linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/sched/loadavg.h>
  24#include <linux/module.h>
  25#include <linux/irq_work.h>
  26#include <linux/posix-timers.h>
  27#include <linux/context_tracking.h>
  28#include <linux/mm.h>
  29
  30#include <asm/irq_regs.h>
  31
  32#include "tick-internal.h"
  33
  34#include <trace/events/timer.h>
  35
  36/*
  37 * Per-CPU nohz control structure
  38 */
  39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  40
  41struct tick_sched *tick_get_tick_sched(int cpu)
  42{
  43        return &per_cpu(tick_cpu_sched, cpu);
  44}
  45
  46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  47/*
  48 * The time, when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59        unsigned long ticks = 1;
  60        ktime_t delta, nextp;
  61
  62        /*
  63         * 64bit can do a quick check without holding jiffies lock and
  64         * without looking at the sequence count. The smp_load_acquire()
  65         * pairs with the update done later in this function.
  66         *
  67         * 32bit cannot do that because the store of tick_next_period
  68         * consists of two 32bit stores and the first store could move it
  69         * to a random point in the future.
  70         */
  71        if (IS_ENABLED(CONFIG_64BIT)) {
  72                if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73                        return;
  74        } else {
  75                unsigned int seq;
  76
  77                /*
  78                 * Avoid contention on jiffies_lock and protect the quick
  79                 * check with the sequence count.
  80                 */
  81                do {
  82                        seq = read_seqcount_begin(&jiffies_seq);
  83                        nextp = tick_next_period;
  84                } while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86                if (ktime_before(now, nextp))
  87                        return;
  88        }
  89
  90        /* Quick check failed, i.e. update is required. */
  91        raw_spin_lock(&jiffies_lock);
  92        /*
  93         * Reevaluate with the lock held. Another CPU might have done the
  94         * update already.
  95         */
  96        if (ktime_before(now, tick_next_period)) {
  97                raw_spin_unlock(&jiffies_lock);
  98                return;
  99        }
 100
 101        write_seqcount_begin(&jiffies_seq);
 102
 103        delta = ktime_sub(now, tick_next_period);
 104        if (unlikely(delta >= TICK_NSEC)) {
 105                /* Slow path for long idle sleep times */
 106                s64 incr = TICK_NSEC;
 107
 108                ticks += ktime_divns(delta, incr);
 109
 110                last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111                                                   incr * ticks);
 112        } else {
 113                last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114                                                   TICK_NSEC);
 115        }
 116
 117        /* Advance jiffies to complete the jiffies_seq protected job */
 118        jiffies_64 += ticks;
 119
 120        /*
 121         * Keep the tick_next_period variable up to date.
 122         */
 123        nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 124
 125        if (IS_ENABLED(CONFIG_64BIT)) {
 126                /*
 127                 * Pairs with smp_load_acquire() in the lockless quick
 128                 * check above and ensures that the update to jiffies_64 is
 129                 * not reordered vs. the store to tick_next_period, neither
 130                 * by the compiler nor by the CPU.
 131                 */
 132                smp_store_release(&tick_next_period, nextp);
 133        } else {
 134                /*
 135                 * A plain store is good enough on 32bit as the quick check
 136                 * above is protected by the sequence count.
 137                 */
 138                tick_next_period = nextp;
 139        }
 140
 141        /*
 142         * Release the sequence count. calc_global_load() below is not
 143         * protected by it, but jiffies_lock needs to be held to prevent
 144         * concurrent invocations.
 145         */
 146        write_seqcount_end(&jiffies_seq);
 147
 148        calc_global_load();
 149
 150        raw_spin_unlock(&jiffies_lock);
 151        update_wall_time();
 152}
 153
 154/*
 155 * Initialize and return retrieve the jiffies update.
 156 */
 157static ktime_t tick_init_jiffy_update(void)
 158{
 159        ktime_t period;
 160
 161        raw_spin_lock(&jiffies_lock);
 162        write_seqcount_begin(&jiffies_seq);
 163        /* Did we start the jiffies update yet ? */
 164        if (last_jiffies_update == 0)
 165                last_jiffies_update = tick_next_period;
 166        period = last_jiffies_update;
 167        write_seqcount_end(&jiffies_seq);
 168        raw_spin_unlock(&jiffies_lock);
 169        return period;
 170}
 171
 172static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 173{
 174        int cpu = smp_processor_id();
 175
 176#ifdef CONFIG_NO_HZ_COMMON
 177        /*
 178         * Check if the do_timer duty was dropped. We don't care about
 179         * concurrency: This happens only when the CPU in charge went
 180         * into a long sleep. If two CPUs happen to assign themselves to
 181         * this duty, then the jiffies update is still serialized by
 182         * jiffies_lock.
