linux/kernel/cgroup/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <linux/fs_parser.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/psi.h>
  60#include <net/sock.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/cgroup.h>
  64
  65#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  66                                         MAX_CFTYPE_NAME + 2)
  67/* let's not notify more than 100 times per second */
  68#define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * css_set_lock protects task->cgroups pointer, the list of css_set
  75 * objects, and the chain of tasks off each css_set.
  76 *
  77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  78 * cgroup.h can use them for lockdep annotations.
  79 */
  80DEFINE_MUTEX(cgroup_mutex);
  81DEFINE_SPINLOCK(css_set_lock);
  82
  83#ifdef CONFIG_PROVE_RCU
  84EXPORT_SYMBOL_GPL(cgroup_mutex);
  85EXPORT_SYMBOL_GPL(css_set_lock);
  86#endif
  87
  88DEFINE_SPINLOCK(trace_cgroup_path_lock);
  89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  90bool cgroup_debug __read_mostly;
  91
  92/*
  93 * Protects cgroup_idr and css_idr so that IDs can be released without
  94 * grabbing cgroup_mutex.
  95 */
  96static DEFINE_SPINLOCK(cgroup_idr_lock);
  97
  98/*
  99 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 100 * against file removal/re-creation across css hiding.
 101 */
 102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 103
 104DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 105
 106#define cgroup_assert_mutex_or_rcu_locked()                             \
 107        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 108                           !lockdep_is_held(&cgroup_mutex),             \
 109                           "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/* generate an array of cgroup subsystem pointers */
 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 121struct cgroup_subsys *cgroup_subsys[] = {
 122#include <linux/cgroup_subsys.h>
 123};
 124#undef SUBSYS
 125
 126/* array of cgroup subsystem names */
 127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 128static const char *cgroup_subsys_name[] = {
 129#include <linux/cgroup_subsys.h>
 130};
 131#undef SUBSYS
 132
 133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 134#define SUBSYS(_x)                                                              \
 135        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 136        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 137        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 138        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 139#include <linux/cgroup_subsys.h>
 140#undef SUBSYS
 141
 142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 143static struct static_key_true *cgroup_subsys_enabled_key[] = {
 144#include <linux/cgroup_subsys.h>
 145};
 146#undef SUBSYS
 147
 148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 150#include <linux/cgroup_subsys.h>
 151};
 152#undef SUBSYS
 153
 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 155
 156/* the default hierarchy */
 157struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 158EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 159
 160/*
 161 * The default hierarchy always exists but is hidden until mounted for the
 162 * first time.  This is for backward compatibility.
 163 */
 164static bool cgrp_dfl_visible;
 165
 166/* some controllers are not supported in the default hierarchy */
 167static u16 cgrp_dfl_inhibit_ss_mask;
 168
 169/* some controllers are implicitly enabled on the default hierarchy */
 170static u16 cgrp_dfl_implicit_ss_mask;
 171
 172/* some controllers can be threaded on the default hierarchy */
 173static u16 cgrp_dfl_threaded_ss_mask;
 174
 175/* The list of hierarchy roots */
 176LIST_HEAD(cgroup_roots);
 177static int cgroup_root_count;
 178
 179/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 180static DEFINE_IDR(cgroup_hierarchy_idr);
 181
 182/*
 183 * Assign a monotonically increasing serial number to csses.  It guarantees
 184 * cgroups with bigger numbers are newer than those with smaller numbers.
 185 * Also, as csses are always appended to the parent's ->children list, it
 186 * guarantees that sibling csses are always sorted in the ascending serial
 187 * number order on the list.  Protected by cgroup_mutex.
 188 */
 189static u64 css_serial_nr_next = 1;
 190
 191/*
 192 * These bitmasks identify subsystems with specific features to avoid
 193 * having to do iterative checks repeatedly.
 194 */
 195static u16 have_fork_callback __read_mostly;
 196static u16 have_exit_callback __read_mostly;
 197static u16 have_release_callback __read_mostly;
 198static u16 have_canfork_callback __read_mostly;
 199
 200/* cgroup namespace for init task */
 201struct cgroup_namespace init_cgroup_ns = {
 202        .ns.count       = REFCOUNT_INIT(2),
 203        .user_ns        = &init_user_ns,
 204        .ns.ops         = &cgroupns_operations,
 205        .ns.inum        = PROC_CGROUP_INIT_INO,
 206        .root_cset      = &init_css_set,
 207};
 208
 209static struct file_system_type cgroup2_fs_type;
 210static struct cftype cgroup_base_files[];
 211
 212static int cgroup_apply_control(struct cgroup *cgrp);
 213static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 214static void css_task_iter_skip(struct css_task_iter *it,
 215                               struct task_struct *task);
 216static int cgroup_destroy_locked(struct cgroup *cgrp);
 217static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 218                                              struct cgroup_subsys *ss);
 219static void css_release(struct percpu_ref *ref);
 220static void kill_css(struct cgroup_subsys_state *css);
 221static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 222                              struct cgroup *cgrp, struct cftype cfts[],
 223                              bool is_add);
 224
 225/**
 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 227 * @ssid: subsys ID of interest
 228 *
 229 * cgroup_subsys_enabled() can only be used with literal subsys names which
 230 * is fine for individual subsystems but unsuitable for cgroup core.  This
 231 * is slower static_key_enabled() based test indexed by @ssid.
 232 */
 233bool cgroup_ssid_enabled(int ssid)
 234{
 235        if (CGROUP_SUBSYS_COUNT == 0)
 236                return false;
 237
 238        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 239}
 240
 241/**
 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 243 * @cgrp: the cgroup of interest
 244 *
 245 * The default hierarchy is the v2 interface of cgroup and this function
 246 * can be used to test whether a cgroup is on the default hierarchy for
 247 * cases where a subsystem should behave differently depending on the
 248 * interface version.
 249 *
 250 * List of changed behaviors:
 251 *
 252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 253 *   and "name" are disallowed.
 254 *
 255 * - When mounting an existing superblock, mount options should match.
 256 *
 257 * - Remount is disallowed.
 258 *
 259 * - rename(2) is disallowed.
 260 *
 261 * - "tasks" is removed.  Everything should be at process granularity.  Use
 262 *   "cgroup.procs" instead.
 263 *
 264 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 265 *   recycled in-between reads.
 266 *
 267 * - "release_agent" and "notify_on_release" are removed.  Replacement
 268 *   notification mechanism will be implemented.
 269 *
 270 * - "cgroup.clone_children" is removed.
 271 *
 272 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 273 *   and its descendants contain no task; otherwise, 1.  The file also
 274 *   generates kernfs notification which can be monitored through poll and
 275 *   [di]notify when the value of the file changes.
 276 *
 277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 278 *   take masks of ancestors with non-empty cpus/mems, instead of being
 279 *   moved to an ancestor.
 280 *
 281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 282 *   masks of ancestors.
 283 *
 284 * - blkcg: blk-throttle becomes properly hierarchical.
 285 *
 286 * - debug: disallowed on the default hierarchy.
 287 */
 288bool cgroup_on_dfl(const struct cgroup *cgrp)
 289{
 290        return cgrp->root == &cgrp_dfl_root;
 291}
 292
 293/* IDR wrappers which synchronize using cgroup_idr_lock */
 294static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 295                            gfp_t gfp_mask)
 296{
 297        int ret;
 298
 299        idr_preload(gfp_mask);
 300        spin_lock_bh(&cgroup_idr_lock);
 301        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 302        spin_unlock_bh(&cgroup_idr_lock);
 303        idr_preload_end();
 304        return ret;
 305}
 306
 307static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 308{
 309        void *ret;
 310
 311        spin_lock_bh(&cgroup_idr_lock);
 312        ret = idr_replace(idr, ptr, id);
 313        spin_unlock_bh(&cgroup_idr_lock);
 314        return ret;
 315}
 316
 317static void cgroup_idr_remove(struct idr *idr, int id)
 318{
 319        spin_lock_bh(&cgroup_idr_lock);
 320        idr_remove(idr, id);
 321        spin_unlock_bh(&cgroup_idr_lock);
 322}
 323
 324static bool cgroup_has_tasks(struct cgroup *cgrp)
 325{
 326        return cgrp->nr_populated_csets;
 327}
 328
 329bool cgroup_is_threaded(struct cgroup *cgrp)
 330{
 331        return cgrp->dom_cgrp != cgrp;
 332}
 333
 334/* can @cgrp host both domain and threaded children? */
 335static bool cgroup_is_mixable(struct cgroup *cgrp)
 336{
 337        /*
 338         * Root isn't under domain level resource control exempting it from
 339         * the no-internal-process constraint, so it can serve as a thread
 340         * root and a parent of resource domains at the same time.
 341         */
 342        return !cgroup_parent(cgrp);
 343}
 344
 345/* can @cgrp become a thread root? Should always be true for a thread root */
 346static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 347{
 348        /* mixables don't care */
 349        if (cgroup_is_mixable(cgrp))
 350                return true;
 351
 352        /* domain roots can't be nested under threaded */
 353        if (cgroup_is_threaded(cgrp))
 354                return false;
 355
 356        /* can only have either domain or threaded children */
 357        if (cgrp->nr_populated_domain_children)
 358                return false;
 359
 360        /* and no domain controllers can be enabled */
 361        if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 362                return false;
 363
 364        return true;
 365}
 366
 367/* is @cgrp root of a threaded subtree? */
 368bool cgroup_is_thread_root(struct cgroup *cgrp)
 369{
 370        /* thread root should be a domain */
 371        if (cgroup_is_threaded(cgrp))
 372                return false;
 373
 374        /* a domain w/ threaded children is a thread root */
 375        if (cgrp->nr_threaded_children)
 376                return true;
 377
 378        /*
 379         * A domain which has tasks and explicit threaded controllers
 380         * enabled is a thread root.
 381         */
 382        if (cgroup_has_tasks(cgrp) &&
 383            (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 384                return true;
 385
 386        return false;
 387}
 388
 389/* a domain which isn't connected to the root w/o brekage can't be used */
 390static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 391{
 392        /* the cgroup itself can be a thread root */
 393        if (cgroup_is_threaded(cgrp))
 394                return false;
 395
 396        /* but the ancestors can't be unless mixable */
 397        while ((cgrp = cgroup_parent(cgrp))) {
 398                if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 399                        return false;
 400                if (cgroup_is_threaded(cgrp))
 401                        return false;
 402        }
 403
 404        return true;
 405}
 406
 407/* subsystems visibly enabled on a cgroup */
 408static u16 cgroup_control(struct cgroup *cgrp)
 409{
 410        struct cgroup *parent = cgroup_parent(cgrp);
 411        u16 root_ss_mask = cgrp->root->subsys_mask;
 412
 413        if (parent) {
 414                u16 ss_mask = parent->subtree_control;
 415
 416                /* threaded cgroups can only have threaded controllers */
 417                if (cgroup_is_threaded(cgrp))
 418                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 419                return ss_mask;
 420        }
 421
 422        if (cgroup_on_dfl(cgrp))
 423                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 424                                  cgrp_dfl_implicit_ss_mask);
 425        return root_ss_mask;
 426}
 427
 428/* subsystems enabled on a cgroup */
 429static u16 cgroup_ss_mask(struct cgroup *cgrp)
 430{
 431        struct cgroup *parent = cgroup_parent(cgrp);
 432
 433        if (parent) {
 434                u16 ss_mask = parent->subtree_ss_mask;
 435
 436                /* threaded cgroups can only have threaded controllers */
 437                if (cgroup_is_threaded(cgrp))
 438                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 439                return ss_mask;
 440        }
 441
 442        return cgrp->root->subsys_mask;
 443}
 444
 445/**
 446 * cgroup_css - obtain a cgroup's css for the specified subsystem
 447 * @cgrp: the cgroup of interest
 448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 449 *
 450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 451 * function must be called either under cgroup_mutex or rcu_read_lock() and
 452 * the caller is responsible for pinning the returned css if it wants to
 453 * keep accessing it outside the said locks.  This function may return
 454 * %NULL if @cgrp doesn't have @subsys_id enabled.
 455 */
 456static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 457                                              struct cgroup_subsys *ss)
 458{
 459        if (ss)
 460                return rcu_dereference_check(cgrp->subsys[ss->id],
 461                                        lockdep_is_held(&cgroup_mutex));
 462        else
 463                return &cgrp->self;
 464}
 465
 466/**
 467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 468 * @cgrp: the cgroup of interest
 469 * @ss: the subsystem of interest
 470 *
 471 * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
 472 * or is offline, %NULL is returned.
 473 */
 474static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 475                                                     struct cgroup_subsys *ss)
 476{
 477        struct cgroup_subsys_state *css;
 478
 479        rcu_read_lock();
 480        css = cgroup_css(cgrp, ss);
 481        if (css && !css_tryget_online(css))
 482                css = NULL;
 483        rcu_read_unlock();
 484
 485        return css;
 486}
 487
 488/**
 489 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 490 * @cgrp: the cgroup of interest
 491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 492 *
 493 * Similar to cgroup_css() but returns the effective css, which is defined
 494 * as the matching css of the nearest ancestor including self which has @ss
 495 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 496 * function is guaranteed to return non-NULL css.
 497 */
 498static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 499                                                        struct cgroup_subsys *ss)
 500{
 501        lockdep_assert_held(&cgroup_mutex);
 502
 503        if (!ss)
 504                return &cgrp->self;
 505
 506        /*
 507         * This function is used while updating css associations and thus
 508         * can't test the csses directly.  Test ss_mask.
 509         */
 510        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 511                cgrp = cgroup_parent(cgrp);
 512                if (!cgrp)
 513                        return NULL;
 514        }
 515
 516        return cgroup_css(cgrp, ss);
 517}
 518
 519/**
 520 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 521 * @cgrp: the cgroup of interest
 522 * @ss: the subsystem of interest
 523 *
 524 * Find and get the effective css of @cgrp for @ss.  The effective css is
 525 * defined as the matching css of the nearest ancestor including self which
 526 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 527 * the root css is returned, so this function always returns a valid css.
 528 *
 529 * The returned css is not guaranteed to be online, and therefore it is the
 530 * callers responsibility to try get a reference for it.
 531 */
 532struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 533                                         struct cgroup_subsys *ss)
 534{
 535        struct cgroup_subsys_state *css;
 536
 537        do {
 538                css = cgroup_css(cgrp, ss);
 539
 540                if (css)
 541                        return css;
 542                cgrp = cgroup_parent(cgrp);
 543        } while (cgrp);
 544
 545        return init_css_set.subsys[ss->id];
 546}
 547
 548/**
 549 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 550 * @cgrp: the cgroup of interest
 551 * @ss: the subsystem of interest
 552 *
 553 * Find and get the effective css of @cgrp for @ss.  The effective css is
 554 * defined as the matching css of the nearest ancestor including self which
 555 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 556 * the root css is returned, so this function always returns a valid css.
 557 * The returned css must be put using css_put().
 558 */
 559struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 560                                             struct cgroup_subsys *ss)
 561{
 562        struct cgroup_subsys_state *css;
 563
 564        rcu_read_lock();
 565
 566        do {
 567                css = cgroup_css(cgrp, ss);
 568
 569                if (css && css_tryget_online(css))
 570                        goto out_unlock;
 571                cgrp = cgroup_parent(cgrp);
 572        } while (cgrp);
 573
 574        css = init_css_set.subsys[ss->id];
 575        css_get(css);
 576out_unlock:
 577        rcu_read_unlock();
 578        return css;
 579}
 580
 581static void cgroup_get_live(struct cgroup *cgrp)
 582{
 583        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 584        css_get(&cgrp->self);
 585}
 586
 587/**
 588 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 589 * is responsible for taking the css_set_lock.
 590 * @cgrp: the cgroup in question
 591 */
 592int __cgroup_task_count(const struct cgroup *cgrp)
 593{
 594        int count = 0;
 595        struct cgrp_cset_link *link;
 596
 597        lockdep_assert_held(&css_set_lock);
 598
 599        list_for_each_entry(link, &cgrp->cset_links, cset_link)
 600                count += link->cset->nr_tasks;
 601
 602        return count;
 603}
 604
 605/**
 606 * cgroup_task_count - count the number of tasks in a cgroup.
 607 * @cgrp: the cgroup in question
 608 */
 609int cgroup_task_count(const struct cgroup *cgrp)
 610{
 611        int count;
 612
 613        spin_lock_irq(&css_set_lock);
 614        count = __cgroup_task_count(cgrp);
 615        spin_unlock_irq(&css_set_lock);
 616
 617        return count;
 618}
 619
 620struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 621{
 622        struct cgroup *cgrp = of->kn->parent->priv;
 623        struct cftype *cft = of_cft(of);
 624
 625        /*
 626         * This is open and unprotected implementation of cgroup_css().
 627         * seq_css() is only called from a kernfs file operation which has
 628         * an active reference on the file.  Because all the subsystem
 629         * files are drained before a css is disassociated with a cgroup,
 630         * the matching css from the cgroup's subsys table is guaranteed to
 631         * be and stay valid until the enclosing operation is complete.
 632         */
 633        if (cft->ss)
 634                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 635        else
 636                return &cgrp->self;
 637}
 638EXPORT_SYMBOL_GPL(of_css);
 639
 640/**
 641 * for_each_css - iterate all css's of a cgroup
 642 * @css: the iteration cursor
 643 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 644 * @cgrp: the target cgroup to iterate css's of
 645 *
 646 * Should be called under cgroup_[tree_]mutex.
 647 */
 648#define for_each_css(css, ssid, cgrp)                                   \
 649        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 650                if (!((css) = rcu_dereference_check(                    \
 651                                (cgrp)->subsys[(ssid)],                 \
 652                                lockdep_is_held(&cgroup_mutex)))) { }   \
 653                else
 654
 655/**
 656 * for_each_e_css - iterate all effective css's of a cgroup
 657 * @css: the iteration cursor
 658 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 659 * @cgrp: the target cgroup to iterate css's of
 660 *
 661 * Should be called under cgroup_[tree_]mutex.
 662 */
 663#define for_each_e_css(css, ssid, cgrp)                                     \
 664        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)            \
 665                if (!((css) = cgroup_e_css_by_mask(cgrp,                    \
 666                                                   cgroup_subsys[(ssid)]))) \
 667                        ;                                                   \
 668                else
 669
 670/**
 671 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 672 * @ss: the iteration cursor
 673 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 674 * @ss_mask: the bitmask
 675 *
 676 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 677 * @ss_mask is set.
 678 */
 679#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 680        unsigned long __ss_mask = (ss_mask);                            \
 681        if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
 682                (ssid) = 0;                                             \
 683                break;                                                  \
 684        }                                                               \
 685        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 686                (ss) = cgroup_subsys[ssid];                             \
 687                {
 688
 689#define while_each_subsys_mask()                                        \
 690                }                                                       \
 691        }                                                               \
 692} while (false)
 693
 694/* iterate over child cgrps, lock should be held throughout iteration */
 695#define cgroup_for_each_live_child(child, cgrp)                         \
 696        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 697                if (({ lockdep_assert_held(&cgroup_mutex);              \
 698                       cgroup_is_dead(child); }))                       \
 699                        ;                                               \
 700                else
 701
 702/* walk live descendants in pre order */
 703#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 704        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 705                if (({ lockdep_assert_held(&cgroup_mutex);              \
 706                       (dsct) = (d_css)->cgroup;                        \
 707                       cgroup_is_dead(dsct); }))                        \
 708                        ;                                               \
 709                else
 710
 711/* walk live descendants in postorder */
 712#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 713        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 714                if (({ lockdep_assert_held(&cgroup_mutex);              \
 715                       (dsct) = (d_css)->cgroup;                        \
 716                       cgroup_is_dead(dsct); }))                        \
 717                        ;                                               \
 718                else
 719
 720/*
 721 * The default css_set - used by init and its children prior to any
 722 * hierarchies being mounted. It contains a pointer to the root state
 723 * for each subsystem. Also used to anchor the list of css_sets. Not
 724 * reference-counted, to improve performance when child cgroups
 725 * haven't been created.
 726 */
 727struct css_set init_css_set = {
 728        .refcount               = REFCOUNT_INIT(1),
 729        .dom_cset               = &init_css_set,
 730        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 731        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 732        .dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
 733        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 734        .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
 735        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 736        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 737        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 738
 739        /*
 740         * The following field is re-initialized when this cset gets linked
 741         * in cgroup_init().  However, let's initialize the field
 742         * statically too so that the default cgroup can be accessed safely
 743         * early during boot.
 744         */
 745        .dfl_cgrp               = &cgrp_dfl_root.cgrp,
 746};
 747
 748static int css_set_count        = 1;    /* 1 for init_css_set */
 749
 750static bool css_set_threaded(struct css_set *cset)
 751{
 752        return cset->dom_cset != cset;
 753}
 754
 755/**
 756 * css_set_populated - does a css_set contain any tasks?
 757 * @cset: target css_set
 758 *
 759 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 760 * state. However, css_set_populated() can be called while a task is being
 761 * added to or removed from the linked list before the nr_tasks is
 762 * properly updated. Hence, we can't just look at ->nr_tasks here.
 763 */
 764static bool css_set_populated(struct css_set *cset)
 765{
 766        lockdep_assert_held(&css_set_lock);
 767
 768        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 769}
 770
 771/**
 772 * cgroup_update_populated - update the populated count of a cgroup
 773 * @cgrp: the target cgroup
 774 * @populated: inc or dec populated count
 775 *
 776 * One of the css_sets associated with @cgrp is either getting its first
 777 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 778 * count is propagated towards root so that a given cgroup's
 779 * nr_populated_children is zero iff none of its descendants contain any
 780 * tasks.
 781 *
 782 * @cgrp's interface file "cgroup.populated" is zero if both
 783 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 784 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 785 * that the content of the interface file has changed.  This can be used to
 786 * detect when @cgrp and its descendants become populated or empty.
 787 */
 788static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 789{
 790        struct cgroup *child = NULL;
 791        int adj = populated ? 1 : -1;
 792
 793        lockdep_assert_held(&css_set_lock);
 794
 795        do {
 796                bool was_populated = cgroup_is_populated(cgrp);
 797
 798                if (!child) {
 799                        cgrp->nr_populated_csets += adj;
 800                } else {
 801                        if (cgroup_is_threaded(child))
 802                                cgrp->nr_populated_threaded_children += adj;
 803                        else
 804                                cgrp->nr_populated_domain_children += adj;
 805                }
 806
 807                if (was_populated == cgroup_is_populated(cgrp))
 808                        break;
 809
 810                cgroup1_check_for_release(cgrp);
 811                TRACE_CGROUP_PATH(notify_populated, cgrp,
 812                                  cgroup_is_populated(cgrp));
 813                cgroup_file_notify(&cgrp->events_file);
 814
 815                child = cgrp;
 816                cgrp = cgroup_parent(cgrp);
 817        } while (cgrp);
 818}
 819
 820/**
 821 * css_set_update_populated - update populated state of a css_set
 822 * @cset: target css_set
 823 * @populated: whether @cset is populated or depopulated
 824 *
 825 * @cset is either getting the first task or losing the last.  Update the
 826 * populated counters of all associated cgroups accordingly.
 827 */
 828static void css_set_update_populated(struct css_set *cset, bool populated)
 829{
 830        struct cgrp_cset_link *link;
 831
 832        lockdep_assert_held(&css_set_lock);
 833
 834        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 835                cgroup_update_populated(link->cgrp, populated);
 836}
 837
 838/*
 839 * @task is leaving, advance task iterators which are pointing to it so
 840 * that they can resume at the next position.  Advancing an iterator might
 841 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 842 * details.
 843 */
 844static void css_set_skip_task_iters(struct css_set *cset,
 845                                    struct task_struct *task)
 846{
 847        struct css_task_iter *it, *pos;
 848
 849        list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 850                css_task_iter_skip(it, task);
 851}
 852
 853/**
 854 * css_set_move_task - move a task from one css_set to another
 855 * @task: task being moved
 856 * @from_cset: css_set @task currently belongs to (may be NULL)
 857 * @to_cset: new css_set @task is being moved to (may be NULL)
 858 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 859 *
 860 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 861 * css_set, @from_cset can be NULL.  If @task is being disassociated
 862 * instead of moved, @to_cset can be NULL.
 863 *
 864 * This function automatically handles populated counter updates and
 865 * css_task_iter adjustments but the caller is responsible for managing
 866 * @from_cset and @to_cset's reference counts.
