPP;
1623                }
1624
1625                if (!bpf_jit_supports_kfunc_call()) {
1626                        verbose(env, "JIT does not support calling kernel function\n");
1627                        return -ENOTSUPP;
1628                }
1629
1630                if (!env->prog->gpl_compatible) {
1631                        verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1632                        return -EINVAL;
1633                }
1634
1635                tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1636                if (!tab)
1637                        return -ENOMEM;
1638                prog_aux->kfunc_tab = tab;
1639        }
1640
1641        if (find_kfunc_desc(env->prog, func_id))
1642                return 0;
1643
1644        if (tab->nr_descs == MAX_KFUNC_DESCS) {
1645                verbose(env, "too many different kernel function calls\n");
1646                return -E2BIG;
1647        }
1648
1649        func = btf_type_by_id(btf_vmlinux, func_id);
1650        if (!func || !btf_type_is_func(func)) {
1651                verbose(env, "kernel btf_id %u is not a function\n",
1652                        func_id);
1653                return -EINVAL;
1654        }
1655        func_proto = btf_type_by_id(btf_vmlinux, func->type);
1656        if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1657                verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1658                        func_id);
1659                return -EINVAL;
1660        }
1661
1662        func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1663        addr = kallsyms_lookup_name(func_name);
1664        if (!addr) {
1665                verbose(env, "cannot find address for kernel function %s\n",
1666                        func_name);
1667                return -EINVAL;
1668        }
1669
1670        desc = &tab->descs[tab->nr_descs++];
1671        desc->func_id = func_id;
1672        desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1673        err = btf_distill_func_proto(&env->log, btf_vmlinux,
1674                                     func_proto, func_name,
1675                                     &desc->func_model);
1676        if (!err)
1677                sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1678                     kfunc_desc_cmp_by_id, NULL);
1679        return err;
1680}
1681
1682static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1683{
1684        const struct bpf_kfunc_desc *d0 = a;
1685        const struct bpf_kfunc_desc *d1 = b;
1686
1687        if (d0->imm > d1->imm)
1688                return 1;
1689        else if (d0->imm < d1->imm)
1690                return -1;
1691        return 0;
1692}
1693
1694static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1695{
1696        struct bpf_kfunc_desc_tab *tab;
1697
1698        tab = prog->aux->kfunc_tab;
1699        if (!tab)
1700                return;
1701
1702        sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1703             kfunc_desc_cmp_by_imm, NULL);
1704}
1705
1706bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1707{
1708        return !!prog->aux->kfunc_tab;
1709}
1710
1711const struct btf_func_model *
1712bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1713                         const struct bpf_insn *insn)
1714{
1715        const struct bpf_kfunc_desc desc = {
1716                .imm = insn->imm,
1717        };
1718        const struct bpf_kfunc_desc *res;
1719        struct bpf_kfunc_desc_tab *tab;
1720
1721        tab = prog->aux->kfunc_tab;
1722        res = bsearch(&desc, tab->descs, tab->nr_descs,
1723                      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1724
1725        return res ? &res->func_model : NULL;
1726}
1727
1728static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1729{
1730        struct bpf_subprog_info *subprog = env->subprog_info;
1731        struct bpf_insn *insn = env->prog->insnsi;
1732        int i, ret, insn_cnt = env->prog->len;
1733
1734        /* Add entry function. */
1735        ret = add_subprog(env, 0);
1736        if (ret)
1737                return ret;
1738
1739        for (i = 0; i < insn_cnt; i++, insn++) {
1740                if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1741                    !bpf_pseudo_kfunc_call(insn))
1742                        continue;
1743
1744                if (!env->bpf_capable) {
1745                        verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1746                        return -EPERM;
1747                }
1748
1749                if (bpf_pseudo_func(insn)) {
1750                        ret = add_subprog(env, i + insn->imm + 1);
1751                        if (ret >= 0)
1752                                /* remember subprog */
1753                                insn[1].imm = ret;
1754                } else if (bpf_pseudo_call(insn)) {
1755                        ret = add_subprog(env, i + insn->imm + 1);
1756                } else {
1757                        ret = add_kfunc_call(env, insn->imm);
1758                }
1759
1760                if (ret < 0)
1761                        return ret;
1762        }
1763
1764        /* Add a fake 'exit' subprog which could simplify subprog iteration
1765         * logic. 'subprog_cnt' should not be increased.
1766         */
1767        subprog[env->subprog_cnt].start = insn_cnt;
1768
1769        if (env->log.level & BPF_LOG_LEVEL2)
1770                for (i = 0; i < env->subprog_cnt; i++)
1771                        verbose(env, "func#%d @%d\n", i, subprog[i].start);
1772
1773        return 0;
1774}
1775
1776static int check_subprogs(struct bpf_verifier_env *env)
1777{
1778        int i, subprog_start, subprog_end, off, cur_subprog = 0;
1779        struct bpf_subprog_info *subprog = env->subprog_info;
1780        struct bpf_insn *insn = env->prog->insnsi;
1781        int insn_cnt = env->prog->len;
1782
1783        /* now check that all jumps are within the same subprog */
1784        subprog_start = subprog[cur_subprog].start;
1785        subprog_end = subprog[cur_subprog + 1].start;
1786        for (i = 0; i < insn_cnt; i++) {
1787                u8 code = insn[i].code;
1788
1789                if (code == (BPF_JMP | BPF_CALL) &&
1790                    insn[i].imm == BPF_FUNC_tail_call &&
1791                    insn[i].src_reg != BPF_PSEUDO_CALL)
1792                        subprog[cur_subprog].has_tail_call = true;
1793                if (BPF_CLASS(code) == BPF_LD &&
1794                    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1795                        subprog[cur_subprog].has_ld_abs = true;
1796                if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1797                        goto next;
1798                if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1799                        goto next;
1800                off = i + insn[i].off + 1;
1801                if (off < subprog_start || off >= subprog_end) {
1802                        verbose(env, "jump out of range from insn %d to %d\n", i, off);
1803                        return -EINVAL;
1804                }
1805next:
1806                if (i == subprog_end - 1) {
1807                        /* to avoid fall-through from one subprog into another
1808                         * the last insn of the subprog should be either exit
1809                         * or unconditional jump back
1810                         */
1811                        if (code != (BPF_JMP | BPF_EXIT) &&
1812                            code != (BPF_JMP | BPF_JA)) {
1813                                verbose(env, "last insn is not an exit or jmp\n");
1814                                return -EINVAL;
1815                        }
1816                        subprog_start = subprog_end;
1817                        cur_subprog++;
1818                        if (cur_subprog < env->subprog_cnt)
1819                                subprog_end = subprog[cur_subprog + 1].start;
1820                }
1821        }
1822        return 0;
1823}
1824
1825/* Parentage chain of this register (or stack slot) should take care of all
1826 * issues like callee-saved registers, stack slot allocation time, etc.
1827 */
1828static int mark_reg_read(struct bpf_verifier_env *env,
1829                         const struct bpf_reg_state *state,
1830                         struct bpf_reg_state *parent, u8 flag)
1831{
1832        bool writes = parent == state->parent; /* Observe write marks */
1833        int cnt = 0;
1834
1835        while (parent) {
1836                /* if read wasn't screened by an earlier write ... */
1837                if (writes && state->live & REG_LIVE_WRITTEN)
1838                        break;
1839                if (parent->live & REG_LIVE_DONE) {
1840                        verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1841                                reg_type_str[parent->type],
1842                                parent->var_off.value, parent->off);
1843                        return -EFAULT;
1844                }
1845                /* The first condition is more likely to be true than the
1846                 * second, checked it first.
1847                 */
1848                if ((parent->live & REG_LIVE_READ) == flag ||
1849                    parent->live & REG_LIVE_READ64)
1850                        /* The parentage chain never changes and
1851                         * this parent was already marked as LIVE_READ.
1852                         * There is no need to keep walking the chain again and
1853                         * keep re-marking all parents as LIVE_READ.
1854                         * This case happens when the same register is read
1855                         * multiple times without writes into it in-between.
1856                         * Also, if parent has the stronger REG_LIVE_READ64 set,
1857                         * then no need to set the weak REG_LIVE_READ32.
1858                         */
1859                        break;
1860                /* ... then we depend on parent's value */
1861                parent->live |= flag;
1862                /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1863                if (flag == REG_LIVE_READ64)
1864                        parent->live &= ~REG_LIVE_READ32;
1865                state = parent;
1866                parent = state->parent;
1867                writes = true;
1868                cnt++;
1869        }
1870
1871        if (env->longest_mark_read_walk < cnt)
1872                env->longest_mark_read_walk = cnt;
1873        return 0;
1874}
1875
1876/* This function is supposed to be used by the following 32-bit optimization
1877 * code only. It returns TRUE if the source or destination register operates
1878 * on 64-bit, otherwise return FALSE.
1879 */
1880static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1881                     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1882{
1883        u8 code, class, op;
1884
1885        code = insn->code;
1886        class = BPF_CLASS(code);
1887        op = BPF_OP(code);
1888        if (class == BPF_JMP) {
1889                /* BPF_EXIT for "main" will reach here. Return TRUE
1890                 * conservatively.
1891                 */
1892                if (op == BPF_EXIT)
1893                        return true;
1894                if (op == BPF_CALL) {
1895                        /* BPF to BPF call will reach here because of marking
1896                         * caller saved clobber with DST_OP_NO_MARK for which we
1897                         * don't care the register def because they are anyway
1898                         * marked as NOT_INIT already.
1899                         */
1900                        if (insn->src_reg == BPF_PSEUDO_CALL)
1901                                return false;
1902                        /* Helper call will reach here because of arg type
1903                         * check, conservatively return TRUE.
1904                         */
1905                        if (t == SRC_OP)
1906                                return true;
1907
1908                        return false;
1909                }
1910        }
1911
1912        if (class == BPF_ALU64 || class == BPF_JMP ||
1913            /* BPF_END always use BPF_ALU class. */
1914            (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1915                return true;
1916
1917        if (class == BPF_ALU || class == BPF_JMP32)
1918                return false;
1919
1920        if (class == BPF_LDX) {
1921                if (t != SRC_OP)
1922                        return BPF_SIZE(code) == BPF_DW;
1923                /* LDX source must be ptr. */
1924                return true;
1925        }
1926
1927        if (class == BPF_STX) {
1928                /* BPF_STX (including atomic variants) has multiple source
1929                 * operands, one of which is a ptr. Check whether the caller is
1930                 * asking about it.
1931                 */
1932                if (t == SRC_OP && reg->type != SCALAR_VALUE)
1933                        return true;
1934                return BPF_SIZE(code) == BPF_DW;
1935        }
1936
1937        if (class == BPF_LD) {
1938                u8 mode = BPF_MODE(code);
1939
1940                /* LD_IMM64 */
1941                if (mode == BPF_IMM)
1942                        return true;
1943
1944                /* Both LD_IND and LD_ABS return 32-bit data. */
1945                if (t != SRC_OP)
1946                        return  false;
1947
1948                /* Implicit ctx ptr. */
1949                if (regno == BPF_REG_6)
1950                        return true;
1951
1952                /* Explicit source could be any width. */
1953                return true;
1954        }
1955
1956        if (class == BPF_ST)
1957                /* The only source register for BPF_ST is a ptr. */
1958                return true;
1959
1960        /* Conservatively return true at default. */
1961        return true;
1962}
1963
1964/* Return the regno defined by the insn, or -1. */
1965static int insn_def_regno(const struct bpf_insn *insn)
1966{
1967        switch (BPF_CLASS(insn->code)) {
1968        case BPF_JMP:
1969        case BPF_JMP32:
1970        case BPF_ST:
1971                return -1;
1972        case BPF_STX:
1973                if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1974                    (insn->imm & BPF_FETCH)) {
1975                        if (insn->imm == BPF_CMPXCHG)
1976                                return BPF_REG_0;
1977                        else
1978                                return insn->src_reg;
1979                } else {
1980                        return -1;
1981                }
1982        default:
1983                return insn->dst_reg;
1984        }
1985}
1986
1987/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1988static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1989{
1990        int dst_reg = insn_def_regno(insn);
1991
1992        if (dst_reg == -1)
1993                return false;
1994
1995        return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1996}
1997
1998static void mark_insn_zext(struct bpf_verifier_env *env,
1999                           struct bpf_reg_state *reg)
2000{
2001        s32 def_idx = reg->subreg_def;
2002
2003        if (def_idx == DEF_NOT_SUBREG)
2004                return;
2005
2006        env->insn_aux_data[def_idx - 1].zext_dst = true;
2007        /* The dst will be zero extended, so won't be sub-register anymore. */
2008        reg->subreg_def = DEF_NOT_SUBREG;
2009}
2010
2011static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2012                         enum reg_arg_type t)
2013{
2014        struct bpf_verifier_state *vstate = env->cur_state;
2015        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2016        struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2017        struct bpf_reg_state *reg, *regs = state->regs;
2018        bool rw64;
2019
2020        if (regno >= MAX_BPF_REG) {
2021                verbose(env, "R%d is invalid\n", regno);
2022                return -EINVAL;
2023        }
2024
2025        reg = &regs[regno];
2026        rw64 = is_reg64(env, insn, regno, reg, t);
2027        if (t == SRC_OP) {
2028                /* check whether register used as source operand can be read */
2029                if (reg->type == NOT_INIT) {
2030                        verbose(env, "R%d !read_ok\n", regno);
2031                        return -EACCES;
2032                }
2033                /* We don't need to worry about FP liveness because it's read-only */
2034                if (regno == BPF_REG_FP)
2035                        return 0;
2036
2037                if (rw64)
2038                        mark_insn_zext(env, reg);
2039
2040                return mark_reg_read(env, reg, reg->parent,
2041                                     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2042        } else {
2043                /* check whether register used as dest operand can be written to */
2044                if (regno == BPF_REG_FP) {
2045                        verbose(env, "frame pointer is read only\n");
2046                        return -EACCES;
2047                }
2048                reg->live |= REG_LIVE_WRITTEN;
2049                reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2050                if (t == DST_OP)
2051                        mark_reg_unknown(env, regs, regno);
2052        }
2053        return 0;
2054}
2055
2056/* for any branch, call, exit record the history of jmps in the given state */
2057static int push_jmp_history(struct bpf_verifier_env *env,
2058                            struct bpf_verifier_state *cur)
2059{
2060        u32 cnt = cur->jmp_history_cnt;
2061        struct bpf_idx_pair *p;
2062
2063        cnt++;
2064        p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2065        if (!p)
2066                return -ENOMEM;
2067        p[cnt - 1].idx = env->insn_idx;
2068        p[cnt - 1].prev_idx = env->prev_insn_idx;
2069        cur->jmp_history = p;
2070        cur->jmp_history_cnt = cnt;
2071        return 0;
2072}
2073
2074/* Backtrack one insn at a time. If idx is not at the top of recorded
2075 * history then previous instruction came from straight line execution.
2076 */
2077static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2078                             u32 *history)
2079{
2080        u32 cnt = *history;
2081
2082        if (cnt && st->jmp_history[cnt - 1].idx == i) {
2083                i = st->jmp_history[cnt - 1].prev_idx;
2084                (*history)--;
2085        } else {
2086                i--;
2087        }
2088        return i;
2089}
2090
2091static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2092{
2093        const struct btf_type *func;
2094
2095        if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2096                return NULL;
2097
2098        func = btf_type_by_id(btf_vmlinux, insn->imm);
2099        return btf_name_by_offset(btf_vmlinux, func->name_off);
2100}
2101
2102/* For given verifier state backtrack_insn() is called from the last insn to
2103 * the first insn. Its purpose is to compute a bitmask of registers and
2104 * stack slots that needs precision in the parent verifier state.
2105 */
2106static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2107                          u32 *reg_mask, u64 *stack_mask)
2108{
2109        const struct bpf_insn_cbs cbs = {
2110                .cb_call        = disasm_kfunc_name,
2111                .cb_print       = verbose,
2112                .private_data   = env,
2113        };
2114        struct bpf_insn *insn = env->prog->insnsi + idx;
2115        u8 class = BPF_CLASS(insn->code);
2116        u8 opcode = BPF_OP(insn->code);
2117        u8 mode = BPF_MODE(insn->code);
2118        u32 dreg = 1u << insn->dst_reg;
2119        u32 sreg = 1u << insn->src_reg;
2120        u32 spi;
2121
2122        if (insn->code == 0)
2123                return 0;
2124        if (env->log.level & BPF_LOG_LEVEL) {
2125                verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2126                verbose(env, "%d: ", idx);
2127                print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2128        }
2129
2130        if (class == BPF_ALU || class == BPF_ALU64) {
2131                if (!(*reg_mask & dreg))
2132                        return 0;
2133                if (opcode == BPF_MOV) {
2134                        if (BPF_SRC(insn->code) == BPF_X) {
2135                                /* dreg = sreg
2136                                 * dreg needs precision after this insn
2137                                 * sreg needs precision before this insn
2138                                 */
2139                                *reg_mask &= ~dreg;
2140                                *reg_mask |= sreg;
2141                        } else {
2142                                /* dreg = K
2143                                 * dreg needs precision after this insn.
2144                                 * Corresponding register is already marked
2145                                 * as precise=true in this verifier state.
2146                                 * No further markings in parent are necessary
2147                                 */
2148                                *reg_mask &= ~dreg;
2149                        }
2150                } else {
2151                        if (BPF_SRC(insn->code) == BPF_X) {
2152                                /* dreg += sreg
2153                                 * both dreg and sreg need precision
2154                                 * before this insn
2155                                 */
2156                                *reg_mask |= sreg;
2157                        } /* else dreg += K
2158                           * dreg still needs precision before this insn
2159                           */
2160                }
2161        } else if (class == BPF_LDX) {
2162                if (!(*reg_mask & dreg))
2163                        return 0;
2164                *reg_mask &= ~dreg;
2165
2166                /* scalars can only be spilled into stack w/o losing precision.
2167                 * Load from any other memory can be zero extended.
2168                 * The desire to keep that precision is already indicated
2169                 * by 'precise' mark in corresponding register of this state.
2170                 * No further tracking necessary.
2171                 */
2172                if (insn->src_reg != BPF_REG_FP)
2173                        return 0;
2174                if (BPF_SIZE(insn->code) != BPF_DW)
2175                        return 0;
2176
2177                /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2178                 * that [fp - off] slot contains scalar that needs to be
2179                 * tracked with precision
2180                 */
2181                spi = (-insn->off - 1) / BPF_REG_SIZE;
2182                if (spi >= 64) {
2183                        verbose(env, "BUG spi %d\n", spi);
2184                        WARN_ONCE(1, "verifier backtracking bug");
2185                        return -EFAULT;
2186                }
2187                *stack_mask |= 1ull << spi;
2188        } else if (class == BPF_STX || class == BPF_ST) {
2189                if (*reg_mask & dreg)
2190                        /* stx & st shouldn't be using _scalar_ dst_reg
2191                         * to access memory. It means backtracking
2192                         * encountered a case of pointer subtraction.
2193                         */
2194                        return -ENOTSUPP;
2195                /* scalars can only be spilled into stack */
2196                if (insn->dst_reg != BPF_REG_FP)
2197                        return 0;
2198                if (BPF_SIZE(insn->code) != BPF_DW)
2199                        return 0;
2200                spi = (-insn->off - 1) / BPF_REG_SIZE;
2201                if (spi >= 64) {
2202                        verbose(env, "BUG spi %d\n", spi);
2203                        WARN_ONCE(1, "verifier backtracking bug");
2204                        return -EFAULT;
2205                }
2206                if (!(*stack_mask & (1ull << spi)))
2207                        return 0;
2208                *stack_mask &= ~(1ull << spi);
2209                if (class == BPF_STX)
2210                        *reg_mask |= sreg;
2211        } else if (class == BPF_JMP || class == BPF_JMP32) {
2212                if (opcode == BPF_CALL) {
2213                        if (insn->src_reg == BPF_PSEUDO_CALL)
2214                                return -ENOTSUPP;
2215                        /* regular helper call sets R0 */
2216                        *reg_mask &= ~1;
2217                        if (*reg_mask & 0x3f) {
2218                                /* if backtracing was looking for registers R1-R5
2219                                 * they should have been found already.
2220                                 */
2221                                verbose(env, "BUG regs %x\n", *reg_mask);
2222                                WARN_ONCE(1, "verifier backtracking bug");
2223                                return -EFAULT;
2224                        }
2225                } else if (opcode == BPF_EXIT) {
2226                        return -ENOTSUPP;
2227                }
2228        } else if (class == BPF_LD) {
2229                if (!(*reg_mask & dreg))
2230                        return 0;
2231                *reg_mask &= ~dreg;
2232                /* It's ld_imm64 or ld_abs or ld_ind.
2233                 * For ld_imm64 no further tracking of precision
2234                 * into parent is necessary
2235                 */
2236                if (mode == BPF_IND || mode == BPF_ABS)
2237                        /* to be analyzed */
2238                        return -ENOTSUPP;
2239        }
2240        return 0;
2241}
2242
2243/* the scalar precision tracking algorithm:
2244 * . at the start all registers have precise=false.
2245 * . scalar ranges are tracked as normal through alu and jmp insns.
2246 * . once precise value of the scalar register is used in:
2247 *   .  ptr + scalar alu
2248 *   . if (scalar cond K|scalar)
2249 *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2250 *   backtrack through the verifier states and mark all registers and
2251 *   stack slots with spilled constants that these scalar regisers
2252 *   should be precise.
2253 * . during state pruning two registers (or spilled stack slots)
2254 *   are equivalent if both are not precise.
2255 *
2256 * Note the verifier cannot simply walk register parentage chain,
2257 * since many different registers and stack slots could have been
2258 * used to compute single precise scalar.
2259 *
2260 * The approach of starting with precise=true for all registers and then
2261 * backtrack to mark a register as not precise when the verifier detects
2262 * that program doesn't care about specific value (e.g., when helper
2263 * takes register as ARG_ANYTHING parameter) is not safe.
2264 *
2265 * It's ok to walk single parentage chain of the verifier states.
2266 * It's possible that this backtracking will go all the way till 1st insn.
2267 * All other branches will be explored for needing precision later.
2268 *
2269 * The backtracking needs to deal with cases like:
2270 *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2271 * r9 -= r8
2272 * r5 = r9
2273 * if r5 > 0x79f goto pc+7
2274 *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2275 * r5 += 1
2276 * ...
2277 * call bpf_perf_event_output#25
2278 *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2279 *
2280 * and this case:
2281 * r6 = 1
2282 * call foo // uses callee's r6 inside to compute r0
2283 * r0 += r6
2284 * if r0 == 0 goto
2285 *
2286 * to track above reg_mask/stack_mask needs to be independent for each frame.
2287 *
2288 * Also if parent's curframe > frame where backtracking started,
2289 * the verifier need to mark registers in both frames, otherwise callees
2290 * may incorrectly prune callers. This is similar to
2291 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2292 *
2293 * For now backtracking falls back into conservative marking.
2294 */
2295static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2296                                     struct bpf_verifier_state *st)
2297{
2298        struct bpf_func_state *func;
2299        struct bpf_reg_state *reg;
2300        int i, j;
2301
2302        /* big hammer: mark all scalars precise in this path.
2303         * pop_stack may still get !precise scalars.
2304         */
2305        for (; st; st = st->parent)
2306                for (i = 0; i <= st->curframe; i++) {
2307                        func = st->frame[i];
2308                        for (j = 0; j < BPF_REG_FP; j++) {
2309                                reg = &func->regs[j];
2310                                if (reg->type != SCALAR_VALUE)
2311                                        continue;
2312                                reg->precise = true;
2313                        }
2314                        for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2315                                if (func->stack[j].slot_type[0] != STACK_SPILL)
2316                                        continue;
2317                                reg = &func->stack[j].spilled_ptr;
2318                                if (reg->type != SCALAR_VALUE)
2319                                        continue;
2320                                reg->precise = true;
2321                        }
2322                }
2323}
2324
2325static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2326                                  int spi)
2327{
2328        struct bpf_verifier_state *st = env->cur_state;
2329        int first_idx = st->first_insn_idx;
2330        int last_idx = env->insn_idx;
2331        struct bpf_func_state *func;
2332        struct bpf_reg_state *reg;
2333        u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2334        u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2335        bool skip_first = true;
2336        bool new_marks = false;
2337        int i, err;
2338
2339        if (!env->bpf_capable)
2340                return 0;
2341
2342        func = st->frame[st->curframe];
2343        if (regno >= 0) {
2344                reg = &func->regs[regno];
2345                if (reg->type != SCALAR_VALUE) {
2346                        WARN_ONCE(1, "backtracing misuse");
2347                        return -EFAULT;
2348                }
2349                if (!reg->precise)
2350                        new_marks = true;
2351                else
2352                        reg_mask = 0;
2353                reg->precise = true;
2354        }
2355
2356        while (spi >= 0) {
2357                if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2358                        stack_mask = 0;
2359                        break;
2360                }
2361                reg = &func->stack[spi].spilled_ptr;
2362                if (reg->type != SCALAR_VALUE) {
2363                        stack_mask = 0;
2364                        break;
2365                }
2366                if (!reg->precise)
2367                        new_marks = true;
2368                else
2369                        stack_mask = 0;
2370                reg->precise = true;
2371                break;
2372        }
2373
2374        if (!new_marks)
2375                return 0;
2376        if (!reg_mask && !stack_mask)
2377                return 0;
2378        for (;;) {
2379                DECLARE_BITMAP(mask, 64);
2380                u32 history = st->jmp_history_cnt;
2381
2382                if (env->log.level & BPF_LOG_LEVEL)
2383                        verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2384                for (i = last_idx;;) {
2385                        if (skip_first) {
2386                                err = 0;
2387                                skip_first = false;
2388                        } else {
2389                                err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2390                        }
2391                        if (err == -ENOTSUPP) {
2392                                mark_all_scalars_precise(env, st);
2393                                return 0;
2394                        } else if (err) {
2395                                return err;
2396                        }
2397                        if (!reg_mask && !stack_mask)
2398                                /* Found assignment(s) into tracked register in this state.
2399                                 * Since this state is already marked, just return.
2400                                 * Nothing to be tracked further in the parent state.
2401                                 */
2402                                return 0;
2403                        if (i == first_idx)
2404                                break;
2405                        i = get_prev_insn_idx(st, i, &history);
2406                        if (i >= env->prog->len) {
2407                                /* This can happen if backtracking reached insn 0
2408                                 * and there are still reg_mask or stack_mask
2409                                 * to backtrack.
2410                                 * It means the backtracking missed the spot where
2411                                 * particular register was initialized with a constant.
2412                                 */
2413                                verbose(env, "BUG backtracking idx %d\n", i);
2414                                WARN_ONCE(1, "verifier backtracking bug");
2415                                return -EFAULT;
2416                        }
2417                }
2418                st = st->parent;
2419                if (!st)
2420                        break;
2421
2422                new_marks = false;
2423                func = st->frame[st->curframe];
2424                bitmap_from_u64(mask, reg_mask);
2425                for_each_set_bit(i, mask, 32) {
2426                        reg = &func->regs[i];
2427                        if (reg->type != SCALAR_VALUE) {
2428                                reg_mask &= ~(1u << i);
2429                                continue;
2430                        }
2431                        if (!reg->precise)
2432                                new_marks = true;
2433                        reg->precise = true;
2434                }
2435
2436                bitmap_from_u64(mask, stack_mask);
2437                for_each_set_bit(i, mask, 64) {
2438                        if (i >= func->allocated_stack / BPF_REG_SIZE) {
2439                                /* the sequence of instructions:
2440                                 * 2: (bf) r3 = r10
2441                                 * 3: (7b) *(u64 *)(r3 -8) = r0
2442                                 * 4: (79) r4 = *(u64 *)(r10 -8)
2443                                 * doesn't contain jmps. It's backtracked
2444                                 * as a single block.
2445                                 * During backtracking insn 3 is not recognized as
2446                                 * stack access, so at the end of backtracking
2447                                 * stack slot fp-8 is still marked in stack_mask.
2448                                 * However the parent state may not have accessed
2449                                 * fp-8 and it's "unallocated" stack space.
2450                                 * In such case fallback to conservative.
2451                                 */
2452                                mark_all_scalars_precise(env, st);
2453                                return 0;
2454                        }
2455
2456                        if (func->stack[i].slot_type[0] != STACK_SPILL) {
2457                                stack_mask &= ~(1ull << i);
2458                                continue;
2459                        }
2460                        reg = &func->stack[i].spilled_ptr;
2461                        if (reg->type != SCALAR_VALUE) {
2462                                stack_mask &= ~(1ull << i);
2463                                continue;
2464                        }
2465                        if (!reg->precise)
2466                                new_marks = true;
2467                        reg->precise = true;
2468                }
2469                if (env->log.level & BPF_LOG_LEVEL) {
2470                        print_verifier_state(env, func);
2471                        verbose(env, "parent %s regs=%x stack=%llx marks\n",
2472                                new_marks ? "didn't have" : "already had",
2473                                reg_mask, stack_mask);
2474                }
2475
2476                if (!reg_mask && !stack_mask)
2477                        break;
2478                if (!new_marks)
2479                        break;
2480
2481                last_idx = st->last_insn_idx;
2482                first_idx = st->first_insn_idx;
2483        }
2484        return 0;
2485}
2486
2487static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2488{
2489        return __mark_chain_precision(env, regno, -1);
2490}
2491
2492static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2493{
2494        return __mark_chain_precision(env, -1, spi);
2495}
2496
2497static bool is_spillable_regtype(enum bpf_reg_type type)
2498{
2499        switch (type) {
2500        case PTR_TO_MAP_VALUE:
2501        case PTR_TO_MAP_VALUE_OR_NULL:
2502        case PTR_TO_STACK:
2503        case PTR_TO_CTX:
2504        case PTR_TO_PACKET:
2505        case PTR_TO_PACKET_META:
2506        case PTR_TO_PACKET_END:
2507        case PTR_TO_FLOW_KEYS:
2508        case CONST_PTR_TO_MAP:
2509        case PTR_TO_SOCKET:
2510        case PTR_TO_SOCKET_OR_NULL:
2511        case PTR_TO_SOCK_COMMON:
2512        case PTR_TO_SOCK_COMMON_OR_NULL:
2513        case PTR_TO_TCP_SOCK:
2514        case PTR_TO_TCP_SOCK_OR_NULL:
2515        case PTR_TO_XDP_SOCK:
2516        case PTR_TO_BTF_ID:
2517        case PTR_TO_BTF_ID_OR_NULL:
2518        case PTR_TO_RDONLY_BUF:
2519        case PTR_TO_RDONLY_BUF_OR_NULL:
2520        case PTR_TO_RDWR_BUF:
2521        case PTR_TO_RDWR_BUF_OR_NULL:
2522        case PTR_TO_PERCPU_BTF_ID:
2523        case PTR_TO_MEM:
2524        case PTR_TO_MEM_OR_NULL:
2525        case PTR_TO_FUNC:
2526        case PTR_TO_MAP_KEY:
2527                return true;
2528        default:
2529                return false;
2530        }
2531}
2532
2533/* Does this register contain a constant zero? */
2534static bool register_is_null(struct bpf_reg_state *reg)
2535{
2536        return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2537}
2538
2539static bool register_is_const(struct bpf_reg_state *reg)
2540{
2541        return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2542}
2543
2544static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2545{
2546        return tnum_is_unknown(reg->var_off) &&
2547               reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2548               reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2549               reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2550               reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2551}
2552
2553static bool register_is_bounded(struct bpf_reg_state *reg)
2554{
2555        return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2556}
2557
2558static bool __is_pointer_value(bool allow_ptr_leaks,
2559                               const struct bpf_reg_state *reg)
2560{
2561        if (allow_ptr_leaks)
2562                return false;
2563
2564        return reg->type != SCALAR_VALUE;
2565}
2566
2567static void save_register_state(struct bpf_func_state *state,
2568                                int spi, struct bpf_reg_state *reg)
2569{
2570        int i;
2571
2572        state->stack[spi].spilled_ptr = *reg;
2573        state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2574
2575        for (i = 0; i < BPF_REG_SIZE; i++)
2576                state->stack[spi].slot_type[i] = STACK_SPILL;
2577}
2578
2579/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2580 * stack boundary and alignment are checked in check_mem_access()
2581 */
2582static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2583                                       /* stack frame we're writing to */
2584                                       struct bpf_func_state *state,
2585                                       int off, int size, int value_regno,
2586                                       int insn_idx)
2587{
2588        struct bpf_func_state *cur; /* state of the current function */
2589        int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2590        u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2591        struct bpf_reg_state *reg = NULL;
2592
2593        err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2594                                 state->acquired_refs, true);
2595        if (err)
2596                return err;
2597        /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2598         * so it's aligned access and [off, off + size) are within stack limits
2599         */
2600        if (!env->allow_ptr_leaks &&
2601            state->stack[spi].slot_type[0] == STACK_SPILL &&
2602            size != BPF_REG_SIZE) {
2603                verbose(env, "attempt to corrupt spilled pointer on stack\n");
2604                return -EACCES;
2605        }
2606
2607        cur = env->cur_state->frame[env->cur_state->curframe];
2608        if (value_regno >= 0)
2609                reg = &cur->regs[value_regno];
2610
2611        if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2612            !register_is_null(reg) && env->bpf_capable) {
2613                if (dst_reg != BPF_REG_FP) {
2614                        /* The backtracking logic can only recognize explicit
2615                         * stack slot address like [fp - 8]. Other spill of
2616                         * scalar via different register has to be conervative.
2617                         * Backtrack from here and mark all registers as precise
2618                         * that contributed into 'reg' being a constant.
2619                         */
2620                        err = mark_chain_precision(env, value_regno);
2621                        if (err)
2622                                return err;
2623                }
2624                save_register_state(state, spi, reg);
2625        } else if (reg && is_spillable_regtype(reg->type)) {
2626                /* register containing pointer is being spilled into stack */
2627                if (size != BPF_REG_SIZE) {
2628                        verbose_linfo(env, insn_idx, "; ");
2629                        verbose(env, "invalid size of register spill\n");
2630                        return -EACCES;
2631                }
2632
2633                if (state != cur && reg->type == PTR_TO_STACK) {
2634                        verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2635                        return -EINVAL;
2636                }
2637
2638                if (!env->bypass_spec_v4) {
2639                        bool sanitize = false;
2640
2641                        if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2642                            register_is_const(&state->stack[spi].spilled_ptr))
2643                                sanitize = true;
2644                        for (i = 0; i < BPF_REG_SIZE; i++)
2645                                if (state->stack[spi].slot_type[i] == STACK_MISC) {
2646                                        sanitize = true;
2647                                        break;
2648                                }
2649                        if (sanitize) {
2650                                int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2651                                int soff = (-spi - 1) * BPF_REG_SIZE;
2652
2653                                /* detected reuse of integer stack slot with a pointer
2654                                 * which means either llvm is reusing stack slot or
2655                                 * an attacker is trying to exploit CVE-2018-3639
2656                                 * (speculative store bypass)
2657                                 * Have to sanitize that slot with preemptive
2658                                 * store of zero.
2659                                 */
2660                                if (*poff && *poff != soff) {
2661                                        /* disallow programs where single insn stores
2662                                         * into two different stack slots, since verifier
2663                                         * cannot sanitize them
2664                                         */
2665                                        verbose(env,
2666                                                "insn %d cannot access two stack slots fp%d and fp%d",
2667                                                insn_idx, *poff, soff);
2668                                        return -EINVAL;
2669                                }
2670                                *poff = soff;
2671                        }
2672                }
2673                save_register_state(state, spi, reg);
2674        } else {
2675                u8 type = STACK_MISC;
2676
2677                /* regular write of data into stack destroys any spilled ptr */
2678                state->stack[spi].spilled_ptr.type = NOT_INIT;
2679                /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2680                if (state->stack[spi].slot_type[0] == STACK_SPILL)
2681                        for (i = 0; i < BPF_REG_SIZE; i++)
2682                                state->stack[spi].slot_type[i] = STACK_MISC;
2683
2684                /* only mark the slot as written if all 8 bytes were written
2685                 * otherwise read propagation may incorrectly stop too soon
2686                 * when stack slots are partially written.
2687                 * This heuristic means that read propagation will be
2688                 * conservative, since it will add reg_live_read marks
2689                 * to stack slots all the way to first state when programs
2690                 * writes+reads less than 8 bytes
2691                 */
2692                if (size == BPF_REG_SIZE)
2693                        state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2694
2695                /* when we zero initialize stack slots mark them as such */
2696                if (reg && register_is_null(reg)) {
2697                        /* backtracking doesn't work for STACK_ZERO yet. */
2698                        err = mark_chain_precision(env, value_regno);
2699                        if (err)
2700                                return err;
2701                        type = STACK_ZERO;
2702                }
2703
2704                /* Mark slots affected by this stack write. */
2705                for (i = 0; i < size; i++)
2706                        state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2707                                type;
2708        }
2709        return 0;
2710}
2711
2712/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2713 * known to contain a variable offset.
2714 * This function checks whether the write is permitted and conservatively
2715 * tracks the effects of the write, considering that each stack slot in the
2716 * dynamic range is potentially written to.
2717 *
2718 * 'off' includes 'regno->off'.
2719 * 'value_regno' can be -1, meaning that an unknown value is being written to
2720 * the stack.
2721 *
2722 * Spilled pointers in range are not marked as written because we don't know
2723 * what's going to be actually written. This means that read propagation for
2724 * future reads cannot be terminated by this write.
2725 *
2726 * For privileged programs, uninitialized stack slots are considered
2727 * initialized by this write (even though we don't know exactly what offsets
2728 * are going to be written to). The idea is that we don't want the verifier to
2729 * reject future reads that access slots written to through variable offsets.
2730 */
2731static int check_stack_write_var_off(struct bpf_verifier_env *env,
2732                                     /* func where register points to */
2733                                     struct bpf_func_state *state,
2734                                     int ptr_regno, int off, int size,
2735                                     int value_regno, int insn_idx)
2736{
2737        struct bpf_func_state *cur; /* state of the current function */
2738        int min_off, max_off;
2739        int i, err;
2740        struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2741        bool writing_zero = false;
2742        /* set if the fact that we're writing a zero is used to let any
2743         * stack slots remain STACK_ZERO
2744         */
2745        bool zero_used = false;
2746
2747        cur = env->cur_state->frame[env->cur_state->curframe];
2748        ptr_reg = &cur->regs[ptr_regno];
2749        min_off = ptr_reg->smin_value + off;
2750        max_off = ptr_reg->smax_value + off + size;
2751        if (value_regno >= 0)
2752                value_reg = &cur->regs[value_regno];
2753        if (value_reg && register_is_null(value_reg))
2754                writing_zero = true;
2755
2756        err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2757                                 state->acquired_refs, true);
2758        if (err)
2759                return err;
2760
2761
2762        /* Variable offset writes destroy any spilled pointers in range. */
2763        for (i = min_off; i < max_off; i++) {
2764                u8 new_type, *stype;
2765                int slot, spi;
2766
2767                slot = -i - 1;
2768                spi = slot / BPF_REG_SIZE;
2769                stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2770
2771                if (!env->allow_ptr_leaks
2772                                && *stype != NOT_INIT
2773                                && *stype != SCALAR_VALUE) {
2774                        /* Reject the write if there's are spilled pointers in
2775                         * range. If we didn't reject here, the ptr status
2776                         * would be erased below (even though not all slots are
2777                         * actually overwritten), possibly opening the door to
2778                         * leaks.
2779                         */
2780                        verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2781                                insn_idx, i);
2782                        return -EINVAL;
2783                }
2784
2785                /* Erase all spilled pointers. */
2786                state->stack[spi].spilled_ptr.type = NOT_INIT;
2787
2788                /* Update the slot type. */
2789                new_type = STACK_MISC;
2790                if (writing_zero && *stype == STACK_ZERO) {
2791                        new_type = STACK_ZERO;
2792                        zero_used = true;
2793                }
2794                /* If the slot is STACK_INVALID, we check whether it's OK to
2795                 * pretend that it will be initialized by this write. The slot
2796                 * might not actually be written to, and so if we mark it as
2797                 * initialized future reads might leak uninitialized memory.
2798                 * For privileged programs, we will accept such reads to slots
2799                 * that may or may not be written because, if we're reject
2800                 * them, the error would be too confusing.
2801                 */
2802                if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2803                        verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2804                                        insn_idx, i);
2805                        return -EINVAL;
2806                }
2807                *stype = new_type;
2808        }
2809        if (zero_used) {
2810                /* backtracking doesn't work for STACK_ZERO yet. */
2811                err = mark_chain_precision(env, value_regno);
2812                if (err)
2813                        return err;
2814        }
2815        return 0;
2816}
2817
2818/* When register 'dst_regno' is assigned some values from stack[min_off,
2819 * max_off), we set the register's type according to the types of the
2820 * respective stack slots. If all the stack values are known to be zeros, then
2821 * so is the destination reg. Otherwise, the register is considered to be
2822 * SCALAR. This function does not deal with register filling; the caller must
2823 * ensure that all spilled registers in the stack range have been marked as
2824 * read.
2825 */
2826static void mark_reg_stack_read(struct bpf_verifier_env *env,
2827                                /* func where src register points to */
2828                                struct bpf_func_state *ptr_state,
2829                                int min_off, int max_off, int dst_regno)
2830{
2831        struct bpf_verifier_state *vstate = env->cur_state;
2832        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2833        int i, slot, spi;
2834        u8 *stype;
2835        int zeros = 0;
2836
2837        for (i = min_off; i < max_off; i++) {
2838                slot = -i - 1;
2839                spi = slot / BPF_REG_SIZE;
2840                stype = ptr_state->stack[spi].slot_type;
2841                if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2842                        break;
2843                zeros++;
2844        }
2845        if (zeros == max_off - min_off) {
2846                /* any access_size read into register is zero extended,
2847                 * so the whole register == const_zero
2848                 */
2849                __mark_reg_const_zero(&state->regs[dst_regno]);
2850                /* backtracking doesn't support STACK_ZERO yet,
2851                 * so mark it precise here, so that later
2852                 * backtracking can stop here.
2853                 * Backtracking may not need this if this register
2854                 * doesn't participate in pointer adjustment.
2855                 * Forward propagation of precise flag is not
2856                 * necessary either. This mark is only to stop
2857                 * backtracking. Any register that contributed
2858                 * to const 0 was marked precise before spill.
2859                 */
2860                state->regs[dst_regno].precise = true;
2861        } else {
2862                /* have read misc data from the stack */
2863                mark_reg_unknown(env, state->regs, dst_regno);
2864        }
2865        state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2866}
2867
2868/* Read the stack at 'off' and put the results into the register indicated by
2869 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2870 * spilled reg.
2871 *
2872 * 'dst_regno' can be -1, meaning that the read value is not going to a
2873 * register.
2874 *
2875 * The access is assumed to be within the current stack bounds.
2876 */
2877static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2878                                      /* func where src register points to */
2879                                      struct bpf_func_state *reg_state,
2880                                      int off, int size, int dst_regno)
2881{
2882        struct bpf_verifier_state *vstate = env->cur_state;
2883        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2884        int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2885        struct bpf_reg_state *reg;
2886        u8 *stype;
2887
2888        stype = reg_state->stack[spi].slot_type;
2889        reg = &reg_state->stack[spi].spilled_ptr;
2890
2891        if (stype[0] == STACK_SPILL) {
2892                if (size != BPF_REG_SIZE) {
2893                        if (reg->type != SCALAR_VALUE) {
2894                                verbose_linfo(env, env->insn_idx, "; ");
2895                                verbose(env, "invalid size of register fill\n");
2896                                return -EACCES;
2897                        }
2898                        if (dst_regno >= 0) {
2899                                mark_reg_unknown(env, state->regs, dst_regno);
2900                                state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2901                        }
2902                        mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2903                        return 0;
2904                }
2905                for (i = 1; i < BPF_REG_SIZE; i++) {
2906                        if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2907                                verbose(env, "corrupted spill memory\n");
2908                                return -EACCES;
2909                        }
2910                }
2911
2912                if (dst_regno >= 0) {
2913                        /* restore register state from stack */
2914                        state->regs[dst_regno] = *reg;
2915                        /* mark reg as written since spilled pointer state likely
2916                         * has its liveness marks cleared by is_state_visited()
2917                         * which resets stack/reg liveness for state transitions
2918                         */
2919                        state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2920                } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2921                        /* If dst_regno==-1, the caller is asking us whether
2922                         * it is acceptable to use this value as a SCALAR_VALUE
2923                         * (e.g. for XADD).
2924                         * We must not allow unprivileged callers to do that
2925                         * with spilled pointers.
2926                         */
2927                        verbose(env, "leaking pointer from stack off %d\n",
2928                                off);
2929                        return -EACCES;
2930                }
2931                mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2932        } else {
2933                u8 type;
2934
2935                for (i = 0; i < size; i++) {
2936                        type = stype[(slot - i) % BPF_REG_SIZE];
2937                        if (type == STACK_MISC)
2938                                continue;
2939                        if (type == STACK_ZERO)
2940                                continue;
2941                        verbose(env, "invalid read from stack off %d+%d size %d\n",
2942                                off, i, size);
2943                        return -EACCES;
2944                }
2945                mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2946                if (dst_regno >= 0)
2947                        mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2948        }
2949        return 0;
2950}
2951
2952enum stack_access_src {
2953        ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2954        ACCESS_HELPER = 2,  /* the access is performed by a helper */
2955};
2956
2957static int check_stack_range_initialized(struct bpf_verifier_env *env,
2958                                         int regno, int off, int access_size,
2959                                         bool zero_size_allowed,
2960                                         enum stack_access_src type,
2961                                         struct bpf_call_arg_meta *meta);
2962
2963static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2964{
2965        return cur_regs(env) + regno;
2966}
2967
2968/* Read the stack at 'ptr_regno + off' and put the result into the register
2969 * 'dst_regno'.
2970 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2971 * but not its variable offset.
2972 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2973 *
2974 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2975 * filling registers (i.e. reads of spilled register cannot be detected when
2976 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2977 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2978 * offset; for a fixed offset check_stack_read_fixed_off should be used
2979 * instead.
2980 */
2981static int check_stack_read_var_off(struct bpf_verifier_env *env,
2982                                    int ptr_regno, int off, int size, int dst_regno)
2983{
2984        /* The state of the source register. */
2985        struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2986        struct bpf_func_state *ptr_state = func(env, reg);
2987        int err;
2988        int min_off, max_off;
2989
2990        /* Note that we pass a NULL meta, so raw access will not be permitted.
2991         */
2992        err = check_stack_range_initialized(env, ptr_regno, off, size,
2993                                            false, ACCESS_DIRECT, NULL);
2994        if (err)
2995                return err;
2996
2997        min_off = reg->smin_value + off;
2998        max_off = reg->smax_value + off;
2999        mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3000        return 0;
3001}
3002
3003/* check_stack_read dispatches to check_stack_read_fixed_off or
3004 * check_stack_read_var_off.
3005 *
3006 * The caller must ensure that the offset falls within the allocated stack
3007 * bounds.
3008 *
3009 * 'dst_regno' is a register which will receive the value from the stack. It
3010 * can be -1, meaning that the read value is not going to a register.
3011 */
3012static int check_stack_read(struct bpf_verifier_env *env,
3013                            int ptr_regno, int off, int size,
3014                            int dst_regno)
3015{
3016        struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3017        struct bpf_func_state *state = func(env, reg);
3018        int err;
3019        /* Some accesses are only permitted with a static offset. */
3020        bool var_off = !tnum_is_const(reg->var_off);
3021
3022        /* The offset is required to be static when reads don't go to a
3023         * register, in order to not leak pointers (see
3024         * check_stack_read_fixed_off).
3025         */
3026        if (dst_regno < 0 && var_off) {
3027                char tn_buf[48];
3028
3029                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3030                verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3031                        tn_buf, off, size);
3032                return -EACCES;
3033        }
3034        /* Variable offset is prohibited for unprivileged mode for simplicity
3035         * since it requires corresponding support in Spectre masking for stack
3036         * ALU. See also retrieve_ptr_limit().
3037         */
3038        if (!env->bypass_spec_v1 && var_off) {
3039                char tn_buf[48];
3040
3041                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3042                verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3043                                ptr_regno, tn_buf);
3044                return -EACCES;
3045        }
3046
3047        if (!var_off) {
3048                off += reg->var_off.value;
3049                err = check_stack_read_fixed_off(env, state, off, size,
3050                                                 dst_regno);
3051        } else {
3052                /* Variable offset stack reads need more conservative handling
3053                 * than fixed offset ones. Note that dst_regno >= 0 on this
3054                 * branch.
3055                 */
3056                err = check_stack_read_var_off(env, ptr_regno, off, size,
3057                                               dst_regno);
3058        }
3059        return err;
3060}
3061
3062
3063/* check_stack_write dispatches to check_stack_write_fixed_off or
3064 * check_stack_write_var_off.
3065 *
3066 * 'ptr_regno' is the register used as a pointer into the stack.
3067 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3068 * 'value_regno' is the register whose value we're writing to the stack. It can
3069 * be -1, meaning that we're not writing from a register.
3070 *
3071 * The caller must ensure that the offset falls within the maximum stack size.
3072 */
3073static int check_stack_write(struct bpf_verifier_env *env,
3074                             int ptr_regno, int off, int size,
3075                             int value_regno, int insn_idx)
3076{
3077        struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3078        struct bpf_func_state *state = func(env, reg);
3079        int err;
3080
3081        if (tnum_is_const(reg->var_off)) {
3082                off += reg->var_off.value;
3083                err = check_stack_write_fixed_off(env, state, off, size,
3084                                                  value_regno, insn_idx);
3085        } else {
3086                /* Variable offset stack reads need more conservative handling
3087                 * than fixed offset ones.