 183         *
 184         * If nohz_full is enabled, this should not happen because the
 185         * tick_do_timer_cpu never relinquishes.
 186         */
 187        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 188#ifdef CONFIG_NO_HZ_FULL
 189                WARN_ON(tick_nohz_full_running);
 190#endif
 191                tick_do_timer_cpu = cpu;
 192        }
 193#endif
 194
 195        /* Check, if the jiffies need an update */
 196        if (tick_do_timer_cpu == cpu)
 197                tick_do_update_jiffies64(now);
 198
 199        if (ts->inidle)
 200                ts->got_idle_tick = 1;
 201}
 202
 203static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 204{
 205#ifdef CONFIG_NO_HZ_COMMON
 206        /*
 207         * When we are idle and the tick is stopped, we have to touch
 208         * the watchdog as we might not schedule for a really long
 209         * time. This happens on complete idle SMP systems while
 210         * waiting on the login prompt. We also increment the "start of
 211         * idle" jiffy stamp so the idle accounting adjustment we do
 212         * when we go busy again does not account too much ticks.
 213         */
 214        if (ts->tick_stopped) {
 215                touch_softlockup_watchdog_sched();
 216                if (is_idle_task(current))
 217                        ts->idle_jiffies++;
 218                /*
 219                 * In case the current tick fired too early past its expected
 220                 * expiration, make sure we don't bypass the next clock reprogramming
 221                 * to the same deadline.
 222                 */
 223                ts->next_tick = 0;
 224        }
 225#endif
 226        update_process_times(user_mode(regs));
 227        profile_tick(CPU_PROFILING);
 228}
 229#endif
 230
 231#ifdef CONFIG_NO_HZ_FULL
 232cpumask_var_t tick_nohz_full_mask;
 233EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 234bool tick_nohz_full_running;
 235EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 236static atomic_t tick_dep_mask;
 237
 238static bool check_tick_dependency(atomic_t *dep)
 239{
 240        int val = atomic_read(dep);
 241
 242        if (val & TICK_DEP_MASK_POSIX_TIMER) {
 243                trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 244                return true;
 245        }
 246
 247        if (val & TICK_DEP_MASK_PERF_EVENTS) {
 248                trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 249                return true;
 250        }
 251
 252        if (val & TICK_DEP_MASK_SCHED) {
 253                trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 254                return true;
 255        }
 256
 257        if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 258                trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 259                return true;
 260        }
 261
 262        if (val & TICK_DEP_MASK_RCU) {
 263                trace_tick_stop(0, TICK_DEP_MASK_RCU);
 264                return true;
 265        }
 266
 267        return false;
 268}
 269
 270static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 271{
 272        lockdep_assert_irqs_disabled();
 273
 274        if (unlikely(!cpu_online(cpu)))
 275                return false;
 276
 277        if (check_tick_dependency(&tick_dep_mask))
 278                return false;
 279
 280        if (check_tick_dependency(&ts->tick_dep_mask))
 281                return false;
 282
 283        if (check_tick_dependency(&current->tick_dep_mask))
 284                return false;
 285
 286        if (check_tick_dependency(&current->signal->tick_dep_mask))
 287                return false;
 288
 289        return true;
 290}
 291
 292static void nohz_full_kick_func(struct irq_work *work)
 293{
 294        /* Empty, the tick restart happens on tick_nohz_irq_exit() */
 295}
 296
 297static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 298        IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 299
 300/*
 301 * Kick this CPU if it's full dynticks in order to force it to
 302 * re-evaluate its dependency on the tick and restart it if necessary.
 303 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 304 * is NMI safe.
 305 */
 306static void tick_nohz_full_kick(void)
 307{
 308        if (!tick_nohz_full_cpu(smp_processor_id()))
 309                return;
 310
 311        irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 312}
 313
 314/*
 315 * Kick the CPU if it's full dynticks in order to force it to
 316 * re-evaluate its dependency on the tick and restart it if necessary.
 317 */
 318void tick_nohz_full_kick_cpu(int cpu)
 319{
 320        if (!tick_nohz_full_cpu(cpu))
 321                return;
 322
 323        irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 324}
 325
 326/*
 327 * Kick all full dynticks CPUs in order to force these to re-evaluate
 328 * their dependency on the tick and restart it if necessary.