 867 */
 868static void css_set_move_task(struct task_struct *task,
 869                              struct css_set *from_cset, struct css_set *to_cset,
 870                              bool use_mg_tasks)
 871{
 872        lockdep_assert_held(&css_set_lock);
 873
 874        if (to_cset && !css_set_populated(to_cset))
 875                css_set_update_populated(to_cset, true);
 876
 877        if (from_cset) {
 878                WARN_ON_ONCE(list_empty(&task->cg_list));
 879
 880                css_set_skip_task_iters(from_cset, task);
 881                list_del_init(&task->cg_list);
 882                if (!css_set_populated(from_cset))
 883                        css_set_update_populated(from_cset, false);
 884        } else {
 885                WARN_ON_ONCE(!list_empty(&task->cg_list));
 886        }
 887
 888        if (to_cset) {
 889                /*
 890                 * We are synchronized through cgroup_threadgroup_rwsem
 891                 * against PF_EXITING setting such that we can't race
 892                 * against cgroup_exit()/cgroup_free() dropping the css_set.
 893                 */
 894                WARN_ON_ONCE(task->flags & PF_EXITING);
 895
 896                cgroup_move_task(task, to_cset);
 897                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 898                                                             &to_cset->tasks);
 899        }
 900}
 901
 902/*
 903 * hash table for cgroup groups. This improves the performance to find
 904 * an existing css_set. This hash doesn't (currently) take into
 905 * account cgroups in empty hierarchies.
 906 */
 907#define CSS_SET_HASH_BITS       7
 908static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 909
 910static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 911{
 912        unsigned long key = 0UL;
 913        struct cgroup_subsys *ss;
 914        int i;
 915
 916        for_each_subsys(ss, i)
 917                key += (unsigned long)css[i];
 918        key = (key >> 16) ^ key;
 919
 920        return key;
 921}
 922
 923void put_css_set_locked(struct css_set *cset)
 924{
 925        struct cgrp_cset_link *link, *tmp_link;
 926        struct cgroup_subsys *ss;
 927        int ssid;
 928
 929        lockdep_assert_held(&css_set_lock);
 930
 931        if (!refcount_dec_and_test(&cset->refcount))
 932                return;
 933
 934        WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 935
 936        /* This css_set is dead. Unlink it and release cgroup and css refs */
 937        for_each_subsys(ss, ssid) {
 938                list_del(&cset->e_cset_node[ssid]);
 939                css_put(cset->subsys[ssid]);
 940        }
 941        hash_del(&cset->hlist);
 942        css_set_count--;
 943
 944        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 945                list_del(&link->cset_link);
 946                list_del(&link->cgrp_link);
 947                if (cgroup_parent(link->cgrp))
 948                        cgroup_put(link->cgrp);
 949                kfree(link);
 950        }
 951
 952        if (css_set_threaded(cset)) {
 953                list_del(&cset->threaded_csets_node);
 954                put_css_set_locked(cset->dom_cset);
 955        }
 956
 957        kfree_rcu(cset, rcu_head);
 958}
 959
 960/**
 961 * compare_css_sets - helper function for find_existing_css_set().
 962 * @cset: candidate css_set being tested
 963 * @old_cset: existing css_set for a task
 964 * @new_cgrp: cgroup that's being entered by the task
 965 * @template: desired set of css pointers in css_set (pre-calculated)
 966 *
 967 * Returns true if "cset" matches "old_cset" except for the hierarchy
 968 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 969 */
 970static bool compare_css_sets(struct css_set *cset,
 971                             struct css_set *old_cset,
 972                             struct cgroup *new_cgrp,
 973                             struct cgroup_subsys_state *template[])
 974{
 975        struct cgroup *new_dfl_cgrp;
 976        struct list_head *l1, *l2;
 977
 978        /*
 979         * On the default hierarchy, there can be csets which are
 980         * associated with the same set of cgroups but different csses.
 981         * Let's first ensure that csses match.
 982         */
 983        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 984                return false;
 985
 986
 987        /* @cset's domain should match the default cgroup's */
 988        if (cgroup_on_dfl(new_cgrp))
 989                new_dfl_cgrp = new_cgrp;
 990        else
 991                new_dfl_cgrp = old_cset->dfl_cgrp;
 992
 993        if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
 994                return false;
 995
 996        /*
 997         * Compare cgroup pointers in order to distinguish between
 998         * different cgroups in hierarchies.  As different cgroups may
 999         * share the same effective css, this comparison is always
1000         * necessary.
1001         */
1002        l1 = &cset->cgrp_links;
1003        l2 = &old_cset->cgrp_links;
1004        while (1) {
1005                struct cgrp_cset_link *link1, *link2;
1006                struct cgroup *cgrp1, *cgrp2;
1007
1008                l1 = l1->next;
1009                l2 = l2->next;
1010                /* See if we reached the end - both lists are equal length. */
1011                if (l1 == &cset->cgrp_links) {
1012                        BUG_ON(l2 != &old_cset->cgrp_links);
1013                        break;
1014                } else {
1015                        BUG_ON(l2 == &old_cset->cgrp_links);
1016                }
1017                /* Locate the cgroups associated with these links. */
1018                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1019                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1020                cgrp1 = link1->cgrp;
1021                cgrp2 = link2->cgrp;
1022                /* Hierarchies should be linked in the same order. */
1023                BUG_ON(cgrp1->root != cgrp2->root);
1024
1025                /*
1026                 * If this hierarchy is the hierarchy of the cgroup
1027                 * that's changing, then we need to check that this
1028                 * css_set points to the new cgroup; if it's any other
1029                 * hierarchy, then this css_set should point to the
1030                 * same cgroup as the old css_set.
1031                 */
1032                if (cgrp1->root == new_cgrp->root) {
1033                        if (cgrp1 != new_cgrp)
1034                                return false;
1035                } else {
1036                        if (cgrp1 != cgrp2)
1037                                return false;
1038                }
1039        }
1040        return true;
1041}
1042
1043/**
1044 * find_existing_css_set - init css array and find the matching css_set
1045 * @old_cset: the css_set that we're using before the cgroup transition
1046 * @cgrp: the cgroup that we're moving into
1047 * @template: out param for the new set of csses, should be clear on entry
1048 */
1049static struct css_set *find_existing_css_set(struct css_set *old_cset,
1050                                        struct cgroup *cgrp,
1051                                        struct cgroup_subsys_state *template[])
1052{
1053        struct cgroup_root *root = cgrp->root;
1054        struct cgroup_subsys *ss;
1055        struct css_set *cset;
1056        unsigned long key;
1057        int i;
1058
1059        /*
1060         * Build the set of subsystem state objects that we want to see in the
1061         * new css_set. While subsystems can change globally, the entries here
1062         * won't change, so no need for locking.
1063         */
1064        for_each_subsys(ss, i) {
1065                if (root->subsys_mask & (1UL << i)) {
1066                        /*
1067                         * @ss is in this hierarchy, so we want the
1068                         * effective css from @cgrp.
1069                         */
1070                        template[i] = cgroup_e_css_by_mask(cgrp, ss);
1071                } else {
1072                        /*
1073                         * @ss is not in this hierarchy, so we don't want
1074                         * to change the css.
1075                         */
1076                        template[i] = old_cset->subsys[i];
1077                }
1078        }
1079
1080        key = css_set_hash(template);
1081        hash_for_each_possible(css_set_table, cset, hlist, key) {
1082                if (!compare_css_sets(cset, old_cset, cgrp, template))
1083                        continue;
1084
1085                /* This css_set matches what we need */
1086                return cset;
1087        }
1088
1089        /* No existing cgroup group matched */
1090        return NULL;
1091}
1092
1093static void free_cgrp_cset_links(struct list_head *links_to_free)
1094{
1095        struct cgrp_cset_link *link, *tmp_link;
1096
1097        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1098                list_del(&link->cset_link);
1099                kfree(link);
1100        }
1101}
1102
1103/**
1104 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1105 * @count: the number of links to allocate
1106 * @tmp_links: list_head the allocated links are put on
1107 *
1108 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1109 * through ->cset_link.  Returns 0 on success or -errno.
1110 */
1111static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1112{
1113        struct cgrp_cset_link *link;
1114        int i;
1115
1116        INIT_LIST_HEAD(tmp_links);
1117
1118        for (i = 0; i < count; i++) {
1119                link = kzalloc(sizeof(*link), GFP_KERNEL);
1120                if (!link) {
1121                        free_cgrp_cset_links(tmp_links);
1122                        return -ENOMEM;
1123                }
1124                list_add(&link->cset_link, tmp_links);
1125        }
1126        return 0;
1127}
1128
1129/**
1130 * link_css_set - a helper function to link a css_set to a cgroup
1131 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1132 * @cset: the css_set to be linked
1133 * @cgrp: the destination cgroup
1134 */
1135static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1136                         struct cgroup *cgrp)
1137{
1138        struct cgrp_cset_link *link;
1139
1140        BUG_ON(list_empty(tmp_links));
1141
1142        if (cgroup_on_dfl(cgrp))
1143                cset->dfl_cgrp = cgrp;
1144
1145        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1146        link->cset = cset;
1147        link->cgrp = cgrp;
1148
1149        /*
1150         * Always add links to the tail of the lists so that the lists are
1151         * in chronological order.
1152         */
1153        list_move_tail(&link->cset_link, &cgrp->cset_links);
1154        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1155
1156        if (cgroup_parent(cgrp))
1157                cgroup_get_live(cgrp);
1158}
1159
1160/**
1161 * find_css_set - return a new css_set with one cgroup updated
1162 * @old_cset: the baseline css_set
1163 * @cgrp: the cgroup to be updated
1164 *
1165 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1166 * substituted into the appropriate hierarchy.
1167 */
1168static struct css_set *find_css_set(struct css_set *old_cset,
1169                                    struct cgroup *cgrp)
1170{
1171        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1172        struct css_set *cset;
1173        struct list_head tmp_links;
1174        struct cgrp_cset_link *link;
1175        struct cgroup_subsys *ss;
1176        unsigned long key;
1177        int ssid;
1178
1179        lockdep_assert_held(&cgroup_mutex);
1180
1181        /* First see if we already have a cgroup group that matches
1182         * the desired set */
1183        spin_lock_irq(&css_set_lock);
1184        cset = find_existing_css_set(old_cset, cgrp, template);
1185        if (cset)
1186                get_css_set(cset);
1187        spin_unlock_irq(&css_set_lock);
1188
1189        if (cset)
1190                return cset;
1191
1192        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1193        if (!cset)
1194                return NULL;
1195
1196        /* Allocate all the cgrp_cset_link objects that we'll need */
1197        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1198                kfree(cset);
1199                return NULL;
1200        }
1201
1202        refcount_set(&cset->refcount, 1);
1203        cset->dom_cset = cset;
1204        INIT_LIST_HEAD(&cset->tasks);
1205        INIT_LIST_HEAD(&cset->mg_tasks);
1206        INIT_LIST_HEAD(&cset->dying_tasks);
1207        INIT_LIST_HEAD(&cset->task_iters);
1208        INIT_LIST_HEAD(&cset->threaded_csets);
1209        INIT_HLIST_NODE(&cset->hlist);
1210        INIT_LIST_HEAD(&cset->cgrp_links);
1211        INIT_LIST_HEAD(&cset->mg_preload_node);
1212        INIT_LIST_HEAD(&cset->mg_node);
1213
1214        /* Copy the set of subsystem state objects generated in
1215         * find_existing_css_set() */
1216        memcpy(cset->subsys, template, sizeof(cset->subsys));
1217
1218        spin_lock_irq(&css_set_lock);
1219        /* Add reference counts and links from the new css_set. */
1220        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1221                struct cgroup *c = link->cgrp;
1222
1223                if (c->root == cgrp->root)
1224                        c = cgrp;
1225                link_css_set(&tmp_links, cset, c);
1226        }
1227
1228        BUG_ON(!list_empty(&tmp_links));
1229
1230        css_set_count++;
1231
1232        /* Add @cset to the hash table */
1233        key = css_set_hash(cset->subsys);
1234        hash_add(css_set_table, &cset->hlist, key);
1235
1236        for_each_subsys(ss, ssid) {
1237                struct cgroup_subsys_state *css = cset->subsys[ssid];
1238
1239                list_add_tail(&cset->e_cset_node[ssid],
1240                              &css->cgroup->e_csets[ssid]);
1241                css_get(css);
1242        }
1243
1244        spin_unlock_irq(&css_set_lock);
1245
1246        /*
1247         * If @cset should be threaded, look up the matching dom_cset and
1248         * link them up.  We first fully initialize @cset then look for the
1249         * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1250         * to stay empty until we return.
1251         */
1252        if (cgroup_is_threaded(cset->dfl_cgrp)) {
1253                struct css_set *dcset;
1254
1255                dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1256                if (!dcset) {
1257                        put_css_set(cset);
1258                        return NULL;
1259                }
1260
1261                spin_lock_irq(&css_set_lock);
1262                cset->dom_cset = dcset;
1263                list_add_tail(&cset->threaded_csets_node,
1264                              &dcset->threaded_csets);
1265                spin_unlock_irq(&css_set_lock);
1266        }
1267
1268        return cset;
1269}
1270
1271struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1272{
1273        struct cgroup *root_cgrp = kf_root->kn->priv;
1274
1275        return root_cgrp->root;
1276}
1277
1278static int cgroup_init_root_id(struct cgroup_root *root)
1279{
1280        int id;
1281
1282        lockdep_assert_held(&cgroup_mutex);
1283
1284        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1285        if (id < 0)
1286                return id;
1287
1288        root->hierarchy_id = id;
1289        return 0;
1290}
1291
1292static void cgroup_exit_root_id(struct cgroup_root *root)
1293{
1294        lockdep_assert_held(&cgroup_mutex);
1295
1296        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1297}
1298
1299void cgroup_free_root(struct cgroup_root *root)
1300{
1301        kfree(root);
1302}
1303
1304static void cgroup_destroy_root(struct cgroup_root *root)
1305{
1306        struct cgroup *cgrp = &root->cgrp;
1307        struct cgrp_cset_link *link, *tmp_link;
1308
1309        trace_cgroup_destroy_root(root);
1310
1311        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1312
1313        BUG_ON(atomic_read(&root->nr_cgrps));
1314        BUG_ON(!list_empty(&cgrp->self.children));
1315
1316        /* Rebind all subsystems back to the default hierarchy */
1317        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1318
1319        /*
1320         * Release all the links from cset_links to this hierarchy's
1321         * root cgroup
1322         */
1323        spin_lock_irq(&css_set_lock);
1324
1325        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1326                list_del(&link->cset_link);
1327                list_del(&link->cgrp_link);
1328                kfree(link);
1329        }
1330
1331        spin_unlock_irq(&css_set_lock);
1332
1333        if (!list_empty(&root->root_list)) {
1334                list_del(&root->root_list);
1335                cgroup_root_count--;
1336        }
1337
1338        cgroup_exit_root_id(root);
1339
1340        mutex_unlock(&cgroup_mutex);
1341
1342        cgroup_rstat_exit(cgrp);
1343        kernfs_destroy_root(root->kf_root);
1344        cgroup_free_root(root);
1345}
1346
1347/*
1348 * look up cgroup associated with current task's cgroup namespace on the
1349 * specified hierarchy
1350 */
1351static struct cgroup *
1352current_cgns_cgroup_from_root(struct cgroup_root *root)
1353{
1354        struct cgroup *res = NULL;
1355        struct css_set *cset;
1356
1357        lockdep_assert_held(&css_set_lock);
1358
1359        rcu_read_lock();
1360
1361        cset = current->nsproxy->cgroup_ns->root_cset;
1362        if (cset == &init_css_set) {
1363                res = &root->cgrp;
1364        } else if (root == &cgrp_dfl_root) {
1365                res = cset->dfl_cgrp;
1366        } else {
1367                struct cgrp_cset_link *link;
1368
1369                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1370                        struct cgroup *c = link->cgrp;
1371
1372                        if (c->root == root) {
1373                                res = c;
1374                                break;
1375                        }
1376                }
1377        }
1378        rcu_read_unlock();
1379
1380        BUG_ON(!res);
1381        return res;
1382}
1383
1384/* look up cgroup associated with given css_set on the specified hierarchy */
1385static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1386                                            struct cgroup_root *root)
1387{
1388        struct cgroup *res = NULL;
1389
1390        lockdep_assert_held(&cgroup_mutex);
1391        lockdep_assert_held(&css_set_lock);
1392
1393        if (cset == &init_css_set) {
1394                res = &root->cgrp;
1395        } else if (root == &cgrp_dfl_root) {
1396                res = cset->dfl_cgrp;
1397        } else {
1398                struct cgrp_cset_link *link;
1399
1400                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1401                        struct cgroup *c = link->cgrp;
1402
1403                        if (c->root == root) {
1404                                res = c;
1405                                break;
1406                        }
1407                }
1408        }
1409
1410        BUG_ON(!res);
1411        return res;
1412}
1413
1414/*
1415 * Return the cgroup for "task" from the given hierarchy. Must be
1416 * called with cgroup_mutex and css_set_lock held.
1417 */
1418struct cgroup *task_cgroup_from_root(struct task_struct *task,
1419                                     struct cgroup_root *root)
1420{
1421        /*
1422         * No need to lock the task - since we hold css_set_lock the
1423         * task can't change groups.
1424         */
1425        return cset_cgroup_from_root(task_css_set(task), root);
1426}
1427
1428/*
1429 * A task must hold cgroup_mutex to modify cgroups.
1430 *
1431 * Any task can increment and decrement the count field without lock.
1432 * So in general, code holding cgroup_mutex can't rely on the count
1433 * field not changing.  However, if the count goes to zero, then only
1434 * cgroup_attach_task() can increment it again.  Because a count of zero
1435 * means that no tasks are currently attached, therefore there is no
1436 * way a task attached to that cgroup can fork (the other way to
1437 * increment the count).  So code holding cgroup_mutex can safely
1438 * assume that if the count is zero, it will stay zero. Similarly, if
1439 * a task holds cgroup_mutex on a cgroup with zero count, it
1440 * knows that the cgroup won't be removed, as cgroup_rmdir()
1441 * needs that mutex.
1442 *
1443 * A cgroup can only be deleted if both its 'count' of using tasks
1444 * is zero, and its list of 'children' cgroups is empty.  Since all
1445 * tasks in the system use _some_ cgroup, and since there is always at
1446 * least one task in the system (init, pid == 1), therefore, root cgroup
1447 * always has either children cgroups and/or using tasks.  So we don't
1448 * need a special hack to ensure that root cgroup cannot be deleted.
1449 *
1450 * P.S.  One more locking exception.  RCU is used to guard the
1451 * update of a tasks cgroup pointer by cgroup_attach_task()
1452 */
1453
1454static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1455
1456static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1457                              char *buf)
1458{
1459        struct cgroup_subsys *ss = cft->ss;
1460
1461        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1462            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1463                const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1464
1465                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1466                         dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1467                         cft->name);
1468        } else {
1469                strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1470        }
1471        return buf;
1472}
1473
1474/**
1475 * cgroup_file_mode - deduce file mode of a control file
1476 * @cft: the control file in question
1477 *
1478 * S_IRUGO for read, S_IWUSR for write.
1479 */
1480static umode_t cgroup_file_mode(const struct cftype *cft)
1481{
1482        umode_t mode = 0;
1483
1484        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1485                mode |= S_IRUGO;
1486
1487        if (cft->write_u64 || cft->write_s64 || cft->write) {
1488                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1489                        mode |= S_IWUGO;
1490                else
1491                        mode |= S_IWUSR;
1492        }
1493
1494        return mode;
1495}
1496
1497/**
1498 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1499 * @subtree_control: the new subtree_control mask to consider
1500 * @this_ss_mask: available subsystems
1501 *
1502 * On the default hierarchy, a subsystem may request other subsystems to be
1503 * enabled together through its ->depends_on mask.  In such cases, more
1504 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1505 *
1506 * This function calculates which subsystems need to be enabled if
1507 * @subtree_control is to be applied while restricted to @this_ss_mask.
1508 */
1509static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1510{
1511        u16 cur_ss_mask = subtree_control;
1512        struct cgroup_subsys *ss;
1513        int ssid;
1514
1515        lockdep_assert_held(&cgroup_mutex);
1516
1517        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1518
1519        while (true) {
1520                u16 new_ss_mask = cur_ss_mask;
1521
1522                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1523                        new_ss_mask |= ss->depends_on;
1524                } while_each_subsys_mask();
1525
1526                /*
1527                 * Mask out subsystems which aren't available.  This can
1528                 * happen only if some depended-upon subsystems were bound
1529                 * to non-default hierarchies.
1530                 */
1531                new_ss_mask &= this_ss_mask;
1532
1533                if (new_ss_mask == cur_ss_mask)
1534                        break;
1535                cur_ss_mask = new_ss_mask;
1536        }
1537
1538        return cur_ss_mask;
1539}
1540
1541/**
1542 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1543 * @kn: the kernfs_node being serviced
1544 *
1545 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1546 * the method finishes if locking succeeded.  Note that once this function
1547 * returns the cgroup returned by cgroup_kn_lock_live() may become
1548 * inaccessible any time.  If the caller intends to continue to access the
1549 * cgroup, it should pin it before invoking this function.
1550 */
1551void cgroup_kn_unlock(struct kernfs_node *kn)
1552{
1553        struct cgroup *cgrp;
1554
1555        if (kernfs_type(kn) == KERNFS_DIR)
1556                cgrp = kn->priv;
1557        else
1558                cgrp = kn->parent->priv;
1559
1560        mutex_unlock(&cgroup_mutex);
1561
1562        kernfs_unbreak_active_protection(kn);
1563        cgroup_put(cgrp);
1564}
1565
1566/**
1567 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1568 * @kn: the kernfs_node being serviced
1569 * @drain_offline: perform offline draining on the cgroup
1570 *
1571 * This helper is to be used by a cgroup kernfs method currently servicing
1572 * @kn.  It breaks the active protection, performs cgroup locking and
1573 * verifies that the associated cgroup is alive.  Returns the cgroup if
1574 * alive; otherwise, %NULL.  A successful return should be undone by a
1575 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1576 * cgroup is drained of offlining csses before return.
1577 *
1578 * Any cgroup kernfs method implementation which requires locking the
1579 * associated cgroup should use this helper.  It avoids nesting cgroup
1580 * locking under kernfs active protection and allows all kernfs operations
1581 * including self-removal.
1582 */
1583struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1584{
1585        struct cgroup *cgrp;
1586
1587        if (kernfs_type(kn) == KERNFS_DIR)
1588                cgrp = kn->priv;
1589        else
1590                cgrp = kn->parent->priv;
1591
1592        /*
1593         * We're gonna grab cgroup_mutex which nests outside kernfs
1594         * active_ref.  cgroup liveliness check alone provides enough
1595         * protection against removal.  Ensure @cgrp stays accessible and
1596         * break the active_ref protection.
1597         */
1598        if (!cgroup_tryget(cgrp))
1599                return NULL;
1600        kernfs_break_active_protection(kn);
1601
1602        if (drain_offline)
1603                cgroup_lock_and_drain_offline(cgrp);
1604        else
1605                mutex_lock(&cgroup_mutex);
1606
1607        if (!cgroup_is_dead(cgrp))
1608                return cgrp;
1609
1610        cgroup_kn_unlock(kn);
1611        return NULL;
1612}
1613
1614static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1615{
1616        char name[CGROUP_FILE_NAME_MAX];
1617
1618        lockdep_assert_held(&cgroup_mutex);
1619
1620        if (cft->file_offset) {
1621                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1622                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1623
1624                spin_lock_irq(&cgroup_file_kn_lock);
1625                cfile->kn = NULL;
1626                spin_unlock_irq(&cgroup_file_kn_lock);
1627
1628                del_timer_sync(&cfile->notify_timer);
1629        }
1630
1631        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1632}
1633
1634/**
1635 * css_clear_dir - remove subsys files in a cgroup directory
1636 * @css: target css
1637 */
1638static void css_clear_dir(struct cgroup_subsys_state *css)
1639{
1640        struct cgroup *cgrp = css->cgroup;
1641        struct cftype *cfts;
1642
1643        if (!(css->flags & CSS_VISIBLE))
1644                return;
1645
1646        css->flags &= ~CSS_VISIBLE;
1647
1648        if (!css->ss) {
1649                if (cgroup_on_dfl(cgrp))
1650                        cfts = cgroup_base_files;
1651                else
1652                        cfts = cgroup1_base_files;
1653
1654                cgroup_addrm_files(css, cgrp, cfts, false);
1655        } else {
1656                list_for_each_entry(cfts, &css->ss->cfts, node)
1657                        cgroup_addrm_files(css, cgrp, cfts, false);
1658        }
1659}
1660
1661/**
1662 * css_populate_dir - create subsys files in a cgroup directory
1663 * @css: target css
1664 *
1665 * On failure, no file is added.