3088                 */
3089                err = check_stack_write_var_off(env, state,
3090                                                ptr_regno, off, size,
3091                                                value_regno, insn_idx);
3092        }
3093        return err;
3094}
3095
3096static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3097                                 int off, int size, enum bpf_access_type type)
3098{
3099        struct bpf_reg_state *regs = cur_regs(env);
3100        struct bpf_map *map = regs[regno].map_ptr;
3101        u32 cap = bpf_map_flags_to_cap(map);
3102
3103        if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3104                verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3105                        map->value_size, off, size);
3106                return -EACCES;
3107        }
3108
3109        if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3110                verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3111                        map->value_size, off, size);
3112                return -EACCES;
3113        }
3114
3115        return 0;
3116}
3117
3118/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3119static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3120                              int off, int size, u32 mem_size,
3121                              bool zero_size_allowed)
3122{
3123        bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3124        struct bpf_reg_state *reg;
3125
3126        if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3127                return 0;
3128
3129        reg = &cur_regs(env)[regno];
3130        switch (reg->type) {
3131        case PTR_TO_MAP_KEY:
3132                verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3133                        mem_size, off, size);
3134                break;
3135        case PTR_TO_MAP_VALUE:
3136                verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3137                        mem_size, off, size);
3138                break;
3139        case PTR_TO_PACKET:
3140        case PTR_TO_PACKET_META:
3141        case PTR_TO_PACKET_END:
3142                verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3143                        off, size, regno, reg->id, off, mem_size);
3144                break;
3145        case PTR_TO_MEM:
3146        default:
3147                verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3148                        mem_size, off, size);
3149        }
3150
3151        return -EACCES;
3152}
3153
3154/* check read/write into a memory region with possible variable offset */
3155static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3156                                   int off, int size, u32 mem_size,
3157                                   bool zero_size_allowed)
3158{
3159        struct bpf_verifier_state *vstate = env->cur_state;
3160        struct bpf_func_state *state = vstate->frame[vstate->curframe];
3161        struct bpf_reg_state *reg = &state->regs[regno];
3162        int err;
3163
3164        /* We may have adjusted the register pointing to memory region, so we
3165         * need to try adding each of min_value and max_value to off
3166         * to make sure our theoretical access will be safe.
3167         */
3168        if (env->log.level & BPF_LOG_LEVEL)
3169                print_verifier_state(env, state);
3170
3171        /* The minimum value is only important with signed
3172         * comparisons where we can't assume the floor of a
3173         * value is 0.  If we are using signed variables for our
3174         * index'es we need to make sure that whatever we use
3175         * will have a set floor within our range.
3176         */
3177        if (reg->smin_value < 0 &&
3178            (reg->smin_value == S64_MIN ||
3179             (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3180              reg->smin_value + off < 0)) {
3181                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3182                        regno);
3183                return -EACCES;
3184        }
3185        err = __check_mem_access(env, regno, reg->smin_value + off, size,
3186                                 mem_size, zero_size_allowed);
3187        if (err) {
3188                verbose(env, "R%d min value is outside of the allowed memory range\n",
3189                        regno);
3190                return err;
3191        }
3192
3193        /* If we haven't set a max value then we need to bail since we can't be
3194         * sure we won't do bad things.
3195         * If reg->umax_value + off could overflow, treat that as unbounded too.
3196         */
3197        if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3198                verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3199                        regno);
3200                return -EACCES;
3201        }
3202        err = __check_mem_access(env, regno, reg->umax_value + off, size,
3203                                 mem_size, zero_size_allowed);
3204        if (err) {
3205                verbose(env, "R%d max value is outside of the allowed memory range\n",
3206                        regno);
3207                return err;
3208        }
3209
3210        return 0;
3211}
3212
3213/* check read/write into a map element with possible variable offset */
3214static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3215                            int off, int size, bool zero_size_allowed)
3216{
3217        struct bpf_verifier_state *vstate = env->cur_state;
3218        struct bpf_func_state *state = vstate->frame[vstate->curframe];
3219        struct bpf_reg_state *reg = &state->regs[regno];
3220        struct bpf_map *map = reg->map_ptr;
3221        int err;
3222
3223        err = check_mem_region_access(env, regno, off, size, map->value_size,
3224                                      zero_size_allowed);
3225        if (err)
3226                return err;
3227
3228        if (map_value_has_spin_lock(map)) {
3229                u32 lock = map->spin_lock_off;
3230
3231                /* if any part of struct bpf_spin_lock can be touched by
3232                 * load/store reject this program.
3233                 * To check that [x1, x2) overlaps with [y1, y2)
3234                 * it is sufficient to check x1 < y2 && y1 < x2.
3235                 */
3236                if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3237                     lock < reg->umax_value + off + size) {
3238                        verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3239                        return -EACCES;
3240                }
3241        }
3242        return err;
3243}
3244
3245#define MAX_PACKET_OFF 0xffff
3246
3247static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3248{
3249        return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3250}
3251
3252static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3253                                       const struct bpf_call_arg_meta *meta,
3254                                       enum bpf_access_type t)
3255{
3256        enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3257
3258        switch (prog_type) {
3259        /* Program types only with direct read access go here! */
3260        case BPF_PROG_TYPE_LWT_IN:
3261        case BPF_PROG_TYPE_LWT_OUT:
3262        case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3263        case BPF_PROG_TYPE_SK_REUSEPORT:
3264        case BPF_PROG_TYPE_FLOW_DISSECTOR:
3265        case BPF_PROG_TYPE_CGROUP_SKB:
3266                if (t == BPF_WRITE)
3267                        return false;
3268                fallthrough;
3269
3270        /* Program types with direct read + write access go here! */
3271        case BPF_PROG_TYPE_SCHED_CLS:
3272        case BPF_PROG_TYPE_SCHED_ACT:
3273        case BPF_PROG_TYPE_XDP:
3274        case BPF_PROG_TYPE_LWT_XMIT:
3275        case BPF_PROG_TYPE_SK_SKB:
3276        case BPF_PROG_TYPE_SK_MSG:
3277                if (meta)
3278                        return meta->pkt_access;
3279
3280                env->seen_direct_write = true;
3281                return true;
3282
3283        case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3284                if (t == BPF_WRITE)
3285                        env->seen_direct_write = true;
3286
3287                return true;
3288
3289        default:
3290                return false;
3291        }
3292}
3293
3294static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3295                               int size, bool zero_size_allowed)
3296{
3297        struct bpf_reg_state *regs = cur_regs(env);
3298        struct bpf_reg_state *reg = &regs[regno];
3299        int err;
3300
3301        /* We may have added a variable offset to the packet pointer; but any
3302         * reg->range we have comes after that.  We are only checking the fixed
3303         * offset.
3304         */
3305
3306        /* We don't allow negative numbers, because we aren't tracking enough
3307         * detail to prove they're safe.
3308         */
3309        if (reg->smin_value < 0) {
3310                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3311                        regno);
3312                return -EACCES;
3313        }
3314
3315        err = reg->range < 0 ? -EINVAL :
3316              __check_mem_access(env, regno, off, size, reg->range,
3317                                 zero_size_allowed);
3318        if (err) {
3319                verbose(env, "R%d offset is outside of the packet\n", regno);
3320                return err;
3321        }
3322
3323        /* __check_mem_access has made sure "off + size - 1" is within u16.
3324         * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3325         * otherwise find_good_pkt_pointers would have refused to set range info
3326         * that __check_mem_access would have rejected this pkt access.
3327         * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3328         */
3329        env->prog->aux->max_pkt_offset =
3330                max_t(u32, env->prog->aux->max_pkt_offset,
3331                      off + reg->umax_value + size - 1);
3332
3333        return err;
3334}
3335
3336/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3337static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3338                            enum bpf_access_type t, enum bpf_reg_type *reg_type,
3339                            struct btf **btf, u32 *btf_id)
3340{
3341        struct bpf_insn_access_aux info = {
3342                .reg_type = *reg_type,
3343                .log = &env->log,
3344        };
3345
3346        if (env->ops->is_valid_access &&
3347            env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3348                /* A non zero info.ctx_field_size indicates that this field is a
3349                 * candidate for later verifier transformation to load the whole
3350                 * field and then apply a mask when accessed with a narrower
3351                 * access than actual ctx access size. A zero info.ctx_field_size
3352                 * will only allow for whole field access and rejects any other
3353                 * type of narrower access.
3354                 */
3355                *reg_type = info.reg_type;
3356
3357                if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3358                        *btf = info.btf;
3359                        *btf_id = info.btf_id;
3360                } else {
3361                        env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3362                }
3363                /* remember the offset of last byte accessed in ctx */
3364                if (env->prog->aux->max_ctx_offset < off + size)
3365                        env->prog->aux->max_ctx_offset = off + size;
3366                return 0;
3367        }
3368
3369        verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3370        return -EACCES;
3371}
3372
3373static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3374                                  int size)
3375{
3376        if (size < 0 || off < 0 ||
3377            (u64)off + size > sizeof(struct bpf_flow_keys)) {
3378                verbose(env, "invalid access to flow keys off=%d size=%d\n",
3379                        off, size);
3380                return -EACCES;
3381        }
3382        return 0;
3383}
3384
3385static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3386                             u32 regno, int off, int size,
3387                             enum bpf_access_type t)
3388{
3389        struct bpf_reg_state *regs = cur_regs(env);
3390        struct bpf_reg_state *reg = &regs[regno];
3391        struct bpf_insn_access_aux info = {};
3392        bool valid;
3393
3394        if (reg->smin_value < 0) {
3395                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3396                        regno);
3397                return -EACCES;
3398        }
3399
3400        switch (reg->type) {
3401        case PTR_TO_SOCK_COMMON:
3402                valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3403                break;
3404        case PTR_TO_SOCKET:
3405                valid = bpf_sock_is_valid_access(off, size, t, &info);
3406                break;
3407        case PTR_TO_TCP_SOCK:
3408                valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3409                break;
3410        case PTR_TO_XDP_SOCK:
3411                valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3412                break;
3413        default:
3414                valid = false;
3415        }
3416
3417
3418        if (valid) {
3419                env->insn_aux_data[insn_idx].ctx_field_size =
3420                        info.ctx_field_size;
3421                return 0;
3422        }
3423
3424        verbose(env, "R%d invalid %s access off=%d size=%d\n",
3425                regno, reg_type_str[reg->type], off, size);
3426
3427        return -EACCES;
3428}
3429
3430static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3431{
3432        return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3433}
3434
3435static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3436{
3437        const struct bpf_reg_state *reg = reg_state(env, regno);
3438
3439        return reg->type == PTR_TO_CTX;
3440}
3441
3442static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3443{
3444        const struct bpf_reg_state *reg = reg_state(env, regno);
3445
3446        return type_is_sk_pointer(reg->type);
3447}
3448
3449static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3450{
3451        const struct bpf_reg_state *reg = reg_state(env, regno);
3452
3453        return type_is_pkt_pointer(reg->type);
3454}
3455
3456static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3457{
3458        const struct bpf_reg_state *reg = reg_state(env, regno);
3459
3460        /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3461        return reg->type == PTR_TO_FLOW_KEYS;
3462}
3463
3464static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3465                                   const struct bpf_reg_state *reg,
3466                                   int off, int size, bool strict)
3467{
3468        struct tnum reg_off;
3469        int ip_align;
3470
3471        /* Byte size accesses are always allowed. */
3472        if (!strict || size == 1)
3473                return 0;
3474
3475        /* For platforms that do not have a Kconfig enabling
3476         * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3477         * NET_IP_ALIGN is universally set to '2'.  And on platforms
3478         * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3479         * to this code only in strict mode where we want to emulate
3480         * the NET_IP_ALIGN==2 checking.  Therefore use an
3481         * unconditional IP align value of '2'.
3482         */
3483        ip_align = 2;
3484
3485        reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3486        if (!tnum_is_aligned(reg_off, size)) {
3487                char tn_buf[48];
3488
3489                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3490                verbose(env,
3491                        "misaligned packet access off %d+%s+%d+%d size %d\n",
3492                        ip_align, tn_buf, reg->off, off, size);
3493                return -EACCES;
3494        }
3495
3496        return 0;
3497}
3498
3499static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3500                                       const struct bpf_reg_state *reg,
3501                                       const char *pointer_desc,
3502                                       int off, int size, bool strict)
3503{
3504        struct tnum reg_off;
3505
3506        /* Byte size accesses are always allowed. */
3507        if (!strict || size == 1)
3508                return 0;
3509
3510        reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3511        if (!tnum_is_aligned(reg_off, size)) {
3512                char tn_buf[48];
3513
3514                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3515                verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3516                        pointer_desc, tn_buf, reg->off, off, size);
3517                return -EACCES;
3518        }
3519
3520        return 0;
3521}
3522
3523static int check_ptr_alignment(struct bpf_verifier_env *env,
3524                               const struct bpf_reg_state *reg, int off,
3525                               int size, bool strict_alignment_once)
3526{
3527        bool strict = env->strict_alignment || strict_alignment_once;
3528        const char *pointer_desc = "";
3529
3530        switch (reg->type) {
3531        case PTR_TO_PACKET:
3532        case PTR_TO_PACKET_META:
3533                /* Special case, because of NET_IP_ALIGN. Given metadata sits
3534                 * right in front, treat it the very same way.
3535                 */
3536                return check_pkt_ptr_alignment(env, reg, off, size, strict);
3537        case PTR_TO_FLOW_KEYS:
3538                pointer_desc = "flow keys ";
3539                break;
3540        case PTR_TO_MAP_KEY:
3541                pointer_desc = "key ";
3542                break;
3543        case PTR_TO_MAP_VALUE:
3544                pointer_desc = "value ";
3545                break;
3546        case PTR_TO_CTX:
3547                pointer_desc = "context ";
3548                break;
3549        case PTR_TO_STACK:
3550                pointer_desc = "stack ";
3551                /* The stack spill tracking logic in check_stack_write_fixed_off()
3552                 * and check_stack_read_fixed_off() relies on stack accesses being
3553                 * aligned.
3554                 */
3555                strict = true;
3556                break;
3557        case PTR_TO_SOCKET:
3558                pointer_desc = "sock ";
3559                break;
3560        case PTR_TO_SOCK_COMMON:
3561                pointer_desc = "sock_common ";
3562                break;
3563        case PTR_TO_TCP_SOCK:
3564                pointer_desc = "tcp_sock ";
3565                break;
3566        case PTR_TO_XDP_SOCK:
3567                pointer_desc = "xdp_sock ";
3568                break;
3569        default:
3570                break;
3571        }
3572        return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3573                                           strict);
3574}
3575
3576static int update_stack_depth(struct bpf_verifier_env *env,
3577                              const struct bpf_func_state *func,
3578                              int off)
3579{
3580        u16 stack = env->subprog_info[func->subprogno].stack_depth;
3581
3582        if (stack >= -off)
3583                return 0;
3584
3585        /* update known max for given subprogram */
3586        env->subprog_info[func->subprogno].stack_depth = -off;
3587        return 0;
3588}
3589
3590/* starting from main bpf function walk all instructions of the function
3591 * and recursively walk all callees that given function can call.
3592 * Ignore jump and exit insns.
3593 * Since recursion is prevented by check_cfg() this algorithm
3594 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3595 */
3596static int check_max_stack_depth(struct bpf_verifier_env *env)
3597{
3598        int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3599        struct bpf_subprog_info *subprog = env->subprog_info;
3600        struct bpf_insn *insn = env->prog->insnsi;
3601        bool tail_call_reachable = false;
3602        int ret_insn[MAX_CALL_FRAMES];
3603        int ret_prog[MAX_CALL_FRAMES];
3604        int j;
3605
3606process_func:
3607        /* protect against potential stack overflow that might happen when
3608         * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3609         * depth for such case down to 256 so that the worst case scenario
3610         * would result in 8k stack size (32 which is tailcall limit * 256 =
3611         * 8k).
3612         *
3613         * To get the idea what might happen, see an example:
3614         * func1 -> sub rsp, 128
3615         *  subfunc1 -> sub rsp, 256
3616         *  tailcall1 -> add rsp, 256
3617         *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3618         *   subfunc2 -> sub rsp, 64
3619         *   subfunc22 -> sub rsp, 128
3620         *   tailcall2 -> add rsp, 128
3621         *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3622         *
3623         * tailcall will unwind the current stack frame but it will not get rid
3624         * of caller's stack as shown on the example above.
3625         */
3626        if (idx && subprog[idx].has_tail_call && depth >= 256) {
3627                verbose(env,
3628                        "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3629                        depth);
3630                return -EACCES;
3631        }
3632        /* round up to 32-bytes, since this is granularity
3633         * of interpreter stack size
3634         */
3635        depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3636        if (depth > MAX_BPF_STACK) {
3637                verbose(env, "combined stack size of %d calls is %d. Too large\n",
3638                        frame + 1, depth);
3639                return -EACCES;
3640        }
3641continue_func:
3642        subprog_end = subprog[idx + 1].start;
3643        for (; i < subprog_end; i++) {
3644                if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3645                        continue;
3646                /* remember insn and function to return to */
3647                ret_insn[frame] = i + 1;
3648                ret_prog[frame] = idx;
3649
3650                /* find the callee */
3651                i = i + insn[i].imm + 1;
3652                idx = find_subprog(env, i);
3653                if (idx < 0) {
3654                        WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3655                                  i);
3656                        return -EFAULT;
3657                }
3658
3659                if (subprog[idx].has_tail_call)
3660                        tail_call_reachable = true;
3661
3662                frame++;
3663                if (frame >= MAX_CALL_FRAMES) {
3664                        verbose(env, "the call stack of %d frames is too deep !\n",
3665                                frame);
3666                        return -E2BIG;
3667                }
3668                goto process_func;
3669        }
3670        /* if tail call got detected across bpf2bpf calls then mark each of the
3671         * currently present subprog frames as tail call reachable subprogs;
3672         * this info will be utilized by JIT so that we will be preserving the
3673         * tail call counter throughout bpf2bpf calls combined with tailcalls
3674         */
3675        if (tail_call_reachable)
3676                for (j = 0; j < frame; j++)
3677                        subprog[ret_prog[j]].tail_call_reachable = true;
3678
3679        /* end of for() loop means the last insn of the 'subprog'
3680         * was reached. Doesn't matter whether it was JA or EXIT
3681         */
3682        if (frame == 0)
3683                return 0;
3684        depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3685        frame--;
3686        i = ret_insn[frame];
3687        idx = ret_prog[frame];
3688        goto continue_func;
3689}
3690
3691#ifndef CONFIG_BPF_JIT_ALWAYS_ON
3692static int get_callee_stack_depth(struct bpf_verifier_env *env,
3693                                  const struct bpf_insn *insn, int idx)
3694{
3695        int start = idx + insn->imm + 1, subprog;
3696
3697        subprog = find_subprog(env, start);
3698        if (subprog < 0) {
3699                WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3700                          start);
3701                return -EFAULT;
3702        }
3703        return env->subprog_info[subprog].stack_depth;
3704}
3705#endif
3706
3707int check_ctx_reg(struct bpf_verifier_env *env,
3708                  const struct bpf_reg_state *reg, int regno)
3709{
3710        /* Access to ctx or passing it to a helper is only allowed in
3711         * its original, unmodified form.
3712         */
3713
3714        if (reg->off) {
3715                verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3716                        regno, reg->off);
3717                return -EACCES;
3718        }
3719
3720        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3721                char tn_buf[48];
3722
3723                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3724                verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3725                return -EACCES;
3726        }
3727
3728        return 0;
3729}
3730
3731static int __check_buffer_access(struct bpf_verifier_env *env,
3732                                 const char *buf_info,
3733                                 const struct bpf_reg_state *reg,
3734                                 int regno, int off, int size)
3735{
3736        if (off < 0) {
3737                verbose(env,
3738                        "R%d invalid %s buffer access: off=%d, size=%d\n",
3739                        regno, buf_info, off, size);
3740                return -EACCES;
3741        }
3742        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3743                char tn_buf[48];
3744
3745                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3746                verbose(env,
3747                        "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3748                        regno, off, tn_buf);
3749                return -EACCES;
3750        }
3751
3752        return 0;
3753}
3754
3755static int check_tp_buffer_access(struct bpf_verifier_env *env,
3756                                  const struct bpf_reg_state *reg,
3757                                  int regno, int off, int size)
3758{
3759        int err;
3760
3761        err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3762        if (err)
3763                return err;
3764
3765        if (off + size > env->prog->aux->max_tp_access)
3766                env->prog->aux->max_tp_access = off + size;
3767
3768        return 0;
3769}
3770
3771static int check_buffer_access(struct bpf_verifier_env *env,
3772                               const struct bpf_reg_state *reg,
3773                               int regno, int off, int size,
3774                               bool zero_size_allowed,
3775                               const char *buf_info,
3776                               u32 *max_access)
3777{
3778        int err;
3779
3780        err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3781        if (err)
3782                return err;
3783
3784        if (off + size > *max_access)
3785                *max_access = off + size;
3786
3787        return 0;
3788}
3789
3790/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3791static void zext_32_to_64(struct bpf_reg_state *reg)
3792{
3793        reg->var_off = tnum_subreg(reg->var_off);
3794        __reg_assign_32_into_64(reg);
3795}
3796
3797/* truncate register to smaller size (in bytes)
3798 * must be called with size < BPF_REG_SIZE
3799 */
3800static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3801{
3802        u64 mask;
3803
3804        /* clear high bits in bit representation */
3805        reg->var_off = tnum_cast(reg->var_off, size);
3806
3807        /* fix arithmetic bounds */
3808        mask = ((u64)1 << (size * 8)) - 1;
3809        if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3810                reg->umin_value &= mask;
3811                reg->umax_value &= mask;
3812        } else {
3813                reg->umin_value = 0;
3814                reg->umax_value = mask;
3815        }
3816        reg->smin_value = reg->umin_value;
3817        reg->smax_value = reg->umax_value;
3818
3819        /* If size is smaller than 32bit register the 32bit register
3820         * values are also truncated so we push 64-bit bounds into
3821         * 32-bit bounds. Above were truncated < 32-bits already.
3822         */
3823        if (size >= 4)
3824                return;
3825        __reg_combine_64_into_32(reg);
3826}
3827
3828static bool bpf_map_is_rdonly(const struct bpf_map *map)
3829{
3830        return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3831}
3832
3833static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3834{
3835        void *ptr;
3836        u64 addr;
3837        int err;
3838
3839        err = map->ops->map_direct_value_addr(map, &addr, off);
3840        if (err)
3841                return err;
3842        ptr = (void *)(long)addr + off;
3843
3844        switch (size) {
3845        case sizeof(u8):
3846                *val = (u64)*(u8 *)ptr;
3847                break;
3848        case sizeof(u16):
3849                *val = (u64)*(u16 *)ptr;
3850                break;
3851        case sizeof(u32):
3852                *val = (u64)*(u32 *)ptr;
3853                break;
3854        case sizeof(u64):
3855                *val = *(u64 *)ptr;
3856                break;
3857        default:
3858                return -EINVAL;
3859        }
3860        return 0;
3861}
3862
3863static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3864                                   struct bpf_reg_state *regs,
3865                                   int regno, int off, int size,
3866                                   enum bpf_access_type atype,
3867                                   int value_regno)
3868{
3869        struct bpf_reg_state *reg = regs + regno;
3870        const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3871        const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3872        u32 btf_id;
3873        int ret;
3874
3875        if (off < 0) {
3876                verbose(env,
3877                        "R%d is ptr_%s invalid negative access: off=%d\n",
3878                        regno, tname, off);
3879                return -EACCES;
3880        }
3881        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3882                char tn_buf[48];
3883
3884                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3885                verbose(env,
3886                        "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3887                        regno, tname, off, tn_buf);
3888                return -EACCES;
3889        }
3890
3891        if (env->ops->btf_struct_access) {
3892                ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3893                                                  off, size, atype, &btf_id);
3894        } else {
3895                if (atype != BPF_READ) {
3896                        verbose(env, "only read is supported\n");
3897                        return -EACCES;
3898                }
3899
3900                ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3901                                        atype, &btf_id);
3902        }
3903
3904        if (ret < 0)
3905                return ret;
3906
3907        if (atype == BPF_READ && value_regno >= 0)
3908                mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3909
3910        return 0;
3911}
3912
3913static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3914                                   struct bpf_reg_state *regs,
3915                                   int regno, int off, int size,
3916                                   enum bpf_access_type atype,
3917                                   int value_regno)
3918{
3919        struct bpf_reg_state *reg = regs + regno;
3920        struct bpf_map *map = reg->map_ptr;
3921        const struct btf_type *t;
3922        const char *tname;
3923        u32 btf_id;
3924        int ret;
3925
3926        if (!btf_vmlinux) {
3927                verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3928                return -ENOTSUPP;
3929        }
3930
3931        if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3932                verbose(env, "map_ptr access not supported for map type %d\n",
3933                        map->map_type);
3934                return -ENOTSUPP;
3935        }
3936
3937        t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3938        tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3939
3940        if (!env->allow_ptr_to_map_access) {
3941                verbose(env,
3942                        "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3943                        tname);
3944                return -EPERM;
3945        }
3946
3947        if (off < 0) {
3948                verbose(env, "R%d is %s invalid negative access: off=%d\n",
3949                        regno, tname, off);
3950                return -EACCES;
3951        }
3952
3953        if (atype != BPF_READ) {
3954                verbose(env, "only read from %s is supported\n", tname);
3955                return -EACCES;
3956        }
3957
3958        ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3959        if (ret < 0)
3960                return ret;
3961
3962        if (value_regno >= 0)
3963                mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3964
3965        return 0;
3966}
3967
3968/* Check that the stack access at the given offset is within bounds. The
3969 * maximum valid offset is -1.
3970 *
3971 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3972 * -state->allocated_stack for reads.
3973 */
3974static int check_stack_slot_within_bounds(int off,
3975                                          struct bpf_func_state *state,
3976                                          enum bpf_access_type t)
3977{
3978        int min_valid_off;
3979
3980        if (t == BPF_WRITE)
3981                min_valid_off = -MAX_BPF_STACK;
3982        else
3983                min_valid_off = -state->allocated_stack;
3984
3985        if (off < min_valid_off || off > -1)
3986                return -EACCES;
3987        return 0;
3988}
3989
3990/* Check that the stack access at 'regno + off' falls within the maximum stack
3991 * bounds.
3992 *
3993 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3994 */
3995static int check_stack_access_within_bounds(
3996                struct bpf_verifier_env *env,
3997                int regno, int off, int access_size,
3998                enum stack_access_src src, enum bpf_access_type type)
3999{
4000        struct bpf_reg_state *regs = cur_regs(env);
4001        struct bpf_reg_state *reg = regs + regno;
4002        struct bpf_func_state *state = func(env, reg);
4003        int min_off, max_off;
4004        int err;
4005        char *err_extra;
4006
4007        if (src == ACCESS_HELPER)
4008                /* We don't know if helpers are reading or writing (or both). */
4009                err_extra = " indirect access to";
4010        else if (type == BPF_READ)
4011                err_extra = " read from";
4012        else
4013                err_extra = " write to";
4014
4015        if (tnum_is_const(reg->var_off)) {
4016                min_off = reg->var_off.value + off;
4017                if (access_size > 0)
4018                        max_off = min_off + access_size - 1;
4019                else
4020                        max_off = min_off;
4021        } else {
4022                if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4023                    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4024                        verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4025                                err_extra, regno);
4026                        return -EACCES;
4027                }
4028                min_off = reg->smin_value + off;
4029                if (access_size > 0)
4030                        max_off = reg->smax_value + off + access_size - 1;
4031                else
4032                        max_off = min_off;
4033        }
4034
4035        err = check_stack_slot_within_bounds(min_off, state, type);
4036        if (!err)
4037                err = check_stack_slot_within_bounds(max_off, state, type);
4038
4039        if (err) {
4040                if (tnum_is_const(reg->var_off)) {
4041                        verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4042                                err_extra, regno, off, access_size);
4043                } else {
4044                        char tn_buf[48];
4045
4046                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4047                        verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4048                                err_extra, regno, tn_buf, access_size);
4049                }
4050        }
4051        return err;
4052}
4053
4054/* check whether memory at (regno + off) is accessible for t = (read | write)
4055 * if t==write, value_regno is a register which value is stored into memory
4056 * if t==read, value_regno is a register which will receive the value from memory
4057 * if t==write && value_regno==-1, some unknown value is stored into memory
4058 * if t==read && value_regno==-1, don't care what we read from memory
4059 */
4060static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4061                            int off, int bpf_size, enum bpf_access_type t,
4062                            int value_regno, bool strict_alignment_once)
4063{
4064        struct bpf_reg_state *regs = cur_regs(env);
4065        struct bpf_reg_state *reg = regs + regno;
4066        struct bpf_func_state *state;
4067        int size, err = 0;
4068
4069        size = bpf_size_to_bytes(bpf_size);
4070        if (size < 0)
4071                return size;
4072
4073        /* alignment checks will add in reg->off themselves */
4074        err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4075        if (err)
4076                return err;
4077
4078        /* for access checks, reg->off is just part of off */
4079        off += reg->off;
4080
4081        if (reg->type == PTR_TO_MAP_KEY) {
4082                if (t == BPF_WRITE) {
4083                        verbose(env, "write to change key R%d not allowed\n", regno);
4084                        return -EACCES;
4085                }
4086
4087                err = check_mem_region_access(env, regno, off, size,
4088                                              reg->map_ptr->key_size, false);
4089                if (err)
4090                        return err;
4091                if (value_regno >= 0)
4092                        mark_reg_unknown(env, regs, value_regno);
4093        } else if (reg->type == PTR_TO_MAP_VALUE) {
4094                if (t == BPF_WRITE && value_regno >= 0 &&
4095                    is_pointer_value(env, value_regno)) {
4096                        verbose(env, "R%d leaks addr into map\n", value_regno);
4097                        return -EACCES;
4098                }
4099                err = check_map_access_type(env, regno, off, size, t);
4100                if (err)
4101                        return err;
4102                err = check_map_access(env, regno, off, size, false);
4103                if (!err && t == BPF_READ && value_regno >= 0) {
4104                        struct bpf_map *map = reg->map_ptr;
4105
4106                        /* if map is read-only, track its contents as scalars */
4107                        if (tnum_is_const(reg->var_off) &&
4108                            bpf_map_is_rdonly(map) &&
4109                            map->ops->map_direct_value_addr) {
4110                                int map_off = off + reg->var_off.value;
4111                                u64 val = 0;
4112
4113                                err = bpf_map_direct_read(map, map_off, size,
4114                                                          &val);
4115                                if (err)
4116                                        return err;
4117
4118                                regs[value_regno].type = SCALAR_VALUE;
4119                                __mark_reg_known(&regs[value_regno], val);
4120                        } else {
4121                                mark_reg_unknown(env, regs, value_regno);
4122                        }
4123                }
4124        } else if (reg->type == PTR_TO_MEM) {
4125                if (t == BPF_WRITE && value_regno >= 0 &&
4126                    is_pointer_value(env, value_regno)) {
4127                        verbose(env, "R%d leaks addr into mem\n", value_regno);
4128                        return -EACCES;
4129                }
4130                err = check_mem_region_access(env, regno, off, size,
4131                                              reg->mem_size, false);
4132                if (!err && t == BPF_READ && value_regno >= 0)
4133                        mark_reg_unknown(env, regs, value_regno);
4134        } else if (reg->type == PTR_TO_CTX) {
4135                enum bpf_reg_type reg_type = SCALAR_VALUE;
4136                struct btf *btf = NULL;
4137                u32 btf_id = 0;
4138
4139                if (t == BPF_WRITE && value_regno >= 0 &&
4140                    is_pointer_value(env, value_regno)) {
4141                        verbose(env, "R%d leaks addr into ctx\n", value_regno);
4142                        return -EACCES;
4143                }
4144
4145                err = check_ctx_reg(env, reg, regno);
4146                if (err < 0)
4147                        return err;
4148
4149                err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4150                if (err)
4151                        verbose_linfo(env, insn_idx, "; ");
4152                if (!err && t == BPF_READ && value_regno >= 0) {
4153                        /* ctx access returns either a scalar, or a
4154                         * PTR_TO_PACKET[_META,_END]. In the latter
4155                         * case, we know the offset is zero.
4156                         */
4157                        if (reg_type == SCALAR_VALUE) {
4158                                mark_reg_unknown(env, regs, value_regno);
4159                        } else {
4160                                mark_reg_known_zero(env, regs,
4161                                                    value_regno);
4162                                if (reg_type_may_be_null(reg_type))
4163                                        regs[value_regno].id = ++env->id_gen;
4164                                /* A load of ctx field could have different
4165                                 * actual load size with the one encoded in the
4166                                 * insn. When the dst is PTR, it is for sure not
4167                                 * a sub-register.
4168                                 */
4169                                regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4170                                if (reg_type == PTR_TO_BTF_ID ||
4171                                    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4172                                        regs[value_regno].btf = btf;
4173                                        regs[value_regno].btf_id = btf_id;
4174                                }
4175                        }
4176                        regs[value_regno].type = reg_type;
4177                }
4178
4179        } else if (reg->type == PTR_TO_STACK) {
4180                /* Basic bounds checks. */
4181                err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4182                if (err)
4183                        return err;
4184
4185                state = func(env, reg);
4186                err = update_stack_depth(env, state, off);
4187                if (err)
4188                        return err;
4189
4190                if (t == BPF_READ)
4191                        err = check_stack_read(env, regno, off, size,
4192                                               value_regno);
4193                else
4194                        err = check_stack_write(env, regno, off, size,
4195                                                value_regno, insn_idx);
4196        } else if (reg_is_pkt_pointer(reg)) {
4197                if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4198                        verbose(env, "cannot write into packet\n");
4199                        return -EACCES;
4200                }
4201                if (t == BPF_WRITE && value_regno >= 0 &&
4202                    is_pointer_value(env, value_regno)) {
4203                        verbose(env, "R%d leaks addr into packet\n",
4204                                value_regno);
4205                        return -EACCES;
4206                }
4207                err = check_packet_access(env, regno, off, size, false);
4208                if (!err && t == BPF_READ && value_regno >= 0)
4209                        mark_reg_unknown(env, regs, value_regno);
4210        } else if (reg->type == PTR_TO_FLOW_KEYS) {
4211                if (t == BPF_WRITE && value_regno >= 0 &&
4212                    is_pointer_value(env, value_regno)) {
4213                        verbose(env, "R%d leaks addr into flow keys\n",
4214                                value_regno);
4215                        return -EACCES;
4216                }
4217
4218                err = check_flow_keys_access(env, off, size);
4219                if (!err && t == BPF_READ && value_regno >= 0)
4220                        mark_reg_unknown(env, regs, value_regno);
4221        } else if (type_is_sk_pointer(reg->type)) {
4222                if (t == BPF_WRITE) {
4223                        verbose(env, "R%d cannot write into %s\n",
4224                                regno, reg_type_str[reg->type]);
4225                        return -EACCES;
4226                }
4227                err = check_sock_access(env, insn_idx, regno, off, size, t);
4228                if (!err && value_regno >= 0)
4229                        mark_reg_unknown(env, regs, value_regno);
4230        } else if (reg->type == PTR_TO_TP_BUFFER) {
4231                err = check_tp_buffer_access(env, reg, regno, off, size);
4232                if (!err && t == BPF_READ && value_regno >= 0)
4233                        mark_reg_unknown(env, regs, value_regno);
4234        } else if (reg->type == PTR_TO_BTF_ID) {
4235                err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4236                                              value_regno);
4237        } else if (reg->type == CONST_PTR_TO_MAP) {
4238                err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4239                                              value_regno);
4240        } else if (reg->type == PTR_TO_RDONLY_BUF) {
4241                if (t == BPF_WRITE) {
4242                        verbose(env, "R%d cannot write into %s\n",
4243                                regno, reg_type_str[reg->type]);
4244                        return -EACCES;
4245                }
4246                err = check_buffer_access(env, reg, regno, off, size, false,
4247                                          "rdonly",
4248                                          &env->prog->aux->max_rdonly_access);
4249                if (!err && value_regno >= 0)
4250                        mark_reg_unknown(env, regs, value_regno);
4251        } else if (reg->type == PTR_TO_RDWR_BUF) {
4252                err = check_buffer_access(env, reg, regno, off, size, false,
4253                                          "rdwr",
4254                                          &env->prog->aux->max_rdwr_access);
4255                if (!err && t == BPF_READ && value_regno >= 0)
4256                        mark_reg_unknown(env, regs, value_regno);
4257        } else {
4258                verbose(env, "R%d invalid mem access '%s'\n", regno,
4259                        reg_type_str[reg->type]);
4260                return -EACCES;
4261        }
4262
4263        if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4264            regs[value_regno].type == SCALAR_VALUE) {
4265                /* b/h/w load zero-extends, mark upper bits as known 0 */
4266                coerce_reg_to_size(&regs[value_regno], size);
4267        }
4268        return err;
4269}
4270
4271static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4272{
4273        int load_reg;
4274        int err;
4275
4276        switch (insn->imm) {
4277        case BPF_ADD:
4278        case BPF_ADD | BPF_FETCH:
4279        case BPF_AND:
4280        case BPF_AND | BPF_FETCH:
4281        case BPF_OR:
4282        case BPF_OR | BPF_FETCH:
4283        case BPF_XOR:
4284        case BPF_XOR | BPF_FETCH:
4285        case BPF_XCHG:
4286        case BPF_CMPXCHG:
4287                break;
4288        default:
4289                verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4290                return -EINVAL;
4291        }
4292
4293        if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4294                verbose(env, "invalid atomic operand size\n");
4295                return -EINVAL;
4296        }
4297
4298        /* check src1 operand */
4299        err = check_reg_arg(env, insn->src_reg, SRC_OP);
4300        if (err)
4301                return err;
4302
4303        /* check src2 operand */
4304        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4305        if (err)
4306                return err;
4307
4308        if (insn->imm == BPF_CMPXCHG) {
4309                /* Check comparison of R0 with memory location */
4310                err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4311                if (err)
4312                        return err;
4313        }
4314
4315        if (is_pointer_value(env, insn->src_reg)) {
4316                verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4317                return -EACCES;
4318        }
4319
4320        if (is_ctx_reg(env, insn->dst_reg) ||
4321            is_pkt_reg(env, insn->dst_reg) ||
4322            is_flow_key_reg(env, insn->dst_reg) ||
4323            is_sk_reg(env, insn->dst_reg)) {
4324                verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4325                        insn->dst_reg,
4326                        reg_type_str[reg_state(env, insn->dst_reg)->type]);
4327                return -EACCES;
4328        }
4329
4330        if (insn->imm & BPF_FETCH) {
4331                if (insn->imm == BPF_CMPXCHG)
4332                        load_reg = BPF_REG_0;
4333                else
4334                        load_reg = insn->src_reg;
4335
4336                /* check and record load of old value */
4337                err = check_reg_arg(env, load_reg, DST_OP);
4338                if (err)
4339                        return err;
4340        } else {
4341                /* This instruction accesses a memory location but doesn't
4342                 * actually load it into a register.
4343                 */
4344                load_reg = -1;
4345        }
4346
4347        /* check whether we can read the memory */
4348        err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4349                               BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4350        if (err)
4351                return err;
4352
4353        /* check whether we can write into the same memory */
4354        err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4355                               BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4356        if (err)
4357                return err;
4358
4359        return 0;
4360}
4361
4362/* When register 'regno' is used to read the stack (either directly or through
4363 * a helper function) make sure that it's within stack boundary and, depending
4364 * on the access type, that all elements of the stack are initialized.
4365 *
4366 * 'off' includes 'regno->off', but not its dynamic part (if any).
4367 *
4368 * All registers that have been spilled on the stack in the slots within the
4369 * read offsets are marked as read.
4370 */
4371static int check_stack_range_initialized(
4372                struct bpf_verifier_env *env, int regno, int off,
4373                int access_size, bool zero_size_allowed,
4374                enum stack_access_src type, struct bpf_call_arg_meta *meta)
4375{
4376        struct bpf_reg_state *reg = reg_state(env, regno);
4377        struct bpf_func_state *state = func(env, reg);
4378        int err, min_off, max_off, i, j, slot, spi;
4379        char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4380        enum bpf_access_type bounds_check_type;
4381        /* Some accesses can write anything into the stack, others are
4382         * read-only.
4383         */
4384        bool clobber = false;
4385
4386        if (access_size == 0 && !zero_size_allowed) {
4387                verbose(env, "invalid zero-sized read\n");
4388                return -EACCES;
4389        }
4390
4391        if (type == ACCESS_HELPER) {
4392                /* The bounds checks for writes are more permissive than for
4393                 * reads. However, if raw_mode is not set, we'll do extra
4394                 * checks below.
4395                 */
4396                bounds_check_type = BPF_WRITE;
4397                clobber = true;
4398        } else {
4399                bounds_check_type = BPF_READ;
4400        }
4401        err = check_stack_access_within_bounds(env, regno, off, access_size,
4402                                               type, bounds_check_type);
4403        if (err)
4404                return err;
4405
4406
4407        if (tnum_is_const(reg->var_off)) {
4408                min_off = max_off = reg->var_off.value + off;
4409        } else {
4410                /* Variable offset is prohibited for unprivileged mode for
4411                 * simplicity since it requires corresponding support in
4412                 * Spectre masking for stack ALU.
4413                 * See also retrieve_ptr_limit().
4414                 */
4415                if (!env->bypass_spec_v1) {
4416                        char tn_buf[48];
4417
4418                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4419                        verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4420                                regno, err_extra, tn_buf);
4421                        return -EACCES;
4422                }
4423                /* Only initialized buffer on stack is allowed to be accessed
4424                 * with variable offset. With uninitialized buffer it's hard to
4425                 * guarantee that whole memory is marked as initialized on
4426                 * helper return since specific bounds are unknown what may
4427                 * cause uninitialized stack leaking.
4428                 */
4429                if (meta && meta->raw_mode)
4430                        meta = NULL;
4431
4432                min_off = reg->smin_value + off;
4433                max_off = reg->smax_value + off;
4434        }
4435
4436        if (meta && meta->raw_mode) {
4437                meta->access_size = access_size;
4438                meta->regno = regno;
4439                return 0;
4440        }
4441
4442        for (i = min_off; i < max_off + access_size; i++) {
4443                u8 *stype;
4444
4445                slot = -i - 1;
4446                spi = slot / BPF_REG_SIZE;
4447                if (state->allocated_stack <= slot)
4448                        goto err;
4449                stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4450                if (*stype == STACK_MISC)
4451                        goto mark;
4452                if (*stype == STACK_ZERO) {
4453                        if (clobber) {
4454                                /* helper can write anything into the stack */
4455                                *stype = STACK_MISC;
4456                        }
4457                        goto mark;
4458                }
4459
4460                if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4461                    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4462                        goto mark;
4463
4464                if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4465                    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4466                     env->allow_ptr_leaks)) {
4467                        if (clobber) {
4468                                __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4469                                for (j = 0; j < BPF_REG_SIZE; j++)
4470                                        state->stack[spi].slot_type[j] = STACK_MISC;
4471                        }
4472                        goto mark;
4473                }
4474
4475err:
4476                if (tnum_is_const(reg->var_off)) {
4477                        verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4478                                err_extra, regno, min_off, i - min_off, access_size);
4479                } else {
4480                        char tn_buf[48];
4481
4482                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4483                        verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4484                                err_extra, regno, tn_buf, i - min_off, access_size);
4485                }
4486                return -EACCES;
4487mark:
4488                /* reading any byte out of 8-byte 'spill_slot' will cause
4489                 * the whole slot to be marked as 'read'
4490                 */
4491                mark_reg_read(env, &state->stack[spi].spilled_ptr,
4492                              state->stack[spi].spilled_ptr.parent,
4493                              REG_LIVE_READ64);
4494        }
4495        return update_stack_depth(env, state, min_off);
4496}
4497
4498static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4499                                   int access_size, bool zero_size_allowed,
4500                                   struct bpf_call_arg_meta *meta)
4501{
4502        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4503
4504        switch (reg->type) {
4505        case PTR_TO_PACKET:
4506        case PTR_TO_PACKET_META:
4507                return check_packet_access(env, regno, reg->off, access_size,
4508                                           zero_size_allowed);
4509        case PTR_TO_MAP_KEY:
4510                return check_mem_region_access(env, regno, reg->off, access_size,
4511                                               reg->map_ptr->key_size, false);
4512        case PTR_TO_MAP_VALUE:
4513                if (check_map_access_type(env, regno, reg->off, access_size,
4514                                          meta && meta->raw_mode ? BPF_WRITE :
4515                                          BPF_READ))
4516                        return -EACCES;
4517                return check_map_access(env, regno, reg->off, access_size,
4518                                        zero_size_allowed);
4519        case PTR_TO_MEM:
4520                return check_mem_region_access(env, regno, reg->off,
4521                                               access_size, reg->mem_size,
4522                                               zero_size_allowed);
4523        case PTR_TO_RDONLY_BUF:
4524                if (meta && meta->raw_mode)
4525                        return -EACCES;
4526                return check_buffer_access(env, reg, regno, reg->off,
4527                                           access_size, zero_size_allowed,
4528                                           "rdonly",
4529                                           &env->prog->aux->max_rdonly_access);
4530        case PTR_TO_RDWR_BUF:
4531                return check_buffer_access(env, reg, regno, reg->off,
4532                                           access_size, zero_size_allowed,
4533                                           "rdwr",
4534                                           &env->prog->aux->max_rdwr_access);
4535        case PTR_TO_STACK:
4536                return check_stack_range_initialized(
4537                                env,
4538                                regno, reg->off, access_size,
4539                                zero_size_allowed, ACCESS_HELPER, meta);
4540        default: /* scalar_value or invalid ptr */
4541                /* Allow zero-byte read from NULL, regardless of pointer type */
4542                if (zero_size_allowed && access_size == 0 &&
4543                    register_is_null(reg))
4544                        return 0;
4545
4546                verbose(env, "R%d type=%s expected=%s\n", regno,
4547                        reg_type_str[reg->type],
4548                        reg_type_str[PTR_TO_STACK]);
4549                return -EACCES;
4550        }
4551}
4552
4553int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4554                   u32 regno, u32 mem_size)
4555{
4556        if (register_is_null(reg))
4557                return 0;
4558
4559        if (reg_type_may_be_null(reg->type)) {
4560                /* Assuming that the register contains a value check if the memory
4561                 * access is safe. Temporarily save and restore the register's state as
4562                 * the conversion shouldn't be visible to a caller.
4563                 */
4564                const struct bpf_reg_state saved_reg = *reg;
4565                int rv;
4566
4567                mark_ptr_not_null_reg(reg);
4568                rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4569                *reg = saved_reg;
4570                return rv;
4571        }
4572
4573        return check_helper_mem_access(env, regno, mem_size, true, NULL);
4574}
4575
4576/* Implementation details:
4577 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4578 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4579 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4580 * value_or_null->value transition, since the verifier only cares about
4581 * the range of access to valid map value pointer and doesn't care about actual
4582 * address of the map element.
4583 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4584 * reg->id > 0 after value_or_null->value transition. By doing so
4585 * two bpf_map_lookups will be considered two different pointers that
4586 * point to different bpf_spin_locks.
4587 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4588 * dead-locks.
4589 * Since only one bpf_spin_lock is allowed the checks are simpler than
4590 * reg_is_refcounted() logic. The verifier needs to remember only
4591 * one spin_lock instead of array of acquired_refs.
4592 * cur_state->active_spin_lock remembers which map value element got locked
4593 * and clears it after bpf_spin_unlock.
