linux/kernel/sched/stats.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2
   3#ifdef CONFIG_SCHEDSTATS
   4
   5/*
   6 * Expects runqueue lock to be held for atomicity of update
   7 */
   8static inline void
   9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  10{
  11        if (rq) {
  12                rq->rq_sched_info.run_delay += delta;
  13                rq->rq_sched_info.pcount++;
  14        }
  15}
  16
  17/*
  18 * Expects runqueue lock to be held for atomicity of update
  19 */
  20static inline void
  21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
  22{
  23        if (rq)
  24                rq->rq_cpu_time += delta;
  25}
  26
  27static inline void
  28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
  29{
  30        if (rq)
  31                rq->rq_sched_info.run_delay += delta;
  32}
  33#define   schedstat_enabled()           static_branch_unlikely(&sched_schedstats)
  34#define __schedstat_inc(var)            do { var++; } while (0)
  35#define   schedstat_inc(var)            do { if (schedstat_enabled()) { var++; } } while (0)
  36#define __schedstat_add(var, amt)       do { var += (amt); } while (0)
  37#define   schedstat_add(var, amt)       do { if (schedstat_enabled()) { var += (amt); } } while (0)
  38#define __schedstat_set(var, val)       do { var = (val); } while (0)
  39#define   schedstat_set(var, val)       do { if (schedstat_enabled()) { var = (val); } } while (0)
  40#define   schedstat_val(var)            (var)
  41#define   schedstat_val_or_zero(var)    ((schedstat_enabled()) ? (var) : 0)
  42
  43#else /* !CONFIG_SCHEDSTATS: */
  44static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
  45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
  46static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
  47# define   schedstat_enabled()          0
  48# define __schedstat_inc(var)           do { } while (0)
  49# define   schedstat_inc(var)           do { } while (0)
  50# define __schedstat_add(var, amt)      do { } while (0)
  51# define   schedstat_add(var, amt)      do { } while (0)
  52# define __schedstat_set(var, val)      do { } while (0)
  53# define   schedstat_set(var, val)      do { } while (0)
  54# define   schedstat_val(var)           0
  55# define   schedstat_val_or_zero(var)   0
  56#endif /* CONFIG_SCHEDSTATS */
  57
  58#ifdef CONFIG_PSI
  59/*
  60 * PSI tracks state that persists across sleeps, such as iowaits and
  61 * memory stalls. As a result, it has to distinguish between sleeps,
  62 * where a task's runnable state changes, and requeues, where a task
  63 * and its state are being moved between CPUs and runqueues.
  64 */
  65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
  66{
  67        int clear = 0, set = TSK_RUNNING;
  68
  69        if (static_branch_likely(&psi_disabled))
  70                return;
  71
  72        if (!wakeup || p->sched_psi_wake_requeue) {
  73                if (p->in_memstall)
  74                        set |= TSK_MEMSTALL;
  75                if (p->sched_psi_wake_requeue)
  76                        p->sched_psi_wake_requeue = 0;
  77        } else {
  78                if (p->in_iowait)
  79                        clear |= TSK_IOWAIT;
  80        }
  81
  82        psi_task_change(p, clear, set);
  83}
  84
  85static inline void psi_dequeue(struct task_struct *p, bool sleep)
  86{
  87        int clear = TSK_RUNNING;
  88
  89        if (static_branch_likely(&psi_disabled))
  90                return;
  91
  92        /*
  93         * A voluntary sleep is a dequeue followed by a task switch. To
  94         * avoid walking all ancestors twice, psi_task_switch() handles
  95         * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
  96         * Do nothing here.
  97         */
  98        if (sleep)
  99                return;
 100
 101        if (p->in_memstall)
 102                clear |= TSK_MEMSTALL;
 103
 104        psi_task_change(p, clear, 0);
 105}
 106
 107static inline void psi_ttwu_dequeue(struct task_struct *p)
 108{
 109        if (static_branch_likely(&psi_disabled))
 110                return;
 111        /*
 112         * Is the task being migrated during a wakeup? Make sure to
 113         * deregister its sleep-persistent psi states from the old
 114         * queue, and let psi_enqueue() know it has to requeue.