1666 */
1667static int css_populate_dir(struct cgroup_subsys_state *css)
1668{
1669        struct cgroup *cgrp = css->cgroup;
1670        struct cftype *cfts, *failed_cfts;
1671        int ret;
1672
1673        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1674                return 0;
1675
1676        if (!css->ss) {
1677                if (cgroup_on_dfl(cgrp))
1678                        cfts = cgroup_base_files;
1679                else
1680                        cfts = cgroup1_base_files;
1681
1682                ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1683                if (ret < 0)
1684                        return ret;
1685        } else {
1686                list_for_each_entry(cfts, &css->ss->cfts, node) {
1687                        ret = cgroup_addrm_files(css, cgrp, cfts, true);
1688                        if (ret < 0) {
1689                                failed_cfts = cfts;
1690                                goto err;
1691                        }
1692                }
1693        }
1694
1695        css->flags |= CSS_VISIBLE;
1696
1697        return 0;
1698err:
1699        list_for_each_entry(cfts, &css->ss->cfts, node) {
1700                if (cfts == failed_cfts)
1701                        break;
1702                cgroup_addrm_files(css, cgrp, cfts, false);
1703        }
1704        return ret;
1705}
1706
1707int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1708{
1709        struct cgroup *dcgrp = &dst_root->cgrp;
1710        struct cgroup_subsys *ss;
1711        int ssid, i, ret;
1712
1713        lockdep_assert_held(&cgroup_mutex);
1714
1715        do_each_subsys_mask(ss, ssid, ss_mask) {
1716                /*
1717                 * If @ss has non-root csses attached to it, can't move.
1718                 * If @ss is an implicit controller, it is exempt from this
1719                 * rule and can be stolen.
1720                 */
1721                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1722                    !ss->implicit_on_dfl)
1723                        return -EBUSY;
1724
1725                /* can't move between two non-dummy roots either */
1726                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1727                        return -EBUSY;
1728        } while_each_subsys_mask();
1729
1730        do_each_subsys_mask(ss, ssid, ss_mask) {
1731                struct cgroup_root *src_root = ss->root;
1732                struct cgroup *scgrp = &src_root->cgrp;
1733                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1734                struct css_set *cset;
1735
1736                WARN_ON(!css || cgroup_css(dcgrp, ss));
1737
1738                /* disable from the source */
1739                src_root->subsys_mask &= ~(1 << ssid);
1740                WARN_ON(cgroup_apply_control(scgrp));
1741                cgroup_finalize_control(scgrp, 0);
1742
1743                /* rebind */
1744                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1745                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1746                ss->root = dst_root;
1747                css->cgroup = dcgrp;
1748
1749                spin_lock_irq(&css_set_lock);
1750                hash_for_each(css_set_table, i, cset, hlist)
1751                        list_move_tail(&cset->e_cset_node[ss->id],
1752                                       &dcgrp->e_csets[ss->id]);
1753                spin_unlock_irq(&css_set_lock);
1754
1755                if (ss->css_rstat_flush) {
1756                        list_del_rcu(&css->rstat_css_node);
1757                        list_add_rcu(&css->rstat_css_node,
1758                                     &dcgrp->rstat_css_list);
1759                }
1760
1761                /* default hierarchy doesn't enable controllers by default */
1762                dst_root->subsys_mask |= 1 << ssid;
1763                if (dst_root == &cgrp_dfl_root) {
1764                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1765                } else {
1766                        dcgrp->subtree_control |= 1 << ssid;
1767                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1768                }
1769
1770                ret = cgroup_apply_control(dcgrp);
1771                if (ret)
1772                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1773                                ss->name, ret);
1774
1775                if (ss->bind)
1776                        ss->bind(css);
1777        } while_each_subsys_mask();
1778
1779        kernfs_activate(dcgrp->kn);
1780        return 0;
1781}
1782
1783int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1784                     struct kernfs_root *kf_root)
1785{
1786        int len = 0;
1787        char *buf = NULL;
1788        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1789        struct cgroup *ns_cgroup;
1790
1791        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1792        if (!buf)
1793                return -ENOMEM;
1794
1795        spin_lock_irq(&css_set_lock);
1796        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1797        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1798        spin_unlock_irq(&css_set_lock);
1799
1800        if (len >= PATH_MAX)
1801                len = -ERANGE;
1802        else if (len > 0) {
1803                seq_escape(sf, buf, " \t\n\\");
1804                len = 0;
1805        }
1806        kfree(buf);
1807        return len;
1808}
1809
1810enum cgroup2_param {
1811        Opt_nsdelegate,
1812        Opt_memory_localevents,
1813        Opt_memory_recursiveprot,
1814        nr__cgroup2_params
1815};
1816
1817static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1818        fsparam_flag("nsdelegate",              Opt_nsdelegate),
1819        fsparam_flag("memory_localevents",      Opt_memory_localevents),
1820        fsparam_flag("memory_recursiveprot",    Opt_memory_recursiveprot),
1821        {}
1822};
1823
1824static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1825{
1826        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1827        struct fs_parse_result result;
1828        int opt;
1829
1830        opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1831        if (opt < 0)
1832                return opt;
1833
1834        switch (opt) {
1835        case Opt_nsdelegate:
1836                ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1837                return 0;
1838        case Opt_memory_localevents:
1839                ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1840                return 0;
1841        case Opt_memory_recursiveprot:
1842                ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1843                return 0;
1844        }
1845        return -EINVAL;
1846}
1847
1848static void apply_cgroup_root_flags(unsigned int root_flags)
1849{
1850        if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1851                if (root_flags & CGRP_ROOT_NS_DELEGATE)
1852                        cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1853                else
1854                        cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1855
1856                if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1857                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1858                else
1859                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1860
1861                if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1862                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1863                else
1864                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1865        }
1866}
1867
1868static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1869{
1870        if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1871                seq_puts(seq, ",nsdelegate");
1872        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1873                seq_puts(seq, ",memory_localevents");
1874        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1875                seq_puts(seq, ",memory_recursiveprot");
1876        return 0;
1877}
1878
1879static int cgroup_reconfigure(struct fs_context *fc)
1880{
1881        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1882
1883        apply_cgroup_root_flags(ctx->flags);
1884        return 0;
1885}
1886
1887static void init_cgroup_housekeeping(struct cgroup *cgrp)
1888{
1889        struct cgroup_subsys *ss;
1890        int ssid;
1891
1892        INIT_LIST_HEAD(&cgrp->self.sibling);
1893        INIT_LIST_HEAD(&cgrp->self.children);
1894        INIT_LIST_HEAD(&cgrp->cset_links);
1895        INIT_LIST_HEAD(&cgrp->pidlists);
1896        mutex_init(&cgrp->pidlist_mutex);
1897        cgrp->self.cgroup = cgrp;
1898        cgrp->self.flags |= CSS_ONLINE;
1899        cgrp->dom_cgrp = cgrp;
1900        cgrp->max_descendants = INT_MAX;
1901        cgrp->max_depth = INT_MAX;
1902        INIT_LIST_HEAD(&cgrp->rstat_css_list);
1903        prev_cputime_init(&cgrp->prev_cputime);
1904
1905        for_each_subsys(ss, ssid)
1906                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1907
1908        init_waitqueue_head(&cgrp->offline_waitq);
1909        INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1910}
1911
1912void init_cgroup_root(struct cgroup_fs_context *ctx)
1913{
1914        struct cgroup_root *root = ctx->root;
1915        struct cgroup *cgrp = &root->cgrp;
1916
1917        INIT_LIST_HEAD(&root->root_list);
1918        atomic_set(&root->nr_cgrps, 1);
1919        cgrp->root = root;
1920        init_cgroup_housekeeping(cgrp);
1921
1922        root->flags = ctx->flags;
1923        if (ctx->release_agent)
1924                strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1925        if (ctx->name)
1926                strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1927        if (ctx->cpuset_clone_children)
1928                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1929}
1930
1931int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1932{
1933        LIST_HEAD(tmp_links);
1934        struct cgroup *root_cgrp = &root->cgrp;
1935        struct kernfs_syscall_ops *kf_sops;
1936        struct css_set *cset;
1937        int i, ret;
1938
1939        lockdep_assert_held(&cgroup_mutex);
1940
1941        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1942                              0, GFP_KERNEL);
1943        if (ret)
1944                goto out;
1945
1946        /*
1947         * We're accessing css_set_count without locking css_set_lock here,
1948         * but that's OK - it can only be increased by someone holding
1949         * cgroup_lock, and that's us.  Later rebinding may disable
1950         * controllers on the default hierarchy and thus create new csets,
1951         * which can't be more than the existing ones.  Allocate 2x.
1952         */
1953        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1954        if (ret)
1955                goto cancel_ref;
1956
1957        ret = cgroup_init_root_id(root);
1958        if (ret)
1959                goto cancel_ref;
1960
1961        kf_sops = root == &cgrp_dfl_root ?
1962                &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1963
1964        root->kf_root = kernfs_create_root(kf_sops,
1965                                           KERNFS_ROOT_CREATE_DEACTIVATED |
1966                                           KERNFS_ROOT_SUPPORT_EXPORTOP |
1967                                           KERNFS_ROOT_SUPPORT_USER_XATTR,
1968                                           root_cgrp);
1969        if (IS_ERR(root->kf_root)) {
1970                ret = PTR_ERR(root->kf_root);
1971                goto exit_root_id;
1972        }
1973        root_cgrp->kn = root->kf_root->kn;
1974        WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1975        root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1976
1977        ret = css_populate_dir(&root_cgrp->self);
1978        if (ret)
1979                goto destroy_root;
1980
1981        ret = cgroup_rstat_init(root_cgrp);
1982        if (ret)
1983                goto destroy_root;
1984
1985        ret = rebind_subsystems(root, ss_mask);
1986        if (ret)
1987                goto exit_stats;
1988
1989        ret = cgroup_bpf_inherit(root_cgrp);
1990        WARN_ON_ONCE(ret);
1991
1992        trace_cgroup_setup_root(root);
1993
1994        /*
1995         * There must be no failure case after here, since rebinding takes
1996         * care of subsystems' refcounts, which are explicitly dropped in
1997         * the failure exit path.
1998         */
1999        list_add(&root->root_list, &cgroup_roots);
2000        cgroup_root_count++;
2001
2002        /*
2003         * Link the root cgroup in this hierarchy into all the css_set
2004         * objects.
2005         */
2006        spin_lock_irq(&css_set_lock);
2007        hash_for_each(css_set_table, i, cset, hlist) {
2008                link_css_set(&tmp_links, cset, root_cgrp);
2009                if (css_set_populated(cset))
2010                        cgroup_update_populated(root_cgrp, true);
2011        }
2012        spin_unlock_irq(&css_set_lock);
2013
2014        BUG_ON(!list_empty(&root_cgrp->self.children));
2015        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2016
2017        ret = 0;
2018        goto out;
2019
2020exit_stats:
2021        cgroup_rstat_exit(root_cgrp);
2022destroy_root:
2023        kernfs_destroy_root(root->kf_root);
2024        root->kf_root = NULL;
2025exit_root_id:
2026        cgroup_exit_root_id(root);
2027cancel_ref:
2028        percpu_ref_exit(&root_cgrp->self.refcnt);
2029out:
2030        free_cgrp_cset_links(&tmp_links);
2031        return ret;
2032}
2033
2034int cgroup_do_get_tree(struct fs_context *fc)
2035{
2036        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2037        int ret;
2038
2039        ctx->kfc.root = ctx->root->kf_root;
2040        if (fc->fs_type == &cgroup2_fs_type)
2041                ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2042        else
2043                ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2044        ret = kernfs_get_tree(fc);
2045
2046        /*
2047         * In non-init cgroup namespace, instead of root cgroup's dentry,
2048         * we return the dentry corresponding to the cgroupns->root_cgrp.
2049         */
2050        if (!ret && ctx->ns != &init_cgroup_ns) {
2051                struct dentry *nsdentry;
2052                struct super_block *sb = fc->root->d_sb;
2053                struct cgroup *cgrp;
2054
2055                mutex_lock(&cgroup_mutex);
2056                spin_lock_irq(&css_set_lock);
2057
2058                cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2059
2060                spin_unlock_irq(&css_set_lock);
2061                mutex_unlock(&cgroup_mutex);
2062
2063                nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2064                dput(fc->root);
2065                if (IS_ERR(nsdentry)) {
2066                        deactivate_locked_super(sb);
2067                        ret = PTR_ERR(nsdentry);
2068                        nsdentry = NULL;
2069                }
2070                fc->root = nsdentry;
2071        }
2072
2073        if (!ctx->kfc.new_sb_created)
2074                cgroup_put(&ctx->root->cgrp);
2075
2076        return ret;
2077}
2078
2079/*
2080 * Destroy a cgroup filesystem context.
2081 */
2082static void cgroup_fs_context_free(struct fs_context *fc)
2083{
2084        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2085
2086        kfree(ctx->name);
2087        kfree(ctx->release_agent);
2088        put_cgroup_ns(ctx->ns);
2089        kernfs_free_fs_context(fc);
2090        kfree(ctx);
2091}
2092
2093static int cgroup_get_tree(struct fs_context *fc)
2094{
2095        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2096        int ret;
2097
2098        cgrp_dfl_visible = true;
2099        cgroup_get_live(&cgrp_dfl_root.cgrp);
2100        ctx->root = &cgrp_dfl_root;
2101
2102        ret = cgroup_do_get_tree(fc);
2103        if (!ret)
2104                apply_cgroup_root_flags(ctx->flags);
2105        return ret;
2106}
2107
2108static const struct fs_context_operations cgroup_fs_context_ops = {
2109        .free           = cgroup_fs_context_free,
2110        .parse_param    = cgroup2_parse_param,
2111        .get_tree       = cgroup_get_tree,
2112        .reconfigure    = cgroup_reconfigure,
2113};
2114
2115static const struct fs_context_operations cgroup1_fs_context_ops = {
2116        .free           = cgroup_fs_context_free,
2117        .parse_param    = cgroup1_parse_param,
2118        .get_tree       = cgroup1_get_tree,
2119        .reconfigure    = cgroup1_reconfigure,
2120};
2121
2122/*
2123 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2124 * we select the namespace we're going to use.
2125 */
2126static int cgroup_init_fs_context(struct fs_context *fc)
2127{
2128        struct cgroup_fs_context *ctx;
2129
2130        ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2131        if (!ctx)
2132                return -ENOMEM;
2133
2134        ctx->ns = current->nsproxy->cgroup_ns;
2135        get_cgroup_ns(ctx->ns);
2136        fc->fs_private = &ctx->kfc;
2137        if (fc->fs_type == &cgroup2_fs_type)
2138                fc->ops = &cgroup_fs_context_ops;
2139        else
2140                fc->ops = &cgroup1_fs_context_ops;
2141        put_user_ns(fc->user_ns);
2142        fc->user_ns = get_user_ns(ctx->ns->user_ns);
2143        fc->global = true;
2144        return 0;
2145}
2146
2147static void cgroup_kill_sb(struct super_block *sb)
2148{
2149        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2150        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2151
2152        /*
2153         * If @root doesn't have any children, start killing it.
2154         * This prevents new mounts by disabling percpu_ref_tryget_live().
2155         * cgroup_mount() may wait for @root's release.
2156         *
2157         * And don't kill the default root.
2158         */
2159        if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2160            !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2161                percpu_ref_kill(&root->cgrp.self.refcnt);
2162        cgroup_put(&root->cgrp);
2163        kernfs_kill_sb(sb);
2164}
2165
2166struct file_system_type cgroup_fs_type = {
2167        .name                   = "cgroup",
2168        .init_fs_context        = cgroup_init_fs_context,
2169        .parameters             = cgroup1_fs_parameters,
2170        .kill_sb                = cgroup_kill_sb,
2171        .fs_flags               = FS_USERNS_MOUNT,
2172};
2173
2174static struct file_system_type cgroup2_fs_type = {
2175        .name                   = "cgroup2",
2176        .init_fs_context        = cgroup_init_fs_context,
2177        .parameters             = cgroup2_fs_parameters,
2178        .kill_sb                = cgroup_kill_sb,
2179        .fs_flags               = FS_USERNS_MOUNT,
2180};
2181
2182#ifdef CONFIG_CPUSETS
2183static const struct fs_context_operations cpuset_fs_context_ops = {
2184        .get_tree       = cgroup1_get_tree,
2185        .free           = cgroup_fs_context_free,
2186};
2187
2188/*
2189 * This is ugly, but preserves the userspace API for existing cpuset
2190 * users. If someone tries to mount the "cpuset" filesystem, we
2191 * silently switch it to mount "cgroup" instead
2192 */
2193static int cpuset_init_fs_context(struct fs_context *fc)
2194{
2195        char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2196        struct cgroup_fs_context *ctx;
2197        int err;
2198
2199        err = cgroup_init_fs_context(fc);
2200        if (err) {
2201                kfree(agent);
2202                return err;
2203        }
2204
2205        fc->ops = &cpuset_fs_context_ops;
2206
2207        ctx = cgroup_fc2context(fc);
2208        ctx->subsys_mask = 1 << cpuset_cgrp_id;
2209        ctx->flags |= CGRP_ROOT_NOPREFIX;
2210        ctx->release_agent = agent;
2211
2212        get_filesystem(&cgroup_fs_type);
2213        put_filesystem(fc->fs_type);
2214        fc->fs_type = &cgroup_fs_type;
2215
2216        return 0;
2217}
2218
2219static struct file_system_type cpuset_fs_type = {
2220        .name                   = "cpuset",
2221        .init_fs_context        = cpuset_init_fs_context,
2222        .fs_flags               = FS_USERNS_MOUNT,
2223};
2224#endif
2225
2226int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2227                          struct cgroup_namespace *ns)
2228{
2229        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2230
2231        return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2232}
2233
2234int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2235                   struct cgroup_namespace *ns)
2236{
2237        int ret;
2238
2239        mutex_lock(&cgroup_mutex);
2240        spin_lock_irq(&css_set_lock);
2241
2242        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2243
2244        spin_unlock_irq(&css_set_lock);
2245        mutex_unlock(&cgroup_mutex);
2246
2247        return ret;
2248}
2249EXPORT_SYMBOL_GPL(cgroup_path_ns);
2250
2251/**
2252 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2253 * @task: target task
2254 * @buf: the buffer to write the path into
2255 * @buflen: the length of the buffer
2256 *
2257 * Determine @task's cgroup on the first (the one with the lowest non-zero
2258 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2259 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2260 * cgroup controller callbacks.
2261 *
2262 * Return value is the same as kernfs_path().
2263 */
2264int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2265{
2266        struct cgroup_root *root;
2267        struct cgroup *cgrp;
2268        int hierarchy_id = 1;
2269        int ret;
2270
2271        mutex_lock(&cgroup_mutex);
2272        spin_lock_irq(&css_set_lock);
2273
2274        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2275
2276        if (root) {
2277                cgrp = task_cgroup_from_root(task, root);
2278                ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2279        } else {
2280                /* if no hierarchy exists, everyone is in "/" */
2281                ret = strlcpy(buf, "/", buflen);
2282        }
2283
2284        spin_unlock_irq(&css_set_lock);
2285        mutex_unlock(&cgroup_mutex);
2286        return ret;
2287}
2288EXPORT_SYMBOL_GPL(task_cgroup_path);
2289
2290/**
2291 * cgroup_migrate_add_task - add a migration target task to a migration context
2292 * @task: target task
2293 * @mgctx: target migration context
2294 *
2295 * Add @task, which is a migration target, to @mgctx->tset.  This function
2296 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2297 * should have been added as a migration source and @task->cg_list will be
2298 * moved from the css_set's tasks list to mg_tasks one.
2299 */
2300static void cgroup_migrate_add_task(struct task_struct *task,
2301                                    struct cgroup_mgctx *mgctx)
2302{
2303        struct css_set *cset;
2304
2305        lockdep_assert_held(&css_set_lock);
2306
2307        /* @task either already exited or can't exit until the end */
2308        if (task->flags & PF_EXITING)
2309                return;
2310
2311        /* cgroup_threadgroup_rwsem protects racing against forks */
2312        WARN_ON_ONCE(list_empty(&task->cg_list));
2313
2314        cset = task_css_set(task);
2315        if (!cset->mg_src_cgrp)
2316                return;
2317
2318        mgctx->tset.nr_tasks++;
2319
2320        list_move_tail(&task->cg_list, &cset->mg_tasks);
2321        if (list_empty(&cset->mg_node))
2322                list_add_tail(&cset->mg_node,
2323                              &mgctx->tset.src_csets);
2324        if (list_empty(&cset->mg_dst_cset->mg_node))
2325                list_add_tail(&cset->mg_dst_cset->mg_node,
2326                              &mgctx->tset.dst_csets);
2327}
2328
2329/**
2330 * cgroup_taskset_first - reset taskset and return the first task
2331 * @tset: taskset of interest
2332 * @dst_cssp: output variable for the destination css
2333 *
2334 * @tset iteration is initialized and the first task is returned.
2335 */
2336struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2337                                         struct cgroup_subsys_state **dst_cssp)
2338{
2339        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2340        tset->cur_task = NULL;
2341
2342        return cgroup_taskset_next(tset, dst_cssp);
2343}
2344
2345/**
2346 * cgroup_taskset_next - iterate to the next task in taskset
2347 * @tset: taskset of interest
2348 * @dst_cssp: output variable for the destination css
2349 *
2350 * Return the next task in @tset.  Iteration must have been initialized
2351 * with cgroup_taskset_first().
2352 */
2353struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2354                                        struct cgroup_subsys_state **dst_cssp)
2355{
2356        struct css_set *cset = tset->cur_cset;
2357        struct task_struct *task = tset->cur_task;
2358
2359        while (&cset->mg_node != tset->csets) {
2360                if (!task)
2361                        task = list_first_entry(&cset->mg_tasks,
2362                                                struct task_struct, cg_list);
2363                else
2364                        task = list_next_entry(task, cg_list);
2365
2366                if (&task->cg_list != &cset->mg_tasks) {
2367                        tset->cur_cset = cset;
2368                        tset->cur_task = task;
2369
2370                        /*
2371                         * This function may be called both before and
2372                         * after cgroup_taskset_migrate().  The two cases
2373                         * can be distinguished by looking at whether @cset
2374                         * has its ->mg_dst_cset set.
2375                         */
2376                        if (cset->mg_dst_cset)
2377                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2378                        else
2379                                *dst_cssp = cset->subsys[tset->ssid];
2380
2381                        return task;
2382                }
2383
2384                cset = list_next_entry(cset, mg_node);
2385                task = NULL;
2386        }
2387
2388        return NULL;
2389}
2390
2391/**
2392 * cgroup_taskset_migrate - migrate a taskset
2393 * @mgctx: migration context
2394 *
2395 * Migrate tasks in @mgctx as setup by migration preparation functions.
2396 * This function fails iff one of the ->can_attach callbacks fails and
2397 * guarantees that either all or none of the tasks in @mgctx are migrated.
2398 * @mgctx is consumed regardless of success.
2399 */
2400static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2401{
2402        struct cgroup_taskset *tset = &mgctx->tset;
2403        struct cgroup_subsys *ss;
2404        struct task_struct *task, *tmp_task;
2405        struct css_set *cset, *tmp_cset;
2406        int ssid, failed_ssid, ret;
2407
2408        /* check that we can legitimately attach to the cgroup */
2409        if (tset->nr_tasks) {
2410                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2411                        if (ss->can_attach) {
2412                                tset->ssid = ssid;
2413                                ret = ss->can_attach(tset);
2414                                if (ret) {
2415                                        failed_ssid = ssid;
2416                                        goto out_cancel_attach;
2417                                }
2418                        }
2419                } while_each_subsys_mask();
2420        }
2421
2422        /*
2423         * Now that we're guaranteed success, proceed to move all tasks to
2424         * the new cgroup.  There are no failure cases after here, so this
2425         * is the commit point.
2426         */
2427        spin_lock_irq(&css_set_lock);
2428        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2429                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2430                        struct css_set *from_cset = task_css_set(task);
2431                        struct css_set *to_cset = cset->mg_dst_cset;
2432
2433                        get_css_set(to_cset);
2434                        to_cset->nr_tasks++;
2435                        css_set_move_task(task, from_cset, to_cset, true);
2436                        from_cset->nr_tasks--;
2437                        /*
2438                         * If the source or destination cgroup is frozen,
2439                         * the task might require to change its state.
2440                         */
2441                        cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2442                                                    to_cset->dfl_cgrp);
2443                        put_css_set_locked(from_cset);
2444
2445                }
2446        }
2447        spin_unlock_irq(&css_set_lock);
2448
2449        /*
2450         * Migration is committed, all target tasks are now on dst_csets.
2451         * Nothing is sensitive to fork() after this point.  Notify
2452         * controllers that migration is complete.
2453         */
2454        tset->csets = &tset->dst_csets;
2455
2456        if (tset->nr_tasks) {
2457                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2458                        if (ss->attach) {
2459                                tset->ssid = ssid;
2460                                ss->attach(tset);
2461                        }
2462                } while_each_subsys_mask();
2463        }
2464
2465        ret = 0;
2466        goto out_release_tset;
2467
2468out_cancel_attach:
2469        if (tset->nr_tasks) {
2470                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2471                        if (ssid == failed_ssid)
2472                                break;
2473                        if (ss->cancel_attach) {
2474                                tset->ssid = ssid;
2475                                ss->cancel_attach(tset);
2476                        }
2477                } while_each_subsys_mask();
2478        }
2479out_release_tset:
2480        spin_lock_irq(&css_set_lock);
2481        list_splice_init(&tset->dst_csets, &tset->src_csets);
2482        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2483                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2484                list_del_init(&cset->mg_node);
2485        }
2486        spin_unlock_irq(&css_set_lock);
2487
2488        /*
2489         * Re-initialize the cgroup_taskset structure in case it is reused
2490         * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2491         * iteration.