4594 */
4595static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4596                             bool is_lock)
4597{
4598        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4599        struct bpf_verifier_state *cur = env->cur_state;
4600        bool is_const = tnum_is_const(reg->var_off);
4601        struct bpf_map *map = reg->map_ptr;
4602        u64 val = reg->var_off.value;
4603
4604        if (!is_const) {
4605                verbose(env,
4606                        "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4607                        regno);
4608                return -EINVAL;
4609        }
4610        if (!map->btf) {
4611                verbose(env,
4612                        "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4613                        map->name);
4614                return -EINVAL;
4615        }
4616        if (!map_value_has_spin_lock(map)) {
4617                if (map->spin_lock_off == -E2BIG)
4618                        verbose(env,
4619                                "map '%s' has more than one 'struct bpf_spin_lock'\n",
4620                                map->name);
4621                else if (map->spin_lock_off == -ENOENT)
4622                        verbose(env,
4623                                "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4624                                map->name);
4625                else
4626                        verbose(env,
4627                                "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4628                                map->name);
4629                return -EINVAL;
4630        }
4631        if (map->spin_lock_off != val + reg->off) {
4632                verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4633                        val + reg->off);
4634                return -EINVAL;
4635        }
4636        if (is_lock) {
4637                if (cur->active_spin_lock) {
4638                        verbose(env,
4639                                "Locking two bpf_spin_locks are not allowed\n");
4640                        return -EINVAL;
4641                }
4642                cur->active_spin_lock = reg->id;
4643        } else {
4644                if (!cur->active_spin_lock) {
4645                        verbose(env, "bpf_spin_unlock without taking a lock\n");
4646                        return -EINVAL;
4647                }
4648                if (cur->active_spin_lock != reg->id) {
4649                        verbose(env, "bpf_spin_unlock of different lock\n");
4650                        return -EINVAL;
4651                }
4652                cur->active_spin_lock = 0;
4653        }
4654        return 0;
4655}
4656
4657static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4658{
4659        return type == ARG_PTR_TO_MEM ||
4660               type == ARG_PTR_TO_MEM_OR_NULL ||
4661               type == ARG_PTR_TO_UNINIT_MEM;
4662}
4663
4664static bool arg_type_is_mem_size(enum bpf_arg_type type)
4665{
4666        return type == ARG_CONST_SIZE ||
4667               type == ARG_CONST_SIZE_OR_ZERO;
4668}
4669
4670static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4671{
4672        return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4673}
4674
4675static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4676{
4677        return type == ARG_PTR_TO_INT ||
4678               type == ARG_PTR_TO_LONG;
4679}
4680
4681static int int_ptr_type_to_size(enum bpf_arg_type type)
4682{
4683        if (type == ARG_PTR_TO_INT)
4684                return sizeof(u32);
4685        else if (type == ARG_PTR_TO_LONG)
4686                return sizeof(u64);
4687
4688        return -EINVAL;
4689}
4690
4691static int resolve_map_arg_type(struct bpf_verifier_env *env,
4692                                 const struct bpf_call_arg_meta *meta,
4693                                 enum bpf_arg_type *arg_type)
4694{
4695        if (!meta->map_ptr) {
4696                /* kernel subsystem misconfigured verifier */
4697                verbose(env, "invalid map_ptr to access map->type\n");
4698                return -EACCES;
4699        }
4700
4701        switch (meta->map_ptr->map_type) {
4702        case BPF_MAP_TYPE_SOCKMAP:
4703        case BPF_MAP_TYPE_SOCKHASH:
4704                if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4705                        *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4706                } else {
4707                        verbose(env, "invalid arg_type for sockmap/sockhash\n");
4708                        return -EINVAL;
4709                }
4710                break;
4711
4712        default:
4713                break;
4714        }
4715        return 0;
4716}
4717
4718struct bpf_reg_types {
4719        const enum bpf_reg_type types[10];
4720        u32 *btf_id;
4721};
4722
4723static const struct bpf_reg_types map_key_value_types = {
4724        .types = {
4725                PTR_TO_STACK,
4726                PTR_TO_PACKET,
4727                PTR_TO_PACKET_META,
4728                PTR_TO_MAP_KEY,
4729                PTR_TO_MAP_VALUE,
4730        },
4731};
4732
4733static const struct bpf_reg_types sock_types = {
4734        .types = {
4735                PTR_TO_SOCK_COMMON,
4736                PTR_TO_SOCKET,
4737                PTR_TO_TCP_SOCK,
4738                PTR_TO_XDP_SOCK,
4739        },
4740};
4741
4742#ifdef CONFIG_NET
4743static const struct bpf_reg_types btf_id_sock_common_types = {
4744        .types = {
4745                PTR_TO_SOCK_COMMON,
4746                PTR_TO_SOCKET,
4747                PTR_TO_TCP_SOCK,
4748                PTR_TO_XDP_SOCK,
4749                PTR_TO_BTF_ID,
4750        },
4751        .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4752};
4753#endif
4754
4755static const struct bpf_reg_types mem_types = {
4756        .types = {
4757                PTR_TO_STACK,
4758                PTR_TO_PACKET,
4759                PTR_TO_PACKET_META,
4760                PTR_TO_MAP_KEY,
4761                PTR_TO_MAP_VALUE,
4762                PTR_TO_MEM,
4763                PTR_TO_RDONLY_BUF,
4764                PTR_TO_RDWR_BUF,
4765        },
4766};
4767
4768static const struct bpf_reg_types int_ptr_types = {
4769        .types = {
4770                PTR_TO_STACK,
4771                PTR_TO_PACKET,
4772                PTR_TO_PACKET_META,
4773                PTR_TO_MAP_KEY,
4774                PTR_TO_MAP_VALUE,
4775        },
4776};
4777
4778static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4779static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4780static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4781static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4782static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4783static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4784static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4785static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4786static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4787static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4788static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4789
4790static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4791        [ARG_PTR_TO_MAP_KEY]            = &map_key_value_types,
4792        [ARG_PTR_TO_MAP_VALUE]          = &map_key_value_types,
4793        [ARG_PTR_TO_UNINIT_MAP_VALUE]   = &map_key_value_types,
4794        [ARG_PTR_TO_MAP_VALUE_OR_NULL]  = &map_key_value_types,
4795        [ARG_CONST_SIZE]                = &scalar_types,
4796        [ARG_CONST_SIZE_OR_ZERO]        = &scalar_types,
4797        [ARG_CONST_ALLOC_SIZE_OR_ZERO]  = &scalar_types,
4798        [ARG_CONST_MAP_PTR]             = &const_map_ptr_types,
4799        [ARG_PTR_TO_CTX]                = &context_types,
4800        [ARG_PTR_TO_CTX_OR_NULL]        = &context_types,
4801        [ARG_PTR_TO_SOCK_COMMON]        = &sock_types,
4802#ifdef CONFIG_NET
4803        [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4804#endif
4805        [ARG_PTR_TO_SOCKET]             = &fullsock_types,
4806        [ARG_PTR_TO_SOCKET_OR_NULL]     = &fullsock_types,
4807        [ARG_PTR_TO_BTF_ID]             = &btf_ptr_types,
4808        [ARG_PTR_TO_SPIN_LOCK]          = &spin_lock_types,
4809        [ARG_PTR_TO_MEM]                = &mem_types,
4810        [ARG_PTR_TO_MEM_OR_NULL]        = &mem_types,
4811        [ARG_PTR_TO_UNINIT_MEM]         = &mem_types,
4812        [ARG_PTR_TO_ALLOC_MEM]          = &alloc_mem_types,
4813        [ARG_PTR_TO_ALLOC_MEM_OR_NULL]  = &alloc_mem_types,
4814        [ARG_PTR_TO_INT]                = &int_ptr_types,
4815        [ARG_PTR_TO_LONG]               = &int_ptr_types,
4816        [ARG_PTR_TO_PERCPU_BTF_ID]      = &percpu_btf_ptr_types,
4817        [ARG_PTR_TO_FUNC]               = &func_ptr_types,
4818        [ARG_PTR_TO_STACK_OR_NULL]      = &stack_ptr_types,
4819        [ARG_PTR_TO_CONST_STR]          = &const_str_ptr_types,
4820};
4821
4822static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4823                          enum bpf_arg_type arg_type,
4824                          const u32 *arg_btf_id)
4825{
4826        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4827        enum bpf_reg_type expected, type = reg->type;
4828        const struct bpf_reg_types *compatible;
4829        int i, j;
4830
4831        compatible = compatible_reg_types[arg_type];
4832        if (!compatible) {
4833                verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4834                return -EFAULT;
4835        }
4836
4837        for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4838                expected = compatible->types[i];
4839                if (expected == NOT_INIT)
4840                        break;
4841
4842                if (type == expected)
4843                        goto found;
4844        }
4845
4846        verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4847        for (j = 0; j + 1 < i; j++)
4848                verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4849        verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4850        return -EACCES;
4851
4852found:
4853        if (type == PTR_TO_BTF_ID) {
4854                if (!arg_btf_id) {
4855                        if (!compatible->btf_id) {
4856                                verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4857                                return -EFAULT;
4858                        }
4859                        arg_btf_id = compatible->btf_id;
4860                }
4861
4862                if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4863                                          btf_vmlinux, *arg_btf_id)) {
4864                        verbose(env, "R%d is of type %s but %s is expected\n",
4865                                regno, kernel_type_name(reg->btf, reg->btf_id),
4866                                kernel_type_name(btf_vmlinux, *arg_btf_id));
4867                        return -EACCES;
4868                }
4869
4870                if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4871                        verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4872                                regno);
4873                        return -EACCES;
4874                }
4875        }
4876
4877        return 0;
4878}
4879
4880static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4881                          struct bpf_call_arg_meta *meta,
4882                          const struct bpf_func_proto *fn)
4883{
4884        u32 regno = BPF_REG_1 + arg;
4885        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4886        enum bpf_arg_type arg_type = fn->arg_type[arg];
4887        enum bpf_reg_type type = reg->type;
4888        int err = 0;
4889
4890        if (arg_type == ARG_DONTCARE)
4891                return 0;
4892
4893        err = check_reg_arg(env, regno, SRC_OP);
4894        if (err)
4895                return err;
4896
4897        if (arg_type == ARG_ANYTHING) {
4898                if (is_pointer_value(env, regno)) {
4899                        verbose(env, "R%d leaks addr into helper function\n",
4900                                regno);
4901                        return -EACCES;
4902                }
4903                return 0;
4904        }
4905
4906        if (type_is_pkt_pointer(type) &&
4907            !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4908                verbose(env, "helper access to the packet is not allowed\n");
4909                return -EACCES;
4910        }
4911
4912        if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4913            arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4914            arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4915                err = resolve_map_arg_type(env, meta, &arg_type);
4916                if (err)
4917                        return err;
4918        }
4919
4920        if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4921                /* A NULL register has a SCALAR_VALUE type, so skip
4922                 * type checking.
4923                 */
4924                goto skip_type_check;
4925
4926        err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4927        if (err)
4928                return err;
4929
4930        if (type == PTR_TO_CTX) {
4931                err = check_ctx_reg(env, reg, regno);
4932                if (err < 0)
4933                        return err;
4934        }
4935
4936skip_type_check:
4937        if (reg->ref_obj_id) {
4938                if (meta->ref_obj_id) {
4939                        verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4940                                regno, reg->ref_obj_id,
4941                                meta->ref_obj_id);
4942                        return -EFAULT;
4943                }
4944                meta->ref_obj_id = reg->ref_obj_id;
4945        }
4946
4947        if (arg_type == ARG_CONST_MAP_PTR) {
4948                /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4949                meta->map_ptr = reg->map_ptr;
4950        } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4951                /* bpf_map_xxx(..., map_ptr, ..., key) call:
4952                 * check that [key, key + map->key_size) are within
4953                 * stack limits and initialized
4954                 */
4955                if (!meta->map_ptr) {
4956                        /* in function declaration map_ptr must come before
4957                         * map_key, so that it's verified and known before
4958                         * we have to check map_key here. Otherwise it means
4959                         * that kernel subsystem misconfigured verifier
4960                         */
4961                        verbose(env, "invalid map_ptr to access map->key\n");
4962                        return -EACCES;
4963                }
4964                err = check_helper_mem_access(env, regno,
4965                                              meta->map_ptr->key_size, false,
4966                                              NULL);
4967        } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4968                   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4969                    !register_is_null(reg)) ||
4970                   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4971                /* bpf_map_xxx(..., map_ptr, ..., value) call:
4972                 * check [value, value + map->value_size) validity
4973                 */
4974                if (!meta->map_ptr) {
4975                        /* kernel subsystem misconfigured verifier */
4976                        verbose(env, "invalid map_ptr to access map->value\n");
4977                        return -EACCES;
4978                }
4979                meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4980                err = check_helper_mem_access(env, regno,
4981                                              meta->map_ptr->value_size, false,
4982                                              meta);
4983        } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4984                if (!reg->btf_id) {
4985                        verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4986                        return -EACCES;
4987                }
4988                meta->ret_btf = reg->btf;
4989                meta->ret_btf_id = reg->btf_id;
4990        } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4991                if (meta->func_id == BPF_FUNC_spin_lock) {
4992                        if (process_spin_lock(env, regno, true))
4993                                return -EACCES;
4994                } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4995                        if (process_spin_lock(env, regno, false))
4996                                return -EACCES;
4997                } else {
4998                        verbose(env, "verifier internal error\n");
4999                        return -EFAULT;
5000                }
5001        } else if (arg_type == ARG_PTR_TO_FUNC) {
5002                meta->subprogno = reg->subprogno;
5003        } else if (arg_type_is_mem_ptr(arg_type)) {
5004                /* The access to this pointer is only checked when we hit the
5005                 * next is_mem_size argument below.
5006                 */
5007                meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5008        } else if (arg_type_is_mem_size(arg_type)) {
5009                bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5010
5011                /* This is used to refine r0 return value bounds for helpers
5012                 * that enforce this value as an upper bound on return values.
5013                 * See do_refine_retval_range() for helpers that can refine
5014                 * the return value. C type of helper is u32 so we pull register
5015                 * bound from umax_value however, if negative verifier errors
5016                 * out. Only upper bounds can be learned because retval is an
5017                 * int type and negative retvals are allowed.
5018                 */
5019                meta->msize_max_value = reg->umax_value;
5020
5021                /* The register is SCALAR_VALUE; the access check
5022                 * happens using its boundaries.
5023                 */
5024                if (!tnum_is_const(reg->var_off))
5025                        /* For unprivileged variable accesses, disable raw
5026                         * mode so that the program is required to
5027                         * initialize all the memory that the helper could
5028                         * just partially fill up.
5029                         */
5030                        meta = NULL;
5031
5032                if (reg->smin_value < 0) {
5033                        verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5034                                regno);
5035                        return -EACCES;
5036                }
5037
5038                if (reg->umin_value == 0) {
5039                        err = check_helper_mem_access(env, regno - 1, 0,
5040                                                      zero_size_allowed,
5041                                                      meta);
5042                        if (err)
5043                                return err;
5044                }
5045
5046                if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5047                        verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5048                                regno);
5049                        return -EACCES;
5050                }
5051                err = check_helper_mem_access(env, regno - 1,
5052                                              reg->umax_value,
5053                                              zero_size_allowed, meta);
5054                if (!err)
5055                        err = mark_chain_precision(env, regno);
5056        } else if (arg_type_is_alloc_size(arg_type)) {
5057                if (!tnum_is_const(reg->var_off)) {
5058                        verbose(env, "R%d is not a known constant'\n",
5059                                regno);
5060                        return -EACCES;
5061                }
5062                meta->mem_size = reg->var_off.value;
5063        } else if (arg_type_is_int_ptr(arg_type)) {
5064                int size = int_ptr_type_to_size(arg_type);
5065
5066                err = check_helper_mem_access(env, regno, size, false, meta);
5067                if (err)
5068                        return err;
5069                err = check_ptr_alignment(env, reg, 0, size, true);
5070        } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5071                struct bpf_map *map = reg->map_ptr;
5072                int map_off;
5073                u64 map_addr;
5074                char *str_ptr;
5075
5076                if (!bpf_map_is_rdonly(map)) {
5077                        verbose(env, "R%d does not point to a readonly map'\n", regno);
5078                        return -EACCES;
5079                }
5080
5081                if (!tnum_is_const(reg->var_off)) {
5082                        verbose(env, "R%d is not a constant address'\n", regno);
5083                        return -EACCES;
5084                }
5085
5086                if (!map->ops->map_direct_value_addr) {
5087                        verbose(env, "no direct value access support for this map type\n");
5088                        return -EACCES;
5089                }
5090
5091                err = check_map_access(env, regno, reg->off,
5092                                       map->value_size - reg->off, false);
5093                if (err)
5094                        return err;
5095
5096                map_off = reg->off + reg->var_off.value;
5097                err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5098                if (err) {
5099                        verbose(env, "direct value access on string failed\n");
5100                        return err;
5101                }
5102
5103                str_ptr = (char *)(long)(map_addr);
5104                if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5105                        verbose(env, "string is not zero-terminated\n");
5106                        return -EINVAL;
5107                }
5108        }
5109
5110        return err;
5111}
5112
5113static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5114{
5115        enum bpf_attach_type eatype = env->prog->expected_attach_type;
5116        enum bpf_prog_type type = resolve_prog_type(env->prog);
5117
5118        if (func_id != BPF_FUNC_map_update_elem)
5119                return false;
5120
5121        /* It's not possible to get access to a locked struct sock in these
5122         * contexts, so updating is safe.
5123         */
5124        switch (type) {
5125        case BPF_PROG_TYPE_TRACING:
5126                if (eatype == BPF_TRACE_ITER)
5127                        return true;
5128                break;
5129        case BPF_PROG_TYPE_SOCKET_FILTER:
5130        case BPF_PROG_TYPE_SCHED_CLS:
5131        case BPF_PROG_TYPE_SCHED_ACT:
5132        case BPF_PROG_TYPE_XDP:
5133        case BPF_PROG_TYPE_SK_REUSEPORT:
5134        case BPF_PROG_TYPE_FLOW_DISSECTOR:
5135        case BPF_PROG_TYPE_SK_LOOKUP:
5136                return true;
5137        default:
5138                break;
5139        }
5140
5141        verbose(env, "cannot update sockmap in this context\n");
5142        return false;
5143}
5144
5145static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5146{
5147        return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5148}
5149
5150static int check_map_func_compatibility(struct bpf_verifier_env *env,
5151                                        struct bpf_map *map, int func_id)
5152{
5153        if (!map)
5154                return 0;
5155
5156        /* We need a two way check, first is from map perspective ... */
5157        switch (map->map_type) {
5158        case BPF_MAP_TYPE_PROG_ARRAY:
5159                if (func_id != BPF_FUNC_tail_call)
5160                        goto error;
5161                break;
5162        case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5163                if (func_id != BPF_FUNC_perf_event_read &&
5164                    func_id != BPF_FUNC_perf_event_output &&
5165                    func_id != BPF_FUNC_skb_output &&
5166                    func_id != BPF_FUNC_perf_event_read_value &&
5167                    func_id != BPF_FUNC_xdp_output)
5168                        goto error;
5169                break;
5170        case BPF_MAP_TYPE_RINGBUF:
5171                if (func_id != BPF_FUNC_ringbuf_output &&
5172                    func_id != BPF_FUNC_ringbuf_reserve &&
5173                    func_id != BPF_FUNC_ringbuf_submit &&
5174                    func_id != BPF_FUNC_ringbuf_discard &&
5175                    func_id != BPF_FUNC_ringbuf_query)
5176                        goto error;
5177                break;
5178        case BPF_MAP_TYPE_STACK_TRACE:
5179                if (func_id != BPF_FUNC_get_stackid)
5180                        goto error;
5181                break;
5182        case BPF_MAP_TYPE_CGROUP_ARRAY:
5183                if (func_id != BPF_FUNC_skb_under_cgroup &&
5184                    func_id != BPF_FUNC_current_task_under_cgroup)
5185                        goto error;
5186                break;
5187        case BPF_MAP_TYPE_CGROUP_STORAGE:
5188        case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5189                if (func_id != BPF_FUNC_get_local_storage)
5190                        goto error;
5191                break;
5192        case BPF_MAP_TYPE_DEVMAP:
5193        case BPF_MAP_TYPE_DEVMAP_HASH:
5194                if (func_id != BPF_FUNC_redirect_map &&
5195                    func_id != BPF_FUNC_map_lookup_elem)
5196                        goto error;
5197                break;
5198        /* Restrict bpf side of cpumap and xskmap, open when use-cases
5199         * appear.
5200         */
5201        case BPF_MAP_TYPE_CPUMAP:
5202                if (func_id != BPF_FUNC_redirect_map)
5203                        goto error;
5204                break;
5205        case BPF_MAP_TYPE_XSKMAP:
5206                if (func_id != BPF_FUNC_redirect_map &&
5207                    func_id != BPF_FUNC_map_lookup_elem)
5208                        goto error;
5209                break;
5210        case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5211        case BPF_MAP_TYPE_HASH_OF_MAPS:
5212                if (func_id != BPF_FUNC_map_lookup_elem)
5213                        goto error;
5214                break;
5215        case BPF_MAP_TYPE_SOCKMAP:
5216                if (func_id != BPF_FUNC_sk_redirect_map &&
5217                    func_id != BPF_FUNC_sock_map_update &&
5218                    func_id != BPF_FUNC_map_delete_elem &&
5219                    func_id != BPF_FUNC_msg_redirect_map &&
5220                    func_id != BPF_FUNC_sk_select_reuseport &&
5221                    func_id != BPF_FUNC_map_lookup_elem &&
5222                    !may_update_sockmap(env, func_id))
5223                        goto error;
5224                break;
5225        case BPF_MAP_TYPE_SOCKHASH:
5226                if (func_id != BPF_FUNC_sk_redirect_hash &&
5227                    func_id != BPF_FUNC_sock_hash_update &&
5228                    func_id != BPF_FUNC_map_delete_elem &&
5229                    func_id != BPF_FUNC_msg_redirect_hash &&
5230                    func_id != BPF_FUNC_sk_select_reuseport &&
5231                    func_id != BPF_FUNC_map_lookup_elem &&
5232                    !may_update_sockmap(env, func_id))
5233                        goto error;
5234                break;
5235        case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5236                if (func_id != BPF_FUNC_sk_select_reuseport)
5237                        goto error;
5238                break;
5239        case BPF_MAP_TYPE_QUEUE:
5240        case BPF_MAP_TYPE_STACK:
5241                if (func_id != BPF_FUNC_map_peek_elem &&
5242                    func_id != BPF_FUNC_map_pop_elem &&
5243                    func_id != BPF_FUNC_map_push_elem)
5244                        goto error;
5245                break;
5246        case BPF_MAP_TYPE_SK_STORAGE:
5247                if (func_id != BPF_FUNC_sk_storage_get &&
5248                    func_id != BPF_FUNC_sk_storage_delete)
5249                        goto error;
5250                break;
5251        case BPF_MAP_TYPE_INODE_STORAGE:
5252                if (func_id != BPF_FUNC_inode_storage_get &&
5253                    func_id != BPF_FUNC_inode_storage_delete)
5254                        goto error;
5255                break;
5256        case BPF_MAP_TYPE_TASK_STORAGE:
5257                if (func_id != BPF_FUNC_task_storage_get &&
5258                    func_id != BPF_FUNC_task_storage_delete)
5259                        goto error;
5260                break;
5261        default:
5262                break;
5263        }
5264
5265        /* ... and second from the function itself. */
5266        switch (func_id) {
5267        case BPF_FUNC_tail_call:
5268                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5269                        goto error;
5270                if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5271                        verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5272                        return -EINVAL;
5273                }
5274                break;
5275        case BPF_FUNC_perf_event_read:
5276        case BPF_FUNC_perf_event_output:
5277        case BPF_FUNC_perf_event_read_value:
5278        case BPF_FUNC_skb_output:
5279        case BPF_FUNC_xdp_output:
5280                if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5281                        goto error;
5282                break;
5283        case BPF_FUNC_get_stackid:
5284                if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5285                        goto error;
5286                break;
5287        case BPF_FUNC_current_task_under_cgroup:
5288        case BPF_FUNC_skb_under_cgroup:
5289                if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5290                        goto error;
5291                break;
5292        case BPF_FUNC_redirect_map:
5293                if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5294                    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5295                    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5296                    map->map_type != BPF_MAP_TYPE_XSKMAP)
5297                        goto error;
5298                break;
5299        case BPF_FUNC_sk_redirect_map:
5300        case BPF_FUNC_msg_redirect_map:
5301        case BPF_FUNC_sock_map_update:
5302                if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5303                        goto error;
5304                break;
5305        case BPF_FUNC_sk_redirect_hash:
5306        case BPF_FUNC_msg_redirect_hash:
5307        case BPF_FUNC_sock_hash_update:
5308                if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5309                        goto error;
5310                break;
5311        case BPF_FUNC_get_local_storage:
5312                if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5313                    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5314                        goto error;
5315                break;
5316        case BPF_FUNC_sk_select_reuseport:
5317                if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5318                    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5319                    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5320                        goto error;
5321                break;
5322        case BPF_FUNC_map_peek_elem:
5323        case BPF_FUNC_map_pop_elem:
5324        case BPF_FUNC_map_push_elem:
5325                if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5326                    map->map_type != BPF_MAP_TYPE_STACK)
5327                        goto error;
5328                break;
5329        case BPF_FUNC_sk_storage_get:
5330        case BPF_FUNC_sk_storage_delete:
5331                if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5332                        goto error;
5333                break;
5334        case BPF_FUNC_inode_storage_get:
5335        case BPF_FUNC_inode_storage_delete:
5336                if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5337                        goto error;
5338                break;
5339        case BPF_FUNC_task_storage_get:
5340        case BPF_FUNC_task_storage_delete:
5341                if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5342                        goto error;
5343                break;
5344        default:
5345                break;
5346        }
5347
5348        return 0;
5349error:
5350        verbose(env, "cannot pass map_type %d into func %s#%d\n",
5351                map->map_type, func_id_name(func_id), func_id);
5352        return -EINVAL;
5353}
5354
5355static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5356{
5357        int count = 0;
5358
5359        if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5360                count++;
5361        if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5362                count++;
5363        if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5364                count++;
5365        if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5366                count++;
5367        if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5368                count++;
5369
5370        /* We only support one arg being in raw mode at the moment,
5371         * which is sufficient for the helper functions we have
5372         * right now.
5373         */
5374        return count <= 1;
5375}
5376
5377static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5378                                    enum bpf_arg_type arg_next)
5379{
5380        return (arg_type_is_mem_ptr(arg_curr) &&
5381                !arg_type_is_mem_size(arg_next)) ||
5382               (!arg_type_is_mem_ptr(arg_curr) &&
5383                arg_type_is_mem_size(arg_next));
5384}
5385
5386static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5387{
5388        /* bpf_xxx(..., buf, len) call will access 'len'
5389         * bytes from memory 'buf'. Both arg types need
5390         * to be paired, so make sure there's no buggy
5391         * helper function specification.
5392         */
5393        if (arg_type_is_mem_size(fn->arg1_type) ||
5394            arg_type_is_mem_ptr(fn->arg5_type)  ||
5395            check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5396            check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5397            check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5398            check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5399                return false;
5400
5401        return true;
5402}
5403
5404static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5405{
5406        int count = 0;
5407
5408        if (arg_type_may_be_refcounted(fn->arg1_type))
5409                count++;
5410        if (arg_type_may_be_refcounted(fn->arg2_type))
5411                count++;
5412        if (arg_type_may_be_refcounted(fn->arg3_type))
5413                count++;
5414        if (arg_type_may_be_refcounted(fn->arg4_type))
5415                count++;
5416        if (arg_type_may_be_refcounted(fn->arg5_type))
5417                count++;
5418
5419        /* A reference acquiring function cannot acquire
5420         * another refcounted ptr.
5421         */
5422        if (may_be_acquire_function(func_id) && count)
5423                return false;
5424
5425        /* We only support one arg being unreferenced at the moment,
5426         * which is sufficient for the helper functions we have right now.
5427         */
5428        return count <= 1;
5429}
5430
5431static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5432{
5433        int i;
5434
5435        for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5436                if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5437                        return false;
5438
5439                if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5440                        return false;
5441        }
5442
5443        return true;
5444}
5445
5446static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5447{
5448        return check_raw_mode_ok(fn) &&
5449               check_arg_pair_ok(fn) &&
5450               check_btf_id_ok(fn) &&
5451               check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5452}
5453
5454/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5455 * are now invalid, so turn them into unknown SCALAR_VALUE.
5456 */
5457static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5458                                     struct bpf_func_state *state)
5459{
5460        struct bpf_reg_state *regs = state->regs, *reg;
5461        int i;
5462
5463        for (i = 0; i < MAX_BPF_REG; i++)
5464                if (reg_is_pkt_pointer_any(&regs[i]))
5465                        mark_reg_unknown(env, regs, i);
5466
5467        bpf_for_each_spilled_reg(i, state, reg) {
5468                if (!reg)
5469                        continue;
5470                if (reg_is_pkt_pointer_any(reg))
5471                        __mark_reg_unknown(env, reg);
5472        }
5473}
5474
5475static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5476{
5477        struct bpf_verifier_state *vstate = env->cur_state;
5478        int i;
5479
5480        for (i = 0; i <= vstate->curframe; i++)
5481                __clear_all_pkt_pointers(env, vstate->frame[i]);
5482}
5483
5484enum {
5485        AT_PKT_END = -1,
5486        BEYOND_PKT_END = -2,
5487};
5488
5489static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5490{
5491        struct bpf_func_state *state = vstate->frame[vstate->curframe];
5492        struct bpf_reg_state *reg = &state->regs[regn];
5493
5494        if (reg->type != PTR_TO_PACKET)
5495                /* PTR_TO_PACKET_META is not supported yet */
5496                return;
5497
5498        /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5499         * How far beyond pkt_end it goes is unknown.
5500         * if (!range_open) it's the case of pkt >= pkt_end
5501         * if (range_open) it's the case of pkt > pkt_end
5502         * hence this pointer is at least 1 byte bigger than pkt_end
5503         */
5504        if (range_open)
5505                reg->range = BEYOND_PKT_END;
5506        else
5507                reg->range = AT_PKT_END;
5508}
5509
5510static void release_reg_references(struct bpf_verifier_env *env,
5511                                   struct bpf_func_state *state,
5512                                   int ref_obj_id)
5513{
5514        struct bpf_reg_state *regs = state->regs, *reg;
5515        int i;
5516
5517        for (i = 0; i < MAX_BPF_REG; i++)
5518                if (regs[i].ref_obj_id == ref_obj_id)
5519                        mark_reg_unknown(env, regs, i);
5520
5521        bpf_for_each_spilled_reg(i, state, reg) {
5522                if (!reg)
5523                        continue;
5524                if (reg->ref_obj_id == ref_obj_id)
5525                        __mark_reg_unknown(env, reg);
5526        }
5527}
5528
5529/* The pointer with the specified id has released its reference to kernel
5530 * resources. Identify all copies of the same pointer and clear the reference.
5531 */
5532static int release_reference(struct bpf_verifier_env *env,
5533                             int ref_obj_id)
5534{
5535        struct bpf_verifier_state *vstate = env->cur_state;
5536        int err;
5537        int i;
5538
5539        err = release_reference_state(cur_func(env), ref_obj_id);
5540        if (err)
5541                return err;
5542
5543        for (i = 0; i <= vstate->curframe; i++)
5544                release_reg_references(env, vstate->frame[i], ref_obj_id);
5545
5546        return 0;
5547}
5548
5549static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5550                                    struct bpf_reg_state *regs)
5551{
5552        int i;
5553
5554        /* after the call registers r0 - r5 were scratched */
5555        for (i = 0; i < CALLER_SAVED_REGS; i++) {
5556                mark_reg_not_init(env, regs, caller_saved[i]);
5557                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5558        }
5559}
5560
5561typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5562                                   struct bpf_func_state *caller,
5563                                   struct bpf_func_state *callee,
5564                                   int insn_idx);
5565
5566static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5567                             int *insn_idx, int subprog,
5568                             set_callee_state_fn set_callee_state_cb)
5569{
5570        struct bpf_verifier_state *state = env->cur_state;
5571        struct bpf_func_info_aux *func_info_aux;
5572        struct bpf_func_state *caller, *callee;
5573        int err;
5574        bool is_global = false;
5575
5576        if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5577                verbose(env, "the call stack of %d frames is too deep\n",
5578                        state->curframe + 2);
5579                return -E2BIG;
5580        }
5581
5582        caller = state->frame[state->curframe];
5583        if (state->frame[state->curframe + 1]) {
5584                verbose(env, "verifier bug. Frame %d already allocated\n",
5585                        state->curframe + 1);
5586                return -EFAULT;
5587        }
5588
5589        func_info_aux = env->prog->aux->func_info_aux;
5590        if (func_info_aux)
5591                is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5592        err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5593        if (err == -EFAULT)
5594                return err;
5595        if (is_global) {
5596                if (err) {
5597                        verbose(env, "Caller passes invalid args into func#%d\n",
5598                                subprog);
5599                        return err;
5600                } else {
5601                        if (env->log.level & BPF_LOG_LEVEL)
5602                                verbose(env,
5603                                        "Func#%d is global and valid. Skipping.\n",
5604                                        subprog);
5605                        clear_caller_saved_regs(env, caller->regs);
5606
5607                        /* All global functions return a 64-bit SCALAR_VALUE */
5608                        mark_reg_unknown(env, caller->regs, BPF_REG_0);
5609                        caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5610
5611                        /* continue with next insn after call */
5612                        return 0;
5613                }
5614        }
5615
5616        callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5617        if (!callee)
5618                return -ENOMEM;
5619        state->frame[state->curframe + 1] = callee;
5620
5621        /* callee cannot access r0, r6 - r9 for reading and has to write
5622         * into its own stack before reading from it.
5623         * callee can read/write into caller's stack
5624         */
5625        init_func_state(env, callee,
5626                        /* remember the callsite, it will be used by bpf_exit */
5627                        *insn_idx /* callsite */,
5628                        state->curframe + 1 /* frameno within this callchain */,
5629                        subprog /* subprog number within this prog */);
5630
5631        /* Transfer references to the callee */
5632        err = transfer_reference_state(callee, caller);
5633        if (err)
5634                return err;
5635
5636        err = set_callee_state_cb(env, caller, callee, *insn_idx);
5637        if (err)
5638                return err;
5639
5640        clear_caller_saved_regs(env, caller->regs);
5641
5642        /* only increment it after check_reg_arg() finished */
5643        state->curframe++;
5644
5645        /* and go analyze first insn of the callee */
5646        *insn_idx = env->subprog_info[subprog].start - 1;
5647
5648        if (env->log.level & BPF_LOG_LEVEL) {
5649                verbose(env, "caller:\n");
5650                print_verifier_state(env, caller);
5651                verbose(env, "callee:\n");
5652                print_verifier_state(env, callee);
5653        }
5654        return 0;
5655}
5656
5657int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5658                                   struct bpf_func_state *caller,
5659                                   struct bpf_func_state *callee)
5660{
5661        /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5662         *      void *callback_ctx, u64 flags);
5663         * callback_fn(struct bpf_map *map, void *key, void *value,
5664         *      void *callback_ctx);
5665         */
5666        callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5667
5668        callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5669        __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5670        callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5671
5672        callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5673        __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5674        callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5675
5676        /* pointer to stack or null */
5677        callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5678
5679        /* unused */
5680        __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5681        return 0;
5682}
5683
5684static int set_callee_state(struct bpf_verifier_env *env,
5685                            struct bpf_func_state *caller,
5686                            struct bpf_func_state *callee, int insn_idx)
5687{
5688        int i;
5689
5690        /* copy r1 - r5 args that callee can access.  The copy includes parent
5691         * pointers, which connects us up to the liveness chain
5692         */
5693        for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5694                callee->regs[i] = caller->regs[i];
5695        return 0;
5696}
5697
5698static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5699                           int *insn_idx)
5700{
5701        int subprog, target_insn;
5702
5703        target_insn = *insn_idx + insn->imm + 1;
5704        subprog = find_subprog(env, target_insn);
5705        if (subprog < 0) {
5706                verbose(env, "verifier bug. No program starts at insn %d\n",
5707                        target_insn);
5708                return -EFAULT;
5709        }
5710
5711        return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5712}
5713
5714static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5715                                       struct bpf_func_state *caller,
5716                                       struct bpf_func_state *callee,
5717                                       int insn_idx)
5718{
5719        struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5720        struct bpf_map *map;
5721        int err;
5722
5723        if (bpf_map_ptr_poisoned(insn_aux)) {
5724                verbose(env, "tail_call abusing map_ptr\n");
5725                return -EINVAL;
5726        }
5727
5728        map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5729        if (!map->ops->map_set_for_each_callback_args ||
5730            !map->ops->map_for_each_callback) {
5731                verbose(env, "callback function not allowed for map\n");
5732                return -ENOTSUPP;
5733        }
5734
5735        err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5736        if (err)
5737                return err;
5738
5739        callee->in_callback_fn = true;
5740        return 0;
5741}
5742
5743static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5744{
5745        struct bpf_verifier_state *state = env->cur_state;
5746        struct bpf_func_state *caller, *callee;
5747        struct bpf_reg_state *r0;
5748        int err;
5749
5750        callee = state->frame[state->curframe];
5751        r0 = &callee->regs[BPF_REG_0];
5752        if (r0->type == PTR_TO_STACK) {
5753                /* technically it's ok to return caller's stack pointer
5754                 * (or caller's caller's pointer) back to the caller,
5755                 * since these pointers are valid. Only current stack
5756                 * pointer will be invalid as soon as function exits,
5757                 * but let's be conservative
5758                 */
5759                verbose(env, "cannot return stack pointer to the caller\n");
5760                return -EINVAL;
5761        }
5762
5763        state->curframe--;
5764        caller = state->frame[state->curframe];
5765        if (callee->in_callback_fn) {
5766                /* enforce R0 return value range [0, 1]. */
5767                struct tnum range = tnum_range(0, 1);
5768
5769                if (r0->type != SCALAR_VALUE) {
5770                        verbose(env, "R0 not a scalar value\n");
5771                        return -EACCES;
5772                }
5773                if (!tnum_in(range, r0->var_off)) {
5774                        verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5775                        return -EINVAL;
5776                }
5777        } else {
5778                /* return to the caller whatever r0 had in the callee */
5779                caller->regs[BPF_REG_0] = *r0;
5780        }
5781
5782        /* Transfer references to the caller */
5783        err = transfer_reference_state(caller, callee);
5784        if (err)
5785                return err;
5786
5787        *insn_idx = callee->callsite + 1;
5788        if (env->log.level & BPF_LOG_LEVEL) {
5789                verbose(env, "returning from callee:\n");
5790                print_verifier_state(env, callee);
5791                verbose(env, "to caller at %d:\n", *insn_idx);
5792                print_verifier_state(env, caller);
5793        }
5794        /* clear everything in the callee */
5795        free_func_state(callee);
5796        state->frame[state->curframe + 1] = NULL;
5797        return 0;
5798}
5799
5800static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5801                                   int func_id,
5802                                   struct bpf_call_arg_meta *meta)
5803{
5804        struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5805
5806        if (ret_type != RET_INTEGER ||
5807            (func_id != BPF_FUNC_get_stack &&
5808             func_id != BPF_FUNC_get_task_stack &&
5809             func_id != BPF_FUNC_probe_read_str &&
5810             func_id != BPF_FUNC_probe_read_kernel_str &&
5811             func_id != BPF_FUNC_probe_read_user_str))
5812                return;
5813
5814        ret_reg->smax_value = meta->msize_max_value;
5815        ret_reg->s32_max_value = meta->msize_max_value;
5816        ret_reg->smin_value = -MAX_ERRNO;
5817        ret_reg->s32_min_value = -MAX_ERRNO;
5818        __reg_deduce_bounds(ret_reg);
5819        __reg_bound_offset(ret_reg);
5820        __update_reg_bounds(ret_reg);
5821}
5822
5823static int
5824record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5825                int func_id, int insn_idx)
5826{
5827        struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5828        struct bpf_map *map = meta->map_ptr;
5829
5830        if (func_id != BPF_FUNC_tail_call &&
5831            func_id != BPF_FUNC_map_lookup_elem &&
5832            func_id != BPF_FUNC_map_update_elem &&
5833            func_id != BPF_FUNC_map_delete_elem &&
5834            func_id != BPF_FUNC_map_push_elem &&
5835            func_id != BPF_FUNC_map_pop_elem &&
5836            func_id != BPF_FUNC_map_peek_elem &&
5837            func_id != BPF_FUNC_for_each_map_elem &&
5838            func_id != BPF_FUNC_redirect_map)
5839                return 0;
5840
5841        if (map == NULL) {
5842                verbose(env, "kernel subsystem misconfigured verifier\n");
5843                return -EINVAL;
5844        }
5845
5846        /* In case of read-only, some additional restrictions
5847         * need to be applied in order to prevent altering the
5848         * state of the map from program side.
5849         */
5850        if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5851            (func_id == BPF_FUNC_map_delete_elem ||
5852             func_id == BPF_FUNC_map_update_elem ||
5853             func_id == BPF_FUNC_map_push_elem ||
5854             func_id == BPF_FUNC_map_pop_elem)) {
5855                verbose(env, "write into map forbidden\n");
5856                return -EACCES;
5857        }
5858
5859        if (!BPF_MAP_PTR(aux->map_ptr_state))
5860                bpf_map_ptr_store(aux, meta->map_ptr,
5861                                  !meta->map_ptr->bypass_spec_v1);
5862        else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5863                bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5864                                  !meta->map_ptr->bypass_spec_v1);
5865        return 0;
5866}
5867
5868static int
5869record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5870                int func_id, int insn_idx)
5871{
5872        struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5873        struct bpf_reg_state *regs = cur_regs(env), *reg;
5874        struct bpf_map *map = meta->map_ptr;
5875        struct tnum range;
5876        u64 val;
5877        int err;
5878
5879        if (func_id != BPF_FUNC_tail_call)
5880                return 0;
5881        if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5882                verbose(env, "kernel subsystem misconfigured verifier\n");
5883                return -EINVAL;
5884        }
5885
5886        range = tnum_range(0, map->max_entries - 1);
5887        reg = &regs[BPF_REG_3];
5888
5889        if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5890                bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5891                return 0;
5892        }
5893
5894        err = mark_chain_precision(env, BPF_REG_3);
5895        if (err)
5896                return err;
5897
5898        val = reg->var_off.value;
5899        if (bpf_map_key_unseen(aux))
5900                bpf_map_key_store(aux, val);
5901        else if (!bpf_map_key_poisoned(aux) &&
5902                  bpf_map_key_immediate(aux) != val)
5903                bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5904        return 0;
5905}
5906
5907static int check_reference_leak(struct bpf_verifier_env *env)
5908{
5909        struct bpf_func_state *state = cur_func(env);
5910        int i;
5911
5912        for (i = 0; i < state->acquired_refs; i++) {
5913                verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5914                        state->refs[i].id, state->refs[i].insn_idx);
5915        }
5916        return state->acquired_refs ? -EINVAL : 0;
5917}
5918
5919static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5920                                   struct bpf_reg_state *regs)
5921{
5922        struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5923        struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5924        struct bpf_map *fmt_map = fmt_reg->map_ptr;
5925        int err, fmt_map_off, num_args;
5926        u64 fmt_addr;
5927        char *fmt;
5928
5929        /* data must be an array of u64 */
5930        if (data_len_reg->var_off.value % 8)
5931                return -EINVAL;
5932        num_args = data_len_reg->var_off.value / 8;
5933
5934        /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5935         * and map_direct_value_addr is set.
5936         */
5937        fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5938        err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5939                                                  fmt_map_off);
5940        if (err) {
5941                verbose(env, "verifier bug\n");
5942                return -EFAULT;
5943        }
5944        fmt = (char *)(long)fmt_addr + fmt_map_off;
5945
5946        /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5947         * can focus on validating the format specifiers.
5948         */
5949        err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5950        if (err < 0)
5951                verbose(env, "Invalid format string\n");
5952
5953        return err;
5954}
5955
5956static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5957                             int *insn_idx_p)
5958{
5959        const struct bpf_func_proto *fn = NULL;
5960        struct bpf_reg_state *regs;
5961        struct bpf_call_arg_meta meta;
5962        int insn_idx = *insn_idx_p;
5963        bool changes_data;
5964        int i, err, func_id;
5965
5966        /* find function prototype */
5967        func_id = insn->imm;
5968        if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5969                verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5970                        func_id);
5971                return -EINVAL;
5972        }
5973
5974        if (env->ops->get_func_proto)
5975                fn = env->ops->get_func_proto(func_id, env->prog);
5976        if (!fn) {
5977                verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5978                        func_id);
5979                return -EINVAL;
5980        }
5981
5982        /* eBPF programs must be GPL compatible to use GPL-ed functions */
5983        if (!env->prog->gpl_compatible && fn->gpl_only) {
5984                verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5985                return -EINVAL;
5986        }
5987
5988        if (fn->allowed && !fn->allowed(env->prog)) {
5989                verbose(env, "helper call is not allowed in probe\n");
5990                return -EINVAL;
5991        }
5992
5993        /* With LD_ABS/IND some JITs save/restore skb from r1. */
5994        changes_data = bpf_helper_changes_pkt_data(fn->func);
5995        if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5996                verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5997                        func_id_name(func_id), func_id);
5998                return -EINVAL;
5999        }
6000
6001        memset(&meta, 0, sizeof(meta));
6002        meta.pkt_access = fn->pkt_access;
6003
6004        err = check_func_proto(fn, func_id);
6005        if (err) {
6006                verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6007                        func_id_name(func_id), func_id);
6008                return err;
6009        }
6010
6011        meta.func_id = func_id;
6012        /* check args */
6013        for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6014                err = check_func_arg(env, i, &meta, fn);
6015                if (err)
6016                        return err;
6017        }
6018
6019        err = record_func_map(env, &meta, func_id, insn_idx);
6020        if (err)
6021                return err;
6022
6023        err = record_func_key(env, &meta, func_id, insn_idx);
6024        if (err)
6025                return err;
6026
6027        /* Mark slots with STACK_MISC in case of raw mode, stack offset
6028         * is inferred from register state.
6029         */
6030        for (i = 0; i < meta.access_size; i++) {
6031                err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6032                                       BPF_WRITE, -1, false);
6033                if (err)
6034                        return err;
6035        }
6036
6037        if (func_id == BPF_FUNC_tail_call) {
6038                err = check_reference_leak(env);
6039                if (err) {
6040                        verbose(env, "tail_call would lead to reference leak\n");
6041                        return err;
6042                }
6043        } else if (is_release_function(func_id)) {
6044                err = release_reference(env, meta.ref_obj_id);
6045                if (err) {
6046                        verbose(env, "func %s#%d reference has not been acquired before\n",
6047                                func_id_name(func_id), func_id);
6048                        return err;
6049                }
6050        }
6051
6052        regs = cur_regs(env);
6053
6054        /* check that flags argument in get_local_storage(map, flags) is 0,
6055         * this is required because get_local_storage() can't return an error.
6056         */
6057        if (func_id == BPF_FUNC_get_local_storage &&
6058            !register_is_null(&regs[BPF_REG_2])) {
6059                verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6060                return -EINVAL;
6061        }
6062
6063        if (func_id == BPF_FUNC_for_each_map_elem) {
6064                err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6065                                        set_map_elem_callback_state);
6066                if (err < 0)
6067                        return -EINVAL;
6068        }
6069
6070        if (func_id == BPF_FUNC_snprintf) {
6071                err = check_bpf_snprintf_call(env, regs);
6072                if (err < 0)
6073                        return err;
6074        }
6075
6076        /* reset caller saved regs */
6077        for (i = 0; i < CALLER_SAVED_REGS; i++) {
6078                mark_reg_not_init(env, regs, caller_saved[i]);
6079                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6080        }
6081
6082        /* helper call returns 64-bit value. */
6083        regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6084
6085        /* update return register (already marked as written above) */
6086        if (fn->ret_type == RET_INTEGER) {
6087                /* sets type to SCALAR_VALUE */
6088                mark_reg_unknown(env, regs, BPF_REG_0);
6089        } else if (fn->ret_type == RET_VOID) {
6090                regs[BPF_REG_0].type = NOT_INIT;
6091        } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6092                   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6093                /* There is no offset yet applied, variable or fixed */
6094                mark_reg_known_zero(env, regs, BPF_REG_0);
6095                /* remember map_ptr, so that check_map_access()
6096                 * can check 'value_size' boundary of memory access
6097                 * to map element returned from bpf_map_lookup_elem()
6098                 */
6099                if (meta.map_ptr == NULL) {
6100                        verbose(env,
6101                                "kernel subsystem misconfigured verifier\n");
6102                        return -EINVAL;
6103                }
6104                regs[BPF_REG_0].map_ptr = meta.map_ptr;
6105                if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6106                        regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6107                        if (map_value_has_spin_lock(meta.map_ptr))
6108                                regs[BPF_REG_0].id = ++env->id_gen;
6109                } else {
6110                        regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6111                }
6112        } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6113                mark_reg_known_zero(env, regs, BPF_REG_0);
6114                regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6115        } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6116                mark_reg_known_zero(env, regs, BPF_REG_0);
6117                regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6118        } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6119                mark_reg_known_zero(env, regs, BPF_REG_0);
6120                regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6121        } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6122                mark_reg_known_zero(env, regs, BPF_REG_0);
6123                regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6124                regs[BPF_REG_0].mem_size = meta.mem_size;
6125        } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6126                   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6127                const struct btf_type *t;
6128
6129                mark_reg_known_zero(env, regs, BPF_REG_0);
6130                t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6131                if (!btf_type_is_struct(t)) {
6132                        u32 tsize;
6133                        const struct btf_type *ret;
6134                        const char *tname;
6135
6136                        /* resolve the type size of ksym. */
6137                        ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6138                        if (IS_ERR(ret)) {
6139                                tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6140                                verbose(env, "unable to resolve the size of type '%s': %ld\n",
6141                                        tname, PTR_ERR(ret));
6142                                return -EINVAL;
6143                        }
6144                        regs[BPF_REG_0].type =
6145                                fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6146                                PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6147                        regs[BPF_REG_0].mem_size = tsize;
6148                } else {
6149                        regs[BPF_REG_0].type =
6150                                fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6151                                PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6152                        regs[BPF_REG_0].btf = meta.ret_btf;
6153                        regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6154                }
6155        } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6156                   fn->ret_type == RET_PTR_TO_BTF_ID) {
6157                int ret_btf_id;
6158
6159                mark_reg_known_zero(env, regs, BPF_REG_0);
6160                regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6161                                                     PTR_TO_BTF_ID :
6162                                                     PTR_TO_BTF_ID_OR_NULL;
6163                ret_btf_id = *fn->ret_btf_id;
6164                if (ret_btf_id == 0) {
6165                        verbose(env, "invalid return type %d of func %s#%d\n",
6166                                fn->ret_type, func_id_name(func_id), func_id);
6167                        return -EINVAL;
6168                }
6169                /* current BPF helper definitions are only coming from
6170                 * built-in code with type IDs from  vmlinux BTF
6171                 */
6172                regs[BPF_REG_0].btf = btf_vmlinux;
6173                regs[BPF_REG_0].btf_id = ret_btf_id;
6174        } else {
6175                verbose(env, "unknown return type %d of func %s#%d\n",
6176                        fn->ret_type, func_id_name(func_id), func_id);
6177                return -EINVAL;
6178        }
6179
6180        if (reg_type_may_be_null(regs[BPF_REG_0].type))
6181                regs[BPF_REG_0].id = ++env->id_gen;
6182
6183        if (is_ptr_cast_function(func_id)) {
6184                /* For release_reference() */
6185                regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6186        } else if (is_acquire_function(func_id, meta.map_ptr)) {
6187                int id = acquire_reference_state(env, insn_idx);
6188
6189                if (id < 0)
6190                        return id;
6191                /* For mark_ptr_or_null_reg() */
6192                regs[BPF_REG_0].id = id;
6193                /* For release_reference() */
6194                regs[BPF_REG_0].ref_obj_id = id;
6195        }
6196
6197        do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6198
6199        err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6200        if (err)
6201                return err;
6202
6203        if ((func_id == BPF_FUNC_get_stack ||
6204             func_id == BPF_FUNC_get_task_stack) &&
6205            !env->prog->has_callchain_buf) {
6206                const char *err_str;
6207
6208#ifdef CONFIG_PERF_EVENTS
6209                err = get_callchain_buffers(sysctl_perf_event_max_stack);
6210                err_str = "cannot get callchain buffer for func %s#%d\n";
6211#else
6212                err = -ENOTSUPP;
6213                err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6214#endif
6215                if (err) {
6216                        verbose(env, err_str, func_id_name(func_id), func_id);
6217                        return err;
6218                }
6219
6220                env->prog->has_callchain_buf = true;
6221        }
6222
6223        if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6224                env->prog->call_get_stack = true;
6225
6226        if (changes_data)
6227                clear_all_pkt_pointers(env);
6228        return 0;
6229}
6230
6231/* mark_btf_func_reg_size() is used when the reg size is determined by
6232 * the BTF func_proto's return value size and argument.