 115         */
 116        if (unlikely(p->in_iowait || p->in_memstall)) {
 117                struct rq_flags rf;
 118                struct rq *rq;
 119                int clear = 0;
 120
 121                if (p->in_iowait)
 122                        clear |= TSK_IOWAIT;
 123                if (p->in_memstall)
 124                        clear |= TSK_MEMSTALL;
 125
 126                rq = __task_rq_lock(p, &rf);
 127                psi_task_change(p, clear, 0);
 128                p->sched_psi_wake_requeue = 1;
 129                __task_rq_unlock(rq, &rf);
 130        }
 131}
 132
 133static inline void psi_sched_switch(struct task_struct *prev,
 134                                    struct task_struct *next,
 135                                    bool sleep)
 136{
 137        if (static_branch_likely(&psi_disabled))
 138                return;
 139
 140        psi_task_switch(prev, next, sleep);
 141}
 142
 143#else /* CONFIG_PSI */
 144static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
 145static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
 146static inline void psi_ttwu_dequeue(struct task_struct *p) {}
 147static inline void psi_sched_switch(struct task_struct *prev,
 148                                    struct task_struct *next,
 149                                    bool sleep) {}
 150#endif /* CONFIG_PSI */
 151
 152#ifdef CONFIG_SCHED_INFO
 153static inline void sched_info_reset_dequeued(struct task_struct *t)
 154{
 155        t->sched_info.last_queued = 0;
 156}
 157
 158/*
 159 * We are interested in knowing how long it was from the *first* time a
 160 * task was queued to the time that it finally hit a CPU, we call this routine
 161 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
 162 * delta taken on each CPU would annul the skew.
 163 */
 164static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 165{
 166        unsigned long long now = rq_clock(rq), delta = 0;
 167
 168        if (sched_info_on()) {
 169                if (t->sched_info.last_queued)
 170                        delta = now - t->sched_info.last_queued;
 171        }
 172        sched_info_reset_dequeued(t);
 173        t->sched_info.run_delay += delta;
 174
 175        rq_sched_info_dequeued(rq, delta);
 176}
 177
 178/*
 179 * Called when a task finally hits the CPU.  We can now calculate how
 180 * long it was waiting to run.  We also note when it began so that we
 181 * can keep stats on how long its timeslice is.
 182 */
 183static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 184{
 185        unsigned long long now = rq_clock(rq), delta = 0;
 186
 187        if (t->sched_info.last_queued)
 188                delta = now - t->sched_info.last_queued;
 189        sched_info_reset_dequeued(t);
 190        t->sched_info.run_delay += delta;
 191        t->sched_info.last_arrival = now;
 192        t->sched_info.pcount++;
 193
 194        rq_sched_info_arrive(rq, delta);
 195}
 196
 197/*
 198 * This function is only called from enqueue_task(), but also only updates
 199 * the timestamp if it is already not set.  It's assumed that
 200 * sched_info_dequeued() will clear that stamp when appropriate.
 201 */
 202static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
 203{
 204        if (sched_info_on()) {
 205                if (!t->sched_info.last_queued)
 206                        t->sched_info.last_queued = rq_clock(rq);
 207        }
 208}
 209
 210/*
 211 * Called when a process ceases being the active-running process involuntarily
 212 * due, typically, to expiring its time slice (this may also be called when
 213 * switching to the idle task).  Now we can calculate how long we ran.
 214 * Also, if the process is still in the TASK_RUNNING state, call
 215 * sched_info_queued() to mark that it has now again started waiting on
 216 * the runqueue.
 217 */
 218static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
 219{
 220        unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
 221
 222        rq_sched_info_depart(rq, delta);
 223
 224        if (t->state == TASK_RUNNING)
 225                sched_info_queued(rq, t);
 226}
 227
 228/*
 229 * Called when tasks are switched involuntarily due, typically, to expiring
 230 * their time slice.  (This may also be called when switching to or from
 231 * the idle task.)  We are only called when prev != next.
 232 */
 233static inline void
 234__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 235{
 236        /*
 237         * prev now departs the CPU.  It's not interesting to record
 238         * stats about how efficient we were at scheduling the idle
 239         * process, however.
 240         */
 241        if (prev != rq->idle)
 242                sched_info_depart(rq, prev);
 243
 244        if (next != rq->idle)
 245                sched_info_arrive(rq, next);
 246}
 247
 248static inline void
 249sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 250{
 251        if (sched_info_on())
 252                __sched_info_switch(rq, prev, next);
 253}
 254
 255#else /* !CONFIG_SCHED_INFO: */
 256# define sched_info_queued(rq, t)       do { } while (0)
 257# define sched_info_reset_dequeued(t)   do { } while (0)
 258# define sched_info_dequeued(rq, t)     do { } while (0)
 259# define sched_info_depart(rq, t)       do { } while (0)
 260# define sched_info_arrive(rq, next)    do { } while (0)
 261# define sched_info_switch(rq, t, next) do { } while (0)
 262#endif /* CONFIG_SCHED_INFO */
 263