2492         */
2493        tset->nr_tasks = 0;
2494        tset->csets    = &tset->src_csets;
2495        return ret;
2496}
2497
2498/**
2499 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2500 * @dst_cgrp: destination cgroup to test
2501 *
2502 * On the default hierarchy, except for the mixable, (possible) thread root
2503 * and threaded cgroups, subtree_control must be zero for migration
2504 * destination cgroups with tasks so that child cgroups don't compete
2505 * against tasks.
2506 */
2507int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2508{
2509        /* v1 doesn't have any restriction */
2510        if (!cgroup_on_dfl(dst_cgrp))
2511                return 0;
2512
2513        /* verify @dst_cgrp can host resources */
2514        if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2515                return -EOPNOTSUPP;
2516
2517        /* mixables don't care */
2518        if (cgroup_is_mixable(dst_cgrp))
2519                return 0;
2520
2521        /*
2522         * If @dst_cgrp is already or can become a thread root or is
2523         * threaded, it doesn't matter.
2524         */
2525        if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2526                return 0;
2527
2528        /* apply no-internal-process constraint */
2529        if (dst_cgrp->subtree_control)
2530                return -EBUSY;
2531
2532        return 0;
2533}
2534
2535/**
2536 * cgroup_migrate_finish - cleanup after attach
2537 * @mgctx: migration context
2538 *
2539 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2540 * those functions for details.
2541 */
2542void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2543{
2544        LIST_HEAD(preloaded);
2545        struct css_set *cset, *tmp_cset;
2546
2547        lockdep_assert_held(&cgroup_mutex);
2548
2549        spin_lock_irq(&css_set_lock);
2550
2551        list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2552        list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2553
2554        list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2555                cset->mg_src_cgrp = NULL;
2556                cset->mg_dst_cgrp = NULL;
2557                cset->mg_dst_cset = NULL;
2558                list_del_init(&cset->mg_preload_node);
2559                put_css_set_locked(cset);
2560        }
2561
2562        spin_unlock_irq(&css_set_lock);
2563}
2564
2565/**
2566 * cgroup_migrate_add_src - add a migration source css_set
2567 * @src_cset: the source css_set to add
2568 * @dst_cgrp: the destination cgroup
2569 * @mgctx: migration context
2570 *
2571 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2572 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2573 * up by cgroup_migrate_finish().
2574 *
2575 * This function may be called without holding cgroup_threadgroup_rwsem
2576 * even if the target is a process.  Threads may be created and destroyed
2577 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2578 * into play and the preloaded css_sets are guaranteed to cover all
2579 * migrations.
2580 */
2581void cgroup_migrate_add_src(struct css_set *src_cset,
2582                            struct cgroup *dst_cgrp,
2583                            struct cgroup_mgctx *mgctx)
2584{
2585        struct cgroup *src_cgrp;
2586
2587        lockdep_assert_held(&cgroup_mutex);
2588        lockdep_assert_held(&css_set_lock);
2589
2590        /*
2591         * If ->dead, @src_set is associated with one or more dead cgroups
2592         * and doesn't contain any migratable tasks.  Ignore it early so
2593         * that the rest of migration path doesn't get confused by it.
2594         */
2595        if (src_cset->dead)
2596                return;
2597
2598        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2599
2600        if (!list_empty(&src_cset->mg_preload_node))
2601                return;
2602
2603        WARN_ON(src_cset->mg_src_cgrp);
2604        WARN_ON(src_cset->mg_dst_cgrp);
2605        WARN_ON(!list_empty(&src_cset->mg_tasks));
2606        WARN_ON(!list_empty(&src_cset->mg_node));
2607
2608        src_cset->mg_src_cgrp = src_cgrp;
2609        src_cset->mg_dst_cgrp = dst_cgrp;
2610        get_css_set(src_cset);
2611        list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2612}
2613
2614/**
2615 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2616 * @mgctx: migration context
2617 *
2618 * Tasks are about to be moved and all the source css_sets have been
2619 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2620 * pins all destination css_sets, links each to its source, and append them
2621 * to @mgctx->preloaded_dst_csets.
2622 *
2623 * This function must be called after cgroup_migrate_add_src() has been
2624 * called on each migration source css_set.  After migration is performed
2625 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2626 * @mgctx.
2627 */
2628int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2629{
2630        struct css_set *src_cset, *tmp_cset;
2631
2632        lockdep_assert_held(&cgroup_mutex);
2633
2634        /* look up the dst cset for each src cset and link it to src */
2635        list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2636                                 mg_preload_node) {
2637                struct css_set *dst_cset;
2638                struct cgroup_subsys *ss;
2639                int ssid;
2640
2641                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2642                if (!dst_cset)
2643                        return -ENOMEM;
2644
2645                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2646
2647                /*
2648                 * If src cset equals dst, it's noop.  Drop the src.
2649                 * cgroup_migrate() will skip the cset too.  Note that we
2650                 * can't handle src == dst as some nodes are used by both.
2651                 */
2652                if (src_cset == dst_cset) {
2653                        src_cset->mg_src_cgrp = NULL;
2654                        src_cset->mg_dst_cgrp = NULL;
2655                        list_del_init(&src_cset->mg_preload_node);
2656                        put_css_set(src_cset);
2657                        put_css_set(dst_cset);
2658                        continue;
2659                }
2660
2661                src_cset->mg_dst_cset = dst_cset;
2662
2663                if (list_empty(&dst_cset->mg_preload_node))
2664                        list_add_tail(&dst_cset->mg_preload_node,
2665                                      &mgctx->preloaded_dst_csets);
2666                else
2667                        put_css_set(dst_cset);
2668
2669                for_each_subsys(ss, ssid)
2670                        if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2671                                mgctx->ss_mask |= 1 << ssid;
2672        }
2673
2674        return 0;
2675}
2676
2677/**
2678 * cgroup_migrate - migrate a process or task to a cgroup
2679 * @leader: the leader of the process or the task to migrate
2680 * @threadgroup: whether @leader points to the whole process or a single task
2681 * @mgctx: migration context
2682 *
2683 * Migrate a process or task denoted by @leader.  If migrating a process,
2684 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2685 * responsible for invoking cgroup_migrate_add_src() and
2686 * cgroup_migrate_prepare_dst() on the targets before invoking this
2687 * function and following up with cgroup_migrate_finish().
2688 *
2689 * As long as a controller's ->can_attach() doesn't fail, this function is
2690 * guaranteed to succeed.  This means that, excluding ->can_attach()
2691 * failure, when migrating multiple targets, the success or failure can be
2692 * decided for all targets by invoking group_migrate_prepare_dst() before
2693 * actually starting migrating.
2694 */
2695int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2696                   struct cgroup_mgctx *mgctx)
2697{
2698        struct task_struct *task;
2699
2700        /*
2701         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2702         * already PF_EXITING could be freed from underneath us unless we
2703         * take an rcu_read_lock.
2704         */
2705        spin_lock_irq(&css_set_lock);
2706        rcu_read_lock();
2707        task = leader;
2708        do {
2709                cgroup_migrate_add_task(task, mgctx);
2710                if (!threadgroup)
2711                        break;
2712        } while_each_thread(leader, task);
2713        rcu_read_unlock();
2714        spin_unlock_irq(&css_set_lock);
2715
2716        return cgroup_migrate_execute(mgctx);
2717}
2718
2719/**
2720 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2721 * @dst_cgrp: the cgroup to attach to
2722 * @leader: the task or the leader of the threadgroup to be attached
2723 * @threadgroup: attach the whole threadgroup?
2724 *
2725 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2726 */
2727int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2728                       bool threadgroup)
2729{
2730        DEFINE_CGROUP_MGCTX(mgctx);
2731        struct task_struct *task;
2732        int ret = 0;
2733
2734        /* look up all src csets */
2735        spin_lock_irq(&css_set_lock);
2736        rcu_read_lock();
2737        task = leader;
2738        do {
2739                cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2740                if (!threadgroup)
2741                        break;
2742        } while_each_thread(leader, task);
2743        rcu_read_unlock();
2744        spin_unlock_irq(&css_set_lock);
2745
2746        /* prepare dst csets and commit */
2747        ret = cgroup_migrate_prepare_dst(&mgctx);
2748        if (!ret)
2749                ret = cgroup_migrate(leader, threadgroup, &mgctx);
2750
2751        cgroup_migrate_finish(&mgctx);
2752
2753        if (!ret)
2754                TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2755
2756        return ret;
2757}
2758
2759struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2760                                             bool *locked)
2761        __acquires(&cgroup_threadgroup_rwsem)
2762{
2763        struct task_struct *tsk;
2764        pid_t pid;
2765
2766        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2767                return ERR_PTR(-EINVAL);
2768
2769        /*
2770         * If we migrate a single thread, we don't care about threadgroup
2771         * stability. If the thread is `current`, it won't exit(2) under our
2772         * hands or change PID through exec(2). We exclude
2773         * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2774         * callers by cgroup_mutex.
2775         * Therefore, we can skip the global lock.
2776         */
2777        lockdep_assert_held(&cgroup_mutex);
2778        if (pid || threadgroup) {
2779                percpu_down_write(&cgroup_threadgroup_rwsem);
2780                *locked = true;
2781        } else {
2782                *locked = false;
2783        }
2784
2785        rcu_read_lock();
2786        if (pid) {
2787                tsk = find_task_by_vpid(pid);
2788                if (!tsk) {
2789                        tsk = ERR_PTR(-ESRCH);
2790                        goto out_unlock_threadgroup;
2791                }
2792        } else {
2793                tsk = current;
2794        }
2795
2796        if (threadgroup)
2797                tsk = tsk->group_leader;
2798
2799        /*
2800         * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2801         * If userland migrates such a kthread to a non-root cgroup, it can
2802         * become trapped in a cpuset, or RT kthread may be born in a
2803         * cgroup with no rt_runtime allocated.  Just say no.
2804         */
2805        if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2806                tsk = ERR_PTR(-EINVAL);
2807                goto out_unlock_threadgroup;
2808        }
2809
2810        get_task_struct(tsk);
2811        goto out_unlock_rcu;
2812
2813out_unlock_threadgroup:
2814        if (*locked) {
2815                percpu_up_write(&cgroup_threadgroup_rwsem);
2816                *locked = false;
2817        }
2818out_unlock_rcu:
2819        rcu_read_unlock();
2820        return tsk;
2821}
2822
2823void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2824        __releases(&cgroup_threadgroup_rwsem)
2825{
2826        struct cgroup_subsys *ss;
2827        int ssid;
2828
2829        /* release reference from cgroup_procs_write_start() */
2830        put_task_struct(task);
2831
2832        if (locked)
2833                percpu_up_write(&cgroup_threadgroup_rwsem);
2834        for_each_subsys(ss, ssid)
2835                if (ss->post_attach)
2836                        ss->post_attach();
2837}
2838
2839static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2840{
2841        struct cgroup_subsys *ss;
2842        bool printed = false;
2843        int ssid;
2844
2845        do_each_subsys_mask(ss, ssid, ss_mask) {
2846                if (printed)
2847                        seq_putc(seq, ' ');
2848                seq_puts(seq, ss->name);
2849                printed = true;
2850        } while_each_subsys_mask();
2851        if (printed)
2852                seq_putc(seq, '\n');
2853}
2854
2855/* show controllers which are enabled from the parent */
2856static int cgroup_controllers_show(struct seq_file *seq, void *v)
2857{
2858        struct cgroup *cgrp = seq_css(seq)->cgroup;
2859
2860        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2861        return 0;
2862}
2863
2864/* show controllers which are enabled for a given cgroup's children */
2865static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2866{
2867        struct cgroup *cgrp = seq_css(seq)->cgroup;
2868
2869        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2870        return 0;
2871}
2872
2873/**
2874 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2875 * @cgrp: root of the subtree to update csses for
2876 *
2877 * @cgrp's control masks have changed and its subtree's css associations
2878 * need to be updated accordingly.  This function looks up all css_sets
2879 * which are attached to the subtree, creates the matching updated css_sets
2880 * and migrates the tasks to the new ones.
2881 */
2882static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2883{
2884        DEFINE_CGROUP_MGCTX(mgctx);
2885        struct cgroup_subsys_state *d_css;
2886        struct cgroup *dsct;
2887        struct css_set *src_cset;
2888        int ret;
2889
2890        lockdep_assert_held(&cgroup_mutex);
2891
2892        percpu_down_write(&cgroup_threadgroup_rwsem);
2893
2894        /* look up all csses currently attached to @cgrp's subtree */
2895        spin_lock_irq(&css_set_lock);
2896        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2897                struct cgrp_cset_link *link;
2898
2899                list_for_each_entry(link, &dsct->cset_links, cset_link)
2900                        cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2901        }
2902        spin_unlock_irq(&css_set_lock);
2903
2904        /* NULL dst indicates self on default hierarchy */
2905        ret = cgroup_migrate_prepare_dst(&mgctx);
2906        if (ret)
2907                goto out_finish;
2908
2909        spin_lock_irq(&css_set_lock);
2910        list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2911                struct task_struct *task, *ntask;
2912
2913                /* all tasks in src_csets need to be migrated */
2914                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2915                        cgroup_migrate_add_task(task, &mgctx);
2916        }
2917        spin_unlock_irq(&css_set_lock);
2918
2919        ret = cgroup_migrate_execute(&mgctx);
2920out_finish:
2921        cgroup_migrate_finish(&mgctx);
2922        percpu_up_write(&cgroup_threadgroup_rwsem);
2923        return ret;
2924}
2925
2926/**
2927 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2928 * @cgrp: root of the target subtree
2929 *
2930 * Because css offlining is asynchronous, userland may try to re-enable a
2931 * controller while the previous css is still around.  This function grabs
2932 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2933 */
2934void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2935        __acquires(&cgroup_mutex)
2936{
2937        struct cgroup *dsct;
2938        struct cgroup_subsys_state *d_css;
2939        struct cgroup_subsys *ss;
2940        int ssid;
2941
2942restart:
2943        mutex_lock(&cgroup_mutex);
2944
2945        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2946                for_each_subsys(ss, ssid) {
2947                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2948                        DEFINE_WAIT(wait);
2949
2950                        if (!css || !percpu_ref_is_dying(&css->refcnt))
2951                                continue;
2952
2953                        cgroup_get_live(dsct);
2954                        prepare_to_wait(&dsct->offline_waitq, &wait,
2955                                        TASK_UNINTERRUPTIBLE);
2956
2957                        mutex_unlock(&cgroup_mutex);
2958                        schedule();
2959                        finish_wait(&dsct->offline_waitq, &wait);
2960
2961                        cgroup_put(dsct);
2962                        goto restart;
2963                }
2964        }
2965}
2966
2967/**
2968 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2969 * @cgrp: root of the target subtree
2970 *
2971 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2972 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2973 * itself.
2974 */
2975static void cgroup_save_control(struct cgroup *cgrp)
2976{
2977        struct cgroup *dsct;
2978        struct cgroup_subsys_state *d_css;
2979
2980        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2981                dsct->old_subtree_control = dsct->subtree_control;
2982                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2983                dsct->old_dom_cgrp = dsct->dom_cgrp;
2984        }
2985}
2986
2987/**
2988 * cgroup_propagate_control - refresh control masks of a subtree
2989 * @cgrp: root of the target subtree
2990 *
2991 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2992 * ->subtree_control and propagate controller availability through the
2993 * subtree so that descendants don't have unavailable controllers enabled.
2994 */
2995static void cgroup_propagate_control(struct cgroup *cgrp)
2996{
2997        struct cgroup *dsct;
2998        struct cgroup_subsys_state *d_css;
2999
3000        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3001                dsct->subtree_control &= cgroup_control(dsct);
3002                dsct->subtree_ss_mask =
3003                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3004                                                    cgroup_ss_mask(dsct));
3005        }
3006}
3007
3008/**
3009 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3010 * @cgrp: root of the target subtree
3011 *
3012 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3013 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3014 * itself.
3015 */
3016static void cgroup_restore_control(struct cgroup *cgrp)
3017{
3018        struct cgroup *dsct;
3019        struct cgroup_subsys_state *d_css;
3020
3021        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3022                dsct->subtree_control = dsct->old_subtree_control;
3023                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3024                dsct->dom_cgrp = dsct->old_dom_cgrp;
3025        }
3026}
3027
3028static bool css_visible(struct cgroup_subsys_state *css)
3029{
3030        struct cgroup_subsys *ss = css->ss;
3031        struct cgroup *cgrp = css->cgroup;
3032
3033        if (cgroup_control(cgrp) & (1 << ss->id))
3034                return true;
3035        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3036                return false;
3037        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3038}
3039
3040/**
3041 * cgroup_apply_control_enable - enable or show csses according to control
3042 * @cgrp: root of the target subtree
3043 *
3044 * Walk @cgrp's subtree and create new csses or make the existing ones
3045 * visible.  A css is created invisible if it's being implicitly enabled
3046 * through dependency.  An invisible css is made visible when the userland
3047 * explicitly enables it.
3048 *
3049 * Returns 0 on success, -errno on failure.  On failure, csses which have
3050 * been processed already aren't cleaned up.  The caller is responsible for
3051 * cleaning up with cgroup_apply_control_disable().
3052 */
3053static int cgroup_apply_control_enable(struct cgroup *cgrp)
3054{
3055        struct cgroup *dsct;
3056        struct cgroup_subsys_state *d_css;
3057        struct cgroup_subsys *ss;
3058        int ssid, ret;
3059
3060        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3061                for_each_subsys(ss, ssid) {
3062                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3063
3064                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3065                                continue;
3066
3067                        if (!css) {
3068                                css = css_create(dsct, ss);
3069                                if (IS_ERR(css))
3070                                        return PTR_ERR(css);
3071                        }
3072
3073                        WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3074
3075                        if (css_visible(css)) {
3076                                ret = css_populate_dir(css);
3077                                if (ret)
3078                                        return ret;
3079                        }
3080                }
3081        }
3082
3083        return 0;
3084}
3085
3086/**
3087 * cgroup_apply_control_disable - kill or hide csses according to control
3088 * @cgrp: root of the target subtree
3089 *
3090 * Walk @cgrp's subtree and kill and hide csses so that they match
3091 * cgroup_ss_mask() and cgroup_visible_mask().
3092 *
3093 * A css is hidden when the userland requests it to be disabled while other
3094 * subsystems are still depending on it.  The css must not actively control
3095 * resources and be in the vanilla state if it's made visible again later.
3096 * Controllers which may be depended upon should provide ->css_reset() for
3097 * this purpose.
3098 */
3099static void cgroup_apply_control_disable(struct cgroup *cgrp)
3100{
3101        struct cgroup *dsct;
3102        struct cgroup_subsys_state *d_css;
3103        struct cgroup_subsys *ss;
3104        int ssid;
3105
3106        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3107                for_each_subsys(ss, ssid) {
3108                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3109
3110                        if (!css)
3111                                continue;
3112
3113                        WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3114
3115                        if (css->parent &&
3116                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3117                                kill_css(css);
3118                        } else if (!css_visible(css)) {
3119                                css_clear_dir(css);
3120                                if (ss->css_reset)
3121                                        ss->css_reset(css);
3122                        }
3123                }
3124        }
3125}
3126
3127/**
3128 * cgroup_apply_control - apply control mask updates to the subtree
3129 * @cgrp: root of the target subtree
3130 *
3131 * subsystems can be enabled and disabled in a subtree using the following
3132 * steps.
3133 *
3134 * 1. Call cgroup_save_control() to stash the current state.
3135 * 2. Update ->subtree_control masks in the subtree as desired.
3136 * 3. Call cgroup_apply_control() to apply the changes.
3137 * 4. Optionally perform other related operations.
3138 * 5. Call cgroup_finalize_control() to finish up.
3139 *
3140 * This function implements step 3 and propagates the mask changes
3141 * throughout @cgrp's subtree, updates csses accordingly and perform
3142 * process migrations.
3143 */
3144static int cgroup_apply_control(struct cgroup *cgrp)
3145{
3146        int ret;
3147
3148        cgroup_propagate_control(cgrp);
3149
3150        ret = cgroup_apply_control_enable(cgrp);
3151        if (ret)
3152                return ret;
3153
3154        /*
3155         * At this point, cgroup_e_css_by_mask() results reflect the new csses
3156         * making the following cgroup_update_dfl_csses() properly update
3157         * css associations of all tasks in the subtree.
3158         */
3159        ret = cgroup_update_dfl_csses(cgrp);
3160        if (ret)
3161                return ret;
3162
3163        return 0;
3164}
3165
3166/**
3167 * cgroup_finalize_control - finalize control mask update
3168 * @cgrp: root of the target subtree
3169 * @ret: the result of the update
3170 *
3171 * Finalize control mask update.  See cgroup_apply_control() for more info.
3172 */
3173static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3174{
3175        if (ret) {
3176                cgroup_restore_control(cgrp);
3177                cgroup_propagate_control(cgrp);
3178        }
3179
3180        cgroup_apply_control_disable(cgrp);
3181}
3182
3183static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3184{
3185        u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3186
3187        /* if nothing is getting enabled, nothing to worry about */
3188        if (!enable)
3189                return 0;
3190
3191        /* can @cgrp host any resources? */
3192        if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3193                return -EOPNOTSUPP;
3194
3195        /* mixables don't care */
3196        if (cgroup_is_mixable(cgrp))
3197                return 0;
3198
3199        if (domain_enable) {
3200                /* can't enable domain controllers inside a thread subtree */
3201                if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3202                        return -EOPNOTSUPP;
3203        } else {
3204                /*
3205                 * Threaded controllers can handle internal competitions
3206                 * and are always allowed inside a (prospective) thread
3207                 * subtree.
3208                 */
3209                if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3210                        return 0;
3211        }
3212
3213        /*
3214         * Controllers can't be enabled for a cgroup with tasks to avoid
3215         * child cgroups competing against tasks.
3216         */
3217        if (cgroup_has_tasks(cgrp))
3218                return -EBUSY;
3219
3220        return 0;
3221}
3222
3223/* change the enabled child controllers for a cgroup in the default hierarchy */
3224static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3225                                            char *buf, size_t nbytes,
3226                                            loff_t off)
3227{
3228        u16 enable = 0, disable = 0;
3229        struct cgroup *cgrp, *child;
3230        struct cgroup_subsys *ss;
3231        char *tok;
3232        int ssid, ret;
3233
3234        /*
3235         * Parse input - space separated list of subsystem names prefixed
3236         * with either + or -.
3237         */
3238        buf = strstrip(buf);
3239        while ((tok = strsep(&buf, " "))) {
3240                if (tok[0] == '\0')
3241                        continue;
3242                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3243                        if (!cgroup_ssid_enabled(ssid) ||
3244                            strcmp(tok + 1, ss->name))
3245                                continue;
3246
3247                        if (*tok == '+') {
3248                                enable |= 1 << ssid;
3249                                disable &= ~(1 << ssid);
3250                        } else if (*tok == '-') {
3251                                disable |= 1 << ssid;
3252                                enable &= ~(1 << ssid);
3253                        } else {
3254                                return -EINVAL;
3255                        }
3256                        break;
3257                } while_each_subsys_mask();
3258                if (ssid == CGROUP_SUBSYS_COUNT)
3259                        return -EINVAL;
3260        }
3261
3262        cgrp = cgroup_kn_lock_live(of->kn, true);
3263        if (!cgrp)
3264                return -ENODEV;
3265
3266        for_each_subsys(ss, ssid) {
3267                if (enable & (1 << ssid)) {
3268                        if (cgrp->subtree_control & (1 << ssid)) {
3269                                enable &= ~(1 << ssid);
3270                                continue;
3271                        }
3272
3273                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3274                                ret = -ENOENT;
3275                                goto out_unlock;
3276                        }
3277                } else if (disable & (1 << ssid)) {
3278                        if (!(cgrp->subtree_control & (1 << ssid))) {
3279                                disable &= ~(1 << ssid);
3280                                continue;
3281                        }
3282
3283                        /* a child has it enabled? */
3284                        cgroup_for_each_live_child(child, cgrp) {
3285                                if (child->subtree_control & (1 << ssid)) {
3286                                        ret = -EBUSY;
3287                                        goto out_unlock;
3288                                }
3289                        }
3290                }
3291        }
3292
3293        if (!enable && !disable) {
3294                ret = 0;
3295                goto out_unlock;
3296        }
3297
3298        ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3299        if (ret)
3300                goto out_unlock;
3301
3302        /* save and update control masks and prepare csses */
3303        cgroup_save_control(cgrp);
3304
3305        cgrp->subtree_control |= enable;
3306        cgrp->subtree_control &= ~disable;
3307
3308        ret = cgroup_apply_control(cgrp);
3309        cgroup_finalize_control(cgrp, ret);
3310        if (ret)
3311                goto out_unlock;
3312
3313        kernfs_activate(cgrp->kn);
3314out_unlock:
3315        cgroup_kn_unlock(of->kn);
3316        return ret ?: nbytes;
3317}
3318
3319/**
3320 * cgroup_enable_threaded - make @cgrp threaded
3321 * @cgrp: the target cgroup
3322 *
3323 * Called when "threaded" is written to the cgroup.type interface file and
3324 * tries to make @cgrp threaded and join the parent's resource domain.