6233 */
6234static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6235                                   size_t reg_size)
6236{
6237        struct bpf_reg_state *reg = &cur_regs(env)[regno];
6238
6239        if (regno == BPF_REG_0) {
6240                /* Function return value */
6241                reg->live |= REG_LIVE_WRITTEN;
6242                reg->subreg_def = reg_size == sizeof(u64) ?
6243                        DEF_NOT_SUBREG : env->insn_idx + 1;
6244        } else {
6245                /* Function argument */
6246                if (reg_size == sizeof(u64)) {
6247                        mark_insn_zext(env, reg);
6248                        mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6249                } else {
6250                        mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6251                }
6252        }
6253}
6254
6255static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6256{
6257        const struct btf_type *t, *func, *func_proto, *ptr_type;
6258        struct bpf_reg_state *regs = cur_regs(env);
6259        const char *func_name, *ptr_type_name;
6260        u32 i, nargs, func_id, ptr_type_id;
6261        const struct btf_param *args;
6262        int err;
6263
6264        func_id = insn->imm;
6265        func = btf_type_by_id(btf_vmlinux, func_id);
6266        func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6267        func_proto = btf_type_by_id(btf_vmlinux, func->type);
6268
6269        if (!env->ops->check_kfunc_call ||
6270            !env->ops->check_kfunc_call(func_id)) {
6271                verbose(env, "calling kernel function %s is not allowed\n",
6272                        func_name);
6273                return -EACCES;
6274        }
6275
6276        /* Check the arguments */
6277        err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6278        if (err)
6279                return err;
6280
6281        for (i = 0; i < CALLER_SAVED_REGS; i++)
6282                mark_reg_not_init(env, regs, caller_saved[i]);
6283
6284        /* Check return type */
6285        t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6286        if (btf_type_is_scalar(t)) {
6287                mark_reg_unknown(env, regs, BPF_REG_0);
6288                mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6289        } else if (btf_type_is_ptr(t)) {
6290                ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6291                                                   &ptr_type_id);
6292                if (!btf_type_is_struct(ptr_type)) {
6293                        ptr_type_name = btf_name_by_offset(btf_vmlinux,
6294                                                           ptr_type->name_off);
6295                        verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6296                                func_name, btf_type_str(ptr_type),
6297                                ptr_type_name);
6298                        return -EINVAL;
6299                }
6300                mark_reg_known_zero(env, regs, BPF_REG_0);
6301                regs[BPF_REG_0].btf = btf_vmlinux;
6302                regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6303                regs[BPF_REG_0].btf_id = ptr_type_id;
6304                mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6305        } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6306
6307        nargs = btf_type_vlen(func_proto);
6308        args = (const struct btf_param *)(func_proto + 1);
6309        for (i = 0; i < nargs; i++) {
6310                u32 regno = i + 1;
6311
6312                t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6313                if (btf_type_is_ptr(t))
6314                        mark_btf_func_reg_size(env, regno, sizeof(void *));
6315                else
6316                        /* scalar. ensured by btf_check_kfunc_arg_match() */
6317                        mark_btf_func_reg_size(env, regno, t->size);
6318        }
6319
6320        return 0;
6321}
6322
6323static bool signed_add_overflows(s64 a, s64 b)
6324{
6325        /* Do the add in u64, where overflow is well-defined */
6326        s64 res = (s64)((u64)a + (u64)b);
6327
6328        if (b < 0)
6329                return res > a;
6330        return res < a;
6331}
6332
6333static bool signed_add32_overflows(s32 a, s32 b)
6334{
6335        /* Do the add in u32, where overflow is well-defined */
6336        s32 res = (s32)((u32)a + (u32)b);
6337
6338        if (b < 0)
6339                return res > a;
6340        return res < a;
6341}
6342
6343static bool signed_sub_overflows(s64 a, s64 b)
6344{
6345        /* Do the sub in u64, where overflow is well-defined */
6346        s64 res = (s64)((u64)a - (u64)b);
6347
6348        if (b < 0)
6349                return res < a;
6350        return res > a;
6351}
6352
6353static bool signed_sub32_overflows(s32 a, s32 b)
6354{
6355        /* Do the sub in u32, where overflow is well-defined */
6356        s32 res = (s32)((u32)a - (u32)b);
6357
6358        if (b < 0)
6359                return res < a;
6360        return res > a;
6361}
6362
6363static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6364                                  const struct bpf_reg_state *reg,
6365                                  enum bpf_reg_type type)
6366{
6367        bool known = tnum_is_const(reg->var_off);
6368        s64 val = reg->var_off.value;
6369        s64 smin = reg->smin_value;
6370
6371        if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6372                verbose(env, "math between %s pointer and %lld is not allowed\n",
6373                        reg_type_str[type], val);
6374                return false;
6375        }
6376
6377        if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6378                verbose(env, "%s pointer offset %d is not allowed\n",
6379                        reg_type_str[type], reg->off);
6380                return false;
6381        }
6382
6383        if (smin == S64_MIN) {
6384                verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6385                        reg_type_str[type]);
6386                return false;
6387        }
6388
6389        if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6390                verbose(env, "value %lld makes %s pointer be out of bounds\n",
6391                        smin, reg_type_str[type]);
6392                return false;
6393        }
6394
6395        return true;
6396}
6397
6398static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6399{
6400        return &env->insn_aux_data[env->insn_idx];
6401}
6402
6403enum {
6404        REASON_BOUNDS   = -1,
6405        REASON_TYPE     = -2,
6406        REASON_PATHS    = -3,
6407        REASON_LIMIT    = -4,
6408        REASON_STACK    = -5,
6409};
6410
6411static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6412                              u32 *alu_limit, bool mask_to_left)
6413{
6414        u32 max = 0, ptr_limit = 0;
6415
6416        switch (ptr_reg->type) {
6417        case PTR_TO_STACK:
6418                /* Offset 0 is out-of-bounds, but acceptable start for the
6419                 * left direction, see BPF_REG_FP. Also, unknown scalar
6420                 * offset where we would need to deal with min/max bounds is
6421                 * currently prohibited for unprivileged.
6422                 */
6423                max = MAX_BPF_STACK + mask_to_left;
6424                ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6425                break;
6426        case PTR_TO_MAP_VALUE:
6427                max = ptr_reg->map_ptr->value_size;
6428                ptr_limit = (mask_to_left ?
6429                             ptr_reg->smin_value :
6430                             ptr_reg->umax_value) + ptr_reg->off;
6431                break;
6432        default:
6433                return REASON_TYPE;
6434        }
6435
6436        if (ptr_limit >= max)
6437                return REASON_LIMIT;
6438        *alu_limit = ptr_limit;
6439        return 0;
6440}
6441
6442static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6443                                    const struct bpf_insn *insn)
6444{
6445        return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6446}
6447
6448static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6449                                       u32 alu_state, u32 alu_limit)
6450{
6451        /* If we arrived here from different branches with different
6452         * state or limits to sanitize, then this won't work.
6453         */
6454        if (aux->alu_state &&
6455            (aux->alu_state != alu_state ||
6456             aux->alu_limit != alu_limit))
6457                return REASON_PATHS;
6458
6459        /* Corresponding fixup done in do_misc_fixups(). */
6460        aux->alu_state = alu_state;
6461        aux->alu_limit = alu_limit;
6462        return 0;
6463}
6464
6465static int sanitize_val_alu(struct bpf_verifier_env *env,
6466                            struct bpf_insn *insn)
6467{
6468        struct bpf_insn_aux_data *aux = cur_aux(env);
6469
6470        if (can_skip_alu_sanitation(env, insn))
6471                return 0;
6472
6473        return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6474}
6475
6476static bool sanitize_needed(u8 opcode)
6477{
6478        return opcode == BPF_ADD || opcode == BPF_SUB;
6479}
6480
6481struct bpf_sanitize_info {
6482        struct bpf_insn_aux_data aux;
6483        bool mask_to_left;
6484};
6485
6486static struct bpf_verifier_state *
6487sanitize_speculative_path(struct bpf_verifier_env *env,
6488                          const struct bpf_insn *insn,
6489                          u32 next_idx, u32 curr_idx)
6490{
6491        struct bpf_verifier_state *branch;
6492        struct bpf_reg_state *regs;
6493
6494        branch = push_stack(env, next_idx, curr_idx, true);
6495        if (branch && insn) {
6496                regs = branch->frame[branch->curframe]->regs;
6497                if (BPF_SRC(insn->code) == BPF_K) {
6498                        mark_reg_unknown(env, regs, insn->dst_reg);
6499                } else if (BPF_SRC(insn->code) == BPF_X) {
6500                        mark_reg_unknown(env, regs, insn->dst_reg);
6501                        mark_reg_unknown(env, regs, insn->src_reg);
6502                }
6503        }
6504        return branch;
6505}
6506
6507static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6508                            struct bpf_insn *insn,
6509                            const struct bpf_reg_state *ptr_reg,
6510                            const struct bpf_reg_state *off_reg,
6511                            struct bpf_reg_state *dst_reg,
6512                            struct bpf_sanitize_info *info,
6513                            const bool commit_window)
6514{
6515        struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6516        struct bpf_verifier_state *vstate = env->cur_state;
6517        bool off_is_imm = tnum_is_const(off_reg->var_off);
6518        bool off_is_neg = off_reg->smin_value < 0;
6519        bool ptr_is_dst_reg = ptr_reg == dst_reg;
6520        u8 opcode = BPF_OP(insn->code);
6521        u32 alu_state, alu_limit;
6522        struct bpf_reg_state tmp;
6523        bool ret;
6524        int err;
6525
6526        if (can_skip_alu_sanitation(env, insn))
6527                return 0;
6528
6529        /* We already marked aux for masking from non-speculative
6530         * paths, thus we got here in the first place. We only care
6531         * to explore bad access from here.
6532         */
6533        if (vstate->speculative)
6534                goto do_sim;
6535
6536        if (!commit_window) {
6537                if (!tnum_is_const(off_reg->var_off) &&
6538                    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6539                        return REASON_BOUNDS;
6540
6541                info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6542                                     (opcode == BPF_SUB && !off_is_neg);
6543        }
6544
6545        err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6546        if (err < 0)
6547                return err;
6548
6549        if (commit_window) {
6550                /* In commit phase we narrow the masking window based on
6551                 * the observed pointer move after the simulated operation.
6552                 */
6553                alu_state = info->aux.alu_state;
6554                alu_limit = abs(info->aux.alu_limit - alu_limit);
6555        } else {
6556                alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6557                alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6558                alu_state |= ptr_is_dst_reg ?
6559                             BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6560        }
6561
6562        err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6563        if (err < 0)
6564                return err;
6565do_sim:
6566        /* If we're in commit phase, we're done here given we already
6567         * pushed the truncated dst_reg into the speculative verification
6568         * stack.
6569         *
6570         * Also, when register is a known constant, we rewrite register-based
6571         * operation to immediate-based, and thus do not need masking (and as
6572         * a consequence, do not need to simulate the zero-truncation either).
6573         */
6574        if (commit_window || off_is_imm)
6575                return 0;
6576
6577        /* Simulate and find potential out-of-bounds access under
6578         * speculative execution from truncation as a result of
6579         * masking when off was not within expected range. If off
6580         * sits in dst, then we temporarily need to move ptr there
6581         * to simulate dst (== 0) +/-= ptr. Needed, for example,
6582         * for cases where we use K-based arithmetic in one direction
6583         * and truncated reg-based in the other in order to explore
6584         * bad access.
6585         */
6586        if (!ptr_is_dst_reg) {
6587                tmp = *dst_reg;
6588                *dst_reg = *ptr_reg;
6589        }
6590        ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6591                                        env->insn_idx);
6592        if (!ptr_is_dst_reg && ret)
6593                *dst_reg = tmp;
6594        return !ret ? REASON_STACK : 0;
6595}
6596
6597static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6598{
6599        struct bpf_verifier_state *vstate = env->cur_state;
6600
6601        /* If we simulate paths under speculation, we don't update the
6602         * insn as 'seen' such that when we verify unreachable paths in
6603         * the non-speculative domain, sanitize_dead_code() can still
6604         * rewrite/sanitize them.
6605         */
6606        if (!vstate->speculative)
6607                env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6608}
6609
6610static int sanitize_err(struct bpf_verifier_env *env,
6611                        const struct bpf_insn *insn, int reason,
6612                        const struct bpf_reg_state *off_reg,
6613                        const struct bpf_reg_state *dst_reg)
6614{
6615        static const char *err = "pointer arithmetic with it prohibited for !root";
6616        const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6617        u32 dst = insn->dst_reg, src = insn->src_reg;
6618
6619        switch (reason) {
6620        case REASON_BOUNDS:
6621                verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6622                        off_reg == dst_reg ? dst : src, err);
6623                break;
6624        case REASON_TYPE:
6625                verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6626                        off_reg == dst_reg ? src : dst, err);
6627                break;
6628        case REASON_PATHS:
6629                verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6630                        dst, op, err);
6631                break;
6632        case REASON_LIMIT:
6633                verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6634                        dst, op, err);
6635                break;
6636        case REASON_STACK:
6637                verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6638                        dst, err);
6639                break;
6640        default:
6641                verbose(env, "verifier internal error: unknown reason (%d)\n",
6642                        reason);
6643                break;
6644        }
6645
6646        return -EACCES;
6647}
6648
6649/* check that stack access falls within stack limits and that 'reg' doesn't
6650 * have a variable offset.
6651 *
6652 * Variable offset is prohibited for unprivileged mode for simplicity since it
6653 * requires corresponding support in Spectre masking for stack ALU.  See also
6654 * retrieve_ptr_limit().
6655 *
6656 *
6657 * 'off' includes 'reg->off'.
6658 */
6659static int check_stack_access_for_ptr_arithmetic(
6660                                struct bpf_verifier_env *env,
6661                                int regno,
6662                                const struct bpf_reg_state *reg,
6663                                int off)
6664{
6665        if (!tnum_is_const(reg->var_off)) {
6666                char tn_buf[48];
6667
6668                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6669                verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6670                        regno, tn_buf, off);
6671                return -EACCES;
6672        }
6673
6674        if (off >= 0 || off < -MAX_BPF_STACK) {
6675                verbose(env, "R%d stack pointer arithmetic goes out of range, "
6676                        "prohibited for !root; off=%d\n", regno, off);
6677                return -EACCES;
6678        }
6679
6680        return 0;
6681}
6682
6683static int sanitize_check_bounds(struct bpf_verifier_env *env,
6684                                 const struct bpf_insn *insn,
6685                                 const struct bpf_reg_state *dst_reg)
6686{
6687        u32 dst = insn->dst_reg;
6688
6689        /* For unprivileged we require that resulting offset must be in bounds
6690         * in order to be able to sanitize access later on.
6691         */
6692        if (env->bypass_spec_v1)
6693                return 0;
6694
6695        switch (dst_reg->type) {
6696        case PTR_TO_STACK:
6697                if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6698                                        dst_reg->off + dst_reg->var_off.value))
6699                        return -EACCES;
6700                break;
6701        case PTR_TO_MAP_VALUE:
6702                if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6703                        verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6704                                "prohibited for !root\n", dst);
6705                        return -EACCES;
6706                }
6707                break;
6708        default:
6709                break;
6710        }
6711
6712        return 0;
6713}
6714
6715/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6716 * Caller should also handle BPF_MOV case separately.
6717 * If we return -EACCES, caller may want to try again treating pointer as a
6718 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6719 */
6720static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6721                                   struct bpf_insn *insn,
6722                                   const struct bpf_reg_state *ptr_reg,
6723                                   const struct bpf_reg_state *off_reg)
6724{
6725        struct bpf_verifier_state *vstate = env->cur_state;
6726        struct bpf_func_state *state = vstate->frame[vstate->curframe];
6727        struct bpf_reg_state *regs = state->regs, *dst_reg;
6728        bool known = tnum_is_const(off_reg->var_off);
6729        s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6730            smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6731        u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6732            umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6733        struct bpf_sanitize_info info = {};
6734        u8 opcode = BPF_OP(insn->code);
6735        u32 dst = insn->dst_reg;
6736        int ret;
6737
6738        dst_reg = &regs[dst];
6739
6740        if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6741            smin_val > smax_val || umin_val > umax_val) {
6742                /* Taint dst register if offset had invalid bounds derived from
6743                 * e.g. dead branches.
6744                 */
6745                __mark_reg_unknown(env, dst_reg);
6746                return 0;
6747        }
6748
6749        if (BPF_CLASS(insn->code) != BPF_ALU64) {
6750                /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6751                if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6752                        __mark_reg_unknown(env, dst_reg);
6753                        return 0;
6754                }
6755
6756                verbose(env,
6757                        "R%d 32-bit pointer arithmetic prohibited\n",
6758                        dst);
6759                return -EACCES;
6760        }
6761
6762        switch (ptr_reg->type) {
6763        case PTR_TO_MAP_VALUE_OR_NULL:
6764                verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6765                        dst, reg_type_str[ptr_reg->type]);
6766                return -EACCES;
6767        case CONST_PTR_TO_MAP:
6768                /* smin_val represents the known value */
6769                if (known && smin_val == 0 && opcode == BPF_ADD)
6770                        break;
6771                fallthrough;
6772        case PTR_TO_PACKET_END:
6773        case PTR_TO_SOCKET:
6774        case PTR_TO_SOCKET_OR_NULL:
6775        case PTR_TO_SOCK_COMMON:
6776        case PTR_TO_SOCK_COMMON_OR_NULL:
6777        case PTR_TO_TCP_SOCK:
6778        case PTR_TO_TCP_SOCK_OR_NULL:
6779        case PTR_TO_XDP_SOCK:
6780                verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6781                        dst, reg_type_str[ptr_reg->type]);
6782                return -EACCES;
6783        default:
6784                break;
6785        }
6786
6787        /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6788         * The id may be overwritten later if we create a new variable offset.
6789         */
6790        dst_reg->type = ptr_reg->type;
6791        dst_reg->id = ptr_reg->id;
6792
6793        if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6794            !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6795                return -EINVAL;
6796
6797        /* pointer types do not carry 32-bit bounds at the moment. */
6798        __mark_reg32_unbounded(dst_reg);
6799
6800        if (sanitize_needed(opcode)) {
6801                ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6802                                       &info, false);
6803                if (ret < 0)
6804                        return sanitize_err(env, insn, ret, off_reg, dst_reg);
6805        }
6806
6807        switch (opcode) {
6808        case BPF_ADD:
6809                /* We can take a fixed offset as long as it doesn't overflow
6810                 * the s32 'off' field
6811                 */
6812                if (known && (ptr_reg->off + smin_val ==
6813                              (s64)(s32)(ptr_reg->off + smin_val))) {
6814                        /* pointer += K.  Accumulate it into fixed offset */
6815                        dst_reg->smin_value = smin_ptr;
6816                        dst_reg->smax_value = smax_ptr;
6817                        dst_reg->umin_value = umin_ptr;
6818                        dst_reg->umax_value = umax_ptr;
6819                        dst_reg->var_off = ptr_reg->var_off;
6820                        dst_reg->off = ptr_reg->off + smin_val;
6821                        dst_reg->raw = ptr_reg->raw;
6822                        break;
6823                }
6824                /* A new variable offset is created.  Note that off_reg->off
6825                 * == 0, since it's a scalar.
6826                 * dst_reg gets the pointer type and since some positive
6827                 * integer value was added to the pointer, give it a new 'id'
6828                 * if it's a PTR_TO_PACKET.
6829                 * this creates a new 'base' pointer, off_reg (variable) gets
6830                 * added into the variable offset, and we copy the fixed offset
6831                 * from ptr_reg.
6832                 */
6833                if (signed_add_overflows(smin_ptr, smin_val) ||
6834                    signed_add_overflows(smax_ptr, smax_val)) {
6835                        dst_reg->smin_value = S64_MIN;
6836                        dst_reg->smax_value = S64_MAX;
6837                } else {
6838                        dst_reg->smin_value = smin_ptr + smin_val;
6839                        dst_reg->smax_value = smax_ptr + smax_val;
6840                }
6841                if (umin_ptr + umin_val < umin_ptr ||
6842                    umax_ptr + umax_val < umax_ptr) {
6843                        dst_reg->umin_value = 0;
6844                        dst_reg->umax_value = U64_MAX;
6845                } else {
6846                        dst_reg->umin_value = umin_ptr + umin_val;
6847                        dst_reg->umax_value = umax_ptr + umax_val;
6848                }
6849                dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6850                dst_reg->off = ptr_reg->off;
6851                dst_reg->raw = ptr_reg->raw;
6852                if (reg_is_pkt_pointer(ptr_reg)) {
6853                        dst_reg->id = ++env->id_gen;
6854                        /* something was added to pkt_ptr, set range to zero */
6855                        memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6856                }
6857                break;
6858        case BPF_SUB:
6859                if (dst_reg == off_reg) {
6860                        /* scalar -= pointer.  Creates an unknown scalar */
6861                        verbose(env, "R%d tried to subtract pointer from scalar\n",
6862                                dst);
6863                        return -EACCES;
6864                }
6865                /* We don't allow subtraction from FP, because (according to
6866                 * test_verifier.c test "invalid fp arithmetic", JITs might not
6867                 * be able to deal with it.
6868                 */
6869                if (ptr_reg->type == PTR_TO_STACK) {
6870                        verbose(env, "R%d subtraction from stack pointer prohibited\n",
6871                                dst);
6872                        return -EACCES;
6873                }
6874                if (known && (ptr_reg->off - smin_val ==
6875                              (s64)(s32)(ptr_reg->off - smin_val))) {
6876                        /* pointer -= K.  Subtract it from fixed offset */
6877                        dst_reg->smin_value = smin_ptr;
6878                        dst_reg->smax_value = smax_ptr;
6879                        dst_reg->umin_value = umin_ptr;
6880                        dst_reg->umax_value = umax_ptr;
6881                        dst_reg->var_off = ptr_reg->var_off;
6882                        dst_reg->id = ptr_reg->id;
6883                        dst_reg->off = ptr_reg->off - smin_val;
6884                        dst_reg->raw = ptr_reg->raw;
6885                        break;
6886                }
6887                /* A new variable offset is created.  If the subtrahend is known
6888                 * nonnegative, then any reg->range we had before is still good.
6889                 */
6890                if (signed_sub_overflows(smin_ptr, smax_val) ||
6891                    signed_sub_overflows(smax_ptr, smin_val)) {
6892                        /* Overflow possible, we know nothing */
6893                        dst_reg->smin_value = S64_MIN;
6894                        dst_reg->smax_value = S64_MAX;
6895                } else {
6896                        dst_reg->smin_value = smin_ptr - smax_val;
6897                        dst_reg->smax_value = smax_ptr - smin_val;
6898                }
6899                if (umin_ptr < umax_val) {
6900                        /* Overflow possible, we know nothing */
6901                        dst_reg->umin_value = 0;
6902                        dst_reg->umax_value = U64_MAX;
6903                } else {
6904                        /* Cannot overflow (as long as bounds are consistent) */
6905                        dst_reg->umin_value = umin_ptr - umax_val;
6906                        dst_reg->umax_value = umax_ptr - umin_val;
6907                }
6908                dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6909                dst_reg->off = ptr_reg->off;
6910                dst_reg->raw = ptr_reg->raw;
6911                if (reg_is_pkt_pointer(ptr_reg)) {
6912                        dst_reg->id = ++env->id_gen;
6913                        /* something was added to pkt_ptr, set range to zero */
6914                        if (smin_val < 0)
6915                                memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6916                }
6917                break;
6918        case BPF_AND:
6919        case BPF_OR:
6920        case BPF_XOR:
6921                /* bitwise ops on pointers are troublesome, prohibit. */
6922                verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6923                        dst, bpf_alu_string[opcode >> 4]);
6924                return -EACCES;
6925        default:
6926                /* other operators (e.g. MUL,LSH) produce non-pointer results */
6927                verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6928                        dst, bpf_alu_string[opcode >> 4]);
6929                return -EACCES;
6930        }
6931
6932        if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6933                return -EINVAL;
6934
6935        __update_reg_bounds(dst_reg);
6936        __reg_deduce_bounds(dst_reg);
6937        __reg_bound_offset(dst_reg);
6938
6939        if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6940                return -EACCES;
6941        if (sanitize_needed(opcode)) {
6942                ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6943                                       &info, true);
6944                if (ret < 0)
6945                        return sanitize_err(env, insn, ret, off_reg, dst_reg);
6946        }
6947
6948        return 0;
6949}
6950
6951static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6952                                 struct bpf_reg_state *src_reg)
6953{
6954        s32 smin_val = src_reg->s32_min_value;
6955        s32 smax_val = src_reg->s32_max_value;
6956        u32 umin_val = src_reg->u32_min_value;
6957        u32 umax_val = src_reg->u32_max_value;
6958
6959        if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6960            signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6961                dst_reg->s32_min_value = S32_MIN;
6962                dst_reg->s32_max_value = S32_MAX;
6963        } else {
6964                dst_reg->s32_min_value += smin_val;
6965                dst_reg->s32_max_value += smax_val;
6966        }
6967        if (dst_reg->u32_min_value + umin_val < umin_val ||
6968            dst_reg->u32_max_value + umax_val < umax_val) {
6969                dst_reg->u32_min_value = 0;
6970                dst_reg->u32_max_value = U32_MAX;
6971        } else {
6972                dst_reg->u32_min_value += umin_val;
6973                dst_reg->u32_max_value += umax_val;
6974        }
6975}
6976
6977static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6978                               struct bpf_reg_state *src_reg)
6979{
6980        s64 smin_val = src_reg->smin_value;
6981        s64 smax_val = src_reg->smax_value;
6982        u64 umin_val = src_reg->umin_value;
6983        u64 umax_val = src_reg->umax_value;
6984
6985        if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6986            signed_add_overflows(dst_reg->smax_value, smax_val)) {
6987                dst_reg->smin_value = S64_MIN;
6988                dst_reg->smax_value = S64_MAX;
6989        } else {
6990                dst_reg->smin_value += smin_val;
6991                dst_reg->smax_value += smax_val;
6992        }
6993        if (dst_reg->umin_value + umin_val < umin_val ||
6994            dst_reg->umax_value + umax_val < umax_val) {
6995                dst_reg->umin_value = 0;
6996                dst_reg->umax_value = U64_MAX;
6997        } else {
6998                dst_reg->umin_value += umin_val;
6999                dst_reg->umax_value += umax_val;
7000        }
7001}
7002
7003static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7004                                 struct bpf_reg_state *src_reg)
7005{
7006        s32 smin_val = src_reg->s32_min_value;
7007        s32 smax_val = src_reg->s32_max_value;
7008        u32 umin_val = src_reg->u32_min_value;
7009        u32 umax_val = src_reg->u32_max_value;
7010
7011        if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7012            signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7013                /* Overflow possible, we know nothing */
7014                dst_reg->s32_min_value = S32_MIN;
7015                dst_reg->s32_max_value = S32_MAX;
7016        } else {
7017                dst_reg->s32_min_value -= smax_val;
7018                dst_reg->s32_max_value -= smin_val;
7019        }
7020        if (dst_reg->u32_min_value < umax_val) {
7021                /* Overflow possible, we know nothing */
7022                dst_reg->u32_min_value = 0;
7023                dst_reg->u32_max_value = U32_MAX;
7024        } else {
7025                /* Cannot overflow (as long as bounds are consistent) */
7026                dst_reg->u32_min_value -= umax_val;
7027                dst_reg->u32_max_value -= umin_val;
7028        }
7029}
7030
7031static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7032                               struct bpf_reg_state *src_reg)
7033{
7034        s64 smin_val = src_reg->smin_value;
7035        s64 smax_val = src_reg->smax_value;
7036        u64 umin_val = src_reg->umin_value;
7037        u64 umax_val = src_reg->umax_value;
7038
7039        if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7040            signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7041                /* Overflow possible, we know nothing */
7042                dst_reg->smin_value = S64_MIN;
7043                dst_reg->smax_value = S64_MAX;
7044        } else {
7045                dst_reg->smin_value -= smax_val;
7046                dst_reg->smax_value -= smin_val;
7047        }
7048        if (dst_reg->umin_value < umax_val) {
7049                /* Overflow possible, we know nothing */
7050                dst_reg->umin_value = 0;
7051                dst_reg->umax_value = U64_MAX;
7052        } else {
7053                /* Cannot overflow (as long as bounds are consistent) */
7054                dst_reg->umin_value -= umax_val;
7055                dst_reg->umax_value -= umin_val;
7056        }
7057}
7058
7059static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7060                                 struct bpf_reg_state *src_reg)
7061{
7062        s32 smin_val = src_reg->s32_min_value;
7063        u32 umin_val = src_reg->u32_min_value;
7064        u32 umax_val = src_reg->u32_max_value;
7065
7066        if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7067                /* Ain't nobody got time to multiply that sign */
7068                __mark_reg32_unbounded(dst_reg);
7069                return;
7070        }
7071        /* Both values are positive, so we can work with unsigned and
7072         * copy the result to signed (unless it exceeds S32_MAX).
7073         */
7074        if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7075                /* Potential overflow, we know nothing */
7076                __mark_reg32_unbounded(dst_reg);
7077                return;
7078        }
7079        dst_reg->u32_min_value *= umin_val;
7080        dst_reg->u32_max_value *= umax_val;
7081        if (dst_reg->u32_max_value > S32_MAX) {
7082                /* Overflow possible, we know nothing */
7083                dst_reg->s32_min_value = S32_MIN;
7084                dst_reg->s32_max_value = S32_MAX;
7085        } else {
7086                dst_reg->s32_min_value = dst_reg->u32_min_value;
7087                dst_reg->s32_max_value = dst_reg->u32_max_value;
7088        }
7089}
7090
7091static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7092                               struct bpf_reg_state *src_reg)
7093{
7094        s64 smin_val = src_reg->smin_value;
7095        u64 umin_val = src_reg->umin_value;
7096        u64 umax_val = src_reg->umax_value;
7097
7098        if (smin_val < 0 || dst_reg->smin_value < 0) {
7099                /* Ain't nobody got time to multiply that sign */
7100                __mark_reg64_unbounded(dst_reg);
7101                return;
7102        }
7103        /* Both values are positive, so we can work with unsigned and
7104         * copy the result to signed (unless it exceeds S64_MAX).
7105         */
7106        if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7107                /* Potential overflow, we know nothing */
7108                __mark_reg64_unbounded(dst_reg);
7109                return;
7110        }
7111        dst_reg->umin_value *= umin_val;
7112        dst_reg->umax_value *= umax_val;
7113        if (dst_reg->umax_value > S64_MAX) {
7114                /* Overflow possible, we know nothing */
7115                dst_reg->smin_value = S64_MIN;
7116                dst_reg->smax_value = S64_MAX;
7117        } else {
7118                dst_reg->smin_value = dst_reg->umin_value;
7119                dst_reg->smax_value = dst_reg->umax_value;
7120        }
7121}
7122
7123static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7124                                 struct bpf_reg_state *src_reg)
7125{
7126        bool src_known = tnum_subreg_is_const(src_reg->var_off);
7127        bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7128        struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7129        s32 smin_val = src_reg->s32_min_value;
7130        u32 umax_val = src_reg->u32_max_value;
7131
7132        if (src_known && dst_known) {
7133                __mark_reg32_known(dst_reg, var32_off.value);
7134                return;
7135        }
7136
7137        /* We get our minimum from the var_off, since that's inherently
7138         * bitwise.  Our maximum is the minimum of the operands' maxima.
7139         */
7140        dst_reg->u32_min_value = var32_off.value;
7141        dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7142        if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7143                /* Lose signed bounds when ANDing negative numbers,
7144                 * ain't nobody got time for that.
7145                 */
7146                dst_reg->s32_min_value = S32_MIN;
7147                dst_reg->s32_max_value = S32_MAX;
7148        } else {
7149                /* ANDing two positives gives a positive, so safe to
7150                 * cast result into s64.
7151                 */
7152                dst_reg->s32_min_value = dst_reg->u32_min_value;
7153                dst_reg->s32_max_value = dst_reg->u32_max_value;
7154        }
7155}
7156
7157static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7158                               struct bpf_reg_state *src_reg)
7159{
7160        bool src_known = tnum_is_const(src_reg->var_off);
7161        bool dst_known = tnum_is_const(dst_reg->var_off);
7162        s64 smin_val = src_reg->smin_value;
7163        u64 umax_val = src_reg->umax_value;
7164
7165        if (src_known && dst_known) {
7166                __mark_reg_known(dst_reg, dst_reg->var_off.value);
7167                return;
7168        }
7169
7170        /* We get our minimum from the var_off, since that's inherently
7171         * bitwise.  Our maximum is the minimum of the operands' maxima.
7172         */
7173        dst_reg->umin_value = dst_reg->var_off.value;
7174        dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7175        if (dst_reg->smin_value < 0 || smin_val < 0) {
7176                /* Lose signed bounds when ANDing negative numbers,
7177                 * ain't nobody got time for that.
7178                 */
7179                dst_reg->smin_value = S64_MIN;
7180                dst_reg->smax_value = S64_MAX;
7181        } else {
7182                /* ANDing two positives gives a positive, so safe to
7183                 * cast result into s64.
7184                 */
7185                dst_reg->smin_value = dst_reg->umin_value;
7186                dst_reg->smax_value = dst_reg->umax_value;
7187        }
7188        /* We may learn something more from the var_off */
7189        __update_reg_bounds(dst_reg);
7190}
7191
7192static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7193                                struct bpf_reg_state *src_reg)
7194{
7195        bool src_known = tnum_subreg_is_const(src_reg->var_off);
7196        bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7197        struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7198        s32 smin_val = src_reg->s32_min_value;
7199        u32 umin_val = src_reg->u32_min_value;
7200
7201        if (src_known && dst_known) {
7202                __mark_reg32_known(dst_reg, var32_off.value);
7203                return;
7204        }
7205
7206        /* We get our maximum from the var_off, and our minimum is the
7207         * maximum of the operands' minima
7208         */
7209        dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7210        dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7211        if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7212                /* Lose signed bounds when ORing negative numbers,
7213                 * ain't nobody got time for that.
7214                 */
7215                dst_reg->s32_min_value = S32_MIN;
7216                dst_reg->s32_max_value = S32_MAX;
7217        } else {
7218                /* ORing two positives gives a positive, so safe to
7219                 * cast result into s64.
7220                 */
7221                dst_reg->s32_min_value = dst_reg->u32_min_value;
7222                dst_reg->s32_max_value = dst_reg->u32_max_value;
7223        }
7224}
7225
7226static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7227                              struct bpf_reg_state *src_reg)
7228{
7229        bool src_known = tnum_is_const(src_reg->var_off);
7230        bool dst_known = tnum_is_const(dst_reg->var_off);
7231        s64 smin_val = src_reg->smin_value;
7232        u64 umin_val = src_reg->umin_value;
7233
7234        if (src_known && dst_known) {
7235                __mark_reg_known(dst_reg, dst_reg->var_off.value);
7236                return;
7237        }
7238
7239        /* We get our maximum from the var_off, and our minimum is the
7240         * maximum of the operands' minima
7241         */
7242        dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7243        dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7244        if (dst_reg->smin_value < 0 || smin_val < 0) {
7245                /* Lose signed bounds when ORing negative numbers,
7246                 * ain't nobody got time for that.
7247                 */
7248                dst_reg->smin_value = S64_MIN;
7249                dst_reg->smax_value = S64_MAX;
7250        } else {
7251                /* ORing two positives gives a positive, so safe to
7252                 * cast result into s64.
7253                 */
7254                dst_reg->smin_value = dst_reg->umin_value;
7255                dst_reg->smax_value = dst_reg->umax_value;
7256        }
7257        /* We may learn something more from the var_off */
7258        __update_reg_bounds(dst_reg);
7259}
7260
7261static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7262                                 struct bpf_reg_state *src_reg)
7263{
7264        bool src_known = tnum_subreg_is_const(src_reg->var_off);
7265        bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7266        struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7267        s32 smin_val = src_reg->s32_min_value;
7268
7269        if (src_known && dst_known) {
7270                __mark_reg32_known(dst_reg, var32_off.value);
7271                return;
7272        }
7273
7274        /* We get both minimum and maximum from the var32_off. */
7275        dst_reg->u32_min_value = var32_off.value;
7276        dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7277
7278        if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7279                /* XORing two positive sign numbers gives a positive,
7280                 * so safe to cast u32 result into s32.
7281                 */
7282                dst_reg->s32_min_value = dst_reg->u32_min_value;
7283                dst_reg->s32_max_value = dst_reg->u32_max_value;
7284        } else {
7285                dst_reg->s32_min_value = S32_MIN;
7286                dst_reg->s32_max_value = S32_MAX;
7287        }
7288}
7289
7290static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7291                               struct bpf_reg_state *src_reg)
7292{
7293        bool src_known = tnum_is_const(src_reg->var_off);
7294        bool dst_known = tnum_is_const(dst_reg->var_off);
7295        s64 smin_val = src_reg->smin_value;
7296
7297        if (src_known && dst_known) {
7298                /* dst_reg->var_off.value has been updated earlier */
7299                __mark_reg_known(dst_reg, dst_reg->var_off.value);
7300                return;
7301        }
7302
7303        /* We get both minimum and maximum from the var_off. */
7304        dst_reg->umin_value = dst_reg->var_off.value;
7305        dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7306
7307        if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7308                /* XORing two positive sign numbers gives a positive,
7309                 * so safe to cast u64 result into s64.
7310                 */
7311                dst_reg->smin_value = dst_reg->umin_value;
7312                dst_reg->smax_value = dst_reg->umax_value;
7313        } else {
7314                dst_reg->smin_value = S64_MIN;
7315                dst_reg->smax_value = S64_MAX;
7316        }
7317
7318        __update_reg_bounds(dst_reg);
7319}
7320
7321static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7322                                   u64 umin_val, u64 umax_val)
7323{
7324        /* We lose all sign bit information (except what we can pick
7325         * up from var_off)
7326         */
7327        dst_reg->s32_min_value = S32_MIN;
7328        dst_reg->s32_max_value = S32_MAX;
7329        /* If we might shift our top bit out, then we know nothing */
7330        if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7331                dst_reg->u32_min_value = 0;
7332                dst_reg->u32_max_value = U32_MAX;
7333        } else {
7334                dst_reg->u32_min_value <<= umin_val;
7335                dst_reg->u32_max_value <<= umax_val;
7336        }
7337}
7338
7339static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7340                                 struct bpf_reg_state *src_reg)
7341{
7342        u32 umax_val = src_reg->u32_max_value;
7343        u32 umin_val = src_reg->u32_min_value;
7344        /* u32 alu operation will zext upper bits */
7345        struct tnum subreg = tnum_subreg(dst_reg->var_off);
7346
7347        __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7348        dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7349        /* Not required but being careful mark reg64 bounds as unknown so
7350         * that we are forced to pick them up from tnum and zext later and
7351         * if some path skips this step we are still safe.
7352         */
7353        __mark_reg64_unbounded(dst_reg);
7354        __update_reg32_bounds(dst_reg);
7355}
7356
7357static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7358                                   u64 umin_val, u64 umax_val)
7359{
7360        /* Special case <<32 because it is a common compiler pattern to sign
7361         * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7362         * positive we know this shift will also be positive so we can track
7363         * bounds correctly. Otherwise we lose all sign bit information except
7364         * what we can pick up from var_off. Perhaps we can generalize this
7365         * later to shifts of any length.
7366         */
7367        if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7368                dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7369        else
7370                dst_reg->smax_value = S64_MAX;
7371
7372        if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7373                dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7374        else
7375                dst_reg->smin_value = S64_MIN;
7376
7377        /* If we might shift our top bit out, then we know nothing */
7378        if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7379                dst_reg->umin_value = 0;
7380                dst_reg->umax_value = U64_MAX;
7381        } else {
7382                dst_reg->umin_value <<= umin_val;
7383                dst_reg->umax_value <<= umax_val;
7384        }
7385}
7386
7387static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7388                               struct bpf_reg_state *src_reg)
7389{
7390        u64 umax_val = src_reg->umax_value;
7391        u64 umin_val = src_reg->umin_value;
7392
7393        /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7394        __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7395        __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7396
7397        dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7398        /* We may learn something more from the var_off */
7399        __update_reg_bounds(dst_reg);
7400}
7401
7402static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7403                                 struct bpf_reg_state *src_reg)
7404{
7405        struct tnum subreg = tnum_subreg(dst_reg->var_off);
7406        u32 umax_val = src_reg->u32_max_value;
7407        u32 umin_val = src_reg->u32_min_value;
7408
7409        /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7410         * be negative, then either:
7411         * 1) src_reg might be zero, so the sign bit of the result is
7412         *    unknown, so we lose our signed bounds
7413         * 2) it's known negative, thus the unsigned bounds capture the
7414         *    signed bounds
7415         * 3) the signed bounds cross zero, so they tell us nothing
7416         *    about the result
7417         * If the value in dst_reg is known nonnegative, then again the
7418         * unsigned bounds capture the signed bounds.
7419         * Thus, in all cases it suffices to blow away our signed bounds
7420         * and rely on inferring new ones from the unsigned bounds and
7421         * var_off of the result.
7422         */
7423        dst_reg->s32_min_value = S32_MIN;
7424        dst_reg->s32_max_value = S32_MAX;
7425
7426        dst_reg->var_off = tnum_rshift(subreg, umin_val);
7427        dst_reg->u32_min_value >>= umax_val;
7428        dst_reg->u32_max_value >>= umin_val;
7429
7430        __mark_reg64_unbounded(dst_reg);
7431        __update_reg32_bounds(dst_reg);
7432}
7433
7434static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7435                               struct bpf_reg_state *src_reg)
7436{
7437        u64 umax_val = src_reg->umax_value;
7438        u64 umin_val = src_reg->umin_value;
7439
7440        /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7441         * be negative, then either:
7442         * 1) src_reg might be zero, so the sign bit of the result is
7443         *    unknown, so we lose our signed bounds
7444         * 2) it's known negative, thus the unsigned bounds capture the
7445         *    signed bounds
7446         * 3) the signed bounds cross zero, so they tell us nothing
7447         *    about the result
7448         * If the value in dst_reg is known nonnegative, then again the
7449         * unsigned bounds capture the signed bounds.
7450         * Thus, in all cases it suffices to blow away our signed bounds
7451         * and rely on inferring new ones from the unsigned bounds and
7452         * var_off of the result.
7453         */
7454        dst_reg->smin_value = S64_MIN;
7455        dst_reg->smax_value = S64_MAX;
7456        dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7457        dst_reg->umin_value >>= umax_val;
7458        dst_reg->umax_value >>= umin_val;
7459
7460        /* Its not easy to operate on alu32 bounds here because it depends
7461         * on bits being shifted in. Take easy way out and mark unbounded
7462         * so we can recalculate later from tnum.
7463         */
7464        __mark_reg32_unbounded(dst_reg);
7465        __update_reg_bounds(dst_reg);
7466}
7467
7468static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7469                                  struct bpf_reg_state *src_reg)
7470{
7471        u64 umin_val = src_reg->u32_min_value;
7472
7473        /* Upon reaching here, src_known is true and
7474         * umax_val is equal to umin_val.
7475         */
7476        dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7477        dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7478
7479        dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7480
7481        /* blow away the dst_reg umin_value/umax_value and rely on
7482         * dst_reg var_off to refine the result.
7483         */
7484        dst_reg->u32_min_value = 0;
7485        dst_reg->u32_max_value = U32_MAX;
7486
7487        __mark_reg64_unbounded(dst_reg);
7488        __update_reg32_bounds(dst_reg);
7489}
7490
7491static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7492                                struct bpf_reg_state *src_reg)
7493{
7494        u64 umin_val = src_reg->umin_value;
7495
7496        /* Upon reaching here, src_known is true and umax_val is equal
7497         * to umin_val.
7498         */
7499        dst_reg->smin_value >>= umin_val;
7500        dst_reg->smax_value >>= umin_val;
7501
7502        dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7503
7504        /* blow away the dst_reg umin_value/umax_value and rely on
7505         * dst_reg var_off to refine the result.
7506         */
7507        dst_reg->umin_value = 0;
7508        dst_reg->umax_value = U64_MAX;
7509
7510        /* Its not easy to operate on alu32 bounds here because it depends
7511         * on bits being shifted in from upper 32-bits. Take easy way out
7512         * and mark unbounded so we can recalculate later from tnum.
7513         */
7514        __mark_reg32_unbounded(dst_reg);
7515        __update_reg_bounds(dst_reg);
7516}
7517
7518/* WARNING: This function does calculations on 64-bit values, but the actual
7519 * execution may occur on 32-bit values. Therefore, things like bitshifts
7520 * need extra checks in the 32-bit case.
7521 */
7522static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7523                                      struct bpf_insn *insn,
7524                                      struct bpf_reg_state *dst_reg,
7525                                      struct bpf_reg_state src_reg)
7526{
7527        struct bpf_reg_state *regs = cur_regs(env);
7528        u8 opcode = BPF_OP(insn->code);
7529        bool src_known;
7530        s64 smin_val, smax_val;
7531        u64 umin_val, umax_val;
7532        s32 s32_min_val, s32_max_val;
7533        u32 u32_min_val, u32_max_val;
7534        u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7535        bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7536        int ret;
7537
7538        smin_val = src_reg.smin_value;
7539        smax_val = src_reg.smax_value;
7540        umin_val = src_reg.umin_value;
7541        umax_val = src_reg.umax_value;
7542
7543        s32_min_val = src_reg.s32_min_value;
7544        s32_max_val = src_reg.s32_max_value;
7545        u32_min_val = src_reg.u32_min_value;
7546        u32_max_val = src_reg.u32_max_value;
7547
7548        if (alu32) {
7549                src_known = tnum_subreg_is_const(src_reg.var_off);
7550                if ((src_known &&
7551                     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7552                    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7553                        /* Taint dst register if offset had invalid bounds
7554                         * derived from e.g. dead branches.
7555                         */
7556                        __mark_reg_unknown(env, dst_reg);
7557                        return 0;
7558                }
7559        } else {
7560                src_known = tnum_is_const(src_reg.var_off);
7561                if ((src_known &&
7562                     (smin_val != smax_val || umin_val != umax_val)) ||
7563                    smin_val > smax_val || umin_val > umax_val) {
7564                        /* Taint dst register if offset had invalid bounds
7565                         * derived from e.g. dead branches.
7566                         */
7567                        __mark_reg_unknown(env, dst_reg);
7568                        return 0;
7569                }
7570        }
7571
7572        if (!src_known &&
7573            opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7574                __mark_reg_unknown(env, dst_reg);
7575                return 0;
7576        }
7577
7578        if (sanitize_needed(opcode)) {
7579                ret = sanitize_val_alu(env, insn);
7580                if (ret < 0)
7581                        return sanitize_err(env, insn, ret, NULL, NULL);
7582        }
7583
7584        /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7585         * There are two classes of instructions: The first class we track both
7586         * alu32 and alu64 sign/unsigned bounds independently this provides the
7587         * greatest amount of precision when alu operations are mixed with jmp32
7588         * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7589         * and BPF_OR. This is possible because these ops have fairly easy to
7590         * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7591         * See alu32 verifier tests for examples. The second class of
7592         * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7593         * with regards to tracking sign/unsigned bounds because the bits may
7594         * cross subreg boundaries in the alu64 case. When this happens we mark
7595         * the reg unbounded in the subreg bound space and use the resulting
7596         * tnum to calculate an approximation of the sign/unsigned bounds.