3325 * This function is never called on the root cgroup as cgroup.type doesn't
3326 * exist on it.
3327 */
3328static int cgroup_enable_threaded(struct cgroup *cgrp)
3329{
3330        struct cgroup *parent = cgroup_parent(cgrp);
3331        struct cgroup *dom_cgrp = parent->dom_cgrp;
3332        struct cgroup *dsct;
3333        struct cgroup_subsys_state *d_css;
3334        int ret;
3335
3336        lockdep_assert_held(&cgroup_mutex);
3337
3338        /* noop if already threaded */
3339        if (cgroup_is_threaded(cgrp))
3340                return 0;
3341
3342        /*
3343         * If @cgroup is populated or has domain controllers enabled, it
3344         * can't be switched.  While the below cgroup_can_be_thread_root()
3345         * test can catch the same conditions, that's only when @parent is
3346         * not mixable, so let's check it explicitly.
3347         */
3348        if (cgroup_is_populated(cgrp) ||
3349            cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3350                return -EOPNOTSUPP;
3351
3352        /* we're joining the parent's domain, ensure its validity */
3353        if (!cgroup_is_valid_domain(dom_cgrp) ||
3354            !cgroup_can_be_thread_root(dom_cgrp))
3355                return -EOPNOTSUPP;
3356
3357        /*
3358         * The following shouldn't cause actual migrations and should
3359         * always succeed.
3360         */
3361        cgroup_save_control(cgrp);
3362
3363        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3364                if (dsct == cgrp || cgroup_is_threaded(dsct))
3365                        dsct->dom_cgrp = dom_cgrp;
3366
3367        ret = cgroup_apply_control(cgrp);
3368        if (!ret)
3369                parent->nr_threaded_children++;
3370
3371        cgroup_finalize_control(cgrp, ret);
3372        return ret;
3373}
3374
3375static int cgroup_type_show(struct seq_file *seq, void *v)
3376{
3377        struct cgroup *cgrp = seq_css(seq)->cgroup;
3378
3379        if (cgroup_is_threaded(cgrp))
3380                seq_puts(seq, "threaded\n");
3381        else if (!cgroup_is_valid_domain(cgrp))
3382                seq_puts(seq, "domain invalid\n");
3383        else if (cgroup_is_thread_root(cgrp))
3384                seq_puts(seq, "domain threaded\n");
3385        else
3386                seq_puts(seq, "domain\n");
3387
3388        return 0;
3389}
3390
3391static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3392                                 size_t nbytes, loff_t off)
3393{
3394        struct cgroup *cgrp;
3395        int ret;
3396
3397        /* only switching to threaded mode is supported */
3398        if (strcmp(strstrip(buf), "threaded"))
3399                return -EINVAL;
3400
3401        /* drain dying csses before we re-apply (threaded) subtree control */
3402        cgrp = cgroup_kn_lock_live(of->kn, true);
3403        if (!cgrp)
3404                return -ENOENT;
3405
3406        /* threaded can only be enabled */
3407        ret = cgroup_enable_threaded(cgrp);
3408
3409        cgroup_kn_unlock(of->kn);
3410        return ret ?: nbytes;
3411}
3412
3413static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3414{
3415        struct cgroup *cgrp = seq_css(seq)->cgroup;
3416        int descendants = READ_ONCE(cgrp->max_descendants);
3417
3418        if (descendants == INT_MAX)
3419                seq_puts(seq, "max\n");
3420        else
3421                seq_printf(seq, "%d\n", descendants);
3422
3423        return 0;
3424}
3425
3426static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3427                                           char *buf, size_t nbytes, loff_t off)
3428{
3429        struct cgroup *cgrp;
3430        int descendants;
3431        ssize_t ret;
3432
3433        buf = strstrip(buf);
3434        if (!strcmp(buf, "max")) {
3435                descendants = INT_MAX;
3436        } else {
3437                ret = kstrtoint(buf, 0, &descendants);
3438                if (ret)
3439                        return ret;
3440        }
3441
3442        if (descendants < 0)
3443                return -ERANGE;
3444
3445        cgrp = cgroup_kn_lock_live(of->kn, false);
3446        if (!cgrp)
3447                return -ENOENT;
3448
3449        cgrp->max_descendants = descendants;
3450
3451        cgroup_kn_unlock(of->kn);
3452
3453        return nbytes;
3454}
3455
3456static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3457{
3458        struct cgroup *cgrp = seq_css(seq)->cgroup;
3459        int depth = READ_ONCE(cgrp->max_depth);
3460
3461        if (depth == INT_MAX)
3462                seq_puts(seq, "max\n");
3463        else
3464                seq_printf(seq, "%d\n", depth);
3465
3466        return 0;
3467}
3468
3469static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3470                                      char *buf, size_t nbytes, loff_t off)
3471{
3472        struct cgroup *cgrp;
3473        ssize_t ret;
3474        int depth;
3475
3476        buf = strstrip(buf);
3477        if (!strcmp(buf, "max")) {
3478                depth = INT_MAX;
3479        } else {
3480                ret = kstrtoint(buf, 0, &depth);
3481                if (ret)
3482                        return ret;
3483        }
3484
3485        if (depth < 0)
3486                return -ERANGE;
3487
3488        cgrp = cgroup_kn_lock_live(of->kn, false);
3489        if (!cgrp)
3490                return -ENOENT;
3491
3492        cgrp->max_depth = depth;
3493
3494        cgroup_kn_unlock(of->kn);
3495
3496        return nbytes;
3497}
3498
3499static int cgroup_events_show(struct seq_file *seq, void *v)
3500{
3501        struct cgroup *cgrp = seq_css(seq)->cgroup;
3502
3503        seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3504        seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3505
3506        return 0;
3507}
3508
3509static int cgroup_stat_show(struct seq_file *seq, void *v)
3510{
3511        struct cgroup *cgroup = seq_css(seq)->cgroup;
3512
3513        seq_printf(seq, "nr_descendants %d\n",
3514                   cgroup->nr_descendants);
3515        seq_printf(seq, "nr_dying_descendants %d\n",
3516                   cgroup->nr_dying_descendants);
3517
3518        return 0;
3519}
3520
3521static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3522                                                 struct cgroup *cgrp, int ssid)
3523{
3524        struct cgroup_subsys *ss = cgroup_subsys[ssid];
3525        struct cgroup_subsys_state *css;
3526        int ret;
3527
3528        if (!ss->css_extra_stat_show)
3529                return 0;
3530
3531        css = cgroup_tryget_css(cgrp, ss);
3532        if (!css)
3533                return 0;
3534
3535        ret = ss->css_extra_stat_show(seq, css);
3536        css_put(css);
3537        return ret;
3538}
3539
3540static int cpu_stat_show(struct seq_file *seq, void *v)
3541{
3542        struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3543        int ret = 0;
3544
3545        cgroup_base_stat_cputime_show(seq);
3546#ifdef CONFIG_CGROUP_SCHED
3547        ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3548#endif
3549        return ret;
3550}
3551
3552#ifdef CONFIG_PSI
3553static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3554{
3555        struct cgroup *cgrp = seq_css(seq)->cgroup;
3556        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3557
3558        return psi_show(seq, psi, PSI_IO);
3559}
3560static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3561{
3562        struct cgroup *cgrp = seq_css(seq)->cgroup;
3563        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3564
3565        return psi_show(seq, psi, PSI_MEM);
3566}
3567static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3568{
3569        struct cgroup *cgrp = seq_css(seq)->cgroup;
3570        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3571
3572        return psi_show(seq, psi, PSI_CPU);
3573}
3574
3575static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3576                                          size_t nbytes, enum psi_res res)
3577{
3578        struct psi_trigger *new;
3579        struct cgroup *cgrp;
3580        struct psi_group *psi;
3581
3582        cgrp = cgroup_kn_lock_live(of->kn, false);
3583        if (!cgrp)
3584                return -ENODEV;
3585
3586        cgroup_get(cgrp);
3587        cgroup_kn_unlock(of->kn);
3588
3589        psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3590        new = psi_trigger_create(psi, buf, nbytes, res);
3591        if (IS_ERR(new)) {
3592                cgroup_put(cgrp);
3593                return PTR_ERR(new);
3594        }
3595
3596        psi_trigger_replace(&of->priv, new);
3597
3598        cgroup_put(cgrp);
3599
3600        return nbytes;
3601}
3602
3603static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3604                                          char *buf, size_t nbytes,
3605                                          loff_t off)
3606{
3607        return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3608}
3609
3610static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3611                                          char *buf, size_t nbytes,
3612                                          loff_t off)
3613{
3614        return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3615}
3616
3617static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3618                                          char *buf, size_t nbytes,
3619                                          loff_t off)
3620{
3621        return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3622}
3623
3624static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3625                                          poll_table *pt)
3626{
3627        return psi_trigger_poll(&of->priv, of->file, pt);
3628}
3629
3630static void cgroup_pressure_release(struct kernfs_open_file *of)
3631{
3632        psi_trigger_replace(&of->priv, NULL);
3633}
3634#endif /* CONFIG_PSI */
3635
3636static int cgroup_freeze_show(struct seq_file *seq, void *v)
3637{
3638        struct cgroup *cgrp = seq_css(seq)->cgroup;
3639
3640        seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3641
3642        return 0;
3643}
3644
3645static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3646                                   char *buf, size_t nbytes, loff_t off)
3647{
3648        struct cgroup *cgrp;
3649        ssize_t ret;
3650        int freeze;
3651
3652        ret = kstrtoint(strstrip(buf), 0, &freeze);
3653        if (ret)
3654                return ret;
3655
3656        if (freeze < 0 || freeze > 1)
3657                return -ERANGE;
3658
3659        cgrp = cgroup_kn_lock_live(of->kn, false);
3660        if (!cgrp)
3661                return -ENOENT;
3662
3663        cgroup_freeze(cgrp, freeze);
3664
3665        cgroup_kn_unlock(of->kn);
3666
3667        return nbytes;
3668}
3669
3670static int cgroup_file_open(struct kernfs_open_file *of)
3671{
3672        struct cftype *cft = of_cft(of);
3673
3674        if (cft->open)
3675                return cft->open(of);
3676        return 0;
3677}
3678
3679static void cgroup_file_release(struct kernfs_open_file *of)
3680{
3681        struct cftype *cft = of_cft(of);
3682
3683        if (cft->release)
3684                cft->release(of);
3685}
3686
3687static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3688                                 size_t nbytes, loff_t off)
3689{
3690        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3691        struct cgroup *cgrp = of->kn->parent->priv;
3692        struct cftype *cft = of_cft(of);
3693        struct cgroup_subsys_state *css;
3694        int ret;
3695
3696        if (!nbytes)
3697                return 0;
3698
3699        /*
3700         * If namespaces are delegation boundaries, disallow writes to
3701         * files in an non-init namespace root from inside the namespace
3702         * except for the files explicitly marked delegatable -
3703         * cgroup.procs and cgroup.subtree_control.
3704         */
3705        if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3706            !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3707            ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3708                return -EPERM;
3709
3710        if (cft->write)
3711                return cft->write(of, buf, nbytes, off);
3712
3713        /*
3714         * kernfs guarantees that a file isn't deleted with operations in
3715         * flight, which means that the matching css is and stays alive and
3716         * doesn't need to be pinned.  The RCU locking is not necessary
3717         * either.  It's just for the convenience of using cgroup_css().
3718         */
3719        rcu_read_lock();
3720        css = cgroup_css(cgrp, cft->ss);
3721        rcu_read_unlock();
3722
3723        if (cft->write_u64) {
3724                unsigned long long v;
3725                ret = kstrtoull(buf, 0, &v);
3726                if (!ret)
3727                        ret = cft->write_u64(css, cft, v);
3728        } else if (cft->write_s64) {
3729                long long v;
3730                ret = kstrtoll(buf, 0, &v);
3731                if (!ret)
3732                        ret = cft->write_s64(css, cft, v);
3733        } else {
3734                ret = -EINVAL;
3735        }
3736
3737        return ret ?: nbytes;
3738}
3739
3740static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3741{
3742        struct cftype *cft = of_cft(of);
3743
3744        if (cft->poll)
3745                return cft->poll(of, pt);
3746
3747        return kernfs_generic_poll(of, pt);
3748}
3749
3750static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3751{
3752        return seq_cft(seq)->seq_start(seq, ppos);
3753}
3754
3755static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3756{
3757        return seq_cft(seq)->seq_next(seq, v, ppos);
3758}
3759
3760static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3761{
3762        if (seq_cft(seq)->seq_stop)
3763                seq_cft(seq)->seq_stop(seq, v);
3764}
3765
3766static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3767{
3768        struct cftype *cft = seq_cft(m);
3769        struct cgroup_subsys_state *css = seq_css(m);
3770
3771        if (cft->seq_show)
3772                return cft->seq_show(m, arg);
3773
3774        if (cft->read_u64)
3775                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3776        else if (cft->read_s64)
3777                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3778        else
3779                return -EINVAL;
3780        return 0;
3781}
3782
3783static struct kernfs_ops cgroup_kf_single_ops = {
3784        .atomic_write_len       = PAGE_SIZE,
3785        .open                   = cgroup_file_open,
3786        .release                = cgroup_file_release,
3787        .write                  = cgroup_file_write,
3788        .poll                   = cgroup_file_poll,
3789        .seq_show               = cgroup_seqfile_show,
3790};
3791
3792static struct kernfs_ops cgroup_kf_ops = {
3793        .atomic_write_len       = PAGE_SIZE,
3794        .open                   = cgroup_file_open,
3795        .release                = cgroup_file_release,
3796        .write                  = cgroup_file_write,
3797        .poll                   = cgroup_file_poll,
3798        .seq_start              = cgroup_seqfile_start,
3799        .seq_next               = cgroup_seqfile_next,
3800        .seq_stop               = cgroup_seqfile_stop,
3801        .seq_show               = cgroup_seqfile_show,
3802};
3803
3804/* set uid and gid of cgroup dirs and files to that of the creator */
3805static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3806{
3807        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3808                               .ia_uid = current_fsuid(),
3809                               .ia_gid = current_fsgid(), };
3810
3811        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3812            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3813                return 0;
3814
3815        return kernfs_setattr(kn, &iattr);
3816}
3817
3818static void cgroup_file_notify_timer(struct timer_list *timer)
3819{
3820        cgroup_file_notify(container_of(timer, struct cgroup_file,
3821                                        notify_timer));
3822}
3823
3824static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3825                           struct cftype *cft)
3826{
3827        char name[CGROUP_FILE_NAME_MAX];
3828        struct kernfs_node *kn;
3829        struct lock_class_key *key = NULL;
3830        int ret;
3831
3832#ifdef CONFIG_DEBUG_LOCK_ALLOC
3833        key = &cft->lockdep_key;
3834#endif
3835        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3836                                  cgroup_file_mode(cft),
3837                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3838                                  0, cft->kf_ops, cft,
3839                                  NULL, key);
3840        if (IS_ERR(kn))
3841                return PTR_ERR(kn);
3842
3843        ret = cgroup_kn_set_ugid(kn);
3844        if (ret) {
3845                kernfs_remove(kn);
3846                return ret;
3847        }
3848
3849        if (cft->file_offset) {
3850                struct cgroup_file *cfile = (void *)css + cft->file_offset;
3851
3852                timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3853
3854                spin_lock_irq(&cgroup_file_kn_lock);
3855                cfile->kn = kn;
3856                spin_unlock_irq(&cgroup_file_kn_lock);
3857        }
3858
3859        return 0;
3860}
3861
3862/**
3863 * cgroup_addrm_files - add or remove files to a cgroup directory
3864 * @css: the target css
3865 * @cgrp: the target cgroup (usually css->cgroup)
3866 * @cfts: array of cftypes to be added
3867 * @is_add: whether to add or remove
3868 *
3869 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3870 * For removals, this function never fails.
3871 */
3872static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3873                              struct cgroup *cgrp, struct cftype cfts[],
3874                              bool is_add)
3875{
3876        struct cftype *cft, *cft_end = NULL;
3877        int ret = 0;
3878
3879        lockdep_assert_held(&cgroup_mutex);
3880
3881restart:
3882        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3883                /* does cft->flags tell us to skip this file on @cgrp? */
3884                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3885                        continue;
3886                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3887                        continue;
3888                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3889                        continue;
3890                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3891                        continue;
3892                if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3893                        continue;
3894                if (is_add) {
3895                        ret = cgroup_add_file(css, cgrp, cft);
3896                        if (ret) {
3897                                pr_warn("%s: failed to add %s, err=%d\n",
3898                                        __func__, cft->name, ret);
3899                                cft_end = cft;
3900                                is_add = false;
3901                                goto restart;
3902                        }
3903                } else {
3904                        cgroup_rm_file(cgrp, cft);
3905                }
3906        }
3907        return ret;
3908}
3909
3910static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3911{
3912        struct cgroup_subsys *ss = cfts[0].ss;
3913        struct cgroup *root = &ss->root->cgrp;
3914        struct cgroup_subsys_state *css;
3915        int ret = 0;
3916
3917        lockdep_assert_held(&cgroup_mutex);
3918
3919        /* add/rm files for all cgroups created before */
3920        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3921                struct cgroup *cgrp = css->cgroup;
3922
3923                if (!(css->flags & CSS_VISIBLE))
3924                        continue;
3925
3926                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3927                if (ret)
3928                        break;
3929        }
3930
3931        if (is_add && !ret)
3932                kernfs_activate(root->kn);
3933        return ret;
3934}
3935
3936static void cgroup_exit_cftypes(struct cftype *cfts)
3937{
3938        struct cftype *cft;
3939
3940        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3941                /* free copy for custom atomic_write_len, see init_cftypes() */
3942                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3943                        kfree(cft->kf_ops);
3944                cft->kf_ops = NULL;
3945                cft->ss = NULL;
3946
3947                /* revert flags set by cgroup core while adding @cfts */
3948                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3949        }
3950}
3951
3952static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3953{
3954        struct cftype *cft;
3955
3956        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3957                struct kernfs_ops *kf_ops;
3958
3959                WARN_ON(cft->ss || cft->kf_ops);
3960
3961                if (cft->seq_start)
3962                        kf_ops = &cgroup_kf_ops;
3963                else
3964                        kf_ops = &cgroup_kf_single_ops;
3965
3966                /*
3967                 * Ugh... if @cft wants a custom max_write_len, we need to
3968                 * make a copy of kf_ops to set its atomic_write_len.
3969                 */
3970                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3971                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3972                        if (!kf_ops) {
3973                                cgroup_exit_cftypes(cfts);
3974                                return -ENOMEM;
3975                        }
3976                        kf_ops->atomic_write_len = cft->max_write_len;
3977                }
3978
3979                cft->kf_ops = kf_ops;
3980                cft->ss = ss;
3981        }
3982
3983        return 0;
3984}
3985
3986static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3987{
3988        lockdep_assert_held(&cgroup_mutex);
3989
3990        if (!cfts || !cfts[0].ss)
3991                return -ENOENT;
3992
3993        list_del(&cfts->node);
3994        cgroup_apply_cftypes(cfts, false);
3995        cgroup_exit_cftypes(cfts);
3996        return 0;
3997}
3998
3999/**
4000 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4001 * @cfts: zero-length name terminated array of cftypes
4002 *
4003 * Unregister @cfts.  Files described by @cfts are removed from all
4004 * existing cgroups and all future cgroups won't have them either.  This
4005 * function can be called anytime whether @cfts' subsys is attached or not.
4006 *
4007 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4008 * registered.
4009 */
4010int cgroup_rm_cftypes(struct cftype *cfts)
4011{
4012        int ret;
4013
4014        mutex_lock(&cgroup_mutex);
4015        ret = cgroup_rm_cftypes_locked(cfts);
4016        mutex_unlock(&cgroup_mutex);
4017        return ret;
4018}
4019
4020/**
4021 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4022 * @ss: target cgroup subsystem
4023 * @cfts: zero-length name terminated array of cftypes
4024 *
4025 * Register @cfts to @ss.  Files described by @cfts are created for all
4026 * existing cgroups to which @ss is attached and all future cgroups will
4027 * have them too.  This function can be called anytime whether @ss is
4028 * attached or not.
4029 *
4030 * Returns 0 on successful registration, -errno on failure.  Note that this
4031 * function currently returns 0 as long as @cfts registration is successful
4032 * even if some file creation attempts on existing cgroups fail.
4033 */
4034static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4035{
4036        int ret;
4037
4038        if (!cgroup_ssid_enabled(ss->id))
4039                return 0;
4040
4041        if (!cfts || cfts[0].name[0] == '\0')
4042                return 0;
4043
4044        ret = cgroup_init_cftypes(ss, cfts);
4045        if (ret)
4046                return ret;
4047
4048        mutex_lock(&cgroup_mutex);
4049
4050        list_add_tail(&cfts->node, &ss->cfts);
4051        ret = cgroup_apply_cftypes(cfts, true);
4052        if (ret)
4053                cgroup_rm_cftypes_locked(cfts);
4054
4055        mutex_unlock(&cgroup_mutex);
4056        return ret;
4057}
4058
4059/**
4060 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4061 * @ss: target cgroup subsystem
4062 * @cfts: zero-length name terminated array of cftypes
4063 *
4064 * Similar to cgroup_add_cftypes() but the added files are only used for
4065 * the default hierarchy.
4066 */
4067int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4068{
4069        struct cftype *cft;
4070
4071        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4072                cft->flags |= __CFTYPE_ONLY_ON_DFL;
4073        return cgroup_add_cftypes(ss, cfts);
4074}
4075
4076/**
4077 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4078 * @ss: target cgroup subsystem
4079 * @cfts: zero-length name terminated array of cftypes
4080 *
4081 * Similar to cgroup_add_cftypes() but the added files are only used for
4082 * the legacy hierarchies.
4083 */
4084int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4085{
4086        struct cftype *cft;
4087
4088        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4089                cft->flags |= __CFTYPE_NOT_ON_DFL;
4090        return cgroup_add_cftypes(ss, cfts);
4091}
4092
4093/**
4094 * cgroup_file_notify - generate a file modified event for a cgroup_file
4095 * @cfile: target cgroup_file
4096 *
4097 * @cfile must have been obtained by setting cftype->file_offset.
4098 */
4099void cgroup_file_notify(struct cgroup_file *cfile)
4100{
4101        unsigned long flags;
4102
4103        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4104        if (cfile->kn) {
4105                unsigned long last = cfile->notified_at;
4106                unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4107
4108                if (time_in_range(jiffies, last, next)) {
4109                        timer_reduce(&cfile->notify_timer, next);
4110                } else {
4111                        kernfs_notify(cfile->kn);
4112                        cfile->notified_at = jiffies;
4113                }
4114        }
4115        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4116}
4117
4118/**
4119 * css_next_child - find the next child of a given css
4120 * @pos: the current position (%NULL to initiate traversal)
4121 * @parent: css whose children to walk
4122 *
4123 * This function returns the next child of @parent and should be called
4124 * under either cgroup_mutex or RCU read lock.  The only requirement is
4125 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4126 * be returned regardless of their states.
4127 *
4128 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4129 * css which finished ->css_online() is guaranteed to be visible in the
4130 * future iterations and will stay visible until the last reference is put.
4131 * A css which hasn't finished ->css_online() or already finished
4132 * ->css_offline() may show up during traversal.  It's each subsystem's
4133 * responsibility to synchronize against on/offlining.
4134 */
4135struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4136                                           struct cgroup_subsys_state *parent)
4137{
4138        struct cgroup_subsys_state *next;
4139
4140        cgroup_assert_mutex_or_rcu_locked();
4141
4142        /*
4143         * @pos could already have been unlinked from the sibling list.
4144         * Once a cgroup is removed, its ->sibling.next is no longer
4145         * updated when its next sibling changes.  CSS_RELEASED is set when
4146         * @pos is taken off list, at which time its next pointer is valid,
4147         * and, as releases are serialized, the one pointed to by the next
4148         * pointer is guaranteed to not have started release yet.  This
4149         * implies that if we observe !CSS_RELEASED on @pos in this RCU
4150         * critical section, the one pointed to by its next pointer is
4151         * guaranteed to not have finished its RCU grace period even if we
4152         * have dropped rcu_read_lock() in-between iterations.