7597         */
7598        switch (opcode) {
7599        case BPF_ADD:
7600                scalar32_min_max_add(dst_reg, &src_reg);
7601                scalar_min_max_add(dst_reg, &src_reg);
7602                dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7603                break;
7604        case BPF_SUB:
7605                scalar32_min_max_sub(dst_reg, &src_reg);
7606                scalar_min_max_sub(dst_reg, &src_reg);
7607                dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7608                break;
7609        case BPF_MUL:
7610                dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7611                scalar32_min_max_mul(dst_reg, &src_reg);
7612                scalar_min_max_mul(dst_reg, &src_reg);
7613                break;
7614        case BPF_AND:
7615                dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7616                scalar32_min_max_and(dst_reg, &src_reg);
7617                scalar_min_max_and(dst_reg, &src_reg);
7618                break;
7619        case BPF_OR:
7620                dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7621                scalar32_min_max_or(dst_reg, &src_reg);
7622                scalar_min_max_or(dst_reg, &src_reg);
7623                break;
7624        case BPF_XOR:
7625                dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7626                scalar32_min_max_xor(dst_reg, &src_reg);
7627                scalar_min_max_xor(dst_reg, &src_reg);
7628                break;
7629        case BPF_LSH:
7630                if (umax_val >= insn_bitness) {
7631                        /* Shifts greater than 31 or 63 are undefined.
7632                         * This includes shifts by a negative number.
7633                         */
7634                        mark_reg_unknown(env, regs, insn->dst_reg);
7635                        break;
7636                }
7637                if (alu32)
7638                        scalar32_min_max_lsh(dst_reg, &src_reg);
7639                else
7640                        scalar_min_max_lsh(dst_reg, &src_reg);
7641                break;
7642        case BPF_RSH:
7643                if (umax_val >= insn_bitness) {
7644                        /* Shifts greater than 31 or 63 are undefined.
7645                         * This includes shifts by a negative number.
7646                         */
7647                        mark_reg_unknown(env, regs, insn->dst_reg);
7648                        break;
7649                }
7650                if (alu32)
7651                        scalar32_min_max_rsh(dst_reg, &src_reg);
7652                else
7653                        scalar_min_max_rsh(dst_reg, &src_reg);
7654                break;
7655        case BPF_ARSH:
7656                if (umax_val >= insn_bitness) {
7657                        /* Shifts greater than 31 or 63 are undefined.
7658                         * This includes shifts by a negative number.
7659                         */
7660                        mark_reg_unknown(env, regs, insn->dst_reg);
7661                        break;
7662                }
7663                if (alu32)
7664                        scalar32_min_max_arsh(dst_reg, &src_reg);
7665                else
7666                        scalar_min_max_arsh(dst_reg, &src_reg);
7667                break;
7668        default:
7669                mark_reg_unknown(env, regs, insn->dst_reg);
7670                break;
7671        }
7672
7673        /* ALU32 ops are zero extended into 64bit register */
7674        if (alu32)
7675                zext_32_to_64(dst_reg);
7676
7677        __update_reg_bounds(dst_reg);
7678        __reg_deduce_bounds(dst_reg);
7679        __reg_bound_offset(dst_reg);
7680        return 0;
7681}
7682
7683/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7684 * and var_off.
7685 */
7686static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7687                                   struct bpf_insn *insn)
7688{
7689        struct bpf_verifier_state *vstate = env->cur_state;
7690        struct bpf_func_state *state = vstate->frame[vstate->curframe];
7691        struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7692        struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7693        u8 opcode = BPF_OP(insn->code);
7694        int err;
7695
7696        dst_reg = &regs[insn->dst_reg];
7697        src_reg = NULL;
7698        if (dst_reg->type != SCALAR_VALUE)
7699                ptr_reg = dst_reg;
7700        else
7701                /* Make sure ID is cleared otherwise dst_reg min/max could be
7702                 * incorrectly propagated into other registers by find_equal_scalars()
7703                 */
7704                dst_reg->id = 0;
7705        if (BPF_SRC(insn->code) == BPF_X) {
7706                src_reg = &regs[insn->src_reg];
7707                if (src_reg->type != SCALAR_VALUE) {
7708                        if (dst_reg->type != SCALAR_VALUE) {
7709                                /* Combining two pointers by any ALU op yields
7710                                 * an arbitrary scalar. Disallow all math except
7711                                 * pointer subtraction
7712                                 */
7713                                if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7714                                        mark_reg_unknown(env, regs, insn->dst_reg);
7715                                        return 0;
7716                                }
7717                                verbose(env, "R%d pointer %s pointer prohibited\n",
7718                                        insn->dst_reg,
7719                                        bpf_alu_string[opcode >> 4]);
7720                                return -EACCES;
7721                        } else {
7722                                /* scalar += pointer
7723                                 * This is legal, but we have to reverse our
7724                                 * src/dest handling in computing the range
7725                                 */
7726                                err = mark_chain_precision(env, insn->dst_reg);
7727                                if (err)
7728                                        return err;
7729                                return adjust_ptr_min_max_vals(env, insn,
7730                                                               src_reg, dst_reg);
7731                        }
7732                } else if (ptr_reg) {
7733                        /* pointer += scalar */
7734                        err = mark_chain_precision(env, insn->src_reg);
7735                        if (err)
7736                                return err;
7737                        return adjust_ptr_min_max_vals(env, insn,
7738                                                       dst_reg, src_reg);
7739                }
7740        } else {
7741                /* Pretend the src is a reg with a known value, since we only
7742                 * need to be able to read from this state.
7743                 */
7744                off_reg.type = SCALAR_VALUE;
7745                __mark_reg_known(&off_reg, insn->imm);
7746                src_reg = &off_reg;
7747                if (ptr_reg) /* pointer += K */
7748                        return adjust_ptr_min_max_vals(env, insn,
7749                                                       ptr_reg, src_reg);
7750        }
7751
7752        /* Got here implies adding two SCALAR_VALUEs */
7753        if (WARN_ON_ONCE(ptr_reg)) {
7754                print_verifier_state(env, state);
7755                verbose(env, "verifier internal error: unexpected ptr_reg\n");
7756                return -EINVAL;
7757        }
7758        if (WARN_ON(!src_reg)) {
7759                print_verifier_state(env, state);
7760                verbose(env, "verifier internal error: no src_reg\n");
7761                return -EINVAL;
7762        }
7763        return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7764}
7765
7766/* check validity of 32-bit and 64-bit arithmetic operations */
7767static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7768{
7769        struct bpf_reg_state *regs = cur_regs(env);
7770        u8 opcode = BPF_OP(insn->code);
7771        int err;
7772
7773        if (opcode == BPF_END || opcode == BPF_NEG) {
7774                if (opcode == BPF_NEG) {
7775                        if (BPF_SRC(insn->code) != 0 ||
7776                            insn->src_reg != BPF_REG_0 ||
7777                            insn->off != 0 || insn->imm != 0) {
7778                                verbose(env, "BPF_NEG uses reserved fields\n");
7779                                return -EINVAL;
7780                        }
7781                } else {
7782                        if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7783                            (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7784                            BPF_CLASS(insn->code) == BPF_ALU64) {
7785                                verbose(env, "BPF_END uses reserved fields\n");
7786                                return -EINVAL;
7787                        }
7788                }
7789
7790                /* check src operand */
7791                err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7792                if (err)
7793                        return err;
7794
7795                if (is_pointer_value(env, insn->dst_reg)) {
7796                        verbose(env, "R%d pointer arithmetic prohibited\n",
7797                                insn->dst_reg);
7798                        return -EACCES;
7799                }
7800
7801                /* check dest operand */
7802                err = check_reg_arg(env, insn->dst_reg, DST_OP);
7803                if (err)
7804                        return err;
7805
7806        } else if (opcode == BPF_MOV) {
7807
7808                if (BPF_SRC(insn->code) == BPF_X) {
7809                        if (insn->imm != 0 || insn->off != 0) {
7810                                verbose(env, "BPF_MOV uses reserved fields\n");
7811                                return -EINVAL;
7812                        }
7813
7814                        /* check src operand */
7815                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
7816                        if (err)
7817                                return err;
7818                } else {
7819                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7820                                verbose(env, "BPF_MOV uses reserved fields\n");
7821                                return -EINVAL;
7822                        }
7823                }
7824
7825                /* check dest operand, mark as required later */
7826                err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7827                if (err)
7828                        return err;
7829
7830                if (BPF_SRC(insn->code) == BPF_X) {
7831                        struct bpf_reg_state *src_reg = regs + insn->src_reg;
7832                        struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7833
7834                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
7835                                /* case: R1 = R2
7836                                 * copy register state to dest reg
7837                                 */
7838                                if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7839                                        /* Assign src and dst registers the same ID
7840                                         * that will be used by find_equal_scalars()
7841                                         * to propagate min/max range.
7842                                         */
7843                                        src_reg->id = ++env->id_gen;
7844                                *dst_reg = *src_reg;
7845                                dst_reg->live |= REG_LIVE_WRITTEN;
7846                                dst_reg->subreg_def = DEF_NOT_SUBREG;
7847                        } else {
7848                                /* R1 = (u32) R2 */
7849                                if (is_pointer_value(env, insn->src_reg)) {
7850                                        verbose(env,
7851                                                "R%d partial copy of pointer\n",
7852                                                insn->src_reg);
7853                                        return -EACCES;
7854                                } else if (src_reg->type == SCALAR_VALUE) {
7855                                        *dst_reg = *src_reg;
7856                                        /* Make sure ID is cleared otherwise
7857                                         * dst_reg min/max could be incorrectly
7858                                         * propagated into src_reg by find_equal_scalars()
7859                                         */
7860                                        dst_reg->id = 0;
7861                                        dst_reg->live |= REG_LIVE_WRITTEN;
7862                                        dst_reg->subreg_def = env->insn_idx + 1;
7863                                } else {
7864                                        mark_reg_unknown(env, regs,
7865                                                         insn->dst_reg);
7866                                }
7867                                zext_32_to_64(dst_reg);
7868                        }
7869                } else {
7870                        /* case: R = imm
7871                         * remember the value we stored into this reg
7872                         */
7873                        /* clear any state __mark_reg_known doesn't set */
7874                        mark_reg_unknown(env, regs, insn->dst_reg);
7875                        regs[insn->dst_reg].type = SCALAR_VALUE;
7876                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
7877                                __mark_reg_known(regs + insn->dst_reg,
7878                                                 insn->imm);
7879                        } else {
7880                                __mark_reg_known(regs + insn->dst_reg,
7881                                                 (u32)insn->imm);
7882                        }
7883                }
7884
7885        } else if (opcode > BPF_END) {
7886                verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7887                return -EINVAL;
7888
7889        } else {        /* all other ALU ops: and, sub, xor, add, ... */
7890
7891                if (BPF_SRC(insn->code) == BPF_X) {
7892                        if (insn->imm != 0 || insn->off != 0) {
7893                                verbose(env, "BPF_ALU uses reserved fields\n");
7894                                return -EINVAL;
7895                        }
7896                        /* check src1 operand */
7897                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
7898                        if (err)
7899                                return err;
7900                } else {
7901                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7902                                verbose(env, "BPF_ALU uses reserved fields\n");
7903                                return -EINVAL;
7904                        }
7905                }
7906
7907                /* check src2 operand */
7908                err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7909                if (err)
7910                        return err;
7911
7912                if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7913                    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7914                        verbose(env, "div by zero\n");
7915                        return -EINVAL;
7916                }
7917
7918                if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7919                     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7920                        int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7921
7922                        if (insn->imm < 0 || insn->imm >= size) {
7923                                verbose(env, "invalid shift %d\n", insn->imm);
7924                                return -EINVAL;
7925                        }
7926                }
7927
7928                /* check dest operand */
7929                err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7930                if (err)
7931                        return err;
7932
7933                return adjust_reg_min_max_vals(env, insn);
7934        }
7935
7936        return 0;
7937}
7938
7939static void __find_good_pkt_pointers(struct bpf_func_state *state,
7940                                     struct bpf_reg_state *dst_reg,
7941                                     enum bpf_reg_type type, int new_range)
7942{
7943        struct bpf_reg_state *reg;
7944        int i;
7945
7946        for (i = 0; i < MAX_BPF_REG; i++) {
7947                reg = &state->regs[i];
7948                if (reg->type == type && reg->id == dst_reg->id)
7949                        /* keep the maximum range already checked */
7950                        reg->range = max(reg->range, new_range);
7951        }
7952
7953        bpf_for_each_spilled_reg(i, state, reg) {
7954                if (!reg)
7955                        continue;
7956                if (reg->type == type && reg->id == dst_reg->id)
7957                        reg->range = max(reg->range, new_range);
7958        }
7959}
7960
7961static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7962                                   struct bpf_reg_state *dst_reg,
7963                                   enum bpf_reg_type type,
7964                                   bool range_right_open)
7965{
7966        int new_range, i;
7967
7968        if (dst_reg->off < 0 ||
7969            (dst_reg->off == 0 && range_right_open))
7970                /* This doesn't give us any range */
7971                return;
7972
7973        if (dst_reg->umax_value > MAX_PACKET_OFF ||
7974            dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7975                /* Risk of overflow.  For instance, ptr + (1<<63) may be less
7976                 * than pkt_end, but that's because it's also less than pkt.
7977                 */
7978                return;
7979
7980        new_range = dst_reg->off;
7981        if (range_right_open)
7982                new_range--;
7983
7984        /* Examples for register markings:
7985         *
7986         * pkt_data in dst register:
7987         *
7988         *   r2 = r3;
7989         *   r2 += 8;
7990         *   if (r2 > pkt_end) goto <handle exception>
7991         *   <access okay>
7992         *
7993         *   r2 = r3;
7994         *   r2 += 8;
7995         *   if (r2 < pkt_end) goto <access okay>
7996         *   <handle exception>
7997         *
7998         *   Where:
7999         *     r2 == dst_reg, pkt_end == src_reg
8000         *     r2=pkt(id=n,off=8,r=0)
8001         *     r3=pkt(id=n,off=0,r=0)
8002         *
8003         * pkt_data in src register:
8004         *
8005         *   r2 = r3;
8006         *   r2 += 8;
8007         *   if (pkt_end >= r2) goto <access okay>
8008         *   <handle exception>
8009         *
8010         *   r2 = r3;
8011         *   r2 += 8;
8012         *   if (pkt_end <= r2) goto <handle exception>
8013         *   <access okay>
8014         *
8015         *   Where:
8016         *     pkt_end == dst_reg, r2 == src_reg
8017         *     r2=pkt(id=n,off=8,r=0)
8018         *     r3=pkt(id=n,off=0,r=0)
8019         *
8020         * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8021         * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8022         * and [r3, r3 + 8-1) respectively is safe to access depending on
8023         * the check.
8024         */
8025
8026        /* If our ids match, then we must have the same max_value.  And we
8027         * don't care about the other reg's fixed offset, since if it's too big
8028         * the range won't allow anything.
8029         * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8030         */
8031        for (i = 0; i <= vstate->curframe; i++)
8032                __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8033                                         new_range);
8034}
8035
8036static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8037{
8038        struct tnum subreg = tnum_subreg(reg->var_off);
8039        s32 sval = (s32)val;
8040
8041        switch (opcode) {
8042        case BPF_JEQ:
8043                if (tnum_is_const(subreg))
8044                        return !!tnum_equals_const(subreg, val);
8045                break;
8046        case BPF_JNE:
8047                if (tnum_is_const(subreg))
8048                        return !tnum_equals_const(subreg, val);
8049                break;
8050        case BPF_JSET:
8051                if ((~subreg.mask & subreg.value) & val)
8052                        return 1;
8053                if (!((subreg.mask | subreg.value) & val))
8054                        return 0;
8055                break;
8056        case BPF_JGT:
8057                if (reg->u32_min_value > val)
8058                        return 1;
8059                else if (reg->u32_max_value <= val)
8060                        return 0;
8061                break;
8062        case BPF_JSGT:
8063                if (reg->s32_min_value > sval)
8064                        return 1;
8065                else if (reg->s32_max_value <= sval)
8066                        return 0;
8067                break;
8068        case BPF_JLT:
8069                if (reg->u32_max_value < val)
8070                        return 1;
8071                else if (reg->u32_min_value >= val)
8072                        return 0;
8073                break;
8074        case BPF_JSLT:
8075                if (reg->s32_max_value < sval)
8076                        return 1;
8077                else if (reg->s32_min_value >= sval)
8078                        return 0;
8079                break;
8080        case BPF_JGE:
8081                if (reg->u32_min_value >= val)
8082                        return 1;
8083                else if (reg->u32_max_value < val)
8084                        return 0;
8085                break;
8086        case BPF_JSGE:
8087                if (reg->s32_min_value >= sval)
8088                        return 1;
8089                else if (reg->s32_max_value < sval)
8090                        return 0;
8091                break;
8092        case BPF_JLE:
8093                if (reg->u32_max_value <= val)
8094                        return 1;
8095                else if (reg->u32_min_value > val)
8096                        return 0;
8097                break;
8098        case BPF_JSLE:
8099                if (reg->s32_max_value <= sval)
8100                        return 1;
8101                else if (reg->s32_min_value > sval)
8102                        return 0;
8103                break;
8104        }
8105
8106        return -1;
8107}
8108
8109
8110static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8111{
8112        s64 sval = (s64)val;
8113
8114        switch (opcode) {
8115        case BPF_JEQ:
8116                if (tnum_is_const(reg->var_off))
8117                        return !!tnum_equals_const(reg->var_off, val);
8118                break;
8119        case BPF_JNE:
8120                if (tnum_is_const(reg->var_off))
8121                        return !tnum_equals_const(reg->var_off, val);
8122                break;
8123        case BPF_JSET:
8124                if ((~reg->var_off.mask & reg->var_off.value) & val)
8125                        return 1;
8126                if (!((reg->var_off.mask | reg->var_off.value) & val))
8127                        return 0;
8128                break;
8129        case BPF_JGT:
8130                if (reg->umin_value > val)
8131                        return 1;
8132                else if (reg->umax_value <= val)
8133                        return 0;
8134                break;
8135        case BPF_JSGT:
8136                if (reg->smin_value > sval)
8137                        return 1;
8138                else if (reg->smax_value <= sval)
8139                        return 0;
8140                break;
8141        case BPF_JLT:
8142                if (reg->umax_value < val)
8143                        return 1;
8144                else if (reg->umin_value >= val)
8145                        return 0;
8146                break;
8147        case BPF_JSLT:
8148                if (reg->smax_value < sval)
8149                        return 1;
8150                else if (reg->smin_value >= sval)
8151                        return 0;
8152                break;
8153        case BPF_JGE:
8154                if (reg->umin_value >= val)
8155                        return 1;
8156                else if (reg->umax_value < val)
8157                        return 0;
8158                break;
8159        case BPF_JSGE:
8160                if (reg->smin_value >= sval)
8161                        return 1;
8162                else if (reg->smax_value < sval)
8163                        return 0;
8164                break;
8165        case BPF_JLE:
8166                if (reg->umax_value <= val)
8167                        return 1;
8168                else if (reg->umin_value > val)
8169                        return 0;
8170                break;
8171        case BPF_JSLE:
8172                if (reg->smax_value <= sval)
8173                        return 1;
8174                else if (reg->smin_value > sval)
8175                        return 0;
8176                break;
8177        }
8178
8179        return -1;
8180}
8181
8182/* compute branch direction of the expression "if (reg opcode val) goto target;"
8183 * and return:
8184 *  1 - branch will be taken and "goto target" will be executed
8185 *  0 - branch will not be taken and fall-through to next insn
8186 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8187 *      range [0,10]
8188 */
8189static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8190                           bool is_jmp32)
8191{
8192        if (__is_pointer_value(false, reg)) {
8193                if (!reg_type_not_null(reg->type))
8194                        return -1;
8195
8196                /* If pointer is valid tests against zero will fail so we can
8197                 * use this to direct branch taken.
8198                 */
8199                if (val != 0)
8200                        return -1;
8201
8202                switch (opcode) {
8203                case BPF_JEQ:
8204                        return 0;
8205                case BPF_JNE:
8206                        return 1;
8207                default:
8208                        return -1;
8209                }
8210        }
8211
8212        if (is_jmp32)
8213                return is_branch32_taken(reg, val, opcode);
8214        return is_branch64_taken(reg, val, opcode);
8215}
8216
8217static int flip_opcode(u32 opcode)
8218{
8219        /* How can we transform "a <op> b" into "b <op> a"? */
8220        static const u8 opcode_flip[16] = {
8221                /* these stay the same */
8222                [BPF_JEQ  >> 4] = BPF_JEQ,
8223                [BPF_JNE  >> 4] = BPF_JNE,
8224                [BPF_JSET >> 4] = BPF_JSET,
8225                /* these swap "lesser" and "greater" (L and G in the opcodes) */
8226                [BPF_JGE  >> 4] = BPF_JLE,
8227                [BPF_JGT  >> 4] = BPF_JLT,
8228                [BPF_JLE  >> 4] = BPF_JGE,
8229                [BPF_JLT  >> 4] = BPF_JGT,
8230                [BPF_JSGE >> 4] = BPF_JSLE,
8231                [BPF_JSGT >> 4] = BPF_JSLT,
8232                [BPF_JSLE >> 4] = BPF_JSGE,
8233                [BPF_JSLT >> 4] = BPF_JSGT
8234        };
8235        return opcode_flip[opcode >> 4];
8236}
8237
8238static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8239                                   struct bpf_reg_state *src_reg,
8240                                   u8 opcode)
8241{
8242        struct bpf_reg_state *pkt;
8243
8244        if (src_reg->type == PTR_TO_PACKET_END) {
8245                pkt = dst_reg;
8246        } else if (dst_reg->type == PTR_TO_PACKET_END) {
8247                pkt = src_reg;
8248                opcode = flip_opcode(opcode);
8249        } else {
8250                return -1;
8251        }
8252
8253        if (pkt->range >= 0)
8254                return -1;
8255
8256        switch (opcode) {
8257        case BPF_JLE:
8258                /* pkt <= pkt_end */
8259                fallthrough;
8260        case BPF_JGT:
8261                /* pkt > pkt_end */
8262                if (pkt->range == BEYOND_PKT_END)
8263                        /* pkt has at last one extra byte beyond pkt_end */
8264                        return opcode == BPF_JGT;
8265                break;
8266        case BPF_JLT:
8267                /* pkt < pkt_end */
8268                fallthrough;
8269        case BPF_JGE:
8270                /* pkt >= pkt_end */
8271                if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8272                        return opcode == BPF_JGE;
8273                break;
8274        }
8275        return -1;
8276}
8277
8278/* Adjusts the register min/max values in the case that the dst_reg is the
8279 * variable register that we are working on, and src_reg is a constant or we're
8280 * simply doing a BPF_K check.
8281 * In JEQ/JNE cases we also adjust the var_off values.
8282 */
8283static void reg_set_min_max(struct bpf_reg_state *true_reg,
8284                            struct bpf_reg_state *false_reg,
8285                            u64 val, u32 val32,
8286                            u8 opcode, bool is_jmp32)
8287{
8288        struct tnum false_32off = tnum_subreg(false_reg->var_off);
8289        struct tnum false_64off = false_reg->var_off;
8290        struct tnum true_32off = tnum_subreg(true_reg->var_off);
8291        struct tnum true_64off = true_reg->var_off;
8292        s64 sval = (s64)val;
8293        s32 sval32 = (s32)val32;
8294
8295        /* If the dst_reg is a pointer, we can't learn anything about its
8296         * variable offset from the compare (unless src_reg were a pointer into
8297         * the same object, but we don't bother with that.
8298         * Since false_reg and true_reg have the same type by construction, we
8299         * only need to check one of them for pointerness.
8300         */
8301        if (__is_pointer_value(false, false_reg))
8302                return;
8303
8304        switch (opcode) {
8305        case BPF_JEQ:
8306        case BPF_JNE:
8307        {
8308                struct bpf_reg_state *reg =
8309                        opcode == BPF_JEQ ? true_reg : false_reg;
8310
8311                /* JEQ/JNE comparison doesn't change the register equivalence.
8312                 * r1 = r2;
8313                 * if (r1 == 42) goto label;
8314                 * ...
8315                 * label: // here both r1 and r2 are known to be 42.
8316                 *
8317                 * Hence when marking register as known preserve it's ID.
8318                 */
8319                if (is_jmp32)
8320                        __mark_reg32_known(reg, val32);
8321                else
8322                        ___mark_reg_known(reg, val);
8323                break;
8324        }
8325        case BPF_JSET:
8326                if (is_jmp32) {
8327                        false_32off = tnum_and(false_32off, tnum_const(~val32));
8328                        if (is_power_of_2(val32))
8329                                true_32off = tnum_or(true_32off,
8330                                                     tnum_const(val32));
8331                } else {
8332                        false_64off = tnum_and(false_64off, tnum_const(~val));
8333                        if (is_power_of_2(val))
8334                                true_64off = tnum_or(true_64off,
8335                                                     tnum_const(val));
8336                }
8337                break;
8338        case BPF_JGE:
8339        case BPF_JGT:
8340        {
8341                if (is_jmp32) {
8342                        u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8343                        u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8344
8345                        false_reg->u32_max_value = min(false_reg->u32_max_value,
8346                                                       false_umax);
8347                        true_reg->u32_min_value = max(true_reg->u32_min_value,
8348                                                      true_umin);
8349                } else {
8350                        u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8351                        u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8352
8353                        false_reg->umax_value = min(false_reg->umax_value, false_umax);
8354                        true_reg->umin_value = max(true_reg->umin_value, true_umin);
8355                }
8356                break;
8357        }
8358        case BPF_JSGE:
8359        case BPF_JSGT:
8360        {
8361                if (is_jmp32) {
8362                        s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8363                        s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8364
8365                        false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8366                        true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8367                } else {
8368                        s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8369                        s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8370
8371                        false_reg->smax_value = min(false_reg->smax_value, false_smax);
8372                        true_reg->smin_value = max(true_reg->smin_value, true_smin);
8373                }
8374                break;
8375        }
8376        case BPF_JLE:
8377        case BPF_JLT:
8378        {
8379                if (is_jmp32) {
8380                        u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8381                        u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8382
8383                        false_reg->u32_min_value = max(false_reg->u32_min_value,
8384                                                       false_umin);
8385                        true_reg->u32_max_value = min(true_reg->u32_max_value,
8386                                                      true_umax);
8387                } else {
8388                        u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8389                        u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8390
8391                        false_reg->umin_value = max(false_reg->umin_value, false_umin);
8392                        true_reg->umax_value = min(true_reg->umax_value, true_umax);
8393                }
8394                break;
8395        }
8396        case BPF_JSLE:
8397        case BPF_JSLT:
8398        {
8399                if (is_jmp32) {
8400                        s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8401                        s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8402
8403                        false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8404                        true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8405                } else {
8406                        s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8407                        s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8408
8409                        false_reg->smin_value = max(false_reg->smin_value, false_smin);
8410                        true_reg->smax_value = min(true_reg->smax_value, true_smax);
8411                }
8412                break;
8413        }
8414        default:
8415                return;
8416        }
8417
8418        if (is_jmp32) {
8419                false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8420                                             tnum_subreg(false_32off));
8421                true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8422                                            tnum_subreg(true_32off));
8423                __reg_combine_32_into_64(false_reg);
8424                __reg_combine_32_into_64(true_reg);
8425        } else {
8426                false_reg->var_off = false_64off;
8427                true_reg->var_off = true_64off;
8428                __reg_combine_64_into_32(false_reg);
8429                __reg_combine_64_into_32(true_reg);
8430        }
8431}
8432
8433/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8434 * the variable reg.
8435 */
8436static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8437                                struct bpf_reg_state *false_reg,
8438                                u64 val, u32 val32,
8439                                u8 opcode, bool is_jmp32)
8440{
8441        opcode = flip_opcode(opcode);
8442        /* This uses zero as "not present in table"; luckily the zero opcode,
8443         * BPF_JA, can't get here.
8444         */
8445        if (opcode)
8446                reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8447}
8448
8449/* Regs are known to be equal, so intersect their min/max/var_off */
8450static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8451                                  struct bpf_reg_state *dst_reg)
8452{
8453        src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8454                                                        dst_reg->umin_value);
8455        src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8456                                                        dst_reg->umax_value);
8457        src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8458                                                        dst_reg->smin_value);
8459        src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8460                                                        dst_reg->smax_value);
8461        src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8462                                                             dst_reg->var_off);
8463        /* We might have learned new bounds from the var_off. */
8464        __update_reg_bounds(src_reg);
8465        __update_reg_bounds(dst_reg);
8466        /* We might have learned something about the sign bit. */
8467        __reg_deduce_bounds(src_reg);
8468        __reg_deduce_bounds(dst_reg);
8469        /* We might have learned some bits from the bounds. */
8470        __reg_bound_offset(src_reg);
8471        __reg_bound_offset(dst_reg);
8472        /* Intersecting with the old var_off might have improved our bounds
8473         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8474         * then new var_off is (0; 0x7f...fc) which improves our umax.
8475         */
8476        __update_reg_bounds(src_reg);
8477        __update_reg_bounds(dst_reg);
8478}
8479
8480static void reg_combine_min_max(struct bpf_reg_state *true_src,
8481                                struct bpf_reg_state *true_dst,
8482                                struct bpf_reg_state *false_src,
8483                                struct bpf_reg_state *false_dst,
8484                                u8 opcode)
8485{
8486        switch (opcode) {
8487        case BPF_JEQ:
8488                __reg_combine_min_max(true_src, true_dst);
8489                break;
8490        case BPF_JNE:
8491                __reg_combine_min_max(false_src, false_dst);
8492                break;
8493        }
8494}
8495
8496static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8497                                 struct bpf_reg_state *reg, u32 id,
8498                                 bool is_null)
8499{
8500        if (reg_type_may_be_null(reg->type) && reg->id == id &&
8501            !WARN_ON_ONCE(!reg->id)) {
8502                /* Old offset (both fixed and variable parts) should
8503                 * have been known-zero, because we don't allow pointer
8504                 * arithmetic on pointers that might be NULL.
8505                 */
8506                if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8507                                 !tnum_equals_const(reg->var_off, 0) ||
8508                                 reg->off)) {
8509                        __mark_reg_known_zero(reg);
8510                        reg->off = 0;
8511                }
8512                if (is_null) {
8513                        reg->type = SCALAR_VALUE;
8514                        /* We don't need id and ref_obj_id from this point
8515                         * onwards anymore, thus we should better reset it,
8516                         * so that state pruning has chances to take effect.
8517                         */
8518                        reg->id = 0;
8519                        reg->ref_obj_id = 0;
8520
8521                        return;
8522                }
8523
8524                mark_ptr_not_null_reg(reg);
8525
8526                if (!reg_may_point_to_spin_lock(reg)) {
8527                        /* For not-NULL ptr, reg->ref_obj_id will be reset
8528                         * in release_reg_references().
8529                         *
8530                         * reg->id is still used by spin_lock ptr. Other
8531                         * than spin_lock ptr type, reg->id can be reset.
8532                         */
8533                        reg->id = 0;
8534                }
8535        }
8536}
8537
8538static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8539                                    bool is_null)
8540{
8541        struct bpf_reg_state *reg;
8542        int i;
8543
8544        for (i = 0; i < MAX_BPF_REG; i++)
8545                mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8546
8547        bpf_for_each_spilled_reg(i, state, reg) {
8548                if (!reg)
8549                        continue;
8550                mark_ptr_or_null_reg(state, reg, id, is_null);
8551        }
8552}
8553
8554/* The logic is similar to find_good_pkt_pointers(), both could eventually
8555 * be folded together at some point.
8556 */
8557static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8558                                  bool is_null)
8559{
8560        struct bpf_func_state *state = vstate->frame[vstate->curframe];
8561        struct bpf_reg_state *regs = state->regs;
8562        u32 ref_obj_id = regs[regno].ref_obj_id;
8563        u32 id = regs[regno].id;
8564        int i;
8565
8566        if (ref_obj_id && ref_obj_id == id && is_null)
8567                /* regs[regno] is in the " == NULL" branch.
8568                 * No one could have freed the reference state before
8569                 * doing the NULL check.
8570                 */
8571                WARN_ON_ONCE(release_reference_state(state, id));
8572
8573        for (i = 0; i <= vstate->curframe; i++)
8574                __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8575}
8576
8577static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8578                                   struct bpf_reg_state *dst_reg,
8579                                   struct bpf_reg_state *src_reg,
8580                                   struct bpf_verifier_state *this_branch,
8581                                   struct bpf_verifier_state *other_branch)
8582{
8583        if (BPF_SRC(insn->code) != BPF_X)
8584                return false;
8585
8586        /* Pointers are always 64-bit. */
8587        if (BPF_CLASS(insn->code) == BPF_JMP32)
8588                return false;
8589
8590        switch (BPF_OP(insn->code)) {
8591        case BPF_JGT:
8592                if ((dst_reg->type == PTR_TO_PACKET &&
8593                     src_reg->type == PTR_TO_PACKET_END) ||
8594                    (dst_reg->type == PTR_TO_PACKET_META &&
8595                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8596                        /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8597                        find_good_pkt_pointers(this_branch, dst_reg,
8598                                               dst_reg->type, false);
8599                        mark_pkt_end(other_branch, insn->dst_reg, true);
8600                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8601                            src_reg->type == PTR_TO_PACKET) ||
8602                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8603                            src_reg->type == PTR_TO_PACKET_META)) {
8604                        /* pkt_end > pkt_data', pkt_data > pkt_meta' */
8605                        find_good_pkt_pointers(other_branch, src_reg,
8606                                               src_reg->type, true);
8607                        mark_pkt_end(this_branch, insn->src_reg, false);
8608                } else {
8609                        return false;
8610                }
8611                break;
8612        case BPF_JLT:
8613                if ((dst_reg->type == PTR_TO_PACKET &&
8614                     src_reg->type == PTR_TO_PACKET_END) ||
8615                    (dst_reg->type == PTR_TO_PACKET_META &&
8616                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8617                        /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8618                        find_good_pkt_pointers(other_branch, dst_reg,
8619                                               dst_reg->type, true);
8620                        mark_pkt_end(this_branch, insn->dst_reg, false);
8621                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8622                            src_reg->type == PTR_TO_PACKET) ||
8623                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8624                            src_reg->type == PTR_TO_PACKET_META)) {
8625                        /* pkt_end < pkt_data', pkt_data > pkt_meta' */
8626                        find_good_pkt_pointers(this_branch, src_reg,
8627                                               src_reg->type, false);
8628                        mark_pkt_end(other_branch, insn->src_reg, true);
8629                } else {
8630                        return false;
8631                }
8632                break;
8633        case BPF_JGE:
8634                if ((dst_reg->type == PTR_TO_PACKET &&
8635                     src_reg->type == PTR_TO_PACKET_END) ||
8636                    (dst_reg->type == PTR_TO_PACKET_META &&
8637                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8638                        /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8639                        find_good_pkt_pointers(this_branch, dst_reg,
8640                                               dst_reg->type, true);
8641                        mark_pkt_end(other_branch, insn->dst_reg, false);
8642                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8643                            src_reg->type == PTR_TO_PACKET) ||
8644                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8645                            src_reg->type == PTR_TO_PACKET_META)) {
8646                        /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8647                        find_good_pkt_pointers(other_branch, src_reg,
8648                                               src_reg->type, false);
8649                        mark_pkt_end(this_branch, insn->src_reg, true);
8650                } else {
8651                        return false;
8652                }
8653                break;
8654        case BPF_JLE:
8655                if ((dst_reg->type == PTR_TO_PACKET &&
8656                     src_reg->type == PTR_TO_PACKET_END) ||
8657                    (dst_reg->type == PTR_TO_PACKET_META &&
8658                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8659                        /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8660                        find_good_pkt_pointers(other_branch, dst_reg,
8661                                               dst_reg->type, false);
8662                        mark_pkt_end(this_branch, insn->dst_reg, true);
8663                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8664                            src_reg->type == PTR_TO_PACKET) ||
8665                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8666                            src_reg->type == PTR_TO_PACKET_META)) {
8667                        /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8668                        find_good_pkt_pointers(this_branch, src_reg,
8669                                               src_reg->type, true);
8670                        mark_pkt_end(other_branch, insn->src_reg, false);
8671                } else {
8672                        return false;
8673                }
8674                break;
8675        default:
8676                return false;
8677        }
8678
8679        return true;
8680}
8681
8682static void find_equal_scalars(struct bpf_verifier_state *vstate,
8683                               struct bpf_reg_state *known_reg)
8684{
8685        struct bpf_func_state *state;
8686        struct bpf_reg_state *reg;
8687        int i, j;
8688
8689        for (i = 0; i <= vstate->curframe; i++) {
8690                state = vstate->frame[i];
8691                for (j = 0; j < MAX_BPF_REG; j++) {
8692                        reg = &state->regs[j];
8693                        if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8694                                *reg = *known_reg;
8695                }
8696
8697                bpf_for_each_spilled_reg(j, state, reg) {
8698                        if (!reg)
8699                                continue;
8700                        if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8701                                *reg = *known_reg;
8702                }
8703        }
8704}
8705
8706static int check_cond_jmp_op(struct bpf_verifier_env *env,
8707                             struct bpf_insn *insn, int *insn_idx)
8708{
8709        struct bpf_verifier_state *this_branch = env->cur_state;
8710        struct bpf_verifier_state *other_branch;
8711        struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8712        struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8713        u8 opcode = BPF_OP(insn->code);
8714        bool is_jmp32;
8715        int pred = -1;
8716        int err;
8717
8718        /* Only conditional jumps are expected to reach here. */
8719        if (opcode == BPF_JA || opcode > BPF_JSLE) {
8720                verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8721                return -EINVAL;
8722        }
8723
8724        if (BPF_SRC(insn->code) == BPF_X) {
8725                if (insn->imm != 0) {
8726                        verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8727                        return -EINVAL;
8728                }
8729
8730                /* check src1 operand */
8731                err = check_reg_arg(env, insn->src_reg, SRC_OP);
8732                if (err)
8733                        return err;
8734
8735                if (is_pointer_value(env, insn->src_reg)) {
8736                        verbose(env, "R%d pointer comparison prohibited\n",
8737                                insn->src_reg);
8738                        return -EACCES;
8739                }
8740                src_reg = &regs[insn->src_reg];
8741        } else {
8742                if (insn->src_reg != BPF_REG_0) {
8743                        verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8744                        return -EINVAL;
8745                }
8746        }
8747
8748        /* check src2 operand */
8749        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8750        if (err)
8751                return err;
8752
8753        dst_reg = &regs[insn->dst_reg];
8754        is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8755
8756        if (BPF_SRC(insn->code) == BPF_K) {
8757                pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8758        } else if (src_reg->type == SCALAR_VALUE &&
8759                   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8760                pred = is_branch_taken(dst_reg,
8761                                       tnum_subreg(src_reg->var_off).value,
8762                                       opcode,
8763                                       is_jmp32);
8764        } else if (src_reg->type == SCALAR_VALUE &&
8765                   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8766                pred = is_branch_taken(dst_reg,
8767                                       src_reg->var_off.value,
8768                                       opcode,
8769                                       is_jmp32);
8770        } else if (reg_is_pkt_pointer_any(dst_reg) &&
8771                   reg_is_pkt_pointer_any(src_reg) &&
8772                   !is_jmp32) {
8773                pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8774        }
8775
8776        if (pred >= 0) {
8777                /* If we get here with a dst_reg pointer type it is because
8778                 * above is_branch_taken() special cased the 0 comparison.
8779                 */
8780                if (!__is_pointer_value(false, dst_reg))
8781                        err = mark_chain_precision(env, insn->dst_reg);
8782                if (BPF_SRC(insn->code) == BPF_X && !err &&
8783                    !__is_pointer_value(false, src_reg))
8784                        err = mark_chain_precision(env, insn->src_reg);
8785                if (err)
8786                        return err;
8787        }
8788
8789        if (pred == 1) {
8790                /* Only follow the goto, ignore fall-through. If needed, push
8791                 * the fall-through branch for simulation under speculative
8792                 * execution.
8793                 */
8794                if (!env->bypass_spec_v1 &&
8795                    !sanitize_speculative_path(env, insn, *insn_idx + 1,
8796                                               *insn_idx))
8797                        return -EFAULT;
8798                *insn_idx += insn->off;
8799                return 0;
8800        } else if (pred == 0) {
8801                /* Only follow the fall-through branch, since that's where the
8802                 * program will go. If needed, push the goto branch for
8803                 * simulation under speculative execution.
8804                 */
8805                if (!env->bypass_spec_v1 &&
8806                    !sanitize_speculative_path(env, insn,
8807                                               *insn_idx + insn->off + 1,
8808                                               *insn_idx))
8809                        return -EFAULT;
8810                return 0;
8811        }
8812
8813        other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8814                                  false);
8815        if (!other_branch)
8816                return -EFAULT;
8817        other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8818
8819        /* detect if we are comparing against a constant value so we can adjust
8820         * our min/max values for our dst register.
8821         * this is only legit if both are scalars (or pointers to the same
8822         * object, I suppose, but we don't support that right now), because
8823         * otherwise the different base pointers mean the offsets aren't
8824         * comparable.
8825         */
8826        if (BPF_SRC(insn->code) == BPF_X) {
8827                struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8828
8829                if (dst_reg->type == SCALAR_VALUE &&
8830                    src_reg->type == SCALAR_VALUE) {
8831                        if (tnum_is_const(src_reg->var_off) ||
8832                            (is_jmp32 &&
8833                             tnum_is_const(tnum_subreg(src_reg->var_off))))
8834                                reg_set_min_max(&other_branch_regs[insn->dst_reg],
8835                                                dst_reg,
8836                                                src_reg->var_off.value,
8837                                                tnum_subreg(src_reg->var_off).value,
8838                                                opcode, is_jmp32);
8839                        else if (tnum_is_const(dst_reg->var_off) ||
8840                                 (is_jmp32 &&
8841                                  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8842                                reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8843                                                    src_reg,
8844                                                    dst_reg->var_off.value,
8845                                                    tnum_subreg(dst_reg->var_off).value,
8846                                                    opcode, is_jmp32);
8847                        else if (!is_jmp32 &&
8848                                 (opcode == BPF_JEQ || opcode == BPF_JNE))
8849                                /* Comparing for equality, we can combine knowledge */
8850                                reg_combine_min_max(&other_branch_regs[insn->src_reg],
8851                                                    &other_branch_regs[insn->dst_reg],
8852                                                    src_reg, dst_reg, opcode);
8853                        if (src_reg->id &&
8854                            !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8855                                find_equal_scalars(this_branch, src_reg);
8856                                find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8857                        }
8858
8859                }
8860        } else if (dst_reg->type == SCALAR_VALUE) {
8861                reg_set_min_max(&other_branch_regs[insn->dst_reg],
8862                                        dst_reg, insn->imm, (u32)insn->imm,
8863                                        opcode, is_jmp32);
8864        }
8865
8866        if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8867            !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8868                find_equal_scalars(this_branch, dst_reg);
8869                find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8870        }
8871
8872        /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8873         * NOTE: these optimizations below are related with pointer comparison
8874         *       which will never be JMP32.
8875         */
8876        if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8877            insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8878            reg_type_may_be_null(dst_reg->type)) {
8879                /* Mark all identical registers in each branch as either
8880                 * safe or unknown depending R == 0 or R != 0 conditional.
8881                 */
8882                mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8883                                      opcode == BPF_JNE);
8884                mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8885                                      opcode == BPF_JEQ);
8886        } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8887                                           this_branch, other_branch) &&
8888                   is_pointer_value(env, insn->dst_reg)) {
8889                verbose(env, "R%d pointer comparison prohibited\n",
8890                        insn->dst_reg);
8891                return -EACCES;
8892        }
8893        if (env->log.level & BPF_LOG_LEVEL)
8894                print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8895        return 0;
8896}
8897
8898/* verify BPF_LD_IMM64 instruction */
8899static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8900{
8901        struct bpf_insn_aux_data *aux = cur_aux(env);
8902        struct bpf_reg_state *regs = cur_regs(env);
8903        struct bpf_reg_state *dst_reg;
8904        struct bpf_map *map;
8905        int err;
8906
8907        if (BPF_SIZE(insn->code) != BPF_DW) {
8908                verbose(env, "invalid BPF_LD_IMM insn\n");
8909                return -EINVAL;
8910        }
8911        if (insn->off != 0) {
8912                verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8913                return -EINVAL;
8914        }
8915
8916        err = check_reg_arg(env, insn->dst_reg, DST_OP);
8917        if (err)
8918                return err;
8919
8920        dst_reg = &regs[insn->dst_reg];
8921        if (insn->src_reg == 0) {
8922                u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8923
8924                dst_reg->type = SCALAR_VALUE;
8925                __mark_reg_known(&regs[insn->dst_reg], imm);
8926                return 0;
8927        }
8928
8929        if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8930                mark_reg_known_zero(env, regs, insn->dst_reg);
8931
8932                dst_reg->type = aux->btf_var.reg_type;
8933                switch (dst_reg->type) {
8934                case PTR_TO_MEM:
8935                        dst_reg->mem_size = aux->btf_var.mem_size;
8936                        break;
8937                case PTR_TO_BTF_ID:
8938                case PTR_TO_PERCPU_BTF_ID:
8939                        dst_reg->btf = aux->btf_var.btf;
8940                        dst_reg->btf_id = aux->btf_var.btf_id;
8941                        break;
8942                default:
8943                        verbose(env, "bpf verifier is misconfigured\n");
8944                        return -EFAULT;
8945                }
8946                return 0;
8947        }
8948
8949        if (insn->src_reg == BPF_PSEUDO_FUNC) {
8950                struct bpf_prog_aux *aux = env->prog->aux;
8951                u32 subprogno = insn[1].imm;
8952
8953                if (!aux->func_info) {
8954                        verbose(env, "missing btf func_info\n");
8955                        return -EINVAL;
8956                }
8957                if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8958                        verbose(env, "callback function not static\n");
8959                        return -EINVAL;
8960                }
8961
8962                dst_reg->type = PTR_TO_FUNC;
8963                dst_reg->subprogno = subprogno;
8964                return 0;
8965        }
8966
8967        map = env->used_maps[aux->map_index];
8968        mark_reg_known_zero(env, regs, insn->dst_reg);
8969        dst_reg->map_ptr = map;
8970
8971        if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8972                dst_reg->type = PTR_TO_MAP_VALUE;
8973                dst_reg->off = aux->map_off;
8974                if (map_value_has_spin_lock(map))
8975                        dst_reg->id = ++env->id_gen;
8976        } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8977                dst_reg->type = CONST_PTR_TO_MAP;
8978        } else {
8979                verbose(env, "bpf verifier is misconfigured\n");
8980                return -EINVAL;
8981        }
8982
8983        return 0;
8984}
8985
8986static bool may_access_skb(enum bpf_prog_type type)
8987{
8988        switch (type) {
8989        case BPF_PROG_TYPE_SOCKET_FILTER:
8990        case BPF_PROG_TYPE_SCHED_CLS:
8991        case BPF_PROG_TYPE_SCHED_ACT:
8992                return true;
8993        default:
8994                return false;
8995        }
8996}
8997
8998/* verify safety of LD_ABS|LD_IND instructions:
8999 * - they can only appear in the programs where ctx == skb
9000 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9001 *   preserve R6-R9, and store return value into R0
9002 *
9003 * Implicit input:
9004 *   ctx == skb == R6 == CTX
9005 *
9006 * Explicit input:
9007 *   SRC == any register
9008 *   IMM == 32-bit immediate
9009 *
9010 * Output:
9011 *   R0 - 8/16/32-bit skb data converted to cpu endianness
9012 */
9013static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9014{
9015        struct bpf_reg_state *regs = cur_regs(env);
9016        static const int ctx_reg = BPF_REG_6;
9017        u8 mode = BPF_MODE(insn->code);
9018        int i, err;
9019
9020        if (!may_access_skb(resolve_prog_type(env->prog))) {
9021                verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9022                return -EINVAL;
9023        }
9024
9025        if (!env->ops->gen_ld_abs) {
9026                verbose(env, "bpf verifier is misconfigured\n");
9027                return -EINVAL;
9028        }
9029
9030        if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9031            BPF_SIZE(insn->code) == BPF_DW ||
9032            (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9033                verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9034                return -EINVAL;
9035        }
9036
9037        /* check whether implicit source operand (register R6) is readable */
9038        err = check_reg_arg(env, ctx_reg, SRC_OP);
9039        if (err)
9040                return err;
9041
9042        /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9043         * gen_ld_abs() may terminate the program at runtime, leading to
9044         * reference leak.
9045         */
9046        err = check_reference_leak(env);
9047        if (err) {
9048                verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9049                return err;
9050        }
9051
9052        if (env->cur_state->active_spin_lock) {
9053                verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9054                return -EINVAL;
9055        }
9056
9057        if (regs[ctx_reg].type != PTR_TO_CTX) {
9058                verbose(env,
9059                        "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9060                return -EINVAL;
9061        }
9062
9063        if (mode == BPF_IND) {
9064                /* check explicit source operand */
9065                err = check_reg_arg(env, insn->src_reg, SRC_OP);
9066                if (err)
9067                        return err;
9068        }
9069
9070        err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9071        if (err < 0)
9072                return err;
9073
9074        /* reset caller saved regs to unreadable */
9075        for (i = 0; i < CALLER_SAVED_REGS; i++) {
9076                mark_reg_not_init(env, regs, caller_saved[i]);
9077                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9078        }
9079
9080        /* mark destination R0 register as readable, since it contains
9081         * the value fetched from the packet.
9082         * Already marked as written above.