4153         *
4154         * If @pos has CSS_RELEASED set, its next pointer can't be
4155         * dereferenced; however, as each css is given a monotonically
4156         * increasing unique serial number and always appended to the
4157         * sibling list, the next one can be found by walking the parent's
4158         * children until the first css with higher serial number than
4159         * @pos's.  While this path can be slower, it happens iff iteration
4160         * races against release and the race window is very small.
4161         */
4162        if (!pos) {
4163                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4164        } else if (likely(!(pos->flags & CSS_RELEASED))) {
4165                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4166        } else {
4167                list_for_each_entry_rcu(next, &parent->children, sibling,
4168                                        lockdep_is_held(&cgroup_mutex))
4169                        if (next->serial_nr > pos->serial_nr)
4170                                break;
4171        }
4172
4173        /*
4174         * @next, if not pointing to the head, can be dereferenced and is
4175         * the next sibling.
4176         */
4177        if (&next->sibling != &parent->children)
4178                return next;
4179        return NULL;
4180}
4181
4182/**
4183 * css_next_descendant_pre - find the next descendant for pre-order walk
4184 * @pos: the current position (%NULL to initiate traversal)
4185 * @root: css whose descendants to walk
4186 *
4187 * To be used by css_for_each_descendant_pre().  Find the next descendant
4188 * to visit for pre-order traversal of @root's descendants.  @root is
4189 * included in the iteration and the first node to be visited.
4190 *
4191 * While this function requires cgroup_mutex or RCU read locking, it
4192 * doesn't require the whole traversal to be contained in a single critical
4193 * section.  This function will return the correct next descendant as long
4194 * as both @pos and @root are accessible and @pos is a descendant of @root.
4195 *
4196 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4197 * css which finished ->css_online() is guaranteed to be visible in the
4198 * future iterations and will stay visible until the last reference is put.
4199 * A css which hasn't finished ->css_online() or already finished
4200 * ->css_offline() may show up during traversal.  It's each subsystem's
4201 * responsibility to synchronize against on/offlining.
4202 */
4203struct cgroup_subsys_state *
4204css_next_descendant_pre(struct cgroup_subsys_state *pos,
4205                        struct cgroup_subsys_state *root)
4206{
4207        struct cgroup_subsys_state *next;
4208
4209        cgroup_assert_mutex_or_rcu_locked();
4210
4211        /* if first iteration, visit @root */
4212        if (!pos)
4213                return root;
4214
4215        /* visit the first child if exists */
4216        next = css_next_child(NULL, pos);
4217        if (next)
4218                return next;
4219
4220        /* no child, visit my or the closest ancestor's next sibling */
4221        while (pos != root) {
4222                next = css_next_child(pos, pos->parent);
4223                if (next)
4224                        return next;
4225                pos = pos->parent;
4226        }
4227
4228        return NULL;
4229}
4230EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4231
4232/**
4233 * css_rightmost_descendant - return the rightmost descendant of a css
4234 * @pos: css of interest
4235 *
4236 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4237 * is returned.  This can be used during pre-order traversal to skip
4238 * subtree of @pos.
4239 *
4240 * While this function requires cgroup_mutex or RCU read locking, it
4241 * doesn't require the whole traversal to be contained in a single critical
4242 * section.  This function will return the correct rightmost descendant as
4243 * long as @pos is accessible.
4244 */
4245struct cgroup_subsys_state *
4246css_rightmost_descendant(struct cgroup_subsys_state *pos)
4247{
4248        struct cgroup_subsys_state *last, *tmp;
4249
4250        cgroup_assert_mutex_or_rcu_locked();
4251
4252        do {
4253                last = pos;
4254                /* ->prev isn't RCU safe, walk ->next till the end */
4255                pos = NULL;
4256                css_for_each_child(tmp, last)
4257                        pos = tmp;
4258        } while (pos);
4259
4260        return last;
4261}
4262
4263static struct cgroup_subsys_state *
4264css_leftmost_descendant(struct cgroup_subsys_state *pos)
4265{
4266        struct cgroup_subsys_state *last;
4267
4268        do {
4269                last = pos;
4270                pos = css_next_child(NULL, pos);
4271        } while (pos);
4272
4273        return last;
4274}
4275
4276/**
4277 * css_next_descendant_post - find the next descendant for post-order walk
4278 * @pos: the current position (%NULL to initiate traversal)
4279 * @root: css whose descendants to walk
4280 *
4281 * To be used by css_for_each_descendant_post().  Find the next descendant
4282 * to visit for post-order traversal of @root's descendants.  @root is
4283 * included in the iteration and the last node to be visited.
4284 *
4285 * While this function requires cgroup_mutex or RCU read locking, it
4286 * doesn't require the whole traversal to be contained in a single critical
4287 * section.  This function will return the correct next descendant as long
4288 * as both @pos and @cgroup are accessible and @pos is a descendant of
4289 * @cgroup.
4290 *
4291 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4292 * css which finished ->css_online() is guaranteed to be visible in the
4293 * future iterations and will stay visible until the last reference is put.
4294 * A css which hasn't finished ->css_online() or already finished
4295 * ->css_offline() may show up during traversal.  It's each subsystem's
4296 * responsibility to synchronize against on/offlining.
4297 */
4298struct cgroup_subsys_state *
4299css_next_descendant_post(struct cgroup_subsys_state *pos,
4300                         struct cgroup_subsys_state *root)
4301{
4302        struct cgroup_subsys_state *next;
4303
4304        cgroup_assert_mutex_or_rcu_locked();
4305
4306        /* if first iteration, visit leftmost descendant which may be @root */
4307        if (!pos)
4308                return css_leftmost_descendant(root);
4309
4310        /* if we visited @root, we're done */
4311        if (pos == root)
4312                return NULL;
4313
4314        /* if there's an unvisited sibling, visit its leftmost descendant */
4315        next = css_next_child(pos, pos->parent);
4316        if (next)
4317                return css_leftmost_descendant(next);
4318
4319        /* no sibling left, visit parent */
4320        return pos->parent;
4321}
4322
4323/**
4324 * css_has_online_children - does a css have online children
4325 * @css: the target css
4326 *
4327 * Returns %true if @css has any online children; otherwise, %false.  This
4328 * function can be called from any context but the caller is responsible
4329 * for synchronizing against on/offlining as necessary.
4330 */
4331bool css_has_online_children(struct cgroup_subsys_state *css)
4332{
4333        struct cgroup_subsys_state *child;
4334        bool ret = false;
4335
4336        rcu_read_lock();
4337        css_for_each_child(child, css) {
4338                if (child->flags & CSS_ONLINE) {
4339                        ret = true;
4340                        break;
4341                }
4342        }
4343        rcu_read_unlock();
4344        return ret;
4345}
4346
4347static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4348{
4349        struct list_head *l;
4350        struct cgrp_cset_link *link;
4351        struct css_set *cset;
4352
4353        lockdep_assert_held(&css_set_lock);
4354
4355        /* find the next threaded cset */
4356        if (it->tcset_pos) {
4357                l = it->tcset_pos->next;
4358
4359                if (l != it->tcset_head) {
4360                        it->tcset_pos = l;
4361                        return container_of(l, struct css_set,
4362                                            threaded_csets_node);
4363                }
4364
4365                it->tcset_pos = NULL;
4366        }
4367
4368        /* find the next cset */
4369        l = it->cset_pos;
4370        l = l->next;
4371        if (l == it->cset_head) {
4372                it->cset_pos = NULL;
4373                return NULL;
4374        }
4375
4376        if (it->ss) {
4377                cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4378        } else {
4379                link = list_entry(l, struct cgrp_cset_link, cset_link);
4380                cset = link->cset;
4381        }
4382
4383        it->cset_pos = l;
4384
4385        /* initialize threaded css_set walking */
4386        if (it->flags & CSS_TASK_ITER_THREADED) {
4387                if (it->cur_dcset)
4388                        put_css_set_locked(it->cur_dcset);
4389                it->cur_dcset = cset;
4390                get_css_set(cset);
4391
4392                it->tcset_head = &cset->threaded_csets;
4393                it->tcset_pos = &cset->threaded_csets;
4394        }
4395
4396        return cset;
4397}
4398
4399/**
4400 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4401 * @it: the iterator to advance
4402 *
4403 * Advance @it to the next css_set to walk.
4404 */
4405static void css_task_iter_advance_css_set(struct css_task_iter *it)
4406{
4407        struct css_set *cset;
4408
4409        lockdep_assert_held(&css_set_lock);
4410
4411        /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4412        while ((cset = css_task_iter_next_css_set(it))) {
4413                if (!list_empty(&cset->tasks)) {
4414                        it->cur_tasks_head = &cset->tasks;
4415                        break;
4416                } else if (!list_empty(&cset->mg_tasks)) {
4417                        it->cur_tasks_head = &cset->mg_tasks;
4418                        break;
4419                } else if (!list_empty(&cset->dying_tasks)) {
4420                        it->cur_tasks_head = &cset->dying_tasks;
4421                        break;
4422                }
4423        }
4424        if (!cset) {
4425                it->task_pos = NULL;
4426                return;
4427        }
4428        it->task_pos = it->cur_tasks_head->next;
4429
4430        /*
4431         * We don't keep css_sets locked across iteration steps and thus
4432         * need to take steps to ensure that iteration can be resumed after
4433         * the lock is re-acquired.  Iteration is performed at two levels -
4434         * css_sets and tasks in them.
4435         *
4436         * Once created, a css_set never leaves its cgroup lists, so a
4437         * pinned css_set is guaranteed to stay put and we can resume
4438         * iteration afterwards.
4439         *
4440         * Tasks may leave @cset across iteration steps.  This is resolved
4441         * by registering each iterator with the css_set currently being
4442         * walked and making css_set_move_task() advance iterators whose
4443         * next task is leaving.
4444         */
4445        if (it->cur_cset) {
4446                list_del(&it->iters_node);
4447                put_css_set_locked(it->cur_cset);
4448        }
4449        get_css_set(cset);
4450        it->cur_cset = cset;
4451        list_add(&it->iters_node, &cset->task_iters);
4452}
4453
4454static void css_task_iter_skip(struct css_task_iter *it,
4455                               struct task_struct *task)
4456{
4457        lockdep_assert_held(&css_set_lock);
4458
4459        if (it->task_pos == &task->cg_list) {
4460                it->task_pos = it->task_pos->next;
4461                it->flags |= CSS_TASK_ITER_SKIPPED;
4462        }
4463}
4464
4465static void css_task_iter_advance(struct css_task_iter *it)
4466{
4467        struct task_struct *task;
4468
4469        lockdep_assert_held(&css_set_lock);
4470repeat:
4471        if (it->task_pos) {
4472                /*
4473                 * Advance iterator to find next entry. We go through cset
4474                 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4475                 * the next cset.
4476                 */
4477                if (it->flags & CSS_TASK_ITER_SKIPPED)
4478                        it->flags &= ~CSS_TASK_ITER_SKIPPED;
4479                else
4480                        it->task_pos = it->task_pos->next;
4481
4482                if (it->task_pos == &it->cur_cset->tasks) {
4483                        it->cur_tasks_head = &it->cur_cset->mg_tasks;
4484                        it->task_pos = it->cur_tasks_head->next;
4485                }
4486                if (it->task_pos == &it->cur_cset->mg_tasks) {
4487                        it->cur_tasks_head = &it->cur_cset->dying_tasks;
4488                        it->task_pos = it->cur_tasks_head->next;
4489                }
4490                if (it->task_pos == &it->cur_cset->dying_tasks)
4491                        css_task_iter_advance_css_set(it);
4492        } else {
4493                /* called from start, proceed to the first cset */
4494                css_task_iter_advance_css_set(it);
4495        }
4496
4497        if (!it->task_pos)
4498                return;
4499
4500        task = list_entry(it->task_pos, struct task_struct, cg_list);
4501
4502        if (it->flags & CSS_TASK_ITER_PROCS) {
4503                /* if PROCS, skip over tasks which aren't group leaders */
4504                if (!thread_group_leader(task))
4505                        goto repeat;
4506
4507                /* and dying leaders w/o live member threads */
4508                if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4509                    !atomic_read(&task->signal->live))
4510                        goto repeat;
4511        } else {
4512                /* skip all dying ones */
4513                if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4514                        goto repeat;
4515        }
4516}
4517
4518/**
4519 * css_task_iter_start - initiate task iteration
4520 * @css: the css to walk tasks of
4521 * @flags: CSS_TASK_ITER_* flags
4522 * @it: the task iterator to use
4523 *
4524 * Initiate iteration through the tasks of @css.  The caller can call
4525 * css_task_iter_next() to walk through the tasks until the function
4526 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4527 * called.
4528 */
4529void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4530                         struct css_task_iter *it)
4531{
4532        memset(it, 0, sizeof(*it));
4533
4534        spin_lock_irq(&css_set_lock);
4535
4536        it->ss = css->ss;
4537        it->flags = flags;
4538
4539        if (it->ss)
4540                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4541        else
4542                it->cset_pos = &css->cgroup->cset_links;
4543
4544        it->cset_head = it->cset_pos;
4545
4546        css_task_iter_advance(it);
4547
4548        spin_unlock_irq(&css_set_lock);
4549}
4550
4551/**
4552 * css_task_iter_next - return the next task for the iterator
4553 * @it: the task iterator being iterated
4554 *
4555 * The "next" function for task iteration.  @it should have been
4556 * initialized via css_task_iter_start().  Returns NULL when the iteration
4557 * reaches the end.
4558 */
4559struct task_struct *css_task_iter_next(struct css_task_iter *it)
4560{
4561        if (it->cur_task) {
4562                put_task_struct(it->cur_task);
4563                it->cur_task = NULL;
4564        }
4565
4566        spin_lock_irq(&css_set_lock);
4567
4568        /* @it may be half-advanced by skips, finish advancing */
4569        if (it->flags & CSS_TASK_ITER_SKIPPED)
4570                css_task_iter_advance(it);
4571
4572        if (it->task_pos) {
4573                it->cur_task = list_entry(it->task_pos, struct task_struct,
4574                                          cg_list);
4575                get_task_struct(it->cur_task);
4576                css_task_iter_advance(it);
4577        }
4578
4579        spin_unlock_irq(&css_set_lock);
4580
4581        return it->cur_task;
4582}
4583
4584/**
4585 * css_task_iter_end - finish task iteration
4586 * @it: the task iterator to finish
4587 *
4588 * Finish task iteration started by css_task_iter_start().
4589 */
4590void css_task_iter_end(struct css_task_iter *it)
4591{
4592        if (it->cur_cset) {
4593                spin_lock_irq(&css_set_lock);
4594                list_del(&it->iters_node);
4595                put_css_set_locked(it->cur_cset);
4596                spin_unlock_irq(&css_set_lock);
4597        }
4598
4599        if (it->cur_dcset)
4600                put_css_set(it->cur_dcset);
4601
4602        if (it->cur_task)
4603                put_task_struct(it->cur_task);
4604}
4605
4606static void cgroup_procs_release(struct kernfs_open_file *of)
4607{
4608        if (of->priv) {
4609                css_task_iter_end(of->priv);
4610                kfree(of->priv);
4611        }
4612}
4613
4614static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4615{
4616        struct kernfs_open_file *of = s->private;
4617        struct css_task_iter *it = of->priv;
4618
4619        if (pos)
4620                (*pos)++;
4621
4622        return css_task_iter_next(it);
4623}
4624
4625static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4626                                  unsigned int iter_flags)
4627{
4628        struct kernfs_open_file *of = s->private;
4629        struct cgroup *cgrp = seq_css(s)->cgroup;
4630        struct css_task_iter *it = of->priv;
4631
4632        /*
4633         * When a seq_file is seeked, it's always traversed sequentially
4634         * from position 0, so we can simply keep iterating on !0 *pos.
4635         */
4636        if (!it) {
4637                if (WARN_ON_ONCE((*pos)))
4638                        return ERR_PTR(-EINVAL);
4639
4640                it = kzalloc(sizeof(*it), GFP_KERNEL);
4641                if (!it)
4642                        return ERR_PTR(-ENOMEM);
4643                of->priv = it;
4644                css_task_iter_start(&cgrp->self, iter_flags, it);
4645        } else if (!(*pos)) {
4646                css_task_iter_end(it);
4647                css_task_iter_start(&cgrp->self, iter_flags, it);
4648        } else
4649                return it->cur_task;
4650
4651        return cgroup_procs_next(s, NULL, NULL);
4652}
4653
4654static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4655{
4656        struct cgroup *cgrp = seq_css(s)->cgroup;
4657
4658        /*
4659         * All processes of a threaded subtree belong to the domain cgroup
4660         * of the subtree.  Only threads can be distributed across the
4661         * subtree.  Reject reads on cgroup.procs in the subtree proper.
4662         * They're always empty anyway.
4663         */
4664        if (cgroup_is_threaded(cgrp))
4665                return ERR_PTR(-EOPNOTSUPP);
4666
4667        return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4668                                            CSS_TASK_ITER_THREADED);
4669}
4670
4671static int cgroup_procs_show(struct seq_file *s, void *v)
4672{
4673        seq_printf(s, "%d\n", task_pid_vnr(v));
4674        return 0;
4675}
4676
4677static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4678{
4679        int ret;
4680        struct inode *inode;
4681
4682        lockdep_assert_held(&cgroup_mutex);
4683
4684        inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4685        if (!inode)
4686                return -ENOMEM;
4687
4688        ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4689        iput(inode);
4690        return ret;
4691}
4692
4693static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4694                                         struct cgroup *dst_cgrp,
4695                                         struct super_block *sb)
4696{
4697        struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4698        struct cgroup *com_cgrp = src_cgrp;
4699        int ret;
4700
4701        lockdep_assert_held(&cgroup_mutex);
4702
4703        /* find the common ancestor */
4704        while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4705                com_cgrp = cgroup_parent(com_cgrp);
4706
4707        /* %current should be authorized to migrate to the common ancestor */
4708        ret = cgroup_may_write(com_cgrp, sb);
4709        if (ret)
4710                return ret;
4711
4712        /*
4713         * If namespaces are delegation boundaries, %current must be able
4714         * to see both source and destination cgroups from its namespace.
4715         */
4716        if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4717            (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4718             !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4719                return -ENOENT;
4720
4721        return 0;
4722}
4723
4724static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4725                                     struct cgroup *dst_cgrp,
4726                                     struct super_block *sb, bool threadgroup)
4727{
4728        int ret = 0;
4729
4730        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4731        if (ret)
4732                return ret;
4733
4734        ret = cgroup_migrate_vet_dst(dst_cgrp);
4735        if (ret)
4736                return ret;
4737
4738        if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4739                ret = -EOPNOTSUPP;
4740
4741        return ret;
4742}
4743
4744static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4745                                    bool threadgroup)
4746{
4747        struct cgroup *src_cgrp, *dst_cgrp;
4748        struct task_struct *task;
4749        ssize_t ret;
4750        bool locked;
4751
4752        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4753        if (!dst_cgrp)
4754                return -ENODEV;
4755
4756        task = cgroup_procs_write_start(buf, threadgroup, &locked);
4757        ret = PTR_ERR_OR_ZERO(task);
4758        if (ret)
4759                goto out_unlock;
4760
4761        /* find the source cgroup */
4762        spin_lock_irq(&css_set_lock);
4763        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4764        spin_unlock_irq(&css_set_lock);
4765
4766        /* process and thread migrations follow same delegation rule */
4767        ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4768                                        of->file->f_path.dentry->d_sb, threadgroup);
4769        if (ret)
4770                goto out_finish;
4771
4772        ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4773
4774out_finish:
4775        cgroup_procs_write_finish(task, locked);
4776out_unlock:
4777        cgroup_kn_unlock(of->kn);
4778
4779        return ret;
4780}
4781
4782static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4783                                  char *buf, size_t nbytes, loff_t off)
4784{
4785        return __cgroup_procs_write(of, buf, true) ?: nbytes;
4786}
4787
4788static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4789{
4790        return __cgroup_procs_start(s, pos, 0);
4791}
4792
4793static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4794                                    char *buf, size_t nbytes, loff_t off)
4795{
4796        return __cgroup_procs_write(of, buf, false) ?: nbytes;
4797}
4798
4799/* cgroup core interface files for the default hierarchy */
4800static struct cftype cgroup_base_files[] = {
4801        {
4802                .name = "cgroup.type",
4803                .flags = CFTYPE_NOT_ON_ROOT,
4804                .seq_show = cgroup_type_show,
4805                .write = cgroup_type_write,
4806        },
4807        {
4808                .name = "cgroup.procs",
4809                .flags = CFTYPE_NS_DELEGATABLE,
4810                .file_offset = offsetof(struct cgroup, procs_file),
4811                .release = cgroup_procs_release,
4812                .seq_start = cgroup_procs_start,
4813                .seq_next = cgroup_procs_next,
4814                .seq_show = cgroup_procs_show,
4815                .write = cgroup_procs_write,
4816        },
4817        {
4818                .name = "cgroup.threads",
4819                .flags = CFTYPE_NS_DELEGATABLE,
4820                .release = cgroup_procs_release,
4821                .seq_start = cgroup_threads_start,
4822                .seq_next = cgroup_procs_next,
4823                .seq_show = cgroup_procs_show,
4824                .write = cgroup_threads_write,
4825        },
4826        {
4827                .name = "cgroup.controllers",
4828                .seq_show = cgroup_controllers_show,
4829        },
4830        {
4831                .name = "cgroup.subtree_control",
4832                .flags = CFTYPE_NS_DELEGATABLE,
4833                .seq_show = cgroup_subtree_control_show,
4834                .write = cgroup_subtree_control_write,
4835        },
4836        {
4837                .name = "cgroup.events",
4838                .flags = CFTYPE_NOT_ON_ROOT,
4839                .file_offset = offsetof(struct cgroup, events_file),
4840                .seq_show = cgroup_events_show,
4841        },
4842        {
4843                .name = "cgroup.max.descendants",
4844                .seq_show = cgroup_max_descendants_show,
4845                .write = cgroup_max_descendants_write,
4846        },
4847        {
4848                .name = "cgroup.max.depth",
4849                .seq_show = cgroup_max_depth_show,
4850                .write = cgroup_max_depth_write,
4851        },
4852        {
4853                .name = "cgroup.stat",
4854                .seq_show = cgroup_stat_show,
4855        },
4856        {
4857                .name = "cgroup.freeze",
4858                .flags = CFTYPE_NOT_ON_ROOT,
4859                .seq_show = cgroup_freeze_show,
4860                .write = cgroup_freeze_write,
4861        },
4862        {
4863                .name = "cpu.stat",
4864                .seq_show = cpu_stat_show,
4865        },
4866#ifdef CONFIG_PSI
4867        {
4868                .name = "io.pressure",
4869                .seq_show = cgroup_io_pressure_show,
4870                .write = cgroup_io_pressure_write,
4871                .poll = cgroup_pressure_poll,
4872                .release = cgroup_pressure_release,
4873        },
4874        {
4875                .name = "memory.pressure",
4876                .seq_show = cgroup_memory_pressure_show,
4877                .write = cgroup_memory_pressure_write,
4878                .poll = cgroup_pressure_poll,
4879                .release = cgroup_pressure_release,
4880        },
4881        {
4882                .name = "cpu.pressure",
4883                .seq_show = cgroup_cpu_pressure_show,
4884                .write = cgroup_cpu_pressure_write,
4885                .poll = cgroup_pressure_poll,
4886                .release = cgroup_pressure_release,
4887        },
4888#endif /* CONFIG_PSI */
4889        { }     /* terminate */
4890};
4891
4892/*
4893 * css destruction is four-stage process.
4894 *
4895 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4896 *    Implemented in kill_css().
4897 *
4898 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4899 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4900 *    offlined by invoking offline_css().  After offlining, the base ref is
4901 *    put.  Implemented in css_killed_work_fn().
4902 *
4903 * 3. When the percpu_ref reaches zero, the only possible remaining
4904 *    accessors are inside RCU read sections.  css_release() schedules the
4905 *    RCU callback.
4906 *
4907 * 4. After the grace period, the css can be freed.  Implemented in
4908 *    css_free_work_fn().
4909 *
4910 * It is actually hairier because both step 2 and 4 require process context
4911 * and thus involve punting to css->destroy_work adding two additional
4912 * steps to the already complex sequence.
4913 */
4914static void css_free_rwork_fn(struct work_struct *work)
4915{
4916        struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4917                                struct cgroup_subsys_state, destroy_rwork);
4918        struct cgroup_subsys *ss = css->ss;
4919        struct cgroup *cgrp = css->cgroup;
4920
4921        percpu_ref_exit(&css->refcnt);
4922
4923        if (ss) {
4924                /* css free path */
4925                struct cgroup_subsys_state *parent = css->parent;
4926                int id = css->id;
4927
4928                ss->css_free(css);
4929                cgroup_idr_remove(&ss->css_idr, id);
4930                cgroup_put(cgrp);
4931
4932                if (parent)
4933                        css_put(parent);
4934        } else {
4935                /* cgroup free path */
4936                atomic_dec(&cgrp->root->nr_cgrps);
4937                cgroup1_pidlist_destroy_all(cgrp);
4938                cancel_work_sync(&cgrp->release_agent_work);
4939
4940                if (cgroup_parent(cgrp)) {
4941                        /*
4942                         * We get a ref to the parent, and put the ref when
4943                         * this cgroup is being freed, so it's guaranteed
4944                         * that the parent won't be destroyed before its
4945                         * children.
4946                         */
4947                        cgroup_put(cgroup_parent(cgrp));
4948                        kernfs_put(cgrp->kn);
4949                        psi_cgroup_free(cgrp);
4950                        cgroup_rstat_exit(cgrp);
4951                        kfree(cgrp);
4952                } else {
4953                        /*
4954                         * This is root cgroup's refcnt reaching zero,
4955                         * which indicates that the root should be
4956                         * released.
4957                         */
4958                        cgroup_destroy_root(cgrp->root);
4959                }
4960        }
4961}
4962
4963static void css_release_work_fn(struct work_struct *work)
4964{
4965        struct cgroup_subsys_state *css =
4966                container_of(work, struct cgroup_subsys_state, destroy_work);
4967        struct cgroup_subsys *ss = css->ss;
4968        struct cgroup *cgrp = css->cgroup;
4969
4970        mutex_lock(&cgroup_mutex);
4971
4972        css->flags |= CSS_RELEASED;
4973        list_del_rcu(&css->sibling);
4974
4975        if (ss) {
4976                /* css release path */
4977                if (!list_empty(&css->rstat_css_node)) {
4978                        cgroup_rstat_flush(cgrp);
4979                        list_del_rcu(&css->rstat_css_node);
4980                }
4981
4982                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4983                if (ss->css_released)
4984                        ss->css_released(css);
4985        } else {
4986                struct cgroup *tcgrp;
4987
4988                /* cgroup release path */
4989                TRACE_CGROUP_PATH(release, cgrp);
4990
4991                cgroup_rstat_flush(cgrp);
4992
4993                spin_lock_irq(&css_set_lock);
4994                for (tcgrp = cgroup_parent(cgrp); tcgrp;
4995                     tcgrp = cgroup_parent(tcgrp))
4996                        tcgrp->nr_dying_descendants--;
4997                spin_unlock_irq(&css_set_lock);
4998
4999                /*
5000                 * There are two control paths which try to determine
5001                 * cgroup from dentry without going through kernfs -
5002                 * cgroupstats_build() and css_tryget_online_from_dir().
5003                 * Those are supported by RCU protecting clearing of
5004                 * cgrp->kn->priv backpointer.
5005                 */
5006                if (cgrp->kn)
5007                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5008                                         NULL);
5009        }
5010
5011        mutex_unlock(&cgroup_mutex);
5012
5013        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5014        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5015}
5016
5017static void css_release(struct percpu_ref *ref)
5018{
5019        struct cgroup_subsys_state *css =
5020                container_of(ref, struct cgroup_subsys_state, refcnt);
5021
5022        INIT_WORK(&css->destroy_work, css_release_work_fn);
5023        queue_work(cgroup_destroy_wq, &css->destroy_work);
5024}
5025
5026static void init_and_link_css(struct cgroup_subsys_state *css,
5027                              struct cgroup_subsys *ss, struct cgroup *cgrp)
5028{
5029        lockdep_assert_held(&cgroup_mutex);
5030
5031        cgroup_get_live(cgrp);
5032
5033        memset(css, 0, sizeof(*css));
5034        css->cgroup = cgrp;
5035        css->ss = ss;
5036        css->id = -1;
5037        INIT_LIST_HEAD(&css->sibling);
5038        INIT_LIST_HEAD(&css->children);
5039        INIT_LIST_HEAD(&css->rstat_css_node);
5040        css->serial_nr = css_serial_nr_next++;
5041        atomic_set(&css->online_cnt, 0);
5042
5043        if (cgroup_parent(cgrp)) {
5044                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5045                css_get(css->parent);
5046        }
5047
5048        if (ss->css_rstat_flush)
5049                list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5050
5051        BUG_ON(cgroup_css(cgrp, ss));
5052}
5053
5054/* invoke ->css_online() on a new CSS and mark it online if successful */
5055static int online_css(struct cgroup_subsys_state *css)
5056{
5057        struct cgroup_subsys *ss = css->ss;
5058        int ret = 0;
5059
5060        lockdep_assert_held(&cgroup_mutex);
5061
5062        if (ss->css_online)
5063                ret = ss->css_online(css);
5064        if (!ret) {
5065                css->flags |= CSS_ONLINE;
5066                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5067
5068                atomic_inc(&css->online_cnt);
5069                if (css->parent)
5070                        atomic_inc(&css->parent->online_cnt);
5071        }
5072        return ret;
5073}
5074
5075/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5076static void offline_css(struct cgroup_subsys_state *css)
5077{
5078        struct cgroup_subsys *ss = css->ss;
5079
5080        lockdep_assert_held(&cgroup_mutex);
5081
5082        if (!(css->flags & CSS_ONLINE))
5083                return;
5084
5085        if (ss->css_offline)
5086                ss->css_offline(css);
5087
5088        css->flags &= ~CSS_ONLINE;
5089        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5090
5091        wake_up_all(&css->cgroup->offline_waitq);
5092}
5093
5094/**
5095 * css_create - create a cgroup_subsys_state
5096 * @cgrp: the cgroup new css will be associated with
5097 * @ss: the subsys of new css
5098 *
5099 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5100 * css is online and installed in @cgrp.  This function doesn't create the
5101 * interface files.  Returns 0 on success, -errno on failure.
5102 */
5103static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5104                                              struct cgroup_subsys *ss)
5105{
5106        struct cgroup *parent = cgroup_parent(cgrp);
5107        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5108        struct cgroup_subsys_state *css;
5109        int err;
5110
5111        lockdep_assert_held(&cgroup_mutex);
5112
5113        css = ss->css_alloc(parent_css);
5114        if (!css)
5115                css = ERR_PTR(-ENOMEM);
5116        if (IS_ERR(css))
5117                return css;
5118
5119        init_and_link_css(css, ss, cgrp);
5120
5121        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5122        if (err)
5123                goto err_free_css;
5124
5125        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5126        if (err < 0)
5127                goto err_free_css;
5128        css->id = err;
5129
5130        /* @css is ready to be brought online now, make it visible */
5131        list_add_tail_rcu(&css->sibling, &parent_css->children);
5132        cgroup_idr_replace(&ss->css_idr, css, css->id);
5133
5134        err = online_css(css);
5135        if (err)
5136                goto err_list_del;
5137
5138        return css;
5139
5140err_list_del:
5141        list_del_rcu(&css->sibling);
5142err_free_css:
5143        list_del_rcu(&css->rstat_css_node);
5144        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5145        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5146        return ERR_PTR(err);
5147}
5148
5149/*
5150 * The returned cgroup is fully initialized including its control mask, but
5151 * it isn't associated with its kernfs_node and doesn't have the control
5152 * mask applied.
5153 */
5154static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5155                                    umode_t mode)
5156{
5157        struct cgroup_root *root = parent->root;
5158        struct cgroup *cgrp, *tcgrp;
5159        struct kernfs_node *kn;
5160        int level = parent->level + 1;
5161        int ret;
5162
5163        /* allocate the cgroup and its ID, 0 is reserved for the root */
5164        cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5165                       GFP_KERNEL);
5166        if (!cgrp)
5167                return ERR_PTR(-ENOMEM);
5168
5169        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5170        if (ret)
5171                goto out_free_cgrp;
5172
5173        ret = cgroup_rstat_init(cgrp);
5174        if (ret)
5175                goto out_cancel_ref;
5176
5177        /* create the directory */
5178        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5179        if (IS_ERR(kn)) {
5180                ret = PTR_ERR(kn);
5181                goto out_stat_exit;
5182        }
5183        cgrp->kn = kn;
5184
5185        init_cgroup_housekeeping(cgrp);
5186
5187        cgrp->self.parent = &parent->self;
5188        cgrp->root = root;
5189        cgrp->level = level;
5190
5191        ret = psi_cgroup_alloc(cgrp);
5192        if (ret)
5193                goto out_kernfs_remove;
5194
5195        ret = cgroup_bpf_inherit(cgrp);
5196        if (ret)
5197                goto out_psi_free;
5198
5199        /*
5200         * New cgroup inherits effective freeze counter, and
5201         * if the parent has to be frozen, the child has too.
5202         */
5203        cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5204        if (cgrp->freezer.e_freeze) {
5205                /*
5206                 * Set the CGRP_FREEZE flag, so when a process will be
5207                 * attached to the child cgroup, it will become frozen.
5208                 * At this point the new cgroup is unpopulated, so we can
5209                 * consider it frozen immediately.
5210                 */
5211                set_bit(CGRP_FREEZE, &cgrp->flags);
5212                set_bit(CGRP_FROZEN, &cgrp->flags);
5213        }
5214
5215        spin_lock_irq(&css_set_lock);
5216        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5217                cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5218
5219                if (tcgrp != cgrp) {
5220                        tcgrp->nr_descendants++;
5221
5222                        /*
5223                         * If the new cgroup is frozen, all ancestor cgroups
5224                         * get a new frozen descendant, but their state can't
5225                         * change because of this.
5226                         */
5227                        if (cgrp->freezer.e_freeze)
5228                                tcgrp->freezer.nr_frozen_descendants++;
5229                }
5230        }
5231        spin_unlock_irq(&css_set_lock);
5232
5233        if (notify_on_release(parent))
5234                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5235
5236        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5237                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5238
5239        cgrp->self.serial_nr = css_serial_nr_next++;
5240
5241        /* allocation complete, commit to creation */
5242        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5243        atomic_inc(&root->nr_cgrps);
5244        cgroup_get_live(parent);
5245
5246        /*
5247         * On the default hierarchy, a child doesn't automatically inherit
5248         * subtree_control from the parent.  Each is configured manually.
5249         */
5250        if (!cgroup_on_dfl(cgrp))
5251                cgrp->subtree_control = cgroup_control(cgrp);
5252
5253        cgroup_propagate_control(cgrp);
5254
5255        return cgrp;
5256
5257out_psi_free:
5258        psi_cgroup_free(cgrp);
5259out_kernfs_remove:
5260        kernfs_remove(cgrp->kn);
5261out_stat_exit:
5262        cgroup_rstat_exit(cgrp);
5263out_cancel_ref:
5264        percpu_ref_exit(&cgrp->self.refcnt);
5265out_free_cgrp:
5266        kfree(cgrp);
5267        return ERR_PTR(ret);
5268}
5269
5270static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5271{
5272        struct cgroup *cgroup;
5273        int ret = false;
5274        int level = 1;
5275
5276        lockdep_assert_held(&cgroup_mutex);
5277
5278        for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5279                if (cgroup->nr_descendants >= cgroup->max_descendants)
5280                        goto fail;
5281
5282                if (level > cgroup->max_depth)
5283                        goto fail;
5284
5285                level++;
5286        }
5287
5288        ret = true;
5289fail:
5290        return ret;
5291}
5292
5293int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5294{
5295        struct cgroup *parent, *cgrp;
5296        int ret;
5297
5298        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5299        if (strchr(name, '\n'))
5300                return -EINVAL;
5301
5302        parent = cgroup_kn_lock_live(parent_kn, false);
5303        if (!parent)
5304                return -ENODEV;
5305
5306        if (!cgroup_check_hierarchy_limits(parent)) {
5307                ret = -EAGAIN;
5308                goto out_unlock;
5309        }
5310
5311        cgrp = cgroup_create(parent, name, mode);
5312        if (IS_ERR(cgrp)) {
5313                ret = PTR_ERR(cgrp);
5314                goto out_unlock;
5315        }
5316
5317        /*
5318         * This extra ref will be put in cgroup_free_fn() and guarantees
5319         * that @cgrp->kn is always accessible.
5320         */
5321        kernfs_get(cgrp->kn);
5322
5323        ret = cgroup_kn_set_ugid(cgrp->kn);
5324        if (ret)
5325                goto out_destroy;
5326
5327        ret = css_populate_dir(&cgrp->self);
5328        if (ret)
5329                goto out_destroy;
5330
5331        ret = cgroup_apply_control_enable(cgrp);
5332        if (ret)
5333                goto out_destroy;
5334
5335        TRACE_CGROUP_PATH(mkdir, cgrp);
5336
5337        /* let's create and online css's */
5338        kernfs_activate(cgrp->kn);
5339
5340        ret = 0;
5341        goto out_unlock;
5342
5343out_destroy:
5344        cgroup_destroy_locked(cgrp);
5345out_unlock:
5346        cgroup_kn_unlock(parent_kn);
5347        return ret;
5348}
5349
5350/*
5351 * This is called when the refcnt of a css is confirmed to be killed.
5352 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5353 * initiate destruction and put the css ref from kill_css().
5354 */
5355static void css_killed_work_fn(struct work_struct *work)
5356{
5357        struct cgroup_subsys_state *css =
5358                container_of(work, struct cgroup_subsys_state, destroy_work);
5359
5360        mutex_lock(&cgroup_mutex);
5361
5362        do {
5363                offline_css(css);
5364                css_put(css);
5365                /* @css can't go away while we're holding cgroup_mutex */
5366                css = css->parent;
5367        } while (css && atomic_dec_and_test(&css->online_cnt));
5368
5369        mutex_unlock(&cgroup_mutex);
5370}
5371
5372/* css kill confirmation processing requires process context, bounce */
5373static void css_killed_ref_fn(struct percpu_ref *ref)
5374{
5375        struct cgroup_subsys_state *css =
5376                container_of(ref, struct cgroup_subsys_state, refcnt);
5377
5378        if (atomic_dec_and_test(&css->online_cnt)) {
5379                INIT_WORK(&css->destroy_work, css_killed_work_fn);
5380                queue_work(cgroup_destroy_wq, &css->destroy_work);
5381        }
5382}
5383
5384/**
5385 * kill_css - destroy a css
5386 * @css: css to destroy
5387 *
5388 * This function initiates destruction of @css by removing cgroup interface
5389 * files and putting its base reference.  ->css_offline() will be invoked
5390 * asynchronously once css_tryget_online() is guaranteed to fail and when
5391 * the reference count reaches zero, @css will be released.
5392 */
5393static void kill_css(struct cgroup_subsys_state *css)
5394{
5395        lockdep_assert_held(&cgroup_mutex);
5396
5397        if (css->flags & CSS_DYING)
5398                return;
5399
5400        css->flags |= CSS_DYING;
5401
5402        /*
5403         * This must happen before css is disassociated with its cgroup.
5404         * See seq_css() for details.
5405         */
5406        css_clear_dir(css);
5407
5408        /*
5409         * Killing would put the base ref, but we need to keep it alive
5410         * until after ->css_offline().
5411         */
5412        css_get(css);
5413
5414        /*
5415         * cgroup core guarantees that, by the time ->css_offline() is
5416         * invoked, no new css reference will be given out via
5417         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5418         * proceed to offlining css's because percpu_ref_kill() doesn't
5419         * guarantee that the ref is seen as killed on all CPUs on return.
5420         *
5421         * Use percpu_ref_kill_and_confirm() to get notifications as each
5422         * css is confirmed to be seen as killed on all CPUs.
5423         */
5424        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5425}
5426
5427/**
5428 * cgroup_destroy_locked - the first stage of cgroup destruction
5429 * @cgrp: cgroup to be destroyed
5430 *
5431 * css's make use of percpu refcnts whose killing latency shouldn't be
5432 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5433 * guarantee that css_tryget_online() won't succeed by the time
5434 * ->css_offline() is invoked.  To satisfy all the requirements,
5435 * destruction is implemented in the following two steps.
5436 *
5437 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5438 *     userland visible parts and start killing the percpu refcnts of
5439 *     css's.  Set up so that the next stage will be kicked off once all
5440 *     the percpu refcnts are confirmed to be killed.
5441 *
5442 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5443 *     rest of destruction.  Once all cgroup references are gone, the
5444 *     cgroup is RCU-freed.
5445 *
5446 * This function implements s1.  After this step, @cgrp is gone as far as
5447 * the userland is concerned and a new cgroup with the same name may be
5448 * created.  As cgroup doesn't care about the names internally, this
5449 * doesn't cause any problem.
5450 */
5451static int cgroup_destroy_locked(struct cgroup *cgrp)
5452        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5453{
5454        struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5455        struct cgroup_subsys_state *css;
5456        struct cgrp_cset_link *link;
5457        int ssid;
5458
5459        lockdep_assert_held(&cgroup_mutex);
5460
5461        /*
5462         * Only migration can raise populated from zero and we're already
5463         * holding cgroup_mutex.
5464         */
5465        if (cgroup_is_populated(cgrp))
5466                return -EBUSY;
5467
5468        /*
5469         * Make sure there's no live children.  We can't test emptiness of
5470         * ->self.children as dead children linger on it while being
5471         * drained; otherwise, "rmdir parent/child parent" may fail.
5472         */
5473        if (css_has_online_children(&cgrp->self))
5474                return -EBUSY;
5475
5476        /*
5477         * Mark @cgrp and the associated csets dead.  The former prevents
5478         * further task migration and child creation by disabling
5479         * cgroup_lock_live_group().  The latter makes the csets ignored by
5480         * the migration path.
5481         */
5482        cgrp->self.flags &= ~CSS_ONLINE;
5483
5484        spin_lock_irq(&css_set_lock);
5485        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5486                link->cset->dead = true;
5487        spin_unlock_irq(&css_set_lock);
5488
5489        /* initiate massacre of all css's */
5490        for_each_css(css, ssid, cgrp)
5491                kill_css(css);
5492
5493        /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5494        css_clear_dir(&cgrp->self);
5495        kernfs_remove(cgrp->kn);
5496
5497        if (parent && cgroup_is_threaded(cgrp))
5498                parent->nr_threaded_children--;
5499
5500        spin_lock_irq(&css_set_lock);
5501        for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5502                tcgrp->nr_descendants--;
5503                tcgrp->nr_dying_descendants++;
5504                /*
5505                 * If the dying cgroup is frozen, decrease frozen descendants
5506                 * counters of ancestor cgroups.
5507                 */
5508                if (test_bit(CGRP_FROZEN, &cgrp->flags))
5509                        tcgrp->freezer.nr_frozen_descendants--;
5510        }
5511        spin_unlock_irq(&css_set_lock);
5512
5513        cgroup1_check_for_release(parent);
5514
5515        cgroup_bpf_offline(cgrp);
5516
5517        /* put the base reference */
5518        percpu_ref_kill(&cgrp->self.refcnt);
5519
5520        return 0;
5521};
5522
5523int cgroup_rmdir(struct kernfs_node *kn)
5524{
5525        struct cgroup *cgrp;
5526        int ret = 0;
5527
5528        cgrp = cgroup_kn_lock_live(kn, false);
5529        if (!cgrp)
5530                return 0;
5531
5532        ret = cgroup_destroy_locked(cgrp);
5533        if (!ret)
5534                TRACE_CGROUP_PATH(rmdir, cgrp);
5535
5536        cgroup_kn_unlock(kn);
5537        return ret;
5538}
5539
5540static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5541        .show_options           = cgroup_show_options,
5542        .mkdir                  = cgroup_mkdir,
5543        .rmdir                  = cgroup_rmdir,
5544        .show_path              = cgroup_show_path,
5545};
5546
5547static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5548{
5549        struct cgroup_subsys_state *css;
5550
5551        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5552
5553        mutex_lock(&cgroup_mutex);
5554
5555        idr_init(&ss->css_idr);
5556        INIT_LIST_HEAD(&ss->cfts);
5557
5558        /* Create the root cgroup state for this subsystem */
5559        ss->root = &cgrp_dfl_root;
5560        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5561        /* We don't handle early failures gracefully */
5562        BUG_ON(IS_ERR(css));
5563        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5564
5565        /*
5566         * Root csses are never destroyed and we can't initialize
5567         * percpu_ref during early init.  Disable refcnting.
5568         */
5569        css->flags |= CSS_NO_REF;
5570
5571        if (early) {
5572                /* allocation can't be done safely during early init */
5573                css->id = 1;
5574        } else {
5575                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5576                BUG_ON(css->id < 0);
5577        }
5578
5579        /* Update the init_css_set to contain a subsys
5580         * pointer to this state - since the subsystem is
5581         * newly registered, all tasks and hence the
5582         * init_css_set is in the subsystem's root cgroup. */
5583        init_css_set.subsys[ss->id] = css;
5584
5585        have_fork_callback |= (bool)ss->fork << ss->id;
5586        have_exit_callback |= (bool)ss->exit << ss->id;
5587        have_release_callback |= (bool)ss->release << ss->id;
5588        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5589
5590        /* At system boot, before all subsystems have been
5591         * registered, no tasks have been forked, so we don't
5592         * need to invoke fork callbacks here. */
5593        BUG_ON(!list_empty(&init_task.tasks));
5594
5595        BUG_ON(online_css(css));
5596
5597        mutex_unlock(&cgroup_mutex);
5598}
5599
5600/**
5601 * cgroup_init_early - cgroup initialization at system boot
5602 *
5603 * Initialize cgroups at system boot, and initialize any
5604 * subsystems that request early init.
5605 */
5606int __init cgroup_init_early(void)
5607{
5608        static struct cgroup_fs_context __initdata ctx;
5609        struct cgroup_subsys *ss;
5610        int i;
5611
5612        ctx.root = &cgrp_dfl_root;
5613        init_cgroup_root(&ctx);
5614        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5615
5616        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5617
5618        for_each_subsys(ss, i) {
5619                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5620                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5621                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5622                     ss->id, ss->name);
5623                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5624                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5625
5626                ss->id = i;
5627                ss->name = cgroup_subsys_name[i];
5628                if (!ss->legacy_name)
5629                        ss->legacy_name = cgroup_subsys_name[i];
5630
5631                if (ss->early_init)
5632                        cgroup_init_subsys(ss, true);
5633        }
5634        return 0;
5635}
5636
5637/**
5638 * cgroup_init - cgroup initialization
5639 *
5640 * Register cgroup filesystem and /proc file, and initialize
5641 * any subsystems that didn't request early init.
5642 */
5643int __init cgroup_init(void)
5644{
5645        struct cgroup_subsys *ss;
5646        int ssid;
5647
5648        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5649        BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5650        BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5651
5652        cgroup_rstat_boot();
5653
5654        /*
5655         * The latency of the synchronize_rcu() is too high for cgroups,
5656         * avoid it at the cost of forcing all readers into the slow path.
5657         */
5658        rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5659
5660        get_user_ns(init_cgroup_ns.user_ns);
5661
5662        mutex_lock(&cgroup_mutex);
5663
5664        /*
5665         * Add init_css_set to the hash table so that dfl_root can link to
5666         * it during init.
5667         */
5668        hash_add(css_set_table, &init_css_set.hlist,
5669                 css_set_hash(init_css_set.subsys));
5670
5671        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5672
5673        mutex_unlock(&cgroup_mutex);
5674
5675        for_each_subsys(ss, ssid) {
5676                if (ss->early_init) {
5677                        struct cgroup_subsys_state *css =
5678                                init_css_set.subsys[ss->id];
5679
5680                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5681                                                   GFP_KERNEL);
5682                        BUG_ON(css->id < 0);
5683                } else {
5684                        cgroup_init_subsys(ss, false);
5685                }
5686
5687                list_add_tail(&init_css_set.e_cset_node[ssid],
5688                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5689
5690                /*
5691                 * Setting dfl_root subsys_mask needs to consider the
5692                 * disabled flag and cftype registration needs kmalloc,
5693                 * both of which aren't available during early_init.
5694                 */
5695                if (!cgroup_ssid_enabled(ssid))
5696                        continue;
5697
5698                if (cgroup1_ssid_disabled(ssid))
5699                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5700                               ss->name);
5701
5702                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5703
5704                /* implicit controllers must be threaded too */
5705                WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5706
5707                if (ss->implicit_on_dfl)
5708                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5709                else if (!ss->dfl_cftypes)
5710                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5711
5712                if (ss->threaded)
5713                        cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5714
5715                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5716                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5717                } else {
5718                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5719                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5720                }
5721
5722                if (ss->bind)
5723                        ss->bind(init_css_set.subsys[ssid]);
5724
5725                mutex_lock(&cgroup_mutex);
5726                css_populate_dir(init_css_set.subsys[ssid]);
5727                mutex_unlock(&cgroup_mutex);
5728        }
5729
5730        /* init_css_set.subsys[] has been updated, re-hash */
5731        hash_del(&init_css_set.hlist);
5732        hash_add(css_set_table, &init_css_set.hlist,
5733                 css_set_hash(init_css_set.subsys));
5734
5735        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5736        WARN_ON(register_filesystem(&cgroup_fs_type));
5737        WARN_ON(register_filesystem(&cgroup2_fs_type));
5738        WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5739#ifdef CONFIG_CPUSETS
5740        WARN_ON(register_filesystem(&cpuset_fs_type));
5741#endif
5742
5743        return 0;
5744}
5745
5746static int __init cgroup_wq_init(void)
5747{
5748        /*
5749         * There isn't much point in executing destruction path in
5750         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5751         * Use 1 for @max_active.