9083         */
9084        mark_reg_unknown(env, regs, BPF_REG_0);
9085        /* ld_abs load up to 32-bit skb data. */
9086        regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9087        return 0;
9088}
9089
9090static int check_return_code(struct bpf_verifier_env *env)
9091{
9092        struct tnum enforce_attach_type_range = tnum_unknown;
9093        const struct bpf_prog *prog = env->prog;
9094        struct bpf_reg_state *reg;
9095        struct tnum range = tnum_range(0, 1);
9096        enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9097        int err;
9098        const bool is_subprog = env->cur_state->frame[0]->subprogno;
9099
9100        /* LSM and struct_ops func-ptr's return type could be "void" */
9101        if (!is_subprog &&
9102            (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9103             prog_type == BPF_PROG_TYPE_LSM) &&
9104            !prog->aux->attach_func_proto->type)
9105                return 0;
9106
9107        /* eBPF calling convetion is such that R0 is used
9108         * to return the value from eBPF program.
9109         * Make sure that it's readable at this time
9110         * of bpf_exit, which means that program wrote
9111         * something into it earlier
9112         */
9113        err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9114        if (err)
9115                return err;
9116
9117        if (is_pointer_value(env, BPF_REG_0)) {
9118                verbose(env, "R0 leaks addr as return value\n");
9119                return -EACCES;
9120        }
9121
9122        reg = cur_regs(env) + BPF_REG_0;
9123        if (is_subprog) {
9124                if (reg->type != SCALAR_VALUE) {
9125                        verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9126                                reg_type_str[reg->type]);
9127                        return -EINVAL;
9128                }
9129                return 0;
9130        }
9131
9132        switch (prog_type) {
9133        case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9134                if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9135                    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9136                    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9137                    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9138                    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9139                    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9140                        range = tnum_range(1, 1);
9141                if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9142                    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9143                        range = tnum_range(0, 3);
9144                break;
9145        case BPF_PROG_TYPE_CGROUP_SKB:
9146                if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9147                        range = tnum_range(0, 3);
9148                        enforce_attach_type_range = tnum_range(2, 3);
9149                }
9150                break;
9151        case BPF_PROG_TYPE_CGROUP_SOCK:
9152        case BPF_PROG_TYPE_SOCK_OPS:
9153        case BPF_PROG_TYPE_CGROUP_DEVICE:
9154        case BPF_PROG_TYPE_CGROUP_SYSCTL:
9155        case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9156                break;
9157        case BPF_PROG_TYPE_RAW_TRACEPOINT:
9158                if (!env->prog->aux->attach_btf_id)
9159                        return 0;
9160                range = tnum_const(0);
9161                break;
9162        case BPF_PROG_TYPE_TRACING:
9163                switch (env->prog->expected_attach_type) {
9164                case BPF_TRACE_FENTRY:
9165                case BPF_TRACE_FEXIT:
9166                        range = tnum_const(0);
9167                        break;
9168                case BPF_TRACE_RAW_TP:
9169                case BPF_MODIFY_RETURN:
9170                        return 0;
9171                case BPF_TRACE_ITER:
9172                        break;
9173                default:
9174                        return -ENOTSUPP;
9175                }
9176                break;
9177        case BPF_PROG_TYPE_SK_LOOKUP:
9178                range = tnum_range(SK_DROP, SK_PASS);
9179                break;
9180        case BPF_PROG_TYPE_EXT:
9181                /* freplace program can return anything as its return value
9182                 * depends on the to-be-replaced kernel func or bpf program.
9183                 */
9184        default:
9185                return 0;
9186        }
9187
9188        if (reg->type != SCALAR_VALUE) {
9189                verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9190                        reg_type_str[reg->type]);
9191                return -EINVAL;
9192        }
9193
9194        if (!tnum_in(range, reg->var_off)) {
9195                verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9196                return -EINVAL;
9197        }
9198
9199        if (!tnum_is_unknown(enforce_attach_type_range) &&
9200            tnum_in(enforce_attach_type_range, reg->var_off))
9201                env->prog->enforce_expected_attach_type = 1;
9202        return 0;
9203}
9204
9205/* non-recursive DFS pseudo code
9206 * 1  procedure DFS-iterative(G,v):
9207 * 2      label v as discovered
9208 * 3      let S be a stack
9209 * 4      S.push(v)
9210 * 5      while S is not empty
9211 * 6            t <- S.pop()
9212 * 7            if t is what we're looking for:
9213 * 8                return t
9214 * 9            for all edges e in G.adjacentEdges(t) do
9215 * 10               if edge e is already labelled
9216 * 11                   continue with the next edge
9217 * 12               w <- G.adjacentVertex(t,e)
9218 * 13               if vertex w is not discovered and not explored
9219 * 14                   label e as tree-edge
9220 * 15                   label w as discovered
9221 * 16                   S.push(w)
9222 * 17                   continue at 5
9223 * 18               else if vertex w is discovered
9224 * 19                   label e as back-edge
9225 * 20               else
9226 * 21                   // vertex w is explored
9227 * 22                   label e as forward- or cross-edge
9228 * 23           label t as explored
9229 * 24           S.pop()
9230 *
9231 * convention:
9232 * 0x10 - discovered
9233 * 0x11 - discovered and fall-through edge labelled
9234 * 0x12 - discovered and fall-through and branch edges labelled
9235 * 0x20 - explored
9236 */
9237
9238enum {
9239        DISCOVERED = 0x10,
9240        EXPLORED = 0x20,
9241        FALLTHROUGH = 1,
9242        BRANCH = 2,
9243};
9244
9245static u32 state_htab_size(struct bpf_verifier_env *env)
9246{
9247        return env->prog->len;
9248}
9249
9250static struct bpf_verifier_state_list **explored_state(
9251                                        struct bpf_verifier_env *env,
9252                                        int idx)
9253{
9254        struct bpf_verifier_state *cur = env->cur_state;
9255        struct bpf_func_state *state = cur->frame[cur->curframe];
9256
9257        return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9258}
9259
9260static void init_explored_state(struct bpf_verifier_env *env, int idx)
9261{
9262        env->insn_aux_data[idx].prune_point = true;
9263}
9264
9265enum {
9266        DONE_EXPLORING = 0,
9267        KEEP_EXPLORING = 1,
9268};
9269
9270/* t, w, e - match pseudo-code above:
9271 * t - index of current instruction
9272 * w - next instruction
9273 * e - edge
9274 */
9275static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9276                     bool loop_ok)
9277{
9278        int *insn_stack = env->cfg.insn_stack;
9279        int *insn_state = env->cfg.insn_state;
9280
9281        if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9282                return DONE_EXPLORING;
9283
9284        if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9285                return DONE_EXPLORING;
9286
9287        if (w < 0 || w >= env->prog->len) {
9288                verbose_linfo(env, t, "%d: ", t);
9289                verbose(env, "jump out of range from insn %d to %d\n", t, w);
9290                return -EINVAL;
9291        }
9292
9293        if (e == BRANCH)
9294                /* mark branch target for state pruning */
9295                init_explored_state(env, w);
9296
9297        if (insn_state[w] == 0) {
9298                /* tree-edge */
9299                insn_state[t] = DISCOVERED | e;
9300                insn_state[w] = DISCOVERED;
9301                if (env->cfg.cur_stack >= env->prog->len)
9302                        return -E2BIG;
9303                insn_stack[env->cfg.cur_stack++] = w;
9304                return KEEP_EXPLORING;
9305        } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9306                if (loop_ok && env->bpf_capable)
9307                        return DONE_EXPLORING;
9308                verbose_linfo(env, t, "%d: ", t);
9309                verbose_linfo(env, w, "%d: ", w);
9310                verbose(env, "back-edge from insn %d to %d\n", t, w);
9311                return -EINVAL;
9312        } else if (insn_state[w] == EXPLORED) {
9313                /* forward- or cross-edge */
9314                insn_state[t] = DISCOVERED | e;
9315        } else {
9316                verbose(env, "insn state internal bug\n");
9317                return -EFAULT;
9318        }
9319        return DONE_EXPLORING;
9320}
9321
9322static int visit_func_call_insn(int t, int insn_cnt,
9323                                struct bpf_insn *insns,
9324                                struct bpf_verifier_env *env,
9325                                bool visit_callee)
9326{
9327        int ret;
9328
9329        ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9330        if (ret)
9331                return ret;
9332
9333        if (t + 1 < insn_cnt)
9334                init_explored_state(env, t + 1);
9335        if (visit_callee) {
9336                init_explored_state(env, t);
9337                ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9338                                env, false);
9339        }
9340        return ret;
9341}
9342
9343/* Visits the instruction at index t and returns one of the following:
9344 *  < 0 - an error occurred
9345 *  DONE_EXPLORING - the instruction was fully explored
9346 *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9347 */
9348static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9349{
9350        struct bpf_insn *insns = env->prog->insnsi;
9351        int ret;
9352
9353        if (bpf_pseudo_func(insns + t))
9354                return visit_func_call_insn(t, insn_cnt, insns, env, true);
9355
9356        /* All non-branch instructions have a single fall-through edge. */
9357        if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9358            BPF_CLASS(insns[t].code) != BPF_JMP32)
9359                return push_insn(t, t + 1, FALLTHROUGH, env, false);
9360
9361        switch (BPF_OP(insns[t].code)) {
9362        case BPF_EXIT:
9363                return DONE_EXPLORING;
9364
9365        case BPF_CALL:
9366                return visit_func_call_insn(t, insn_cnt, insns, env,
9367                                            insns[t].src_reg == BPF_PSEUDO_CALL);
9368
9369        case BPF_JA:
9370                if (BPF_SRC(insns[t].code) != BPF_K)
9371                        return -EINVAL;
9372
9373                /* unconditional jump with single edge */
9374                ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9375                                true);
9376                if (ret)
9377                        return ret;
9378
9379                /* unconditional jmp is not a good pruning point,
9380                 * but it's marked, since backtracking needs
9381                 * to record jmp history in is_state_visited().
9382                 */
9383                init_explored_state(env, t + insns[t].off + 1);
9384                /* tell verifier to check for equivalent states
9385                 * after every call and jump
9386                 */
9387                if (t + 1 < insn_cnt)
9388                        init_explored_state(env, t + 1);
9389
9390                return ret;
9391
9392        default:
9393                /* conditional jump with two edges */
9394                init_explored_state(env, t);
9395                ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9396                if (ret)
9397                        return ret;
9398
9399                return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9400        }
9401}
9402
9403/* non-recursive depth-first-search to detect loops in BPF program
9404 * loop == back-edge in directed graph
9405 */
9406static int check_cfg(struct bpf_verifier_env *env)
9407{
9408        int insn_cnt = env->prog->len;
9409        int *insn_stack, *insn_state;
9410        int ret = 0;
9411        int i;
9412
9413        insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9414        if (!insn_state)
9415                return -ENOMEM;
9416
9417        insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9418        if (!insn_stack) {
9419                kvfree(insn_state);
9420                return -ENOMEM;
9421        }
9422
9423        insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9424        insn_stack[0] = 0; /* 0 is the first instruction */
9425        env->cfg.cur_stack = 1;
9426
9427        while (env->cfg.cur_stack > 0) {
9428                int t = insn_stack[env->cfg.cur_stack - 1];
9429
9430                ret = visit_insn(t, insn_cnt, env);
9431                switch (ret) {
9432                case DONE_EXPLORING:
9433                        insn_state[t] = EXPLORED;
9434                        env->cfg.cur_stack--;
9435                        break;
9436                case KEEP_EXPLORING:
9437                        break;
9438                default:
9439                        if (ret > 0) {
9440                                verbose(env, "visit_insn internal bug\n");
9441                                ret = -EFAULT;
9442                        }
9443                        goto err_free;
9444                }
9445        }
9446
9447        if (env->cfg.cur_stack < 0) {
9448                verbose(env, "pop stack internal bug\n");
9449                ret = -EFAULT;
9450                goto err_free;
9451        }
9452
9453        for (i = 0; i < insn_cnt; i++) {
9454                if (insn_state[i] != EXPLORED) {
9455                        verbose(env, "unreachable insn %d\n", i);
9456                        ret = -EINVAL;
9457                        goto err_free;
9458                }
9459        }
9460        ret = 0; /* cfg looks good */
9461
9462err_free:
9463        kvfree(insn_state);
9464        kvfree(insn_stack);
9465        env->cfg.insn_state = env->cfg.insn_stack = NULL;
9466        return ret;
9467}
9468
9469static int check_abnormal_return(struct bpf_verifier_env *env)
9470{
9471        int i;
9472
9473        for (i = 1; i < env->subprog_cnt; i++) {
9474                if (env->subprog_info[i].has_ld_abs) {
9475                        verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9476                        return -EINVAL;
9477                }
9478                if (env->subprog_info[i].has_tail_call) {
9479                        verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9480                        return -EINVAL;
9481                }
9482        }
9483        return 0;
9484}
9485
9486/* The minimum supported BTF func info size */
9487#define MIN_BPF_FUNCINFO_SIZE   8
9488#define MAX_FUNCINFO_REC_SIZE   252
9489
9490static int check_btf_func(struct bpf_verifier_env *env,
9491                          const union bpf_attr *attr,
9492                          union bpf_attr __user *uattr)
9493{
9494        const struct btf_type *type, *func_proto, *ret_type;
9495        u32 i, nfuncs, urec_size, min_size;
9496        u32 krec_size = sizeof(struct bpf_func_info);
9497        struct bpf_func_info *krecord;
9498        struct bpf_func_info_aux *info_aux = NULL;
9499        struct bpf_prog *prog;
9500        const struct btf *btf;
9501        void __user *urecord;
9502        u32 prev_offset = 0;
9503        bool scalar_return;
9504        int ret = -ENOMEM;
9505
9506        nfuncs = attr->func_info_cnt;
9507        if (!nfuncs) {
9508                if (check_abnormal_return(env))
9509                        return -EINVAL;
9510                return 0;
9511        }
9512
9513        if (nfuncs != env->subprog_cnt) {
9514                verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9515                return -EINVAL;
9516        }
9517
9518        urec_size = attr->func_info_rec_size;
9519        if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9520            urec_size > MAX_FUNCINFO_REC_SIZE ||
9521            urec_size % sizeof(u32)) {
9522                verbose(env, "invalid func info rec size %u\n", urec_size);
9523                return -EINVAL;
9524        }
9525
9526        prog = env->prog;
9527        btf = prog->aux->btf;
9528
9529        urecord = u64_to_user_ptr(attr->func_info);
9530        min_size = min_t(u32, krec_size, urec_size);
9531
9532        krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9533        if (!krecord)
9534                return -ENOMEM;
9535        info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9536        if (!info_aux)
9537                goto err_free;
9538
9539        for (i = 0; i < nfuncs; i++) {
9540                ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9541                if (ret) {
9542                        if (ret == -E2BIG) {
9543                                verbose(env, "nonzero tailing record in func info");
9544                                /* set the size kernel expects so loader can zero
9545                                 * out the rest of the record.
9546                                 */
9547                                if (put_user(min_size, &uattr->func_info_rec_size))
9548                                        ret = -EFAULT;
9549                        }
9550                        goto err_free;
9551                }
9552
9553                if (copy_from_user(&krecord[i], urecord, min_size)) {
9554                        ret = -EFAULT;
9555                        goto err_free;
9556                }
9557
9558                /* check insn_off */
9559                ret = -EINVAL;
9560                if (i == 0) {
9561                        if (krecord[i].insn_off) {
9562                                verbose(env,
9563                                        "nonzero insn_off %u for the first func info record",
9564                                        krecord[i].insn_off);
9565                                goto err_free;
9566                        }
9567                } else if (krecord[i].insn_off <= prev_offset) {
9568                        verbose(env,
9569                                "same or smaller insn offset (%u) than previous func info record (%u)",
9570                                krecord[i].insn_off, prev_offset);
9571                        goto err_free;
9572                }
9573
9574                if (env->subprog_info[i].start != krecord[i].insn_off) {
9575                        verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9576                        goto err_free;
9577                }
9578
9579                /* check type_id */
9580                type = btf_type_by_id(btf, krecord[i].type_id);
9581                if (!type || !btf_type_is_func(type)) {
9582                        verbose(env, "invalid type id %d in func info",
9583                                krecord[i].type_id);
9584                        goto err_free;
9585                }
9586                info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9587
9588                func_proto = btf_type_by_id(btf, type->type);
9589                if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9590                        /* btf_func_check() already verified it during BTF load */
9591                        goto err_free;
9592                ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9593                scalar_return =
9594                        btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9595                if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9596                        verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9597                        goto err_free;
9598                }
9599                if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9600                        verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9601                        goto err_free;
9602                }
9603
9604                prev_offset = krecord[i].insn_off;
9605                urecord += urec_size;
9606        }
9607
9608        prog->aux->func_info = krecord;
9609        prog->aux->func_info_cnt = nfuncs;
9610        prog->aux->func_info_aux = info_aux;
9611        return 0;
9612
9613err_free:
9614        kvfree(krecord);
9615        kfree(info_aux);
9616        return ret;
9617}
9618
9619static void adjust_btf_func(struct bpf_verifier_env *env)
9620{
9621        struct bpf_prog_aux *aux = env->prog->aux;
9622        int i;
9623
9624        if (!aux->func_info)
9625                return;
9626
9627        for (i = 0; i < env->subprog_cnt; i++)
9628                aux->func_info[i].insn_off = env->subprog_info[i].start;
9629}
9630
9631#define MIN_BPF_LINEINFO_SIZE   (offsetof(struct bpf_line_info, line_col) + \
9632                sizeof(((struct bpf_line_info *)(0))->line_col))
9633#define MAX_LINEINFO_REC_SIZE   MAX_FUNCINFO_REC_SIZE
9634
9635static int check_btf_line(struct bpf_verifier_env *env,
9636                          const union bpf_attr *attr,
9637                          union bpf_attr __user *uattr)
9638{
9639        u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9640        struct bpf_subprog_info *sub;
9641        struct bpf_line_info *linfo;
9642        struct bpf_prog *prog;
9643        const struct btf *btf;
9644        void __user *ulinfo;
9645        int err;
9646
9647        nr_linfo = attr->line_info_cnt;
9648        if (!nr_linfo)
9649                return 0;
9650
9651        rec_size = attr->line_info_rec_size;
9652        if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9653            rec_size > MAX_LINEINFO_REC_SIZE ||
9654            rec_size & (sizeof(u32) - 1))
9655                return -EINVAL;
9656
9657        /* Need to zero it in case the userspace may
9658         * pass in a smaller bpf_line_info object.
9659         */
9660        linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9661                         GFP_KERNEL | __GFP_NOWARN);
9662        if (!linfo)
9663                return -ENOMEM;
9664
9665        prog = env->prog;
9666        btf = prog->aux->btf;
9667
9668        s = 0;
9669        sub = env->subprog_info;
9670        ulinfo = u64_to_user_ptr(attr->line_info);
9671        expected_size = sizeof(struct bpf_line_info);
9672        ncopy = min_t(u32, expected_size, rec_size);
9673        for (i = 0; i < nr_linfo; i++) {
9674                err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9675                if (err) {
9676                        if (err == -E2BIG) {
9677                                verbose(env, "nonzero tailing record in line_info");
9678                                if (put_user(expected_size,
9679                                             &uattr->line_info_rec_size))
9680                                        err = -EFAULT;
9681                        }
9682                        goto err_free;
9683                }
9684
9685                if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9686                        err = -EFAULT;
9687                        goto err_free;
9688                }
9689
9690                /*
9691                 * Check insn_off to ensure
9692                 * 1) strictly increasing AND
9693                 * 2) bounded by prog->len
9694                 *
9695                 * The linfo[0].insn_off == 0 check logically falls into
9696                 * the later "missing bpf_line_info for func..." case
9697                 * because the first linfo[0].insn_off must be the
9698                 * first sub also and the first sub must have
9699                 * subprog_info[0].start == 0.
9700                 */
9701                if ((i && linfo[i].insn_off <= prev_offset) ||
9702                    linfo[i].insn_off >= prog->len) {
9703                        verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9704                                i, linfo[i].insn_off, prev_offset,
9705                                prog->len);
9706                        err = -EINVAL;
9707                        goto err_free;
9708                }
9709
9710                if (!prog->insnsi[linfo[i].insn_off].code) {
9711                        verbose(env,
9712                                "Invalid insn code at line_info[%u].insn_off\n",
9713                                i);
9714                        err = -EINVAL;
9715                        goto err_free;
9716                }
9717
9718                if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9719                    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9720                        verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9721                        err = -EINVAL;
9722                        goto err_free;
9723                }
9724
9725                if (s != env->subprog_cnt) {
9726                        if (linfo[i].insn_off == sub[s].start) {
9727                                sub[s].linfo_idx = i;
9728                                s++;
9729                        } else if (sub[s].start < linfo[i].insn_off) {
9730                                verbose(env, "missing bpf_line_info for func#%u\n", s);
9731                                err = -EINVAL;
9732                                goto err_free;
9733                        }
9734                }
9735
9736                prev_offset = linfo[i].insn_off;
9737                ulinfo += rec_size;
9738        }
9739
9740        if (s != env->subprog_cnt) {
9741                verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9742                        env->subprog_cnt - s, s);
9743                err = -EINVAL;
9744                goto err_free;
9745        }
9746
9747        prog->aux->linfo = linfo;
9748        prog->aux->nr_linfo = nr_linfo;
9749
9750        return 0;
9751
9752err_free:
9753        kvfree(linfo);
9754        return err;
9755}
9756
9757static int check_btf_info(struct bpf_verifier_env *env,
9758                          const union bpf_attr *attr,
9759                          union bpf_attr __user *uattr)
9760{
9761        struct btf *btf;
9762        int err;
9763
9764        if (!attr->func_info_cnt && !attr->line_info_cnt) {
9765                if (check_abnormal_return(env))
9766                        return -EINVAL;
9767                return 0;
9768        }
9769
9770        btf = btf_get_by_fd(attr->prog_btf_fd);
9771        if (IS_ERR(btf))
9772                return PTR_ERR(btf);
9773        if (btf_is_kernel(btf)) {
9774                btf_put(btf);
9775                return -EACCES;
9776        }
9777        env->prog->aux->btf = btf;
9778
9779        err = check_btf_func(env, attr, uattr);
9780        if (err)
9781                return err;
9782
9783        err = check_btf_line(env, attr, uattr);
9784        if (err)
9785                return err;
9786
9787        return 0;
9788}
9789
9790/* check %cur's range satisfies %old's */
9791static bool range_within(struct bpf_reg_state *old,
9792                         struct bpf_reg_state *cur)
9793{
9794        return old->umin_value <= cur->umin_value &&
9795               old->umax_value >= cur->umax_value &&
9796               old->smin_value <= cur->smin_value &&
9797               old->smax_value >= cur->smax_value &&
9798               old->u32_min_value <= cur->u32_min_value &&
9799               old->u32_max_value >= cur->u32_max_value &&
9800               old->s32_min_value <= cur->s32_min_value &&
9801               old->s32_max_value >= cur->s32_max_value;
9802}
9803
9804/* Maximum number of register states that can exist at once */
9805#define ID_MAP_SIZE     (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9806struct idpair {
9807        u32 old;
9808        u32 cur;
9809};
9810
9811/* If in the old state two registers had the same id, then they need to have
9812 * the same id in the new state as well.  But that id could be different from
9813 * the old state, so we need to track the mapping from old to new ids.
9814 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9815 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9816 * regs with a different old id could still have new id 9, we don't care about
9817 * that.
9818 * So we look through our idmap to see if this old id has been seen before.  If
9819 * so, we require the new id to match; otherwise, we add the id pair to the map.
9820 */
9821static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9822{
9823        unsigned int i;
9824
9825        for (i = 0; i < ID_MAP_SIZE; i++) {
9826                if (!idmap[i].old) {
9827                        /* Reached an empty slot; haven't seen this id before */
9828                        idmap[i].old = old_id;
9829                        idmap[i].cur = cur_id;
9830                        return true;
9831                }
9832                if (idmap[i].old == old_id)
9833                        return idmap[i].cur == cur_id;
9834        }
9835        /* We ran out of idmap slots, which should be impossible */
9836        WARN_ON_ONCE(1);
9837        return false;
9838}
9839
9840static void clean_func_state(struct bpf_verifier_env *env,
9841                             struct bpf_func_state *st)
9842{
9843        enum bpf_reg_liveness live;
9844        int i, j;
9845
9846        for (i = 0; i < BPF_REG_FP; i++) {
9847                live = st->regs[i].live;
9848                /* liveness must not touch this register anymore */
9849                st->regs[i].live |= REG_LIVE_DONE;
9850                if (!(live & REG_LIVE_READ))
9851                        /* since the register is unused, clear its state
9852                         * to make further comparison simpler
9853                         */
9854                        __mark_reg_not_init(env, &st->regs[i]);
9855        }
9856
9857        for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9858                live = st->stack[i].spilled_ptr.live;
9859                /* liveness must not touch this stack slot anymore */
9860                st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9861                if (!(live & REG_LIVE_READ)) {
9862                        __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9863                        for (j = 0; j < BPF_REG_SIZE; j++)
9864                                st->stack[i].slot_type[j] = STACK_INVALID;
9865                }
9866        }
9867}
9868
9869static void clean_verifier_state(struct bpf_verifier_env *env,
9870                                 struct bpf_verifier_state *st)
9871{
9872        int i;
9873
9874        if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9875                /* all regs in this state in all frames were already marked */
9876                return;
9877
9878        for (i = 0; i <= st->curframe; i++)
9879                clean_func_state(env, st->frame[i]);
9880}
9881
9882/* the parentage chains form a tree.
9883 * the verifier states are added to state lists at given insn and
9884 * pushed into state stack for future exploration.
9885 * when the verifier reaches bpf_exit insn some of the verifer states
9886 * stored in the state lists have their final liveness state already,
9887 * but a lot of states will get revised from liveness point of view when
9888 * the verifier explores other branches.
9889 * Example:
9890 * 1: r0 = 1
9891 * 2: if r1 == 100 goto pc+1
9892 * 3: r0 = 2
9893 * 4: exit
9894 * when the verifier reaches exit insn the register r0 in the state list of
9895 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9896 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9897 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9898 *
9899 * Since the verifier pushes the branch states as it sees them while exploring
9900 * the program the condition of walking the branch instruction for the second
9901 * time means that all states below this branch were already explored and
9902 * their final liveness markes are already propagated.
9903 * Hence when the verifier completes the search of state list in is_state_visited()
9904 * we can call this clean_live_states() function to mark all liveness states
9905 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9906 * will not be used.
9907 * This function also clears the registers and stack for states that !READ
9908 * to simplify state merging.
9909 *
9910 * Important note here that walking the same branch instruction in the callee
9911 * doesn't meant that the states are DONE. The verifier has to compare
9912 * the callsites
9913 */
9914static void clean_live_states(struct bpf_verifier_env *env, int insn,
9915                              struct bpf_verifier_state *cur)
9916{
9917        struct bpf_verifier_state_list *sl;
9918        int i;
9919
9920        sl = *explored_state(env, insn);
9921        while (sl) {
9922                if (sl->state.branches)
9923                        goto next;
9924                if (sl->state.insn_idx != insn ||
9925                    sl->state.curframe != cur->curframe)
9926                        goto next;
9927                for (i = 0; i <= cur->curframe; i++)
9928                        if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9929                                goto next;
9930                clean_verifier_state(env, &sl->state);
9931next:
9932                sl = sl->next;
9933        }
9934}
9935
9936/* Returns true if (rold safe implies rcur safe) */
9937static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9938                    struct idpair *idmap)
9939{
9940        bool equal;
9941
9942        if (!(rold->live & REG_LIVE_READ))
9943                /* explored state didn't use this */
9944                return true;
9945
9946        equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9947
9948        if (rold->type == PTR_TO_STACK)
9949                /* two stack pointers are equal only if they're pointing to
9950                 * the same stack frame, since fp-8 in foo != fp-8 in bar
9951                 */
9952                return equal && rold->frameno == rcur->frameno;
9953
9954        if (equal)
9955                return true;
9956
9957        if (rold->type == NOT_INIT)
9958                /* explored state can't have used this */
9959                return true;
9960        if (rcur->type == NOT_INIT)
9961                return false;
9962        switch (rold->type) {
9963        case SCALAR_VALUE:
9964                if (rcur->type == SCALAR_VALUE) {
9965                        if (!rold->precise && !rcur->precise)
9966                                return true;
9967                        /* new val must satisfy old val knowledge */
9968                        return range_within(rold, rcur) &&
9969                               tnum_in(rold->var_off, rcur->var_off);
9970                } else {
9971                        /* We're trying to use a pointer in place of a scalar.
9972                         * Even if the scalar was unbounded, this could lead to
9973                         * pointer leaks because scalars are allowed to leak
9974                         * while pointers are not. We could make this safe in
9975                         * special cases if root is calling us, but it's
9976                         * probably not worth the hassle.
9977                         */
9978                        return false;
9979                }
9980        case PTR_TO_MAP_KEY:
9981        case PTR_TO_MAP_VALUE:
9982                /* If the new min/max/var_off satisfy the old ones and
9983                 * everything else matches, we are OK.
9984                 * 'id' is not compared, since it's only used for maps with
9985                 * bpf_spin_lock inside map element and in such cases if
9986                 * the rest of the prog is valid for one map element then
9987                 * it's valid for all map elements regardless of the key
9988                 * used in bpf_map_lookup()
9989                 */
9990                return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9991                       range_within(rold, rcur) &&
9992                       tnum_in(rold->var_off, rcur->var_off);
9993        case PTR_TO_MAP_VALUE_OR_NULL:
9994                /* a PTR_TO_MAP_VALUE could be safe to use as a
9995                 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9996                 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9997                 * checked, doing so could have affected others with the same
9998                 * id, and we can't check for that because we lost the id when
9999                 * we converted to a PTR_TO_MAP_VALUE.
10000                 */
10001                if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10002                        return false;
10003                if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10004                        return false;
10005                /* Check our ids match any regs they're supposed to */
10006                return check_ids(rold->id, rcur->id, idmap);
10007        case PTR_TO_PACKET_META:
10008        case PTR_TO_PACKET:
10009                if (rcur->type != rold->type)
10010                        return false;
10011                /* We must have at least as much range as the old ptr
10012                 * did, so that any accesses which were safe before are
10013                 * still safe.  This is true even if old range < old off,
10014                 * since someone could have accessed through (ptr - k), or
10015                 * even done ptr -= k in a register, to get a safe access.
10016                 */
10017                if (rold->range > rcur->range)
10018                        return false;
10019                /* If the offsets don't match, we can't trust our alignment;
10020                 * nor can we be sure that we won't fall out of range.
10021                 */
10022                if (rold->off != rcur->off)
10023                        return false;
10024                /* id relations must be preserved */
10025                if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10026                        return false;
10027                /* new val must satisfy old val knowledge */
10028                return range_within(rold, rcur) &&
10029                       tnum_in(rold->var_off, rcur->var_off);
10030        case PTR_TO_CTX:
10031        case CONST_PTR_TO_MAP:
10032        case PTR_TO_PACKET_END:
10033        case PTR_TO_FLOW_KEYS:
10034        case PTR_TO_SOCKET:
10035        case PTR_TO_SOCKET_OR_NULL:
10036        case PTR_TO_SOCK_COMMON:
10037        case PTR_TO_SOCK_COMMON_OR_NULL:
10038        case PTR_TO_TCP_SOCK:
10039        case PTR_TO_TCP_SOCK_OR_NULL:
10040        case PTR_TO_XDP_SOCK:
10041                /* Only valid matches are exact, which memcmp() above
10042                 * would have accepted
10043                 */
10044        default:
10045                /* Don't know what's going on, just say it's not safe */
10046                return false;
10047        }
10048
10049        /* Shouldn't get here; if we do, say it's not safe */
10050        WARN_ON_ONCE(1);
10051        return false;
10052}
10053
10054static bool stacksafe(struct bpf_func_state *old,
10055                      struct bpf_func_state *cur,
10056                      struct idpair *idmap)
10057{
10058        int i, spi;
10059
10060        /* walk slots of the explored stack and ignore any additional
10061         * slots in the current stack, since explored(safe) state
10062         * didn't use them
10063         */
10064        for (i = 0; i < old->allocated_stack; i++) {
10065                spi = i / BPF_REG_SIZE;
10066
10067                if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10068                        i += BPF_REG_SIZE - 1;
10069                        /* explored state didn't use this */
10070                        continue;
10071                }
10072
10073                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10074                        continue;
10075
10076                /* explored stack has more populated slots than current stack
10077                 * and these slots were used
10078                 */
10079                if (i >= cur->allocated_stack)
10080                        return false;
10081
10082                /* if old state was safe with misc data in the stack
10083                 * it will be safe with zero-initialized stack.
10084                 * The opposite is not true
10085                 */
10086                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10087                    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10088                        continue;
10089                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10090                    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10091                        /* Ex: old explored (safe) state has STACK_SPILL in
10092                         * this stack slot, but current has STACK_MISC ->
10093                         * this verifier states are not equivalent,
10094                         * return false to continue verification of this path
10095                         */
10096                        return false;
10097                if (i % BPF_REG_SIZE)
10098                        continue;
10099                if (old->stack[spi].slot_type[0] != STACK_SPILL)
10100                        continue;
10101                if (!regsafe(&old->stack[spi].spilled_ptr,
10102                             &cur->stack[spi].spilled_ptr,
10103                             idmap))
10104                        /* when explored and current stack slot are both storing
10105                         * spilled registers, check that stored pointers types
10106                         * are the same as well.
10107                         * Ex: explored safe path could have stored
10108                         * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10109                         * but current path has stored:
10110                         * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10111                         * such verifier states are not equivalent.
10112                         * return false to continue verification of this path
10113                         */
10114                        return false;
10115        }
10116        return true;
10117}
10118
10119static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10120{
10121        if (old->acquired_refs != cur->acquired_refs)
10122                return false;
10123        return !memcmp(old->refs, cur->refs,
10124                       sizeof(*old->refs) * old->acquired_refs);
10125}
10126
10127/* compare two verifier states
10128 *
10129 * all states stored in state_list are known to be valid, since
10130 * verifier reached 'bpf_exit' instruction through them
10131 *
10132 * this function is called when verifier exploring different branches of
10133 * execution popped from the state stack. If it sees an old state that has
10134 * more strict register state and more strict stack state then this execution
10135 * branch doesn't need to be explored further, since verifier already
10136 * concluded that more strict state leads to valid finish.
10137 *
10138 * Therefore two states are equivalent if register state is more conservative
10139 * and explored stack state is more conservative than the current one.
10140 * Example:
10141 *       explored                   current
10142 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10143 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10144 *
10145 * In other words if current stack state (one being explored) has more
10146 * valid slots than old one that already passed validation, it means
10147 * the verifier can stop exploring and conclude that current state is valid too
10148 *
10149 * Similarly with registers. If explored state has register type as invalid
10150 * whereas register type in current state is meaningful, it means that
10151 * the current state will reach 'bpf_exit' instruction safely
10152 */
10153static bool func_states_equal(struct bpf_func_state *old,
10154                              struct bpf_func_state *cur)
10155{
10156        struct idpair *idmap;
10157        bool ret = false;
10158        int i;
10159
10160        idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
10161        /* If we failed to allocate the idmap, just say it's not safe */
10162        if (!idmap)
10163                return false;
10164
10165        for (i = 0; i < MAX_BPF_REG; i++) {
10166                if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
10167                        goto out_free;
10168        }
10169
10170        if (!stacksafe(old, cur, idmap))
10171                goto out_free;
10172
10173        if (!refsafe(old, cur))
10174                goto out_free;
10175        ret = true;
10176out_free:
10177        kfree(idmap);
10178        return ret;
10179}
10180
10181static bool states_equal(struct bpf_verifier_env *env,
10182                         struct bpf_verifier_state *old,
10183                         struct bpf_verifier_state *cur)
10184{
10185        int i;
10186
10187        if (old->curframe != cur->curframe)
10188                return false;
10189
10190        /* Verification state from speculative execution simulation
10191         * must never prune a non-speculative execution one.
10192         */
10193        if (old->speculative && !cur->speculative)
10194                return false;
10195
10196        if (old->active_spin_lock != cur->active_spin_lock)
10197                return false;
10198
10199        /* for states to be equal callsites have to be the same
10200         * and all frame states need to be equivalent
10201         */
10202        for (i = 0; i <= old->curframe; i++) {
10203                if (old->frame[i]->callsite != cur->frame[i]->callsite)
10204                        return false;
10205                if (!func_states_equal(old->frame[i], cur->frame[i]))
10206                        return false;
10207        }
10208        return true;
10209}
10210
10211/* Return 0 if no propagation happened. Return negative error code if error
10212 * happened. Otherwise, return the propagated bit.
10213 */
10214static int propagate_liveness_reg(struct bpf_verifier_env *env,
10215                                  struct bpf_reg_state *reg,
10216                                  struct bpf_reg_state *parent_reg)
10217{
10218        u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10219        u8 flag = reg->live & REG_LIVE_READ;
10220        int err;
10221
10222        /* When comes here, read flags of PARENT_REG or REG could be any of
10223         * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10224         * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10225         */
10226        if (parent_flag == REG_LIVE_READ64 ||
10227            /* Or if there is no read flag from REG. */
10228            !flag ||
10229            /* Or if the read flag from REG is the same as PARENT_REG. */
10230            parent_flag == flag)
10231                return 0;
10232
10233        err = mark_reg_read(env, reg, parent_reg, flag);
10234        if (err)
10235                return err;
10236
10237        return flag;
10238}
10239
10240/* A write screens off any subsequent reads; but write marks come from the
10241 * straight-line code between a state and its parent.  When we arrive at an
10242 * equivalent state (jump target or such) we didn't arrive by the straight-line
10243 * code, so read marks in the state must propagate to the parent regardless
10244 * of the state's write marks. That's what 'parent == state->parent' comparison
10245 * in mark_reg_read() is for.
10246 */
10247static int propagate_liveness(struct bpf_verifier_env *env,
10248                              const struct bpf_verifier_state *vstate,
10249                              struct bpf_verifier_state *vparent)
10250{
10251        struct bpf_reg_state *state_reg, *parent_reg;
10252        struct bpf_func_state *state, *parent;
10253        int i, frame, err = 0;
10254
10255        if (vparent->curframe != vstate->curframe) {
10256                WARN(1, "propagate_live: parent frame %d current frame %d\n",
10257                     vparent->curframe, vstate->curframe);
10258                return -EFAULT;
10259        }
10260        /* Propagate read liveness of registers... */
10261        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10262        for (frame = 0; frame <= vstate->curframe; frame++) {
10263                parent = vparent->frame[frame];
10264                state = vstate->frame[frame];
10265                parent_reg = parent->regs;
10266                state_reg = state->regs;
10267                /* We don't need to worry about FP liveness, it's read-only */
10268                for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10269                        err = propagate_liveness_reg(env, &state_reg[i],
10270                                                     &parent_reg[i]);
10271                        if (err < 0)
10272                                return err;
10273                        if (err == REG_LIVE_READ64)
10274                                mark_insn_zext(env, &parent_reg[i]);
10275                }
10276
10277                /* Propagate stack slots. */
10278                for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10279                            i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10280                        parent_reg = &parent->stack[i].spilled_ptr;
10281                        state_reg = &state->stack[i].spilled_ptr;
10282                        err = propagate_liveness_reg(env, state_reg,
10283                                                     parent_reg);
10284                        if (err < 0)
10285                                return err;
10286                }
10287        }
10288        return 0;
10289}
10290
10291/* find precise scalars in the previous equivalent state and
10292 * propagate them into the current state
10293 */
10294static int propagate_precision(struct bpf_verifier_env *env,
10295                               const struct bpf_verifier_state *old)
10296{
10297        struct bpf_reg_state *state_reg;
10298        struct bpf_func_state *state;
10299        int i, err = 0;
10300
10301        state = old->frame[old->curframe];
10302        state_reg = state->regs;
10303        for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10304                if (state_reg->type != SCALAR_VALUE ||
10305                    !state_reg->precise)
10306                        continue;
10307                if (env->log.level & BPF_LOG_LEVEL2)
10308                        verbose(env, "propagating r%d\n", i);
10309                err = mark_chain_precision(env, i);
10310                if (err < 0)
10311                        return err;
10312        }
10313
10314        for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10315                if (state->stack[i].slot_type[0] != STACK_SPILL)
10316                        continue;
10317                state_reg = &state->stack[i].spilled_ptr;
10318                if (state_reg->type != SCALAR_VALUE ||
10319                    !state_reg->precise)
10320                        continue;
10321                if (env->log.level & BPF_LOG_LEVEL2)
10322                        verbose(env, "propagating fp%d\n",
10323                                (-i - 1) * BPF_REG_SIZE);
10324                err = mark_chain_precision_stack(env, i);
10325                if (err < 0)
10326                        return err;
10327        }
10328        return 0;
10329}
10330
10331static bool states_maybe_looping(struct bpf_verifier_state *old,
10332                                 struct bpf_verifier_state *cur)
10333{
10334        struct bpf_func_state *fold, *fcur;
10335        int i, fr = cur->curframe;
10336
10337        if (old->curframe != fr)
10338                return false;
10339
10340        fold = old->frame[fr];
10341        fcur = cur->frame[fr];
10342        for (i = 0; i < MAX_BPF_REG; i++)
10343                if (memcmp(&fold->regs[i], &fcur->regs[i],
10344                           offsetof(struct bpf_reg_state, parent)))
10345                        return false;
10346        return true;
10347}
10348
10349
10350static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10351{
10352        struct bpf_verifier_state_list *new_sl;
10353        struct bpf_verifier_state_list *sl, **pprev;
10354        struct bpf_verifier_state *cur = env->cur_state, *new;
10355        int i, j, err, states_cnt = 0;
10356        bool add_new_state = env->test_state_freq ? true : false;
10357
10358        cur->last_insn_idx = env->prev_insn_idx;
10359        if (!env->insn_aux_data[insn_idx].prune_point)
10360                /* this 'insn_idx' instruction wasn't marked, so we will not
10361                 * be doing state search here
10362                 */
10363                return 0;
10364
10365        /* bpf progs typically have pruning point every 4 instructions
10366         * http://vger.kernel.org/bpfconf2019.html#session-1
10367         * Do not add new state for future pruning if the verifier hasn't seen
10368         * at least 2 jumps and at least 8 instructions.
10369         * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10370         * In tests that amounts to up to 50% reduction into total verifier
10371         * memory consumption and 20% verifier time speedup.
10372         */
10373        if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10374            env->insn_processed - env->prev_insn_processed >= 8)
10375                add_new_state = true;
10376
10377        pprev = explored_state(env, insn_idx);
10378        sl = *pprev;
10379
10380        clean_live_states(env, insn_idx, cur);
10381
10382        while (sl) {
10383                states_cnt++;
10384                if (sl->state.insn_idx != insn_idx)
10385                        goto next;
10386                if (sl->state.branches) {
10387                        if (states_maybe_looping(&sl->state, cur) &&
10388                            states_equal(env, &sl->state, cur)) {
10389                                verbose_linfo(env, insn_idx, "; ");
10390                                verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10391                                return -EINVAL;
10392                        }
10393                        /* if the verifier is processing a loop, avoid adding new state
10394                         * too often, since different loop iterations have distinct
10395                         * states and may not help future pruning.
10396                         * This threshold shouldn't be too low to make sure that
10397                         * a loop with large bound will be rejected quickly.
10398                         * The most abusive loop will be:
10399                         * r1 += 1
10400                         * if r1 < 1000000 goto pc-2
10401                         * 1M insn_procssed limit / 100 == 10k peak states.
10402                         * This threshold shouldn't be too high either, since states
10403                         * at the end of the loop are likely to be useful in pruning.
10404                         */
10405                        if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10406                            env->insn_processed - env->prev_insn_processed < 100)
10407                                add_new_state = false;
10408                        goto miss;
10409                }
10410                if (states_equal(env, &sl->state, cur)) {
10411                        sl->hit_cnt++;
10412                        /* reached equivalent register/stack state,
10413                         * prune the search.
10414                         * Registers read by the continuation are read by us.
10415                         * If we have any write marks in env->cur_state, they
10416                         * will prevent corresponding reads in the continuation
10417                         * from reaching our parent (an explored_state).  Our
10418                         * own state will get the read marks recorded, but
10419                         * they'll be immediately forgotten as we're pruning
10420                         * this state and will pop a new one.
10421                         */
10422                        err = propagate_liveness(env, &sl->state, cur);
10423
10424                        /* if previous state reached the exit with precision and
10425                         * current state is equivalent to it (except precsion marks)
10426                         * the precision needs to be propagated back in
10427                         * the current state.
10428                         */
10429                        err = err ? : push_jmp_history(env, cur);
10430                        err = err ? : propagate_precision(env, &sl->state);
10431                        if (err)
10432                                return err;
10433                        return 1;
10434                }
10435miss:
10436                /* when new state is not going to be added do not increase miss count.
10437                 * Otherwise several loop iterations will remove the state
10438                 * recorded earlier. The goal of these heuristics is to have
10439                 * states from some iterations of the loop (some in the beginning
10440                 * and some at the end) to help pruning.
10441                 */
10442                if (add_new_state)
10443                        sl->miss_cnt++;
10444                /* heuristic to determine whether this state is beneficial
10445                 * to keep checking from state equivalence point of view.
10446                 * Higher numbers increase max_states_per_insn and verification time,
10447                 * but do not meaningfully decrease insn_processed.
10448                 */
10449                if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10450                        /* the state is unlikely to be useful. Remove it to
10451                         * speed up verification
10452                         */
10453                        *pprev = sl->next;
10454                        if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10455                                u32 br = sl->state.branches;
10456
10457                                WARN_ONCE(br,
10458                                          "BUG live_done but branches_to_explore %d\n",
10459                                          br);
10460                                free_verifier_state(&sl->state, false);
10461                                kfree(sl);
10462                                env->peak_states--;
10463                        } else {
10464                                /* cannot free this state, since parentage chain may
10465                                 * walk it later. Add it for free_list instead to
10466                                 * be freed at the end of verification
10467                                 */
10468                                sl->next = env->free_list;
10469                                env->free_list = sl;
10470                        }
10471                        sl = *pprev;
10472                        continue;
10473                }
10474next:
10475                pprev = &sl->next;
10476                sl = *pprev;
10477        }
10478
10479        if (env->max_states_per_insn < states_cnt)
10480                env->max_states_per_insn = states_cnt;
10481
10482        if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10483                return push_jmp_history(env, cur);
10484
10485        if (!add_new_state)
10486                return push_jmp_history(env, cur);
10487
10488        /* There were no equivalent states, remember the current one.
10489         * Technically the current state is not proven to be safe yet,
10490         * but it will either reach outer most bpf_exit (which means it's safe)
10491         * or it will be rejected. When there are no loops the verifier won't be
10492         * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10493         * again on the way to bpf_exit.
10494         * When looping the sl->state.branches will be > 0 and this state
10495         * will not be considered for equivalence until branches == 0.
10496         */
10497        new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10498        if (!new_sl)
10499                return -ENOMEM;
10500        env->total_states++;
10501        env->peak_states++;
10502        env->prev_jmps_processed = env->jmps_processed;
10503        env->prev_insn_processed = env->insn_processed;
10504
10505        /* add new state to the head of linked list */
10506        new = &new_sl->state;
10507        err = copy_verifier_state(new, cur);
10508        if (err) {
10509                free_verifier_state(new, false);
10510                kfree(new_sl);
10511                return err;
10512        }
10513        new->insn_idx = insn_idx;
10514        WARN_ONCE(new->branches != 1,
10515                  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10516
10517        cur->parent = new;
10518        cur->first_insn_idx = insn_idx;
10519        clear_jmp_history(cur);
10520        new_sl->next = *explored_state(env, insn_idx);
10521        *explored_state(env, insn_idx) = new_sl;
10522        /* connect new state to parentage chain. Current frame needs all
10523         * registers connected. Only r6 - r9 of the callers are alive (pushed
10524         * to the stack implicitly by JITs) so in callers' frames connect just
10525         * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10526         * the state of the call instruction (with WRITTEN set), and r0 comes
10527         * from callee with its full parentage chain, anyway.
10528         */
10529        /* clear write marks in current state: the writes we did are not writes
10530         * our child did, so they don't screen off its reads from us.
10531         * (There are no read marks in current state, because reads always mark
10532         * their parent and current state never has children yet.  Only
10533         * explored_states can get read marks.)
10534         */
10535        for (j = 0; j <= cur->curframe; j++) {
10536                for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10537                        cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10538                for (i = 0; i < BPF_REG_FP; i++)
10539                        cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10540        }
10541
10542        /* all stack frames are accessible from callee, clear them all */
10543        for (j = 0; j <= cur->curframe; j++) {
10544                struct bpf_func_state *frame = cur->frame[j];
10545                struct bpf_func_state *newframe = new->frame[j];
10546
10547                for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10548                        frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10549                        frame->stack[i].spilled_ptr.parent =
10550                                                &newframe->stack[i].spilled_ptr;
10551                }
10552        }
10553        return 0;
10554}
10555
10556/* Return true if it's OK to have the same insn return a different type. */
10557static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10558{
10559        switch (type) {
10560        case PTR_TO_CTX:
10561        case PTR_TO_SOCKET:
10562        case PTR_TO_SOCKET_OR_NULL:
10563        case PTR_TO_SOCK_COMMON:
10564        case PTR_TO_SOCK_COMMON_OR_NULL:
10565        case PTR_TO_TCP_SOCK:
10566        case PTR_TO_TCP_SOCK_OR_NULL:
10567        case PTR_TO_XDP_SOCK:
10568        case PTR_TO_BTF_ID:
10569        case PTR_TO_BTF_ID_OR_NULL:
10570                return false;
10571        default:
10572                return true;
10573        }
10574}
10575
10576/* If an instruction was previously used with particular pointer types, then we
10577 * need to be careful to avoid cases such as the below, where it may be ok
10578 * for one branch accessing the pointer, but not ok for the other branch:
10579 *
10580 * R1 = sock_ptr
10581 * goto X;
10582 * ...