5752         *
5753         * We would prefer to do this in cgroup_init() above, but that
5754         * is called before init_workqueues(): so leave this until after.
5755         */
5756        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5757        BUG_ON(!cgroup_destroy_wq);
5758        return 0;
5759}
5760core_initcall(cgroup_wq_init);
5761
5762void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5763{
5764        struct kernfs_node *kn;
5765
5766        kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5767        if (!kn)
5768                return;
5769        kernfs_path(kn, buf, buflen);
5770        kernfs_put(kn);
5771}
5772
5773/*
5774 * proc_cgroup_show()
5775 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5776 *  - Used for /proc/<pid>/cgroup.
5777 */
5778int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5779                     struct pid *pid, struct task_struct *tsk)
5780{
5781        char *buf;
5782        int retval;
5783        struct cgroup_root *root;
5784
5785        retval = -ENOMEM;
5786        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5787        if (!buf)
5788                goto out;
5789
5790        mutex_lock(&cgroup_mutex);
5791        spin_lock_irq(&css_set_lock);
5792
5793        for_each_root(root) {
5794                struct cgroup_subsys *ss;
5795                struct cgroup *cgrp;
5796                int ssid, count = 0;
5797
5798                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5799                        continue;
5800
5801                seq_printf(m, "%d:", root->hierarchy_id);
5802                if (root != &cgrp_dfl_root)
5803                        for_each_subsys(ss, ssid)
5804                                if (root->subsys_mask & (1 << ssid))
5805                                        seq_printf(m, "%s%s", count++ ? "," : "",
5806                                                   ss->legacy_name);
5807                if (strlen(root->name))
5808                        seq_printf(m, "%sname=%s", count ? "," : "",
5809                                   root->name);
5810                seq_putc(m, ':');
5811
5812                cgrp = task_cgroup_from_root(tsk, root);
5813
5814                /*
5815                 * On traditional hierarchies, all zombie tasks show up as
5816                 * belonging to the root cgroup.  On the default hierarchy,
5817                 * while a zombie doesn't show up in "cgroup.procs" and
5818                 * thus can't be migrated, its /proc/PID/cgroup keeps
5819                 * reporting the cgroup it belonged to before exiting.  If
5820                 * the cgroup is removed before the zombie is reaped,
5821                 * " (deleted)" is appended to the cgroup path.
5822                 */
5823                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5824                        retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5825                                                current->nsproxy->cgroup_ns);
5826                        if (retval >= PATH_MAX)
5827                                retval = -ENAMETOOLONG;
5828                        if (retval < 0)
5829                                goto out_unlock;
5830
5831                        seq_puts(m, buf);
5832                } else {
5833                        seq_puts(m, "/");
5834                }
5835
5836                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5837                        seq_puts(m, " (deleted)\n");
5838                else
5839                        seq_putc(m, '\n');
5840        }
5841
5842        retval = 0;
5843out_unlock:
5844        spin_unlock_irq(&css_set_lock);
5845        mutex_unlock(&cgroup_mutex);
5846        kfree(buf);
5847out:
5848        return retval;
5849}
5850
5851/**
5852 * cgroup_fork - initialize cgroup related fields during copy_process()
5853 * @child: pointer to task_struct of forking parent process.
5854 *
5855 * A task is associated with the init_css_set until cgroup_post_fork()
5856 * attaches it to the target css_set.
5857 */
5858void cgroup_fork(struct task_struct *child)
5859{
5860        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5861        INIT_LIST_HEAD(&child->cg_list);
5862}
5863
5864static struct cgroup *cgroup_get_from_file(struct file *f)
5865{
5866        struct cgroup_subsys_state *css;
5867        struct cgroup *cgrp;
5868
5869        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5870        if (IS_ERR(css))
5871                return ERR_CAST(css);
5872
5873        cgrp = css->cgroup;
5874        if (!cgroup_on_dfl(cgrp)) {
5875                cgroup_put(cgrp);
5876                return ERR_PTR(-EBADF);
5877        }
5878
5879        return cgrp;
5880}
5881
5882/**
5883 * cgroup_css_set_fork - find or create a css_set for a child process
5884 * @kargs: the arguments passed to create the child process
5885 *
5886 * This functions finds or creates a new css_set which the child
5887 * process will be attached to in cgroup_post_fork(). By default,
5888 * the child process will be given the same css_set as its parent.
5889 *
5890 * If CLONE_INTO_CGROUP is specified this function will try to find an
5891 * existing css_set which includes the requested cgroup and if not create
5892 * a new css_set that the child will be attached to later. If this function
5893 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5894 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5895 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5896 * to the target cgroup.
5897 */
5898static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5899        __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5900{
5901        int ret;
5902        struct cgroup *dst_cgrp = NULL;
5903        struct css_set *cset;
5904        struct super_block *sb;
5905        struct file *f;
5906
5907        if (kargs->flags & CLONE_INTO_CGROUP)
5908                mutex_lock(&cgroup_mutex);
5909
5910        cgroup_threadgroup_change_begin(current);
5911
5912        spin_lock_irq(&css_set_lock);
5913        cset = task_css_set(current);
5914        get_css_set(cset);
5915        spin_unlock_irq(&css_set_lock);
5916
5917        if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5918                kargs->cset = cset;
5919                return 0;
5920        }
5921
5922        f = fget_raw(kargs->cgroup);
5923        if (!f) {
5924                ret = -EBADF;
5925                goto err;
5926        }
5927        sb = f->f_path.dentry->d_sb;
5928
5929        dst_cgrp = cgroup_get_from_file(f);
5930        if (IS_ERR(dst_cgrp)) {
5931                ret = PTR_ERR(dst_cgrp);
5932                dst_cgrp = NULL;
5933                goto err;
5934        }
5935
5936        if (cgroup_is_dead(dst_cgrp)) {
5937                ret = -ENODEV;
5938                goto err;
5939        }
5940
5941        /*
5942         * Verify that we the target cgroup is writable for us. This is
5943         * usually done by the vfs layer but since we're not going through
5944         * the vfs layer here we need to do it "manually".
5945         */
5946        ret = cgroup_may_write(dst_cgrp, sb);
5947        if (ret)
5948                goto err;
5949
5950        ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5951                                        !(kargs->flags & CLONE_THREAD));
5952        if (ret)
5953                goto err;
5954
5955        kargs->cset = find_css_set(cset, dst_cgrp);
5956        if (!kargs->cset) {
5957                ret = -ENOMEM;
5958                goto err;
5959        }
5960
5961        put_css_set(cset);
5962        fput(f);
5963        kargs->cgrp = dst_cgrp;
5964        return ret;
5965
5966err:
5967        cgroup_threadgroup_change_end(current);
5968        mutex_unlock(&cgroup_mutex);
5969        if (f)
5970                fput(f);
5971        if (dst_cgrp)
5972                cgroup_put(dst_cgrp);
5973        put_css_set(cset);
5974        if (kargs->cset)
5975                put_css_set(kargs->cset);
5976        return ret;
5977}
5978
5979/**
5980 * cgroup_css_set_put_fork - drop references we took during fork
5981 * @kargs: the arguments passed to create the child process
5982 *
5983 * Drop references to the prepared css_set and target cgroup if
5984 * CLONE_INTO_CGROUP was requested.
5985 */
5986static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
5987        __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
5988{
5989        cgroup_threadgroup_change_end(current);
5990
5991        if (kargs->flags & CLONE_INTO_CGROUP) {
5992                struct cgroup *cgrp = kargs->cgrp;
5993                struct css_set *cset = kargs->cset;
5994
5995                mutex_unlock(&cgroup_mutex);
5996
5997                if (cset) {
5998                        put_css_set(cset);
5999                        kargs->cset = NULL;
6000                }
6001
6002                if (cgrp) {
6003                        cgroup_put(cgrp);
6004                        kargs->cgrp = NULL;
6005                }
6006        }
6007}
6008
6009/**
6010 * cgroup_can_fork - called on a new task before the process is exposed
6011 * @child: the child process
6012 *
6013 * This prepares a new css_set for the child process which the child will
6014 * be attached to in cgroup_post_fork().
6015 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6016 * callback returns an error, the fork aborts with that error code. This
6017 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6018 */
6019int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6020{
6021        struct cgroup_subsys *ss;
6022        int i, j, ret;
6023
6024        ret = cgroup_css_set_fork(kargs);
6025        if (ret)
6026                return ret;
6027
6028        do_each_subsys_mask(ss, i, have_canfork_callback) {
6029                ret = ss->can_fork(child, kargs->cset);
6030                if (ret)
6031                        goto out_revert;
6032        } while_each_subsys_mask();
6033
6034        return 0;
6035
6036out_revert:
6037        for_each_subsys(ss, j) {
6038                if (j >= i)
6039                        break;
6040                if (ss->cancel_fork)
6041                        ss->cancel_fork(child, kargs->cset);
6042        }
6043
6044        cgroup_css_set_put_fork(kargs);
6045
6046        return ret;
6047}
6048
6049/**
6050 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6051 * @child: the child process
6052 * @kargs: the arguments passed to create the child process
6053 *
6054 * This calls the cancel_fork() callbacks if a fork failed *after*
6055 * cgroup_can_fork() succeeded and cleans up references we took to
6056 * prepare a new css_set for the child process in cgroup_can_fork().
6057 */
6058void cgroup_cancel_fork(struct task_struct *child,
6059                        struct kernel_clone_args *kargs)
6060{
6061        struct cgroup_subsys *ss;
6062        int i;
6063
6064        for_each_subsys(ss, i)
6065                if (ss->cancel_fork)
6066                        ss->cancel_fork(child, kargs->cset);
6067
6068        cgroup_css_set_put_fork(kargs);
6069}
6070
6071/**
6072 * cgroup_post_fork - finalize cgroup setup for the child process
6073 * @child: the child process
6074 *
6075 * Attach the child process to its css_set calling the subsystem fork()
6076 * callbacks.
6077 */
6078void cgroup_post_fork(struct task_struct *child,
6079                      struct kernel_clone_args *kargs)
6080        __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6081{
6082        struct cgroup_subsys *ss;
6083        struct css_set *cset;
6084        int i;
6085
6086        cset = kargs->cset;
6087        kargs->cset = NULL;
6088
6089        spin_lock_irq(&css_set_lock);
6090
6091        /* init tasks are special, only link regular threads */
6092        if (likely(child->pid)) {
6093                WARN_ON_ONCE(!list_empty(&child->cg_list));
6094                cset->nr_tasks++;
6095                css_set_move_task(child, NULL, cset, false);
6096        } else {
6097                put_css_set(cset);
6098                cset = NULL;
6099        }
6100
6101        /*
6102         * If the cgroup has to be frozen, the new task has too.  Let's set
6103         * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6104         * frozen state.
6105         */
6106        if (unlikely(cgroup_task_freeze(child))) {
6107                spin_lock(&child->sighand->siglock);
6108                WARN_ON_ONCE(child->frozen);
6109                child->jobctl |= JOBCTL_TRAP_FREEZE;
6110                spin_unlock(&child->sighand->siglock);
6111
6112                /*
6113                 * Calling cgroup_update_frozen() isn't required here,
6114                 * because it will be called anyway a bit later from
6115                 * do_freezer_trap(). So we avoid cgroup's transient switch
6116                 * from the frozen state and back.
6117                 */
6118        }
6119
6120        spin_unlock_irq(&css_set_lock);
6121
6122        /*
6123         * Call ss->fork().  This must happen after @child is linked on
6124         * css_set; otherwise, @child might change state between ->fork()
6125         * and addition to css_set.
6126         */
6127        do_each_subsys_mask(ss, i, have_fork_callback) {
6128                ss->fork(child);
6129        } while_each_subsys_mask();
6130
6131        /* Make the new cset the root_cset of the new cgroup namespace. */
6132        if (kargs->flags & CLONE_NEWCGROUP) {
6133                struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6134
6135                get_css_set(cset);
6136                child->nsproxy->cgroup_ns->root_cset = cset;
6137                put_css_set(rcset);
6138        }
6139
6140        cgroup_css_set_put_fork(kargs);
6141}
6142
6143/**
6144 * cgroup_exit - detach cgroup from exiting task
6145 * @tsk: pointer to task_struct of exiting process
6146 *
6147 * Description: Detach cgroup from @tsk.
6148 *
6149 */
6150void cgroup_exit(struct task_struct *tsk)
6151{
6152        struct cgroup_subsys *ss;
6153        struct css_set *cset;
6154        int i;
6155
6156        spin_lock_irq(&css_set_lock);
6157
6158        WARN_ON_ONCE(list_empty(&tsk->cg_list));
6159        cset = task_css_set(tsk);
6160        css_set_move_task(tsk, cset, NULL, false);
6161        list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6162        cset->nr_tasks--;
6163
6164        WARN_ON_ONCE(cgroup_task_frozen(tsk));
6165        if (unlikely(cgroup_task_freeze(tsk)))
6166                cgroup_update_frozen(task_dfl_cgroup(tsk));
6167
6168        spin_unlock_irq(&css_set_lock);
6169
6170        /* see cgroup_post_fork() for details */
6171        do_each_subsys_mask(ss, i, have_exit_callback) {
6172                ss->exit(tsk);
6173        } while_each_subsys_mask();
6174}
6175
6176void cgroup_release(struct task_struct *task)
6177{
6178        struct cgroup_subsys *ss;
6179        int ssid;
6180
6181        do_each_subsys_mask(ss, ssid, have_release_callback) {
6182                ss->release(task);
6183        } while_each_subsys_mask();
6184
6185        spin_lock_irq(&css_set_lock);
6186        css_set_skip_task_iters(task_css_set(task), task);
6187        list_del_init(&task->cg_list);
6188        spin_unlock_irq(&css_set_lock);
6189}
6190
6191void cgroup_free(struct task_struct *task)
6192{
6193        struct css_set *cset = task_css_set(task);
6194        put_css_set(cset);
6195}
6196
6197static int __init cgroup_disable(char *str)
6198{
6199        struct cgroup_subsys *ss;
6200        char *token;
6201        int i;
6202
6203        while ((token = strsep(&str, ",")) != NULL) {
6204                if (!*token)
6205                        continue;
6206
6207                for_each_subsys(ss, i) {
6208                        if (strcmp(token, ss->name) &&
6209                            strcmp(token, ss->legacy_name))
6210                                continue;
6211
6212                        static_branch_disable(cgroup_subsys_enabled_key[i]);
6213                        pr_info("Disabling %s control group subsystem\n",
6214                                ss->name);
6215                }
6216        }
6217        return 1;
6218}
6219__setup("cgroup_disable=", cgroup_disable);
6220
6221void __init __weak enable_debug_cgroup(void) { }
6222
6223static int __init enable_cgroup_debug(char *str)
6224{
6225        cgroup_debug = true;
6226        enable_debug_cgroup();
6227        return 1;
6228}
6229__setup("cgroup_debug", enable_cgroup_debug);
6230
6231/**
6232 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6233 * @dentry: directory dentry of interest
6234 * @ss: subsystem of interest
6235 *
6236 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6237 * to get the corresponding css and return it.  If such css doesn't exist
6238 * or can't be pinned, an ERR_PTR value is returned.
6239 */
6240struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6241                                                       struct cgroup_subsys *ss)
6242{
6243        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6244        struct file_system_type *s_type = dentry->d_sb->s_type;
6245        struct cgroup_subsys_state *css = NULL;
6246        struct cgroup *cgrp;
6247
6248        /* is @dentry a cgroup dir? */
6249        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6250            !kn || kernfs_type(kn) != KERNFS_DIR)
6251                return ERR_PTR(-EBADF);
6252
6253        rcu_read_lock();
6254
6255        /*
6256         * This path doesn't originate from kernfs and @kn could already
6257         * have been or be removed at any point.  @kn->priv is RCU
6258         * protected for this access.  See css_release_work_fn() for details.
6259         */
6260        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6261        if (cgrp)
6262                css = cgroup_css(cgrp, ss);
6263
6264        if (!css || !css_tryget_online(css))
6265                css = ERR_PTR(-ENOENT);
6266
6267        rcu_read_unlock();
6268        return css;
6269}
6270
6271/**
6272 * css_from_id - lookup css by id
6273 * @id: the cgroup id
6274 * @ss: cgroup subsys to be looked into
6275 *
6276 * Returns the css if there's valid one with @id, otherwise returns NULL.
6277 * Should be called under rcu_read_lock().
6278 */
6279struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6280{
6281        WARN_ON_ONCE(!rcu_read_lock_held());
6282        return idr_find(&ss->css_idr, id);
6283}
6284
6285/**
6286 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6287 * @path: path on the default hierarchy
6288 *
6289 * Find the cgroup at @path on the default hierarchy, increment its
6290 * reference count and return it.  Returns pointer to the found cgroup on
6291 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR)
6292 * if @path points to a non-directory.
6293 */
6294struct cgroup *cgroup_get_from_path(const char *path)
6295{
6296        struct kernfs_node *kn;
6297        struct cgroup *cgrp;
6298
6299        mutex_lock(&cgroup_mutex);
6300
6301        kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6302        if (kn) {
6303                if (kernfs_type(kn) == KERNFS_DIR) {
6304                        cgrp = kn->priv;
6305                        cgroup_get_live(cgrp);
6306                } else {
6307                        cgrp = ERR_PTR(-ENOTDIR);
6308                }
6309                kernfs_put(kn);
6310        } else {
6311                cgrp = ERR_PTR(-ENOENT);
6312        }
6313
6314        mutex_unlock(&cgroup_mutex);
6315        return cgrp;
6316}
6317EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6318
6319/**
6320 * cgroup_get_from_fd - get a cgroup pointer from a fd
6321 * @fd: fd obtained by open(cgroup2_dir)
6322 *
6323 * Find the cgroup from a fd which should be obtained
6324 * by opening a cgroup directory.  Returns a pointer to the
6325 * cgroup on success. ERR_PTR is returned if the cgroup
6326 * cannot be found.
6327 */
6328struct cgroup *cgroup_get_from_fd(int fd)
6329{
6330        struct cgroup *cgrp;
6331        struct file *f;
6332
6333        f = fget_raw(fd);
6334        if (!f)
6335                return ERR_PTR(-EBADF);
6336
6337        cgrp = cgroup_get_from_file(f);
6338        fput(f);
6339        return cgrp;
6340}
6341EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6342
6343static u64 power_of_ten(int power)
6344{
6345        u64 v = 1;
6346        while (power--)
6347                v *= 10;
6348        return v;
6349}
6350
6351/**
6352 * cgroup_parse_float - parse a floating number
6353 * @input: input string
6354 * @dec_shift: number of decimal digits to shift
6355 * @v: output
6356 *
6357 * Parse a decimal floating point number in @input and store the result in
6358 * @v with decimal point right shifted @dec_shift times.  For example, if
6359 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6360 * Returns 0 on success, -errno otherwise.
6361 *
6362 * There's nothing cgroup specific about this function except that it's
6363 * currently the only user.
6364 */
6365int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6366{
6367        s64 whole, frac = 0;
6368        int fstart = 0, fend = 0, flen;
6369
6370        if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6371                return -EINVAL;
6372        if (frac < 0)
6373                return -EINVAL;
6374
6375        flen = fend > fstart ? fend - fstart : 0;
6376        if (flen < dec_shift)
6377                frac *= power_of_ten(dec_shift - flen);
6378        else
6379                frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6380
6381        *v = whole * power_of_ten(dec_shift) + frac;
6382        return 0;
6383}
6384
6385/*
6386 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6387 * definition in cgroup-defs.h.
6388 */
6389#ifdef CONFIG_SOCK_CGROUP_DATA
6390
6391#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6392
6393DEFINE_SPINLOCK(cgroup_sk_update_lock);
6394static bool cgroup_sk_alloc_disabled __read_mostly;
6395
6396void cgroup_sk_alloc_disable(void)
6397{
6398        if (cgroup_sk_alloc_disabled)
6399                return;
6400        pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6401        cgroup_sk_alloc_disabled = true;
6402}
6403
6404#else
6405
6406#define cgroup_sk_alloc_disabled        false
6407
6408#endif
6409
6410void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6411{
6412        if (cgroup_sk_alloc_disabled) {
6413                skcd->no_refcnt = 1;
6414                return;
6415        }
6416
6417        /* Don't associate the sock with unrelated interrupted task's cgroup. */
6418        if (in_interrupt())
6419                return;
6420
6421        rcu_read_lock();
6422
6423        while (true) {
6424                struct css_set *cset;
6425
6426                cset = task_css_set(current);
6427                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6428                        skcd->val = (unsigned long)cset->dfl_cgrp;
6429                        cgroup_bpf_get(cset->dfl_cgrp);
6430                        break;
6431                }
6432                cpu_relax();
6433        }
6434
6435        rcu_read_unlock();
6436}
6437
6438void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6439{
6440        if (skcd->val) {
6441                if (skcd->no_refcnt)
6442                        return;
6443                /*
6444                 * We might be cloning a socket which is left in an empty
6445                 * cgroup and the cgroup might have already been rmdir'd.
6446                 * Don't use cgroup_get_live().
6447                 */
6448                cgroup_get(sock_cgroup_ptr(skcd));
6449                cgroup_bpf_get(sock_cgroup_ptr(skcd));
6450        }
6451}
6452
6453void cgroup_sk_free(struct sock_cgroup_data *skcd)
6454{
6455        struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6456
6457        if (skcd->no_refcnt)
6458                return;
6459        cgroup_bpf_put(cgrp);
6460        cgroup_put(cgrp);
6461}
6462
6463#endif  /* CONFIG_SOCK_CGROUP_DATA */
6464
6465#ifdef CONFIG_CGROUP_BPF
6466int cgroup_bpf_attach(struct cgroup *cgrp,
6467                      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6468                      struct bpf_cgroup_link *link,
6469                      enum bpf_attach_type type,
6470                      u32 flags)
6471{
6472        int ret;
6473
6474        mutex_lock(&cgroup_mutex);
6475        ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6476        mutex_unlock(&cgroup_mutex);
6477        return ret;
6478}
6479
6480int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6481                      enum bpf_attach_type type)
6482{
6483        int ret;
6484
6485        mutex_lock(&cgroup_mutex);
6486        ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6487        mutex_unlock(&cgroup_mutex);
6488        return ret;
6489}
6490
6491int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6492                     union bpf_attr __user *uattr)
6493{
6494        int ret;
6495
6496        mutex_lock(&cgroup_mutex);
6497        ret = __cgroup_bpf_query(cgrp, attr, uattr);
6498        mutex_unlock(&cgroup_mutex);
6499        return ret;
6500}
6501#endif /* CONFIG_CGROUP_BPF */
6502
6503#ifdef CONFIG_SYSFS
6504static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6505                                      ssize_t size, const char *prefix)
6506{
6507        struct cftype *cft;
6508        ssize_t ret = 0;
6509
6510        for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6511                if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6512                        continue;
6513
6514                if (prefix)
6515                        ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6516
6517                ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6518
6519                if (WARN_ON(ret >= size))
6520                        break;
6521        }
6522
6523        return ret;
6524}
6525
6526static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6527                              char *buf)
6528{
6529        struct cgroup_subsys *ss;
6530        int ssid;
6531        ssize_t ret = 0;
6532
6533        ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6534                                     NULL);
6535
6536        for_each_subsys(ss, ssid)
6537                ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6538                                              PAGE_SIZE - ret,
6539                                              cgroup_subsys_name[ssid]);
6540
6541        return ret;
6542}
6543static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6544
6545static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6546                             char *buf)
6547{
6548        return snprintf(buf, PAGE_SIZE,
6549                        "nsdelegate\n"
6550                        "memory_localevents\n"
6551                        "memory_recursiveprot\n");
6552}
6553static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6554
6555static struct attribute *cgroup_sysfs_attrs[] = {
6556        &cgroup_delegate_attr.attr,
6557        &cgroup_features_attr.attr,
6558        NULL,
6559};
6560
6561static const struct attribute_group cgroup_sysfs_attr_group = {
6562        .attrs = cgroup_sysfs_attrs,
6563        .name = "cgroup",
6564};
6565
6566static int __init cgroup_sysfs_init(void)
6567{
6568        return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6569}
6570subsys_initcall(cgroup_sysfs_init);
6571
6572#endif /* CONFIG_SYSFS */
6573