10583 * R1 = some_other_valid_ptr;
10584 * goto X;
10585 * ...
10586 * R2 = *(u32 *)(R1 + 0);
10587 */
10588static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10589{
10590        return src != prev && (!reg_type_mismatch_ok(src) ||
10591                               !reg_type_mismatch_ok(prev));
10592}
10593
10594static int do_check(struct bpf_verifier_env *env)
10595{
10596        bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10597        struct bpf_verifier_state *state = env->cur_state;
10598        struct bpf_insn *insns = env->prog->insnsi;
10599        struct bpf_reg_state *regs;
10600        int insn_cnt = env->prog->len;
10601        bool do_print_state = false;
10602        int prev_insn_idx = -1;
10603
10604        for (;;) {
10605                struct bpf_insn *insn;
10606                u8 class;
10607                int err;
10608
10609                env->prev_insn_idx = prev_insn_idx;
10610                if (env->insn_idx >= insn_cnt) {
10611                        verbose(env, "invalid insn idx %d insn_cnt %d\n",
10612                                env->insn_idx, insn_cnt);
10613                        return -EFAULT;
10614                }
10615
10616                insn = &insns[env->insn_idx];
10617                class = BPF_CLASS(insn->code);
10618
10619                if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10620                        verbose(env,
10621                                "BPF program is too large. Processed %d insn\n",
10622                                env->insn_processed);
10623                        return -E2BIG;
10624                }
10625
10626                err = is_state_visited(env, env->insn_idx);
10627                if (err < 0)
10628                        return err;
10629                if (err == 1) {
10630                        /* found equivalent state, can prune the search */
10631                        if (env->log.level & BPF_LOG_LEVEL) {
10632                                if (do_print_state)
10633                                        verbose(env, "\nfrom %d to %d%s: safe\n",
10634                                                env->prev_insn_idx, env->insn_idx,
10635                                                env->cur_state->speculative ?
10636                                                " (speculative execution)" : "");
10637                                else
10638                                        verbose(env, "%d: safe\n", env->insn_idx);
10639                        }
10640                        goto process_bpf_exit;
10641                }
10642
10643                if (signal_pending(current))
10644                        return -EAGAIN;
10645
10646                if (need_resched())
10647                        cond_resched();
10648
10649                if (env->log.level & BPF_LOG_LEVEL2 ||
10650                    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10651                        if (env->log.level & BPF_LOG_LEVEL2)
10652                                verbose(env, "%d:", env->insn_idx);
10653                        else
10654                                verbose(env, "\nfrom %d to %d%s:",
10655                                        env->prev_insn_idx, env->insn_idx,
10656                                        env->cur_state->speculative ?
10657                                        " (speculative execution)" : "");
10658                        print_verifier_state(env, state->frame[state->curframe]);
10659                        do_print_state = false;
10660                }
10661
10662                if (env->log.level & BPF_LOG_LEVEL) {
10663                        const struct bpf_insn_cbs cbs = {
10664                                .cb_call        = disasm_kfunc_name,
10665                                .cb_print       = verbose,
10666                                .private_data   = env,
10667                        };
10668
10669                        verbose_linfo(env, env->insn_idx, "; ");
10670                        verbose(env, "%d: ", env->insn_idx);
10671                        print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10672                }
10673
10674                if (bpf_prog_is_dev_bound(env->prog->aux)) {
10675                        err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10676                                                           env->prev_insn_idx);
10677                        if (err)
10678                                return err;
10679                }
10680
10681                regs = cur_regs(env);
10682                sanitize_mark_insn_seen(env);
10683                prev_insn_idx = env->insn_idx;
10684
10685                if (class == BPF_ALU || class == BPF_ALU64) {
10686                        err = check_alu_op(env, insn);
10687                        if (err)
10688                                return err;
10689
10690                } else if (class == BPF_LDX) {
10691                        enum bpf_reg_type *prev_src_type, src_reg_type;
10692
10693                        /* check for reserved fields is already done */
10694
10695                        /* check src operand */
10696                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
10697                        if (err)
10698                                return err;
10699
10700                        err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10701                        if (err)
10702                                return err;
10703
10704                        src_reg_type = regs[insn->src_reg].type;
10705
10706                        /* check that memory (src_reg + off) is readable,
10707                         * the state of dst_reg will be updated by this func
10708                         */
10709                        err = check_mem_access(env, env->insn_idx, insn->src_reg,
10710                                               insn->off, BPF_SIZE(insn->code),
10711                                               BPF_READ, insn->dst_reg, false);
10712                        if (err)
10713                                return err;
10714
10715                        prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10716
10717                        if (*prev_src_type == NOT_INIT) {
10718                                /* saw a valid insn
10719                                 * dst_reg = *(u32 *)(src_reg + off)
10720                                 * save type to validate intersecting paths
10721                                 */
10722                                *prev_src_type = src_reg_type;
10723
10724                        } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10725                                /* ABuser program is trying to use the same insn
10726                                 * dst_reg = *(u32*) (src_reg + off)
10727                                 * with different pointer types:
10728                                 * src_reg == ctx in one branch and
10729                                 * src_reg == stack|map in some other branch.
10730                                 * Reject it.
10731                                 */
10732                                verbose(env, "same insn cannot be used with different pointers\n");
10733                                return -EINVAL;
10734                        }
10735
10736                } else if (class == BPF_STX) {
10737                        enum bpf_reg_type *prev_dst_type, dst_reg_type;
10738
10739                        if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10740                                err = check_atomic(env, env->insn_idx, insn);
10741                                if (err)
10742                                        return err;
10743                                env->insn_idx++;
10744                                continue;
10745                        }
10746
10747                        if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10748                                verbose(env, "BPF_STX uses reserved fields\n");
10749                                return -EINVAL;
10750                        }
10751
10752                        /* check src1 operand */
10753                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
10754                        if (err)
10755                                return err;
10756                        /* check src2 operand */
10757                        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10758                        if (err)
10759                                return err;
10760
10761                        dst_reg_type = regs[insn->dst_reg].type;
10762
10763                        /* check that memory (dst_reg + off) is writeable */
10764                        err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10765                                               insn->off, BPF_SIZE(insn->code),
10766                                               BPF_WRITE, insn->src_reg, false);
10767                        if (err)
10768                                return err;
10769
10770                        prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10771
10772                        if (*prev_dst_type == NOT_INIT) {
10773                                *prev_dst_type = dst_reg_type;
10774                        } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10775                                verbose(env, "same insn cannot be used with different pointers\n");
10776                                return -EINVAL;
10777                        }
10778
10779                } else if (class == BPF_ST) {
10780                        if (BPF_MODE(insn->code) != BPF_MEM ||
10781                            insn->src_reg != BPF_REG_0) {
10782                                verbose(env, "BPF_ST uses reserved fields\n");
10783                                return -EINVAL;
10784                        }
10785                        /* check src operand */
10786                        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10787                        if (err)
10788                                return err;
10789
10790                        if (is_ctx_reg(env, insn->dst_reg)) {
10791                                verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10792                                        insn->dst_reg,
10793                                        reg_type_str[reg_state(env, insn->dst_reg)->type]);
10794                                return -EACCES;
10795                        }
10796
10797                        /* check that memory (dst_reg + off) is writeable */
10798                        err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10799                                               insn->off, BPF_SIZE(insn->code),
10800                                               BPF_WRITE, -1, false);
10801                        if (err)
10802                                return err;
10803
10804                } else if (class == BPF_JMP || class == BPF_JMP32) {
10805                        u8 opcode = BPF_OP(insn->code);
10806
10807                        env->jmps_processed++;
10808                        if (opcode == BPF_CALL) {
10809                                if (BPF_SRC(insn->code) != BPF_K ||
10810                                    insn->off != 0 ||
10811                                    (insn->src_reg != BPF_REG_0 &&
10812                                     insn->src_reg != BPF_PSEUDO_CALL &&
10813                                     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10814                                    insn->dst_reg != BPF_REG_0 ||
10815                                    class == BPF_JMP32) {
10816                                        verbose(env, "BPF_CALL uses reserved fields\n");
10817                                        return -EINVAL;
10818                                }
10819
10820                                if (env->cur_state->active_spin_lock &&
10821                                    (insn->src_reg == BPF_PSEUDO_CALL ||
10822                                     insn->imm != BPF_FUNC_spin_unlock)) {
10823                                        verbose(env, "function calls are not allowed while holding a lock\n");
10824                                        return -EINVAL;
10825                                }
10826                                if (insn->src_reg == BPF_PSEUDO_CALL)
10827                                        err = check_func_call(env, insn, &env->insn_idx);
10828                                else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10829                                        err = check_kfunc_call(env, insn);
10830                                else
10831                                        err = check_helper_call(env, insn, &env->insn_idx);
10832                                if (err)
10833                                        return err;
10834                        } else if (opcode == BPF_JA) {
10835                                if (BPF_SRC(insn->code) != BPF_K ||
10836                                    insn->imm != 0 ||
10837                                    insn->src_reg != BPF_REG_0 ||
10838                                    insn->dst_reg != BPF_REG_0 ||
10839                                    class == BPF_JMP32) {
10840                                        verbose(env, "BPF_JA uses reserved fields\n");
10841                                        return -EINVAL;
10842                                }
10843
10844                                env->insn_idx += insn->off + 1;
10845                                continue;
10846
10847                        } else if (opcode == BPF_EXIT) {
10848                                if (BPF_SRC(insn->code) != BPF_K ||
10849                                    insn->imm != 0 ||
10850                                    insn->src_reg != BPF_REG_0 ||
10851                                    insn->dst_reg != BPF_REG_0 ||
10852                                    class == BPF_JMP32) {
10853                                        verbose(env, "BPF_EXIT uses reserved fields\n");
10854                                        return -EINVAL;
10855                                }
10856
10857                                if (env->cur_state->active_spin_lock) {
10858                                        verbose(env, "bpf_spin_unlock is missing\n");
10859                                        return -EINVAL;
10860                                }
10861
10862                                if (state->curframe) {
10863                                        /* exit from nested function */
10864                                        err = prepare_func_exit(env, &env->insn_idx);
10865                                        if (err)
10866                                                return err;
10867                                        do_print_state = true;
10868                                        continue;
10869                                }
10870
10871                                err = check_reference_leak(env);
10872                                if (err)
10873                                        return err;
10874
10875                                err = check_return_code(env);
10876                                if (err)
10877                                        return err;
10878process_bpf_exit:
10879                                update_branch_counts(env, env->cur_state);
10880                                err = pop_stack(env, &prev_insn_idx,
10881                                                &env->insn_idx, pop_log);
10882                                if (err < 0) {
10883                                        if (err != -ENOENT)
10884                                                return err;
10885                                        break;
10886                                } else {
10887                                        do_print_state = true;
10888                                        continue;
10889                                }
10890                        } else {
10891                                err = check_cond_jmp_op(env, insn, &env->insn_idx);
10892                                if (err)
10893                                        return err;
10894                        }
10895                } else if (class == BPF_LD) {
10896                        u8 mode = BPF_MODE(insn->code);
10897
10898                        if (mode == BPF_ABS || mode == BPF_IND) {
10899                                err = check_ld_abs(env, insn);
10900                                if (err)
10901                                        return err;
10902
10903                        } else if (mode == BPF_IMM) {
10904                                err = check_ld_imm(env, insn);
10905                                if (err)
10906                                        return err;
10907
10908                                env->insn_idx++;
10909                                sanitize_mark_insn_seen(env);
10910                        } else {
10911                                verbose(env, "invalid BPF_LD mode\n");
10912                                return -EINVAL;
10913                        }
10914                } else {
10915                        verbose(env, "unknown insn class %d\n", class);
10916                        return -EINVAL;
10917                }
10918
10919                env->insn_idx++;
10920        }
10921
10922        return 0;
10923}
10924
10925static int find_btf_percpu_datasec(struct btf *btf)
10926{
10927        const struct btf_type *t;
10928        const char *tname;
10929        int i, n;
10930
10931        /*
10932         * Both vmlinux and module each have their own ".data..percpu"
10933         * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10934         * types to look at only module's own BTF types.
10935         */
10936        n = btf_nr_types(btf);
10937        if (btf_is_module(btf))
10938                i = btf_nr_types(btf_vmlinux);
10939        else
10940                i = 1;
10941
10942        for(; i < n; i++) {
10943                t = btf_type_by_id(btf, i);
10944                if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10945                        continue;
10946
10947                tname = btf_name_by_offset(btf, t->name_off);
10948                if (!strcmp(tname, ".data..percpu"))
10949                        return i;
10950        }
10951
10952        return -ENOENT;
10953}
10954
10955/* replace pseudo btf_id with kernel symbol address */
10956static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10957                               struct bpf_insn *insn,
10958                               struct bpf_insn_aux_data *aux)
10959{
10960        const struct btf_var_secinfo *vsi;
10961        const struct btf_type *datasec;
10962        struct btf_mod_pair *btf_mod;
10963        const struct btf_type *t;
10964        const char *sym_name;
10965        bool percpu = false;
10966        u32 type, id = insn->imm;
10967        struct btf *btf;
10968        s32 datasec_id;
10969        u64 addr;
10970        int i, btf_fd, err;
10971
10972        btf_fd = insn[1].imm;
10973        if (btf_fd) {
10974                btf = btf_get_by_fd(btf_fd);
10975                if (IS_ERR(btf)) {
10976                        verbose(env, "invalid module BTF object FD specified.\n");
10977                        return -EINVAL;
10978                }
10979        } else {
10980                if (!btf_vmlinux) {
10981                        verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10982                        return -EINVAL;
10983                }
10984                btf = btf_vmlinux;
10985                btf_get(btf);
10986        }
10987
10988        t = btf_type_by_id(btf, id);
10989        if (!t) {
10990                verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10991                err = -ENOENT;
10992                goto err_put;
10993        }
10994
10995        if (!btf_type_is_var(t)) {
10996                verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10997                err = -EINVAL;
10998                goto err_put;
10999        }
11000
11001        sym_name = btf_name_by_offset(btf, t->name_off);
11002        addr = kallsyms_lookup_name(sym_name);
11003        if (!addr) {
11004                verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11005                        sym_name);
11006                err = -ENOENT;
11007                goto err_put;
11008        }
11009
11010        datasec_id = find_btf_percpu_datasec(btf);
11011        if (datasec_id > 0) {
11012                datasec = btf_type_by_id(btf, datasec_id);
11013                for_each_vsi(i, datasec, vsi) {
11014                        if (vsi->type == id) {
11015                                percpu = true;
11016                                break;
11017                        }
11018                }
11019        }
11020
11021        insn[0].imm = (u32)addr;
11022        insn[1].imm = addr >> 32;
11023
11024        type = t->type;
11025        t = btf_type_skip_modifiers(btf, type, NULL);
11026        if (percpu) {
11027                aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11028                aux->btf_var.btf = btf;
11029                aux->btf_var.btf_id = type;
11030        } else if (!btf_type_is_struct(t)) {
11031                const struct btf_type *ret;
11032                const char *tname;
11033                u32 tsize;
11034
11035                /* resolve the type size of ksym. */
11036                ret = btf_resolve_size(btf, t, &tsize);
11037                if (IS_ERR(ret)) {
11038                        tname = btf_name_by_offset(btf, t->name_off);
11039                        verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11040                                tname, PTR_ERR(ret));
11041                        err = -EINVAL;
11042                        goto err_put;
11043                }
11044                aux->btf_var.reg_type = PTR_TO_MEM;
11045                aux->btf_var.mem_size = tsize;
11046        } else {
11047                aux->btf_var.reg_type = PTR_TO_BTF_ID;
11048                aux->btf_var.btf = btf;
11049                aux->btf_var.btf_id = type;
11050        }
11051
11052        /* check whether we recorded this BTF (and maybe module) already */
11053        for (i = 0; i < env->used_btf_cnt; i++) {
11054                if (env->used_btfs[i].btf == btf) {
11055                        btf_put(btf);
11056                        return 0;
11057                }
11058        }
11059
11060        if (env->used_btf_cnt >= MAX_USED_BTFS) {
11061                err = -E2BIG;
11062                goto err_put;
11063        }
11064
11065        btf_mod = &env->used_btfs[env->used_btf_cnt];
11066        btf_mod->btf = btf;
11067        btf_mod->module = NULL;
11068
11069        /* if we reference variables from kernel module, bump its refcount */
11070        if (btf_is_module(btf)) {
11071                btf_mod->module = btf_try_get_module(btf);
11072                if (!btf_mod->module) {
11073                        err = -ENXIO;
11074                        goto err_put;
11075                }
11076        }
11077
11078        env->used_btf_cnt++;
11079
11080        return 0;
11081err_put:
11082        btf_put(btf);
11083        return err;
11084}
11085
11086static int check_map_prealloc(struct bpf_map *map)
11087{
11088        return (map->map_type != BPF_MAP_TYPE_HASH &&
11089                map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11090                map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11091                !(map->map_flags & BPF_F_NO_PREALLOC);
11092}
11093
11094static bool is_tracing_prog_type(enum bpf_prog_type type)
11095{
11096        switch (type) {
11097        case BPF_PROG_TYPE_KPROBE:
11098        case BPF_PROG_TYPE_TRACEPOINT:
11099        case BPF_PROG_TYPE_PERF_EVENT:
11100        case BPF_PROG_TYPE_RAW_TRACEPOINT:
11101                return true;
11102        default:
11103                return false;
11104        }
11105}
11106
11107static bool is_preallocated_map(struct bpf_map *map)
11108{
11109        if (!check_map_prealloc(map))
11110                return false;
11111        if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11112                return false;
11113        return true;
11114}
11115
11116static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11117                                        struct bpf_map *map,
11118                                        struct bpf_prog *prog)
11119
11120{
11121        enum bpf_prog_type prog_type = resolve_prog_type(prog);
11122        /*
11123         * Validate that trace type programs use preallocated hash maps.
11124         *
11125         * For programs attached to PERF events this is mandatory as the
11126         * perf NMI can hit any arbitrary code sequence.
11127         *
11128         * All other trace types using preallocated hash maps are unsafe as
11129         * well because tracepoint or kprobes can be inside locked regions
11130         * of the memory allocator or at a place where a recursion into the
11131         * memory allocator would see inconsistent state.
11132         *
11133         * On RT enabled kernels run-time allocation of all trace type
11134         * programs is strictly prohibited due to lock type constraints. On
11135         * !RT kernels it is allowed for backwards compatibility reasons for
11136         * now, but warnings are emitted so developers are made aware of
11137         * the unsafety and can fix their programs before this is enforced.
11138         */
11139        if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11140                if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11141                        verbose(env, "perf_event programs can only use preallocated hash map\n");
11142                        return -EINVAL;
11143                }
11144                if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11145                        verbose(env, "trace type programs can only use preallocated hash map\n");
11146                        return -EINVAL;
11147                }
11148                WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11149                verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11150        }
11151
11152        if (map_value_has_spin_lock(map)) {
11153                if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11154                        verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11155                        return -EINVAL;
11156                }
11157
11158                if (is_tracing_prog_type(prog_type)) {
11159                        verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11160                        return -EINVAL;
11161                }
11162
11163                if (prog->aux->sleepable) {
11164                        verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11165                        return -EINVAL;
11166                }
11167        }
11168
11169        if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11170            !bpf_offload_prog_map_match(prog, map)) {
11171                verbose(env, "offload device mismatch between prog and map\n");
11172                return -EINVAL;
11173        }
11174
11175        if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11176                verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11177                return -EINVAL;
11178        }
11179
11180        if (prog->aux->sleepable)
11181                switch (map->map_type) {
11182                case BPF_MAP_TYPE_HASH:
11183                case BPF_MAP_TYPE_LRU_HASH:
11184                case BPF_MAP_TYPE_ARRAY:
11185                case BPF_MAP_TYPE_PERCPU_HASH:
11186                case BPF_MAP_TYPE_PERCPU_ARRAY:
11187                case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11188                case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11189                case BPF_MAP_TYPE_HASH_OF_MAPS:
11190                        if (!is_preallocated_map(map)) {
11191                                verbose(env,
11192                                        "Sleepable programs can only use preallocated maps\n");
11193                                return -EINVAL;
11194                        }
11195                        break;
11196                case BPF_MAP_TYPE_RINGBUF:
11197                        break;
11198                default:
11199                        verbose(env,
11200                                "Sleepable programs can only use array, hash, and ringbuf maps\n");
11201                        return -EINVAL;
11202                }
11203
11204        return 0;
11205}
11206
11207static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11208{
11209        return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11210                map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11211}
11212
11213/* find and rewrite pseudo imm in ld_imm64 instructions:
11214 *
11215 * 1. if it accesses map FD, replace it with actual map pointer.
11216 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11217 *
11218 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11219 */
11220static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11221{
11222        struct bpf_insn *insn = env->prog->insnsi;
11223        int insn_cnt = env->prog->len;
11224        int i, j, err;
11225
11226        err = bpf_prog_calc_tag(env->prog);
11227        if (err)
11228                return err;
11229
11230        for (i = 0; i < insn_cnt; i++, insn++) {
11231                if (BPF_CLASS(insn->code) == BPF_LDX &&
11232                    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11233                        verbose(env, "BPF_LDX uses reserved fields\n");
11234                        return -EINVAL;
11235                }
11236
11237                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11238                        struct bpf_insn_aux_data *aux;
11239                        struct bpf_map *map;
11240                        struct fd f;
11241                        u64 addr;
11242
11243                        if (i == insn_cnt - 1 || insn[1].code != 0 ||
11244                            insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11245                            insn[1].off != 0) {
11246                                verbose(env, "invalid bpf_ld_imm64 insn\n");
11247                                return -EINVAL;
11248                        }
11249
11250                        if (insn[0].src_reg == 0)
11251                                /* valid generic load 64-bit imm */
11252                                goto next_insn;
11253
11254                        if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11255                                aux = &env->insn_aux_data[i];
11256                                err = check_pseudo_btf_id(env, insn, aux);
11257                                if (err)
11258                                        return err;
11259                                goto next_insn;
11260                        }
11261
11262                        if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11263                                aux = &env->insn_aux_data[i];
11264                                aux->ptr_type = PTR_TO_FUNC;
11265                                goto next_insn;
11266                        }
11267
11268                        /* In final convert_pseudo_ld_imm64() step, this is
11269                         * converted into regular 64-bit imm load insn.
11270                         */
11271                        if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
11272                             insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
11273                            (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
11274                             insn[1].imm != 0)) {
11275                                verbose(env,
11276                                        "unrecognized bpf_ld_imm64 insn\n");
11277                                return -EINVAL;
11278                        }
11279
11280                        f = fdget(insn[0].imm);
11281                        map = __bpf_map_get(f);
11282                        if (IS_ERR(map)) {
11283                                verbose(env, "fd %d is not pointing to valid bpf_map\n",
11284                                        insn[0].imm);
11285                                return PTR_ERR(map);
11286                        }
11287
11288                        err = check_map_prog_compatibility(env, map, env->prog);
11289                        if (err) {
11290                                fdput(f);
11291                                return err;
11292                        }
11293
11294                        aux = &env->insn_aux_data[i];
11295                        if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
11296                                addr = (unsigned long)map;
11297                        } else {
11298                                u32 off = insn[1].imm;
11299
11300                                if (off >= BPF_MAX_VAR_OFF) {
11301                                        verbose(env, "direct value offset of %u is not allowed\n", off);
11302                                        fdput(f);
11303                                        return -EINVAL;
11304                                }
11305
11306                                if (!map->ops->map_direct_value_addr) {
11307                                        verbose(env, "no direct value access support for this map type\n");
11308                                        fdput(f);
11309                                        return -EINVAL;
11310                                }
11311
11312                                err = map->ops->map_direct_value_addr(map, &addr, off);
11313                                if (err) {
11314                                        verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11315                                                map->value_size, off);
11316                                        fdput(f);
11317                                        return err;
11318                                }
11319
11320                                aux->map_off = off;
11321                                addr += off;
11322                        }
11323
11324                        insn[0].imm = (u32)addr;
11325                        insn[1].imm = addr >> 32;
11326
11327                        /* check whether we recorded this map already */
11328                        for (j = 0; j < env->used_map_cnt; j++) {
11329                                if (env->used_maps[j] == map) {
11330                                        aux->map_index = j;
11331                                        fdput(f);
11332                                        goto next_insn;
11333                                }
11334                        }
11335
11336                        if (env->used_map_cnt >= MAX_USED_MAPS) {
11337                                fdput(f);
11338                                return -E2BIG;
11339                        }
11340
11341                        /* hold the map. If the program is rejected by verifier,
11342                         * the map will be released by release_maps() or it
11343                         * will be used by the valid program until it's unloaded
11344                         * and all maps are released in free_used_maps()
11345                         */
11346                        bpf_map_inc(map);
11347
11348                        aux->map_index = env->used_map_cnt;
11349                        env->used_maps[env->used_map_cnt++] = map;
11350
11351                        if (bpf_map_is_cgroup_storage(map) &&
11352                            bpf_cgroup_storage_assign(env->prog->aux, map)) {
11353                                verbose(env, "only one cgroup storage of each type is allowed\n");
11354                                fdput(f);
11355                                return -EBUSY;
11356                        }
11357
11358                        fdput(f);
11359next_insn:
11360                        insn++;
11361                        i++;
11362                        continue;
11363                }
11364
11365                /* Basic sanity check before we invest more work here. */
11366                if (!bpf_opcode_in_insntable(insn->code)) {
11367                        verbose(env, "unknown opcode %02x\n", insn->code);
11368                        return -EINVAL;
11369                }
11370        }
11371
11372        /* now all pseudo BPF_LD_IMM64 instructions load valid
11373         * 'struct bpf_map *' into a register instead of user map_fd.
11374         * These pointers will be used later by verifier to validate map access.
11375         */
11376        return 0;
11377}
11378
11379/* drop refcnt of maps used by the rejected program */
11380static void release_maps(struct bpf_verifier_env *env)
11381{
11382        __bpf_free_used_maps(env->prog->aux, env->used_maps,
11383                             env->used_map_cnt);
11384}
11385
11386/* drop refcnt of maps used by the rejected program */
11387static void release_btfs(struct bpf_verifier_env *env)
11388{
11389        __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11390                             env->used_btf_cnt);
11391}
11392
11393/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11394static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11395{
11396        struct bpf_insn *insn = env->prog->insnsi;
11397        int insn_cnt = env->prog->len;
11398        int i;
11399
11400        for (i = 0; i < insn_cnt; i++, insn++) {
11401                if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11402                        continue;
11403                if (insn->src_reg == BPF_PSEUDO_FUNC)
11404                        continue;
11405                insn->src_reg = 0;
11406        }
11407}
11408
11409/* single env->prog->insni[off] instruction was replaced with the range
11410 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11411 * [0, off) and [off, end) to new locations, so the patched range stays zero
11412 */
11413static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11414                                struct bpf_prog *new_prog, u32 off, u32 cnt)
11415{
11416        struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11417        struct bpf_insn *insn = new_prog->insnsi;
11418        u32 old_seen = old_data[off].seen;
11419        u32 prog_len;
11420        int i;
11421
11422        /* aux info at OFF always needs adjustment, no matter fast path
11423         * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11424         * original insn at old prog.
11425         */
11426        old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11427
11428        if (cnt == 1)
11429                return 0;
11430        prog_len = new_prog->len;
11431        new_data = vzalloc(array_size(prog_len,
11432                                      sizeof(struct bpf_insn_aux_data)));
11433        if (!new_data)
11434                return -ENOMEM;
11435        memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11436        memcpy(new_data + off + cnt - 1, old_data + off,
11437               sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11438        for (i = off; i < off + cnt - 1; i++) {
11439                /* Expand insni[off]'s seen count to the patched range. */
11440                new_data[i].seen = old_seen;
11441                new_data[i].zext_dst = insn_has_def32(env, insn + i);
11442        }
11443        env->insn_aux_data = new_data;
11444        vfree(old_data);
11445        return 0;
11446}
11447
11448static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11449{
11450        int i;
11451
11452        if (len == 1)
11453                return;
11454        /* NOTE: fake 'exit' subprog should be updated as well. */
11455        for (i = 0; i <= env->subprog_cnt; i++) {
11456                if (env->subprog_info[i].start <= off)
11457                        continue;
11458                env->subprog_info[i].start += len - 1;
11459        }
11460}
11461
11462static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
11463{
11464        struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11465        int i, sz = prog->aux->size_poke_tab;
11466        struct bpf_jit_poke_descriptor *desc;
11467
11468        for (i = 0; i < sz; i++) {
11469                desc = &tab[i];
11470                desc->insn_idx += len - 1;
11471        }
11472}
11473
11474static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11475                                            const struct bpf_insn *patch, u32 len)
11476{
11477        struct bpf_prog *new_prog;
11478
11479        new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11480        if (IS_ERR(new_prog)) {
11481                if (PTR_ERR(new_prog) == -ERANGE)
11482                        verbose(env,
11483                                "insn %d cannot be patched due to 16-bit range\n",
11484                                env->insn_aux_data[off].orig_idx);
11485                return NULL;
11486        }
11487        if (adjust_insn_aux_data(env, new_prog, off, len))
11488                return NULL;
11489        adjust_subprog_starts(env, off, len);
11490        adjust_poke_descs(new_prog, len);
11491        return new_prog;
11492}
11493
11494static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11495                                              u32 off, u32 cnt)
11496{
11497        int i, j;
11498
11499        /* find first prog starting at or after off (first to remove) */
11500        for (i = 0; i < env->subprog_cnt; i++)
11501                if (env->subprog_info[i].start >= off)
11502                        break;
11503        /* find first prog starting at or after off + cnt (first to stay) */
11504        for (j = i; j < env->subprog_cnt; j++)
11505                if (env->subprog_info[j].start >= off + cnt)
11506                        break;
11507        /* if j doesn't start exactly at off + cnt, we are just removing
11508         * the front of previous prog
11509         */
11510        if (env->subprog_info[j].start != off + cnt)
11511                j--;
11512
11513        if (j > i) {
11514                struct bpf_prog_aux *aux = env->prog->aux;
11515                int move;
11516
11517                /* move fake 'exit' subprog as well */
11518                move = env->subprog_cnt + 1 - j;
11519
11520                memmove(env->subprog_info + i,
11521                        env->subprog_info + j,
11522                        sizeof(*env->subprog_info) * move);
11523                env->subprog_cnt -= j - i;
11524
11525                /* remove func_info */
11526                if (aux->func_info) {
11527                        move = aux->func_info_cnt - j;
11528
11529                        memmove(aux->func_info + i,
11530                                aux->func_info + j,
11531                                sizeof(*aux->func_info) * move);
11532                        aux->func_info_cnt -= j - i;
11533                        /* func_info->insn_off is set after all code rewrites,
11534                         * in adjust_btf_func() - no need to adjust
11535                         */
11536                }
11537        } else {
11538                /* convert i from "first prog to remove" to "first to adjust" */
11539                if (env->subprog_info[i].start == off)
11540                        i++;
11541        }
11542
11543        /* update fake 'exit' subprog as well */
11544        for (; i <= env->subprog_cnt; i++)
11545                env->subprog_info[i].start -= cnt;
11546
11547        return 0;
11548}
11549
11550static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11551                                      u32 cnt)
11552{
11553        struct bpf_prog *prog = env->prog;
11554        u32 i, l_off, l_cnt, nr_linfo;
11555        struct bpf_line_info *linfo;
11556
11557        nr_linfo = prog->aux->nr_linfo;
11558        if (!nr_linfo)
11559                return 0;
11560
11561        linfo = prog->aux->linfo;
11562
11563        /* find first line info to remove, count lines to be removed */
11564        for (i = 0; i < nr_linfo; i++)
11565                if (linfo[i].insn_off >= off)
11566                        break;
11567
11568        l_off = i;
11569        l_cnt = 0;
11570        for (; i < nr_linfo; i++)
11571                if (linfo[i].insn_off < off + cnt)
11572                        l_cnt++;
11573                else
11574                        break;
11575
11576        /* First live insn doesn't match first live linfo, it needs to "inherit"
11577         * last removed linfo.  prog is already modified, so prog->len == off
11578         * means no live instructions after (tail of the program was removed).
11579         */
11580        if (prog->len != off && l_cnt &&
11581            (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11582                l_cnt--;
11583                linfo[--i].insn_off = off + cnt;
11584        }
11585
11586        /* remove the line info which refer to the removed instructions */
11587        if (l_cnt) {
11588                memmove(linfo + l_off, linfo + i,
11589                        sizeof(*linfo) * (nr_linfo - i));
11590
11591                prog->aux->nr_linfo -= l_cnt;
11592                nr_linfo = prog->aux->nr_linfo;
11593        }
11594
11595        /* pull all linfo[i].insn_off >= off + cnt in by cnt */
11596        for (i = l_off; i < nr_linfo; i++)
11597                linfo[i].insn_off -= cnt;
11598
11599        /* fix up all subprogs (incl. 'exit') which start >= off */
11600        for (i = 0; i <= env->subprog_cnt; i++)
11601                if (env->subprog_info[i].linfo_idx > l_off) {
11602                        /* program may have started in the removed region but
11603                         * may not be fully removed
11604                         */
11605                        if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11606                                env->subprog_info[i].linfo_idx -= l_cnt;
11607                        else
11608                                env->subprog_info[i].linfo_idx = l_off;
11609                }
11610
11611        return 0;
11612}
11613
11614static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11615{
11616        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11617        unsigned int orig_prog_len = env->prog->len;
11618        int err;
11619
11620        if (bpf_prog_is_dev_bound(env->prog->aux))
11621                bpf_prog_offload_remove_insns(env, off, cnt);
11622
11623        err = bpf_remove_insns(env->prog, off, cnt);
11624        if (err)
11625                return err;
11626
11627        err = adjust_subprog_starts_after_remove(env, off, cnt);
11628        if (err)
11629                return err;
11630
11631        err = bpf_adj_linfo_after_remove(env, off, cnt);
11632        if (err)
11633                return err;
11634
11635        memmove(aux_data + off, aux_data + off + cnt,
11636                sizeof(*aux_data) * (orig_prog_len - off - cnt));
11637
11638        return 0;
11639}
11640
11641/* The verifier does more data flow analysis than llvm and will not
11642 * explore branches that are dead at run time. Malicious programs can
11643 * have dead code too. Therefore replace all dead at-run-time code
11644 * with 'ja -1'.
11645 *
11646 * Just nops are not optimal, e.g. if they would sit at the end of the
11647 * program and through another bug we would manage to jump there, then
11648 * we'd execute beyond program memory otherwise. Returning exception
11649 * code also wouldn't work since we can have subprogs where the dead
11650 * code could be located.
11651 */
11652static void sanitize_dead_code(struct bpf_verifier_env *env)
11653{
11654        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11655        struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11656        struct bpf_insn *insn = env->prog->insnsi;
11657        const int insn_cnt = env->prog->len;
11658        int i;
11659
11660        for (i = 0; i < insn_cnt; i++) {
11661                if (aux_data[i].seen)
11662                        continue;
11663                memcpy(insn + i, &trap, sizeof(trap));
11664        }
11665}
11666
11667static bool insn_is_cond_jump(u8 code)
11668{
11669        u8 op;
11670
11671        if (BPF_CLASS(code) == BPF_JMP32)
11672                return true;
11673
11674        if (BPF_CLASS(code) != BPF_JMP)
11675                return false;
11676
11677        op = BPF_OP(code);
11678        return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11679}
11680
11681static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11682{
11683        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11684        struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11685        struct bpf_insn *insn = env->prog->insnsi;
11686        const int insn_cnt = env->prog->len;
11687        int i;
11688
11689        for (i = 0; i < insn_cnt; i++, insn++) {
11690                if (!insn_is_cond_jump(insn->code))
11691                        continue;
11692
11693                if (!aux_data[i + 1].seen)
11694                        ja.off = insn->off;
11695                else if (!aux_data[i + 1 + insn->off].seen)
11696                        ja.off = 0;
11697                else
11698                        continue;
11699
11700                if (bpf_prog_is_dev_bound(env->prog->aux))
11701                        bpf_prog_offload_replace_insn(env, i, &ja);
11702
11703                memcpy(insn, &ja, sizeof(ja));
11704        }
11705}
11706
11707static int opt_remove_dead_code(struct bpf_verifier_env *env)
11708{
11709        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11710        int insn_cnt = env->prog->len;
11711        int i, err;
11712
11713        for (i = 0; i < insn_cnt; i++) {
11714                int j;
11715
11716                j = 0;
11717                while (i + j < insn_cnt && !aux_data[i + j].seen)
11718                        j++;
11719                if (!j)
11720                        continue;
11721
11722                err = verifier_remove_insns(env, i, j);
11723                if (err)
11724                        return err;
11725                insn_cnt = env->prog->len;
11726        }
11727
11728        return 0;
11729}
11730
11731static int opt_remove_nops(struct bpf_verifier_env *env)
11732{
11733        const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11734        struct bpf_insn *insn = env->prog->insnsi;
11735        int insn_cnt = env->prog->len;
11736        int i, err;
11737
11738        for (i = 0; i < insn_cnt; i++) {
11739                if (memcmp(&insn[i], &ja, sizeof(ja)))
11740                        continue;
11741
11742                err = verifier_remove_insns(env, i, 1);
11743                if (err)
11744                        return err;
11745                insn_cnt--;
11746                i--;
11747        }
11748
11749        return 0;
11750}
11751
11752static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11753                                         const union bpf_attr *attr)
11754{
11755        struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11756        struct bpf_insn_aux_data *aux = env->insn_aux_data;
11757        int i, patch_len, delta = 0, len = env->prog->len;
11758        struct bpf_insn *insns = env->prog->insnsi;
11759        struct bpf_prog *new_prog;
11760        bool rnd_hi32;
11761
11762        rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11763        zext_patch[1] = BPF_ZEXT_REG(0);
11764        rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11765        rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11766        rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11767        for (i = 0; i < len; i++) {
11768                int adj_idx = i + delta;
11769                struct bpf_insn insn;
11770                int load_reg;
11771
11772                insn = insns[adj_idx];
11773                load_reg = insn_def_regno(&insn);
11774                if (!aux[adj_idx].zext_dst) {
11775                        u8 code, class;
11776                        u32 imm_rnd;
11777
11778                        if (!rnd_hi32)
11779                                continue;
11780
11781                        code = insn.code;
11782                        class = BPF_CLASS(code);
11783                        if (load_reg == -1)
11784                                continue;
11785
11786                        /* NOTE: arg "reg" (the fourth one) is only used for
11787                         *       BPF_STX + SRC_OP, so it is safe to pass NULL
11788                         *       here.
11789                         */
11790                        if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11791                                if (class == BPF_LD &&
11792                                    BPF_MODE(code) == BPF_IMM)
11793                                        i++;
11794                                continue;
11795                        }
11796
11797                        /* ctx load could be transformed into wider load. */
11798                        if (class == BPF_LDX &&
11799                            aux[adj_idx].ptr_type == PTR_TO_CTX)
11800                                continue;
11801
11802                        imm_rnd = get_random_int();
11803                        rnd_hi32_patch[0] = insn;
11804                        rnd_hi32_patch[1].imm = imm_rnd;
11805                        rnd_hi32_patch[3].dst_reg = load_reg;
11806                        patch = rnd_hi32_patch;
11807                        patch_len = 4;
11808                        goto apply_patch_buffer;
11809                }
11810
11811                /* Add in an zero-extend instruction if a) the JIT has requested
11812                 * it or b) it's a CMPXCHG.
11813                 *
11814                 * The latter is because: BPF_CMPXCHG always loads a value into
11815                 * R0, therefore always zero-extends. However some archs'
11816                 * equivalent instruction only does this load when the
11817                 * comparison is successful. This detail of CMPXCHG is
11818                 * orthogonal to the general zero-extension behaviour of the
11819                 * CPU, so it's treated independently of bpf_jit_needs_zext.
11820                 */
11821                if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11822                        continue;
11823
11824                if (WARN_ON(load_reg == -1)) {
11825                        verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11826                        return -EFAULT;
11827                }
11828
11829                zext_patch[0] = insn;
11830                zext_patch[1].dst_reg = load_reg;
11831                zext_patch[1].src_reg = load_reg;
11832                patch = zext_patch;
11833                patch_len = 2;
11834apply_patch_buffer:
11835                new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11836                if (!new_prog)
11837                        return -ENOMEM;
11838                env->prog = new_prog;
11839                insns = new_prog->insnsi;
11840                aux = env->insn_aux_data;
11841                delta += patch_len - 1;
11842        }
11843
11844        return 0;
11845}
11846
11847/* convert load instructions that access fields of a context type into a
11848 * sequence of instructions that access fields of the underlying structure:
11849 *     struct __sk_buff    -> struct sk_buff
11850 *     struct bpf_sock_ops -> struct sock
11851 */
11852static int convert_ctx_accesses(struct bpf_verifier_env *env)
11853{
11854        const struct bpf_verifier_ops *ops = env->ops;
11855        int i, cnt, size, ctx_field_size, delta = 0;
11856        const int insn_cnt = env->prog->len;
11857        struct bpf_insn insn_buf[16], *insn;
11858        u32 target_size, size_default, off;
11859        struct bpf_prog *new_prog;
11860        enum bpf_access_type type;
11861        bool is_narrower_load;
11862
11863        if (ops->gen_prologue || env->seen_direct_write) {
11864                if (!ops->gen_prologue) {
11865                        verbose(env, "bpf verifier is misconfigured\n");
11866                        return -EINVAL;
11867                }
11868                cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11869                                        env->prog);
11870                if (cnt >= ARRAY_SIZE(insn_buf)) {
11871                        verbose(env, "bpf verifier is misconfigured\n");
11872                        return -EINVAL;
11873                } else if (cnt) {
11874                        new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11875                        if (!new_prog)
11876                                return -ENOMEM;
11877
11878                        env->prog = new_prog;
11879                        delta += cnt - 1;
11880                }
11881        }
11882
11883        if (bpf_prog_is_dev_bound(env->prog->aux))
11884                return 0;
11885
11886        insn = env->prog->insnsi + delta;
11887
11888        for (i = 0; i < insn_cnt; i++, insn++) {
11889                bpf_convert_ctx_access_t convert_ctx_access;
11890
11891                if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11892                    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11893                    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11894                    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11895                        type = BPF_READ;
11896                else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11897                         insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11898                         insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11899                         insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11900                        type = BPF_WRITE;
11901                else
11902                        continue;
11903
11904                if (type == BPF_WRITE &&
11905                    env->insn_aux_data[i + delta].sanitize_stack_off) {
11906                        struct bpf_insn patch[] = {
11907                                /* Sanitize suspicious stack slot with zero.
11908                                 * There are no memory dependencies for this store,
11909                                 * since it's only using frame pointer and immediate
11910                                 * constant of zero
11911                                 */
11912                                BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11913                                           env->insn_aux_data[i + delta].sanitize_stack_off,
11914                                           0),
11915                                /* the original STX instruction will immediately
11916                                 * overwrite the same stack slot with appropriate value
11917                                 */
11918                                *insn,
11919                        };
11920
11921                        cnt = ARRAY_SIZE(patch);
11922                        new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11923                        if (!new_prog)
11924                                return -ENOMEM;
11925
11926                        delta    += cnt - 1;
11927                        env->prog = new_prog;
11928                        insn      = new_prog->insnsi + i + delta;
11929                        continue;
11930                }
11931
11932                switch (env->insn_aux_data[i + delta].ptr_type) {
11933                case PTR_TO_CTX:
11934                        if (!ops->convert_ctx_access)
11935                                continue;
11936                        convert_ctx_access = ops->convert_ctx_access;
11937                        break;
11938                case PTR_TO_SOCKET:
11939                case PTR_TO_SOCK_COMMON:
11940                        convert_ctx_access = bpf_sock_convert_ctx_access;
11941                        break;
11942                case PTR_TO_TCP_SOCK:
11943                        convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11944                        break;
11945                case PTR_TO_XDP_SOCK:
11946                        convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11947                        break;
11948                case PTR_TO_BTF_ID:
11949                        if (type == BPF_READ) {
11950                                insn->code = BPF_LDX | BPF_PROBE_MEM |
11951                                        BPF_SIZE((insn)->code);
11952                                env->prog->aux->num_exentries++;
11953                        } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11954                                verbose(env, "Writes through BTF pointers are not allowed\n");
11955                                return -EINVAL;
11956                        }
11957                        continue;
11958                default:
11959                        continue;
11960                }
11961
11962                ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11963                size = BPF_LDST_BYTES(insn);
11964
11965                /* If the read access is a narrower load of the field,
11966                 * convert to a 4/8-byte load, to minimum program type specific
11967                 * convert_ctx_access changes. If conversion is successful,
11968                 * we will apply proper mask to the result.
11969                 */
11970                is_narrower_load = size < ctx_field_size;
11971                size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11972                off = insn->off;
11973                if (is_narrower_load) {
11974                        u8 size_code;
11975
11976                        if (type == BPF_WRITE) {
11977                                verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11978                                return -EINVAL;
11979                        }
11980
11981                        size_code = BPF_H;
11982                        if (ctx_field_size == 4)
11983                                size_code = BPF_W;
11984                        else if (ctx_field_size == 8)
11985                                size_code = BPF_DW;
11986
11987                        insn->off = off & ~(size_default - 1);
11988                        insn->code = BPF_LDX | BPF_MEM | size_code;
11989                }
11990
11991                target_size = 0;
11992                cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11993                                         &target_size);
11994                if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11995                    (ctx_field_size && !target_size)) {
11996                        verbose(env, "bpf verifier is misconfigured\n");
11997                        return -EINVAL;
11998                }
11999
12000                if (is_narrower_load && size < target_size) {
12001                        u8 shift = bpf_ctx_narrow_access_offset(
12002                                off, size, size_default) * 8;
12003                        if (ctx_field_size <= 4) {
12004                                if (shift)
12005                                        insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12006                                                                        insn->dst_reg,
12007                                                                        shift);
12008                                insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12009                                                                (1 << size * 8) - 1);
12010                        } else {
12011                                if (shift)
12012                                        insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12013                                                                        insn->dst_reg,
12014                                                                        shift);
12015                                insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12016                                                                (1ULL << size * 8) - 1);
12017                        }
12018                }
12019
12020                new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12021                if (!new_prog)
12022                        return -ENOMEM;
12023
12024                delta += cnt - 1;
12025
12026                /* keep walking new program and skip insns we just inserted */
12027                env->prog = new_prog;
12028                insn      = new_prog->insnsi + i + delta;
12029        }
12030
12031        return 0;
12032}
12033
12034static int jit_subprogs(struct bpf_verifier_env *env)
12035{
12036        struct bpf_prog *prog = env->prog, **func, *tmp;
12037        int i, j, subprog_start, subprog_end = 0, len, subprog;
12038        struct bpf_map *map_ptr;
12039        struct bpf_insn *insn;
12040        void *old_bpf_func;
12041        int err, num_exentries;
12042
12043        if (env->subprog_cnt <= 1)
12044                return 0;
12045
12046        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12047                if (bpf_pseudo_func(insn)) {
12048                        env->insn_aux_data[i].call_imm = insn->imm;
12049                        /* subprog is encoded in insn[1].imm */
12050                        continue;
12051                }
12052
12053                if (!bpf_pseudo_call(insn))
12054                        continue;
12055                /* Upon error here we cannot fall back to interpreter but
12056                 * need a hard reject of the program. Thus -EFAULT is
12057                 * propagated in any case.
12058                 */
12059                subprog = find_subprog(env, i + insn->imm + 1);
12060                if (subprog < 0) {
12061                        WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12062                                  i + insn->imm + 1);
12063                        return -EFAULT;
12064                }
12065                /* temporarily remember subprog id inside insn instead of
12066                 * aux_data, since next loop will split up all insns into funcs
12067                 */
12068                insn->off = subprog;
12069                /* remember original imm in case JIT fails and fallback
12070                 * to interpreter will be needed
12071                 */
12072                env->insn_aux_data[i].call_imm = insn->imm;
12073                /* point imm to __bpf_call_base+1 from JITs point of view */
12074                insn->imm = 1;
12075        }
12076
12077        err = bpf_prog_alloc_jited_linfo(prog);
12078        if (err)
12079                goto out_undo_insn;
12080
12081        err = -ENOMEM;
12082        func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12083        if (!func)
12084                goto out_undo_insn;
12085
12086        for (i = 0; i < env->subprog_cnt; i++) {
12087                subprog_start = subprog_end;
12088                subprog_end = env->subprog_info[i + 1].start;
12089
12090                len = subprog_end - subprog_start;
12091                /* BPF_PROG_RUN doesn't call subprogs directly,
12092                 * hence main prog stats include the runtime of subprogs.
12093                 * subprogs don't have IDs and not reachable via prog_get_next_id
12094                 * func[i]->stats will never be accessed and stays NULL
12095                 */
12096                func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12097                if (!func[i])
12098                        goto out_free;
12099                memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12100                       len * sizeof(struct bpf_insn));
12101                func[i]->type = prog->type;
12102                func[i]->len = len;
12103                if (bpf_prog_calc_tag(func[i]))
12104                        goto out_free;
12105                func[i]->is_func = 1;
12106                func[i]->aux->func_idx = i;
12107                /* the btf and func_info will be freed only at prog->aux */
12108                func[i]->aux->btf = prog->aux->btf;
12109                func[i]->aux->func_info = prog->aux->func_info;
12110
12111                for (j = 0; j < prog->aux->size_poke_tab; j++) {
12112                        u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
12113                        int ret;
12114
12115                        if (!(insn_idx >= subprog_start &&
12116                              insn_idx <= subprog_end))
12117                                continue;
12118
12119                        ret = bpf_jit_add_poke_descriptor(func[i],
12120                                                          &prog->aux->poke_tab[j]);
12121                        if (ret < 0) {
12122                                verbose(env, "adding tail call poke descriptor failed\n");
12123                                goto out_free;
12124                        }
12125
12126                        func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
12127
12128                        map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
12129                        ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
12130                        if (ret < 0) {
12131                                verbose(env, "tracking tail call prog failed\n");
12132                                goto out_free;
12133                        }
12134                }
12135
12136                /* Use bpf_prog_F_tag to indicate functions in stack traces.
12137                 * Long term would need debug info to populate names
12138                 */
12139                func[i]->aux->name[0] = 'F';
12140                func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12141                func[i]->jit_requested = 1;
12142                func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12143                func[i]->aux->linfo = prog->aux->linfo;
12144                func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12145                func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12146                func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12147                num_exentries = 0;
12148                insn = func[i]->insnsi;
12149                for (j = 0; j < func[i]->len; j++, insn++) {
12150                        if (BPF_CLASS(insn->code) == BPF_LDX &&
12151                            BPF_MODE(insn->code) == BPF_PROBE_MEM)
12152                                num_exentries++;
12153                }
12154                func[i]->aux->num_exentries = num_exentries;
12155                func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12156                func[i] = bpf_int_jit_compile(func[i]);
12157                if (!func[i]->jited) {
12158                        err = -ENOTSUPP;
12159                        goto out_free;
12160                }
12161                cond_resched();
12162        }
12163
12164        /* Untrack main program's aux structs so that during map_poke_run()
12165         * we will not stumble upon the unfilled poke descriptors; each
12166         * of the main program's poke descs got distributed across subprogs
12167         * and got tracked onto map, so we are sure that none of them will
12168         * be missed after the operation below
12169         */
12170        for (i = 0; i < prog->aux->size_poke_tab; i++) {
12171                map_ptr = prog->aux->poke_tab[i].tail_call.map;
12172
12173                map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12174        }
12175
12176        /* at this point all bpf functions were successfully JITed
12177         * now populate all bpf_calls with correct addresses and
12178         * run last pass of JIT
12179         */
12180        for (i = 0; i < env->subprog_cnt; i++) {
12181                insn = func[i]->insnsi;
12182                for (j = 0; j < func[i]->len; j++, insn++) {
12183                        if (bpf_pseudo_func(insn)) {
12184                                subprog = insn[1].imm;
12185                                insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12186                                insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12187                                continue;
12188                        }
12189                        if (!bpf_pseudo_call(insn))
12190                                continue;
12191                        subprog = insn->off;
12192                        insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12193                                    __bpf_call_base;
12194                }
12195
12196                /* we use the aux data to keep a list of the start addresses
12197                 * of the JITed images for each function in the program
12198                 *
12199                 * for some architectures, such as powerpc64, the imm field
12200                 * might not be large enough to hold the offset of the start
12201                 * address of the callee's JITed image from __bpf_call_base
12202                 *
12203                 * in such cases, we can lookup the start address of a callee
12204                 * by using its subprog id, available from the off field of
12205                 * the call instruction, as an index for this list
12206                 */
12207                func[i]->aux->func = func;
12208                func[i]->aux->func_cnt = env->subprog_cnt;
12209        }
12210        for (i = 0; i < env->subprog_cnt; i++) {
12211                old_bpf_func = func[i]->bpf_func;
12212                tmp = bpf_int_jit_compile(func[i]);
12213                if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12214                        verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12215                        err = -ENOTSUPP;
12216                        goto out_free;
12217                }
12218                cond_resched();
12219        }
12220
12221        /* finally lock prog and jit images for all functions and
12222         * populate kallsysm
12223         */
12224        for (i = 0; i < env->subprog_cnt; i++) {
12225                bpf_prog_lock_ro(func[i]);
12226                bpf_prog_kallsyms_add(func[i]);
12227        }
12228
12229        /* Last step: make now unused interpreter insns from main
12230         * prog consistent for later dump requests, so they can
12231         * later look the same as if they were interpreted only.
12232         */
12233        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12234                if (bpf_pseudo_func(insn)) {
12235                        insn[0].imm = env->insn_aux_data[i].call_imm;
12236                        insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12237                        continue;
12238                }
12239                if (!bpf_pseudo_call(insn))
12240                        continue;
12241                insn->off = env->insn_aux_data[i].call_imm;
12242                subprog = find_subprog(env, i + insn->off + 1);
12243                insn->imm = subprog;
12244        }
12245
12246        prog->jited = 1;
12247        prog->bpf_func = func[0]->bpf_func;
12248        prog->aux->func = func;
12249        prog->aux->func_cnt = env->subprog_cnt;
12250        bpf_prog_jit_attempt_done(prog);
12251        return 0;
12252out_free:
12253        for (i = 0; i < env->subprog_cnt; i++) {
12254                if (!func[i])
12255                        continue;
12256
12257                for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
12258                        map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
12259                        map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
12260                }
12261                bpf_jit_free(func[i]);
12262        }
12263        kfree(func);
12264out_undo_insn:
12265        /* cleanup main prog to be interpreted */
12266        prog->jit_requested = 0;
12267        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12268                if (!bpf_pseudo_call(insn))
12269                        continue;
12270                insn->off = 0;
12271                insn->imm = env->insn_aux_data[i].call_imm;
12272        }
12273        bpf_prog_jit_attempt_done(prog);
12274        return err;
12275}
12276
12277static int fixup_call_args(struct bpf_verifier_env *env)
12278{
12279#ifndef CONFIG_BPF_JIT_ALWAYS_ON
12280        struct bpf_prog *prog = env->prog;
12281        struct bpf_insn *insn = prog->insnsi;
12282        bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12283        int i, depth;
12284#endif
12285        int err = 0;
12286
12287        if (env->prog->jit_requested &&
12288            !bpf_prog_is_dev_bound(env->prog->aux)) {
12289                err = jit_subprogs(env);
12290                if (err == 0)
12291                        return 0;
12292                if (err == -EFAULT)
12293                        return err;
12294        }
12295#ifndef CONFIG_BPF_JIT_ALWAYS_ON
12296        if (has_kfunc_call) {
12297                verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12298                return -EINVAL;
12299        }
12300        if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12301                /* When JIT fails the progs with bpf2bpf calls and tail_calls
12302                 * have to be rejected, since interpreter doesn't support them yet.
12303                 */
12304                verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12305                return -EINVAL;
12306        }
12307        for (i = 0; i < prog->len; i++, insn++) {
12308                if (bpf_pseudo_func(insn)) {
12309                        /* When JIT fails the progs with callback calls
12310                         * have to be rejected, since interpreter doesn't support them yet.
12311                         */
12312                        verbose(env, "callbacks are not allowed in non-JITed programs\n");
12313                        return -EINVAL;
12314                }
12315
12316                if (!bpf_pseudo_call(insn))
12317                        continue;
12318                depth = get_callee_stack_depth(env, insn, i);
12319                if (depth < 0)
12320                        return depth;
12321                bpf_patch_call_args(insn, depth);
12322        }
12323        err = 0;
12324#endif
12325        return err;
12326}
12327
12328static int fixup_kfunc_call(struct bpf_verifier_env *env,
12329                            struct bpf_insn *insn)
12330{
12331        const struct bpf_kfunc_desc *desc;
12332
12333        /* insn->imm has the btf func_id. Replace it with
12334         * an address (relative to __bpf_base_call).
12335         */
12336        desc = find_kfunc_desc(env->prog, insn->imm);
12337        if (!desc) {
12338                verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12339                        insn->imm);
12340                return -EFAULT;
12341        }
12342
12343        insn->imm = desc->imm;
12344
12345        return 0;
12346}
12347
12348/* Do various post-verification rewrites in a single program pass.
12349 * These rewrites simplify JIT and interpreter implementations.
12350 */
12351static int do_misc_fixups(struct bpf_verifier_env *env)
12352{
12353        struct bpf_prog *prog = env->prog;
12354        bool expect_blinding = bpf_jit_blinding_enabled(prog);
12355        struct bpf_insn *insn = prog->insnsi;
12356        const struct bpf_func_proto *fn;
12357        const int insn_cnt = prog->len;
12358        const struct bpf_map_ops *ops;
12359        struct bpf_insn_aux_data *aux;
12360        struct bpf_insn insn_buf[16];
12361        struct bpf_prog *new_prog;
12362        struct bpf_map *map_ptr;
12363        int i, ret, cnt, delta = 0;
12364
12365        for (i = 0; i < insn_cnt; i++, insn++) {
12366                /* Make divide-by-zero exceptions impossible. */
12367                if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12368                    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12369                    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12370                    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12371                        bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12372                        bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12373                        struct bpf_insn *patchlet;
12374                        struct bpf_insn chk_and_div[] = {
12375                                /* [R,W]x div 0 -> 0 */
12376                                BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12377                                             BPF_JNE | BPF_K, insn->src_reg,
12378                                             0, 2, 0),
12379                                BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12380                                BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12381                                *insn,
12382                        };
12383                        struct bpf_insn chk_and_mod[] = {
12384                                /* [R,W]x mod 0 -> [R,W]x */
12385                                BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12386                                             BPF_JEQ | BPF_K, insn->src_reg,
12387                                             0, 1 + (is64 ? 0 : 1), 0),
12388                                *insn,
12389                                BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12390                                BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12391                        };
12392
12393                        patchlet = isdiv ? chk_and_div : chk_and_mod;
12394                        cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12395                                      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12396
12397                        new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12398                        if (!new_prog)
12399                                return -ENOMEM;
12400
12401                        delta    += cnt - 1;
12402                        env->prog = prog = new_prog;
12403                        insn      = new_prog->insnsi + i + delta;
12404                        continue;
12405                }
12406
12407                /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12408                if (BPF_CLASS(insn->code) == BPF_LD &&
12409                    (BPF_MODE(insn->code) == BPF_ABS ||
12410                     BPF_MODE(insn->code) == BPF_IND)) {
12411                        cnt = env->ops->gen_ld_abs(insn, insn_buf);
12412                        if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12413                                verbose(env, "bpf verifier is misconfigured\n");
12414                                return -EINVAL;
12415                        }
12416
12417                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12418                        if (!new_prog)
12419                                return -ENOMEM;
12420
12421                        delta    += cnt - 1;
12422                        env->prog = prog = new_prog;
12423                        insn      = new_prog->insnsi + i + delta;
12424                        continue;
12425                }
12426
12427                /* Rewrite pointer arithmetic to mitigate speculation attacks. */
12428                if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12429                    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12430                        const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12431                        const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12432                        struct bpf_insn *patch = &insn_buf[0];
12433                        bool issrc, isneg, isimm;
12434                        u32 off_reg;
12435
12436                        aux = &env->insn_aux_data[i + delta];
12437                        if (!aux->alu_state ||
12438                            aux->alu_state == BPF_ALU_NON_POINTER)
12439                                continue;
12440
12441                        isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12442                        issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12443                                BPF_ALU_SANITIZE_SRC;
12444                        isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12445
12446                        off_reg = issrc ? insn->src_reg : insn->dst_reg;
12447                        if (isimm) {
12448                                *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12449                        } else {
12450                                if (isneg)
12451                                        *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12452                                *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12453                                *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12454                                *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12455                                *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12456                                *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12457                                *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12458                        }
12459                        if (!issrc)
12460                                *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12461                        insn->src_reg = BPF_REG_AX;
12462                        if (isneg)
12463                                insn->code = insn->code == code_add ?
12464                                             code_sub : code_add;
12465                        *patch++ = *insn;
12466                        if (issrc && isneg && !isimm)
12467                                *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12468                        cnt = patch - insn_buf;
12469
12470                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12471                        if (!new_prog)
12472                                return -ENOMEM;
12473
12474                        delta    += cnt - 1;
12475                        env->prog = prog = new_prog;
12476                        insn      = new_prog->insnsi + i + delta;
12477                        continue;
12478                }
12479
12480                if (insn->code != (BPF_JMP | BPF_CALL))
12481                        continue;
12482                if (insn->src_reg == BPF_PSEUDO_CALL)
12483                        continue;
12484                if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12485                        ret = fixup_kfunc_call(env, insn);
12486                        if (ret)
12487                                return ret;
12488                        continue;
12489                }
12490
12491                if (insn->imm == BPF_FUNC_get_route_realm)
12492                        prog->dst_needed = 1;
12493                if (insn->imm == BPF_FUNC_get_prandom_u32)
12494                        bpf_user_rnd_init_once();
12495                if (insn->imm == BPF_FUNC_override_return)
12496                        prog->kprobe_override = 1;
12497                if (insn->imm == BPF_FUNC_tail_call) {
12498                        /* If we tail call into other programs, we
12499                         * cannot make any assumptions since they can
12500                         * be replaced dynamically during runtime in
12501                         * the program array.
12502                         */
12503                        prog->cb_access = 1;
12504                        if (!allow_tail_call_in_subprogs(env))
12505                                prog->aux->stack_depth = MAX_BPF_STACK;
12506                        prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12507
12508                        /* mark bpf_tail_call as different opcode to avoid
12509                         * conditional branch in the interpeter for every normal
12510                         * call and to prevent accidental JITing by JIT compiler
12511                         * that doesn't support bpf_tail_call yet
12512                         */
12513                        insn->imm = 0;
12514                        insn->code = BPF_JMP | BPF_TAIL_CALL;
12515
12516                        aux = &env->insn_aux_data[i + delta];
12517                        if (env->bpf_capable && !expect_blinding &&
12518                            prog->jit_requested &&
12519                            !bpf_map_key_poisoned(aux) &&
12520                            !bpf_map_ptr_poisoned(aux) &&
12521                            !bpf_map_ptr_unpriv(aux)) {
12522                                struct bpf_jit_poke_descriptor desc = {
12523                                        .reason = BPF_POKE_REASON_TAIL_CALL,
12524                                        .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12525                                        .tail_call.key = bpf_map_key_immediate(aux),
12526                                        .insn_idx = i + delta,
12527                                };
12528
12529                                ret = bpf_jit_add_poke_descriptor(prog, &desc);
12530                                if (ret < 0) {
12531                                        verbose(env, "adding tail call poke descriptor failed\n");
12532                                        return ret;
12533                                }
12534
12535                                insn->imm = ret + 1;
12536                                continue;
12537                        }
12538
12539                        if (!bpf_map_ptr_unpriv(aux))
12540                                continue;
12541
12542                        /* instead of changing every JIT dealing with tail_call
12543                         * emit two extra insns:
12544                         * if (index >= max_entries) goto out;
12545                         * index &= array->index_mask;
12546                         * to avoid out-of-bounds cpu speculation
12547                         */
12548                        if (bpf_map_ptr_poisoned(aux)) {
12549                                verbose(env, "tail_call abusing map_ptr\n");
12550                                return -EINVAL;
12551                        }
12552
12553                        map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12554                        insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12555                                                  map_ptr->max_entries, 2);
12556                        insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12557                                                    container_of(map_ptr,
12558                                                                 struct bpf_array,
12559                                                                 map)->index_mask);
12560                        insn_buf[2] = *insn;
12561                        cnt = 3;
12562                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12563                        if (!new_prog)
12564                                return -ENOMEM;
12565
12566                        delta    += cnt - 1;
12567                        env->prog = prog = new_prog;
12568                        insn      = new_prog->insnsi + i + delta;
12569                        continue;
12570                }
12571
12572                /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12573                 * and other inlining handlers are currently limited to 64 bit
12574                 * only.
12575                 */
12576                if (prog->jit_requested && BITS_PER_LONG == 64 &&
12577                    (insn->imm == BPF_FUNC_map_lookup_elem ||
12578                     insn->imm == BPF_FUNC_map_update_elem ||
12579                     insn->imm == BPF_FUNC_map_delete_elem ||
12580                     insn->imm == BPF_FUNC_map_push_elem   ||
12581                     insn->imm == BPF_FUNC_map_pop_elem    ||
12582                     insn->imm == BPF_FUNC_map_peek_elem   ||
12583                     insn->imm == BPF_FUNC_redirect_map)) {
12584                        aux = &env->insn_aux_data[i + delta];
12585                        if (bpf_map_ptr_poisoned(aux))
12586                                goto patch_call_imm;
12587
12588                        map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12589                        ops = map_ptr->ops;
12590                        if (insn->imm == BPF_FUNC_map_lookup_elem &&
12591                            ops->map_gen_lookup) {
12592                                cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12593                                if (cnt == -EOPNOTSUPP)
12594                                        goto patch_map_ops_generic;
12595                                if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12596                                        verbose(env, "bpf verifier is misconfigured\n");
12597                                        return -EINVAL;
12598                                }
12599
12600                                new_prog = bpf_patch_insn_data(env, i + delta,
12601                                                               insn_buf, cnt);
12602                                if (!new_prog)
12603                                        return -ENOMEM;
12604
12605                                delta    += cnt - 1;
12606                                env->prog = prog = new_prog;
12607                                insn      = new_prog->insnsi + i + delta;
12608                                continue;
12609                        }
12610
12611                        BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12612                                     (void *(*)(struct bpf_map *map, void *key))NULL));
12613                        BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12614                                     (int (*)(struct bpf_map *map, void *key))NULL));
12615                        BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12616                                     (int (*)(struct bpf_map *map, void *key, void *value,
12617                                              u64 flags))NULL));
12618                        BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12619                                     (int (*)(struct bpf_map *map, void *value,
12620                                              u64 flags))NULL));
12621                        BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12622                                     (int (*)(struct bpf_map *map, void *value))NULL));
12623                        BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12624                                     (int (*)(struct bpf_map *map, void *value))NULL));
12625                        BUILD_BUG_ON(!__same_type(ops->map_redirect,
12626                                     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12627
12628patch_map_ops_generic:
12629                        switch (insn->imm) {
12630                        case BPF_FUNC_map_lookup_elem:
12631                                insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12632                                            __bpf_call_base;
12633                                continue;
12634                        case BPF_FUNC_map_update_elem:
12635                                insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12636                                            __bpf_call_base;
12637                                continue;
12638                        case BPF_FUNC_map_delete_elem:
12639                                insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12640                                            __bpf_call_base;
12641                                continue;
12642                        case BPF_FUNC_map_push_elem:
12643                                insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12644                                            __bpf_call_base;
12645                                continue;
12646                        case BPF_FUNC_map_pop_elem:
12647                                insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12648                                            __bpf_call_base;
12649                                continue;
12650                        case BPF_FUNC_map_peek_elem:
12651                                insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12652                                            __bpf_call_base;
12653                                continue;
12654                        case BPF_FUNC_redirect_map:
12655                                insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12656                                            __bpf_call_base;
12657                                continue;
12658                        }
12659
12660                        goto patch_call_imm;
12661                }
12662
12663                /* Implement bpf_jiffies64 inline. */
12664                if (prog->jit_requested && BITS_PER_LONG == 64 &&
12665                    insn->imm == BPF_FUNC_jiffies64) {
12666                        struct bpf_insn ld_jiffies_addr[2] = {
12667                                BPF_LD_IMM64(BPF_REG_0,
12668                                             (unsigned long)&jiffies),
12669                        };
12670
12671                        insn_buf[0] = ld_jiffies_addr[0];
12672                        insn_buf[1] = ld_jiffies_addr[1];
12673                        insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12674                                                  BPF_REG_0, 0);
12675                        cnt = 3;
12676
12677                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12678                                                       cnt);
12679                        if (!new_prog)
12680                                return -ENOMEM;
12681
12682                        delta    += cnt - 1;
12683                        env->prog = prog = new_prog;
12684                        insn      = new_prog->insnsi + i + delta;
12685                        continue;
12686                }
12687
12688patch_call_imm:
12689                fn = env->ops->get_func_proto(insn->imm, env->prog);
12690                /* all functions that have prototype and verifier allowed
12691                 * programs to call them, must be real in-kernel functions
12692                 */
12693                if (!fn->func) {
12694                        verbose(env,
12695                                "kernel subsystem misconfigured func %s#%d\n",
12696                                func_id_name(insn->imm), insn->imm);
12697                        return -EFAULT;
12698                }
12699                insn->imm = fn->func - __bpf_call_base;
12700        }
12701
12702        /* Since poke tab is now finalized, publish aux to tracker. */
12703        for (i = 0; i < prog->aux->size_poke_tab; i++) {
12704                map_ptr = prog->aux->poke_tab[i].tail_call.map;
12705                if (!map_ptr->ops->map_poke_track ||
12706                    !map_ptr->ops->map_poke_untrack ||
12707                    !map_ptr->ops->map_poke_run) {
12708                        verbose(env, "bpf verifier is misconfigured\n");
12709                        return -EINVAL;
12710                }
12711
12712                ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12713                if (ret < 0) {
12714                        verbose(env, "tracking tail call prog failed\n");
12715                        return ret;
12716                }
12717        }
12718
12719        sort_kfunc_descs_by_imm(env->prog);
12720
12721        return 0;
12722}
12723
12724static void free_states(struct bpf_verifier_env *env)
12725{
12726        struct bpf_verifier_state_list *sl, *sln;
12727        int i;
12728
12729        sl = env->free_list;
12730        while (sl) {
12731                sln = sl->next;
12732                free_verifier_state(&sl->state, false);
12733                kfree(sl);
12734                sl = sln;
12735        }
12736        env->free_list = NULL;
12737
12738        if (!env->explored_states)
12739                return;
12740
12741        for (i = 0; i < state_htab_size(env); i++) {
12742                sl = env->explored_states[i];
12743
12744                while (sl) {
12745                        sln = sl->next;
12746                        free_verifier_state(&sl->state, false);
12747                        kfree(sl);
12748                        sl = sln;
12749                }
12750                env->explored_states[i] = NULL;
12751        }
12752}
12753
12754/* The verifier is using insn_aux_data[] to store temporary data during
12755 * verification and to store information for passes that run after the
12756 * verification like dead code sanitization. do_check_common() for subprogram N
12757 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12758 * temporary data after do_check_common() finds that subprogram N cannot be
12759 * verified independently. pass_cnt counts the number of times
12760 * do_check_common() was run and insn->aux->seen tells the pass number
12761 * insn_aux_data was touched. These variables are compared to clear temporary
12762 * data from failed pass. For testing and experiments do_check_common() can be
12763 * run multiple times even when prior attempt to verify is unsuccessful.
12764 *
12765 * Note that special handling is needed on !env->bypass_spec_v1 if this is
12766 * ever called outside of error path with subsequent program rejection.
12767 */
12768static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12769{
12770        struct bpf_insn *insn = env->prog->insnsi;
12771        struct bpf_insn_aux_data *aux;
12772        int i, class;
12773
12774        for (i = 0; i < env->prog->len; i++) {
12775                class = BPF_CLASS(insn[i].code);
12776                if (class != BPF_LDX && class != BPF_STX)
12777                        continue;
12778                aux = &env->insn_aux_data[i];
12779                if (aux->seen != env->pass_cnt)
12780                        continue;
12781                memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12782        }
12783}
12784
12785static int do_check_common(struct bpf_verifier_env *env, int subprog)
12786{
12787        bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12788        struct bpf_verifier_state *state;
12789        struct bpf_reg_state *regs;
12790        int ret, i;
12791
12792        env->prev_linfo = NULL;
12793        env->pass_cnt++;
12794
12795        state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12796        if (!state)
12797                return -ENOMEM;
12798        state->curframe = 0;
12799        state->speculative = false;
12800        state->branches = 1;
12801        state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12802        if (!state->frame[0]) {
12803                kfree(state);
12804                return -ENOMEM;
12805        }
12806        env->cur_state = state;
12807        init_func_state(env, state->frame[0],
12808                        BPF_MAIN_FUNC /* callsite */,
12809                        0 /* frameno */,
12810                        subprog);
12811
12812        regs = state->frame[state->curframe]->regs;
12813        if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12814                ret = btf_prepare_func_args(env, subprog, regs);
12815                if (ret)
12816                        goto out;
12817                for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12818                        if (regs[i].type == PTR_TO_CTX)
12819                                mark_reg_known_zero(env, regs, i);
12820                        else if (regs[i].type == SCALAR_VALUE)
12821                                mark_reg_unknown(env, regs, i);
12822                        else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12823                                const u32 mem_size = regs[i].mem_size;
12824
12825                                mark_reg_known_zero(env, regs, i);
12826                                regs[i].mem_size = mem_size;
12827                                regs[i].id = ++env->id_gen;
12828                        }
12829                }
12830        } else {
12831                /* 1st arg to a function */
12832                regs[BPF_REG_1].type = PTR_TO_CTX;
12833                mark_reg_known_zero(env, regs, BPF_REG_1);
12834                ret = btf_check_subprog_arg_match(env, subprog, regs);
12835                if (ret == -EFAULT)
12836                        /* unlikely verifier bug. abort.
12837                         * ret == 0 and ret < 0 are sadly acceptable for
12838                         * main() function due to backward compatibility.
12839                         * Like socket filter program may be written as:
12840                         * int bpf_prog(struct pt_regs *ctx)
12841                         * and never dereference that ctx in the program.
12842                         * 'struct pt_regs' is a type mismatch for socket
12843                         * filter that should be using 'struct __sk_buff'.
12844                         */
12845                        goto out;
12846        }
12847
12848        ret = do_check(env);
12849out:
12850        /* check for NULL is necessary, since cur_state can be freed inside
12851         * do_check() under memory pressure.
12852         */
12853        if (env->cur_state) {
12854                free_verifier_state(env->cur_state, true);
12855                env->cur_state = NULL;
12856        }
12857        while (!pop_stack(env, NULL, NULL, false));
12858        if (!ret && pop_log)
12859                bpf_vlog_reset(&env->log, 0);
12860        free_states(env);
12861        if (ret)
12862                /* clean aux data in case subprog was rejected */
12863                sanitize_insn_aux_data(env);
12864        return ret;
12865}
12866
12867/* Verify all global functions in a BPF program one by one based on their BTF.
12868 * All global functions must pass verification. Otherwise the whole program is rejected.
12869 * Consider:
12870 * int bar(int);
12871 * int foo(int f)
12872 * {
12873 *    return bar(f);
12874 * }
12875 * int bar(int b)
12876 * {
12877 *    ...
12878 * }
12879 * foo() will be verified first for R1=any_scalar_value. During verification it
12880 * will be assumed that bar() already verified successfully and call to bar()
12881 * from foo() will be checked for type match only. Later bar() will be verified
12882 * independently to check that it's safe for R1=any_scalar_value.
12883 */
12884static int do_check_subprogs(struct bpf_verifier_env *env)
12885{
12886        struct bpf_prog_aux *aux = env->prog->aux;
12887        int i, ret;
12888
12889        if (!aux->func_info)
12890                return 0;
12891
12892        for (i = 1; i < env->subprog_cnt; i++) {
12893                if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12894                        continue;
12895                env->insn_idx = env->subprog_info[i].start;
12896                WARN_ON_ONCE(env->insn_idx == 0);
12897                ret = do_check_common(env, i);
12898                if (ret) {
12899                        return ret;
12900                } else if (env->log.level & BPF_LOG_LEVEL) {
12901                        verbose(env,
12902                                "Func#%d is safe for any args that match its prototype\n",
12903                                i);
12904                }
12905        }
12906        return 0;
12907}
12908
12909static int do_check_main(struct bpf_verifier_env *env)
12910{
12911        int ret;
12912
12913        env->insn_idx = 0;
12914        ret = do_check_common(env, 0);
12915        if (!ret)
12916                env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12917        return ret;
12918}
12919
12920
12921static void print_verification_stats(struct bpf_verifier_env *env)
12922{
12923        int i;
12924
12925        if (env->log.level & BPF_LOG_STATS) {
12926                verbose(env, "verification time %lld usec\n",
12927                        div_u64(env->verification_time, 1000));
12928                verbose(env, "stack depth ");
12929                for (i = 0; i < env->subprog_cnt; i++) {
12930                        u32 depth = env->subprog_info[i].stack_depth;
12931
12932                        verbose(env, "%d", depth);
12933                        if (i + 1 < env->subprog_cnt)
12934                                verbose(env, "+");
12935                }
12936                verbose(env, "\n");
12937        }
12938        verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12939                "total_states %d peak_states %d mark_read %d\n",
12940                env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12941                env->max_states_per_insn, env->total_states,
12942                env->peak_states, env->longest_mark_read_walk);
12943}
12944
12945static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12946{
12947        const struct btf_type *t, *func_proto;
12948        const struct bpf_struct_ops *st_ops;
12949        const struct btf_member *member;
12950        struct bpf_prog *prog = env->prog;
12951        u32 btf_id, member_idx;
12952        const char *mname;
12953
12954        if (!prog->gpl_compatible) {
12955                verbose(env, "struct ops programs must have a GPL compatible license\n");
12956                return -EINVAL;
12957        }
12958
12959        btf_id = prog->aux->attach_btf_id;
12960        st_ops = bpf_struct_ops_find(btf_id);
12961        if (!st_ops) {
12962                verbose(env, "attach_btf_id %u is not a supported struct\n",
12963                        btf_id);
12964                return -ENOTSUPP;
12965        }
12966
12967        t = st_ops->type;
12968        member_idx = prog->expected_attach_type;
12969        if (member_idx >= btf_type_vlen(t)) {
12970                verbose(env, "attach to invalid member idx %u of struct %s\n",
12971                        member_idx, st_ops->name);
12972                return -EINVAL;
12973        }
12974
12975        member = &btf_type_member(t)[member_idx];
12976        mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12977        func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12978                                               NULL);
12979        if (!func_proto) {
12980                verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12981                        mname, member_idx, st_ops->name);
12982                return -EINVAL;
12983        }
12984
12985        if (st_ops->check_member) {
12986                int err = st_ops->check_member(t, member);
12987
12988                if (err) {
12989                        verbose(env, "attach to unsupported member %s of struct %s\n",
12990                                mname, st_ops->name);
12991                        return err;
12992                }
12993        }
12994
12995        prog->aux->attach_func_proto = func_proto;
12996        prog->aux->attach_func_name = mname;
12997        env->ops = st_ops->verifier_ops;
12998
12999        return 0;
13000}
13001#define SECURITY_PREFIX "security_"
13002
13003static int check_attach_modify_return(unsigned long addr, const char *func_name)
13004{
13005        if (within_error_injection_list(addr) ||
13006            !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13007                return 0;
13008
13009        return -EINVAL;
13010}
13011
13012/* list of non-sleepable functions that are otherwise on
13013 * ALLOW_ERROR_INJECTION list
13014 */
13015BTF_SET_START(btf_non_sleepable_error_inject)
13016/* Three functions below can be called from sleepable and non-sleepable context.
13017 * Assume non-sleepable from bpf safety point of view.
13018 */
13019BTF_ID(func, __add_to_page_cache_locked)
13020BTF_ID(func, should_fail_alloc_page)
13021BTF_ID(func, should_failslab)
13022BTF_SET_END(btf_non_sleepable_error_inject)
13023
13024static int check_non_sleepable_error_inject(u32 btf_id)
13025{
13026        return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13027}
13028
13029int bpf_check_attach_target(struct bpf_verifier_log *log,
13030                            const struct bpf_prog *prog,
13031                            const struct bpf_prog *tgt_prog,
13032                            u32 btf_id,
13033                            struct bpf_attach_target_info *tgt_info)
13034{
13035        bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13036        const char prefix[] = "btf_trace_";
13037        int ret = 0, subprog = -1, i;
13038        const struct btf_type *t;
13039        bool conservative = true;
13040        const char *tname;
13041        struct btf *btf;
13042        long addr = 0;
13043
13044        if (!btf_id) {
13045                bpf_log(log, "Tracing programs must provide btf_id\n");
13046                return -EINVAL;
13047        }
13048        btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13049        if (!btf) {
13050                bpf_log(log,
13051                        "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13052                return -EINVAL;
13053        }
13054        t = btf_type_by_id(btf, btf_id);
13055        if (!t) {
13056                bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13057                return -EINVAL;
13058        }
13059        tname = btf_name_by_offset(btf, t->name_off);
13060        if (!tname) {
13061                bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13062                return -EINVAL;
13063        }
13064        if (tgt_prog) {
13065                struct bpf_prog_aux *aux = tgt_prog->aux;
13066
13067                for (i = 0; i < aux->func_info_cnt; i++)
13068                        if (aux->func_info[i].type_id == btf_id) {
13069                                subprog = i;
13070                                break;
13071                        }
13072                if (subprog == -1) {
13073                        bpf_log(log, "Subprog %s doesn't exist\n", tname);
13074                        return -EINVAL;
13075                }
13076                conservative = aux->func_info_aux[subprog].unreliable;
13077                if (prog_extension) {
13078                        if (conservative) {
13079                                bpf_log(log,
13080                                        "Cannot replace static functions\n");
13081                                return -EINVAL;
13082                        }
13083                        if (!prog->jit_requested) {
13084                                bpf_log(log,
13085                                        "Extension programs should be JITed\n");
13086                                return -EINVAL;
13087                        }
13088                }
13089                if (!tgt_prog->jited) {
13090                        bpf_log(log, "Can attach to only JITed progs\n");
13091                        return -EINVAL;
13092                }
13093                if (tgt_prog->type == prog->type) {
13094                        /* Cannot fentry/fexit another fentry/fexit program.
13095                         * Cannot attach program extension to another extension.
13096                         * It's ok to attach fentry/fexit to extension program.
13097                         */
13098                        bpf_log(log, "Cannot recursively attach\n");
13099                        return -EINVAL;
13100                }
13101                if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13102                    prog_extension &&
13103                    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13104                     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13105                        /* Program extensions can extend all program types
13106                         * except fentry/fexit. The reason is the following.
13107                         * The fentry/fexit programs are used for performance
13108                         * analysis, stats and can be attached to any program
13109                         * type except themselves. When extension program is
13110                         * replacing XDP function it is necessary to allow
13111                         * performance analysis of all functions. Both original
13112                         * XDP program and its program extension. Hence
13113                         * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13114                         * allowed. If extending of fentry/fexit was allowed it
13115                         * would be possible to create long call chain
13116                         * fentry->extension->fentry->extension beyond
13117                         * reasonable stack size. Hence extending fentry is not
13118                         * allowed.
13119                         */
13120                        bpf_log(log, "Cannot extend fentry/fexit\n");
13121                        return -EINVAL;
13122                }
13123        } else {
13124                if (prog_extension) {
13125                        bpf_log(log, "Cannot replace kernel functions\n");
13126                        return -EINVAL;
13127                }
13128        }
13129
13130        switch (prog->expected_attach_type) {
13131        case BPF_TRACE_RAW_TP:
13132                if (tgt_prog) {
13133                        bpf_log(log,
13134                                "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13135                        return -EINVAL;
13136                }
13137                if (!btf_type_is_typedef(t)) {
13138                        bpf_log(log, "attach_btf_id %u is not a typedef\n",
13139                                btf_id);
13140                        return -EINVAL;
13141                }
13142                if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13143                        bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13144                                btf_id, tname);
13145                        return -EINVAL;
13146                }
13147                tname += sizeof(prefix) - 1;
13148                t = btf_type_by_id(btf, t->type);
13149                if (!btf_type_is_ptr(t))
13150                        /* should never happen in valid vmlinux build */
13151                        return -EINVAL;
13152                t = btf_type_by_id(btf, t->type);
13153                if (!btf_type_is_func_proto(t))
13154                        /* should never happen in valid vmlinux build */
13155                        return -EINVAL;
13156
13157                break;
13158        case BPF_TRACE_ITER:
13159                if (!btf_type_is_func(t)) {
13160                        bpf_log(log, "attach_btf_id %u is not a function\n",
13161                                btf_id);
13162                        return -EINVAL;
13163                }
13164                t = btf_type_by_id(btf, t->type);
13165                if (!btf_type_is_func_proto(t))
13166                        return -EINVAL;
13167                ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13168                if (ret)
13169                        return ret;
13170                break;
13171        default:
13172                if (!prog_extension)
13173                        return -EINVAL;
13174                fallthrough;
13175        case BPF_MODIFY_RETURN:
13176        case BPF_LSM_MAC:
13177        case BPF_TRACE_FENTRY:
13178        case BPF_TRACE_FEXIT:
13179                if (!btf_type_is_func(t)) {
13180                        bpf_log(log, "attach_btf_id %u is not a function\n",
13181                                btf_id);
13182                        return -EINVAL;
13183                }
13184                if (prog_extension &&
13185                    btf_check_type_match(log, prog, btf, t))
13186                        return -EINVAL;
13187                t = btf_type_by_id(btf, t->type);
13188                if (!btf_type_is_func_proto(t))
13189                        return -EINVAL;
13190
13191                if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13192                    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13193                     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13194                        return -EINVAL;
13195
13196                if (tgt_prog && conservative)
13197                        t = NULL;
13198
13199                ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13200                if (ret < 0)
13201                        return ret;
13202
13203                if (tgt_prog) {
13204                        if (subprog == 0)
13205                                addr = (long) tgt_prog->bpf_func;
13206                        else
13207                                addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13208                } else {
13209                        addr = kallsyms_lookup_name(tname);
13210                        if (!addr) {
13211                                bpf_log(log,
13212                                        "The address of function %s cannot be found\n",
13213                                        tname);
13214                                return -ENOENT;
13215                        }
13216                }
13217
13218                if (prog->aux->sleepable) {
13219                        ret = -EINVAL;
13220                        switch (prog->type) {
13221                        case BPF_PROG_TYPE_TRACING:
13222                                /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13223                                 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13224                                 */
13225                                if (!check_non_sleepable_error_inject(btf_id) &&
13226                                    within_error_injection_list(addr))
13227                                        ret = 0;
13228                                break;
13229                        case BPF_PROG_TYPE_LSM:
13230                                /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13231                                 * Only some of them are sleepable.
13232                                 */
13233                                if (bpf_lsm_is_sleepable_hook(btf_id))
13234                                        ret = 0;
13235                                break;
13236                        default:
13237                                break;
13238                        }
13239                        if (ret) {
13240                                bpf_log(log, "%s is not sleepable\n", tname);
13241                                return ret;
13242                        }
13243                } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13244                        if (tgt_prog) {
13245                                bpf_log(log, "can't modify return codes of BPF programs\n");
13246                                return -EINVAL;
13247                        }
13248                        ret = check_attach_modify_return(addr, tname);
13249                        if (ret) {
13250                                bpf_log(log, "%s() is not modifiable\n", tname);
13251                                return ret;
13252                        }
13253                }
13254
13255                break;
13256        }
13257        tgt_info->tgt_addr = addr;
13258        tgt_info->tgt_name = tname;
13259        tgt_info->tgt_type = t;
13260        return 0;
13261}
13262
13263BTF_SET_START(btf_id_deny)
13264BTF_ID_UNUSED
13265#ifdef CONFIG_SMP
13266BTF_ID(func, migrate_disable)
13267BTF_ID(func, migrate_enable)
13268#endif
13269#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13270BTF_ID(func, rcu_read_unlock_strict)
13271#endif
13272BTF_SET_END(btf_id_deny)
13273
13274static int check_attach_btf_id(struct bpf_verifier_env *env)
13275{
13276        struct bpf_prog *prog = env->prog;
13277        struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13278        struct bpf_attach_target_info tgt_info = {};
13279        u32 btf_id = prog->aux->attach_btf_id;
13280        struct bpf_trampoline *tr;
13281        int ret;
13282        u64 key;
13283
13284        if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13285            prog->type != BPF_PROG_TYPE_LSM) {
13286                verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13287                return -EINVAL;
13288        }
13289
13290        if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13291                return check_struct_ops_btf_id(env);
13292
13293        if (prog->type != BPF_PROG_TYPE_TRACING &&
13294            prog->type != BPF_PROG_TYPE_LSM &&
13295            prog->type != BPF_PROG_TYPE_EXT)
13296                return 0;
13297
13298        ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13299        if (ret)
13300                return ret;
13301
13302        if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13303                /* to make freplace equivalent to their targets, they need to
13304                 * inherit env->ops and expected_attach_type for the rest of the
13305                 * verification
13306                 */
13307                env->ops = bpf_verifier_ops[tgt_prog->type];
13308                prog->expected_attach_type = tgt_prog->expected_attach_type;
13309        }
13310
13311        /* store info about the attachment target that will be used later */
13312        prog->aux->attach_func_proto = tgt_info.tgt_type;
13313        prog->aux->attach_func_name = tgt_info.tgt_name;
13314
13315        if (tgt_prog) {
13316                prog->aux->saved_dst_prog_type = tgt_prog->type;
13317                prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13318        }
13319
13320        if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13321                prog->aux->attach_btf_trace = true;
13322                return 0;
13323        } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13324                if (!bpf_iter_prog_supported(prog))
13325                        return -EINVAL;
13326                return 0;
13327        }
13328
13329        if (prog->type == BPF_PROG_TYPE_LSM) {
13330                ret = bpf_lsm_verify_prog(&env->log, prog);
13331                if (ret < 0)
13332                        return ret;
13333        } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13334                   btf_id_set_contains(&btf_id_deny, btf_id)) {
13335                return -EINVAL;
13336        }
13337
13338        key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13339        tr = bpf_trampoline_get(key, &tgt_info);
13340        if (!tr)
13341                return -ENOMEM;
13342
13343        prog->aux->dst_trampoline = tr;
13344        return 0;
13345}
13346
13347struct btf *bpf_get_btf_vmlinux(void)
13348{
13349        if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13350                mutex_lock(&bpf_verifier_lock);
13351                if (!btf_vmlinux)
13352                        btf_vmlinux = btf_parse_vmlinux();
13353                mutex_unlock(&bpf_verifier_lock);
13354        }
13355        return btf_vmlinux;
13356}
13357
13358int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
13359              union bpf_attr __user *uattr)
13360{
13361        u64 start_time = ktime_get_ns();
13362        struct bpf_verifier_env *env;
13363        struct bpf_verifier_log *log;
13364        int i, len, ret = -EINVAL;
13365        bool is_priv;
13366
13367        /* no program is valid */
13368        if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13369                return -EINVAL;
13370
13371        /* 'struct bpf_verifier_env' can be global, but since it's not small,
13372         * allocate/free it every time bpf_check() is called
13373         */
13374        env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13375        if (!env)
13376                return -ENOMEM;
13377        log = &env->log;
13378
13379        len = (*prog)->len;
13380        env->insn_aux_data =
13381                vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13382        ret = -ENOMEM;
13383        if (!env->insn_aux_data)
13384                goto err_free_env;
13385        for (i = 0; i < len; i++)
13386                env->insn_aux_data[i].orig_idx = i;
13387        env->prog = *prog;
13388        env->ops = bpf_verifier_ops[env->prog->type];
13389        is_priv = bpf_capable();
13390
13391        bpf_get_btf_vmlinux();
13392
13393        /* grab the mutex to protect few globals used by verifier */
13394        if (!is_priv)
13395                mutex_lock(&bpf_verifier_lock);
13396
13397        if (attr->log_level || attr->log_buf || attr->log_size) {
13398                /* user requested verbose verifier output
13399                 * and supplied buffer to store the verification trace
13400                 */
13401                log->level = attr->log_level;
13402                log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13403                log->len_total = attr->log_size;
13404
13405                ret = -EINVAL;
13406                /* log attributes have to be sane */
13407                if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13408                    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13409                        goto err_unlock;
13410        }
13411
13412        if (IS_ERR(btf_vmlinux)) {
13413                /* Either gcc or pahole or kernel are broken. */
13414                verbose(env, "in-kernel BTF is malformed\n");
13415                ret = PTR_ERR(btf_vmlinux);
13416                goto skip_full_check;
13417        }
13418
13419        env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13420        if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13421                env->strict_alignment = true;
13422        if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13423                env->strict_alignment = false;
13424
13425        env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13426        env->allow_uninit_stack = bpf_allow_uninit_stack();
13427        env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13428        env->bypass_spec_v1 = bpf_bypass_spec_v1();
13429        env->bypass_spec_v4 = bpf_bypass_spec_v4();
13430        env->bpf_capable = bpf_capable();
13431
13432        if (is_priv)
13433                env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13434
13435        env->explored_states = kvcalloc(state_htab_size(env),
13436                                       sizeof(struct bpf_verifier_state_list *),
13437                                       GFP_USER);
13438        ret = -ENOMEM;
13439        if (!env->explored_states)
13440                goto skip_full_check;
13441
13442        ret = add_subprog_and_kfunc(env);
13443        if (ret < 0)
13444                goto skip_full_check;
13445
13446        ret = check_subprogs(env);
13447        if (ret < 0)
13448                goto skip_full_check;
13449
13450        ret = check_btf_info(env, attr, uattr);
13451        if (ret < 0)
13452                goto skip_full_check;
13453
13454        ret = check_attach_btf_id(env);
13455        if (ret)
13456                goto skip_full_check;
13457
13458        ret = resolve_pseudo_ldimm64(env);
13459        if (ret < 0)
13460                goto skip_full_check;
13461
13462        if (bpf_prog_is_dev_bound(env->prog->aux)) {
13463                ret = bpf_prog_offload_verifier_prep(env->prog);
13464                if (ret)
13465                        goto skip_full_check;
13466        }
13467
13468        ret = check_cfg(env);
13469        if (ret < 0)
13470                goto skip_full_check;
13471
13472        ret = do_check_subprogs(env);
13473        ret = ret ?: do_check_main(env);
13474
13475        if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13476                ret = bpf_prog_offload_finalize(env);
13477
13478skip_full_check:
13479        kvfree(env->explored_states);
13480
13481        if (ret == 0)
13482                ret = check_max_stack_depth(env);
13483
13484        /* instruction rewrites happen after this point */
13485        if (is_priv) {
13486                if (ret == 0)
13487                        opt_hard_wire_dead_code_branches(env);
13488                if (ret == 0)
13489                        ret = opt_remove_dead_code(env);
13490                if (ret == 0)
13491                        ret = opt_remove_nops(env);
13492        } else {
13493                if (ret == 0)
13494                        sanitize_dead_code(env);
13495        }
13496
13497        if (ret == 0)
13498                /* program is valid, convert *(u32*)(ctx + off) accesses */
13499                ret = convert_ctx_accesses(env);
13500
13501        if (ret == 0)
13502                ret = do_misc_fixups(env);
13503
13504        /* do 32-bit optimization after insn patching has done so those patched
13505         * insns could be handled correctly.
13506         */
13507        if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13508                ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13509                env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13510                                                                     : false;
13511        }
13512
13513        if (ret == 0)
13514                ret = fixup_call_args(env);
13515
13516        env->verification_time = ktime_get_ns() - start_time;
13517        print_verification_stats(env);
13518
13519        if (log->level && bpf_verifier_log_full(log))
13520                ret = -ENOSPC;
13521        if (log->level && !log->ubuf) {
13522                ret = -EFAULT;
13523                goto err_release_maps;
13524        }
13525
13526        if (ret)
13527                goto err_release_maps;
13528
13529        if (env->used_map_cnt) {
13530                /* if program passed verifier, update used_maps in bpf_prog_info */
13531                env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13532                                                          sizeof(env->used_maps[0]),
13533                                                          GFP_KERNEL);
13534
13535                if (!env->prog->aux->used_maps) {
13536                        ret = -ENOMEM;
13537                        goto err_release_maps;
13538                }
13539
13540                memcpy(env->prog->aux->used_maps, env->used_maps,
13541                       sizeof(env->used_maps[0]) * env->used_map_cnt);
13542                env->prog->aux->used_map_cnt = env->used_map_cnt;
13543        }
13544        if (env->used_btf_cnt) {
13545                /* if program passed verifier, update used_btfs in bpf_prog_aux */
13546                env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13547                                                          sizeof(env->used_btfs[0]),
13548                                                          GFP_KERNEL);
13549                if (!env->prog->aux->used_btfs) {
13550                        ret = -ENOMEM;
13551                        goto err_release_maps;
13552                }
13553
13554                memcpy(env->prog->aux->used_btfs, env->used_btfs,
13555                       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13556                env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13557        }
13558        if (env->used_map_cnt || env->used_btf_cnt) {
13559                /* program is valid. Convert pseudo bpf_ld_imm64 into generic
13560                 * bpf_ld_imm64 instructions
13561                 */
13562                convert_pseudo_ld_imm64(env);
13563        }
13564
13565        adjust_btf_func(env);
13566
13567err_release_maps:
13568        if (!env->prog->aux->used_maps)
13569                /* if we didn't copy map pointers into bpf_prog_info, release
13570                 * them now. Otherwise free_used_maps() will release them.
13571                 */
13572                release_maps(env);
13573        if (!env->prog->aux->used_btfs)
13574                release_btfs(env);
13575
13576        /* extension progs temporarily inherit the attach_type of their targets
13577           for verification purposes, so set it back to zero before returning
13578         */
13579        if (env->prog->type == BPF_PROG_TYPE_EXT)
13580                env->prog->expected_attach_type = 0;
13581
13582        *prog = env->prog;
13583err_unlock:
13584        if (!is_priv)
13585                mutex_unlock(&bpf_verifier_lock);
13586        vfree(env->insn_aux_data);
13587err_free_env:
13588        kfree(env);
13589        return ret;
13590}
13591