 329 */
 330static void tick_nohz_full_kick_all(void)
 331{
 332        int cpu;
 333
 334        if (!tick_nohz_full_running)
 335                return;
 336
 337        preempt_disable();
 338        for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 339                tick_nohz_full_kick_cpu(cpu);
 340        preempt_enable();
 341}
 342
 343static void tick_nohz_dep_set_all(atomic_t *dep,
 344                                  enum tick_dep_bits bit)
 345{
 346        int prev;
 347
 348        prev = atomic_fetch_or(BIT(bit), dep);
 349        if (!prev)
 350                tick_nohz_full_kick_all();
 351}
 352
 353/*
 354 * Set a global tick dependency. Used by perf events that rely on freq and
 355 * by unstable clock.
 356 */
 357void tick_nohz_dep_set(enum tick_dep_bits bit)
 358{
 359        tick_nohz_dep_set_all(&tick_dep_mask, bit);
 360}
 361
 362void tick_nohz_dep_clear(enum tick_dep_bits bit)
 363{
 364        atomic_andnot(BIT(bit), &tick_dep_mask);
 365}
 366
 367/*
 368 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 369 * manage events throttling.
 370 */
 371void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 372{
 373        int prev;
 374        struct tick_sched *ts;
 375
 376        ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 377
 378        prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 379        if (!prev) {
 380                preempt_disable();
 381                /* Perf needs local kick that is NMI safe */
 382                if (cpu == smp_processor_id()) {
 383                        tick_nohz_full_kick();
 384                } else {
 385                        /* Remote irq work not NMI-safe */
 386                        if (!WARN_ON_ONCE(in_nmi()))
 387                                tick_nohz_full_kick_cpu(cpu);
 388                }
 389                preempt_enable();
 390        }
 391}
 392EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 393
 394void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 395{
 396        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 397
 398        atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 399}
 400EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 401
 402/*
 403 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 404 * in order to elapse per task timers.
 405 */
 406void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 407{
 408        if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
 409                if (tsk == current) {
 410                        preempt_disable();
 411                        tick_nohz_full_kick();
 412                        preempt_enable();
 413                } else {
 414                        /*
 415                         * Some future tick_nohz_full_kick_task()
 416                         * should optimize this.
 417                         */
 418                        tick_nohz_full_kick_all();
 419                }
 420        }
 421}
 422EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 423
 424void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 425{
 426        atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 427}
 428EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 429
 430/*
 431 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 432 * per process timers.
 433 */
 434void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 435{
 436        tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 437}
 438
 439void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 440{
 441        atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 442}
 443
 444/*
 445 * Re-evaluate the need for the tick as we switch the current task.
 446 * It might need the tick due to per task/process properties:
 447 * perf events, posix CPU timers, ...
 448 */
 449void __tick_nohz_task_switch(void)
 450{
 451        unsigned long flags;
 452        struct tick_sched *ts;
 453
 454        local_irq_save(flags);
 455
 456        if (!tick_nohz_full_cpu(smp_processor_id()))
 457                goto out;
 458
 459        ts = this_cpu_ptr(&tick_cpu_sched);
 460
 461        if (ts->tick_stopped) {
 462                if (atomic_read(&current->tick_dep_mask) ||
 463                    atomic_read(&current->signal->tick_dep_mask))
 464                        tick_nohz_full_kick();
 465        }
 466out:
 467        local_irq_restore(flags);
 468}
 469
 470/* Get the boot-time nohz CPU list from the kernel parameters. */
 471void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 472{
 473        alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 474        cpumask_copy(tick_nohz_full_mask, cpumask);
 475        tick_nohz_full_running = true;
 476}
 477EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
 478
 479static int tick_nohz_cpu_down(unsigned int cpu)
 480{
 481        /*
 482         * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 483         * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 484         * CPUs. It must remain online when nohz full is enabled.
 485         */
 486        if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 487                return -EBUSY;
 488        return 0;
 489}
 490
 491void __init tick_nohz_init(void)
 492{
 493        int cpu, ret;
 494
 495        if (!tick_nohz_full_running)
 496                return;
 497
 498        /*
 499         * Full dynticks uses irq work to drive the tick rescheduling on safe
 500         * locking contexts. But then we need irq work to raise its own
 501         * interrupts to avoid circular dependency on the tick
 502         */
 503        if (!arch_irq_work_has_interrupt()) {
 504                pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 505                cpumask_clear(tick_nohz_full_mask);
 506                tick_nohz_full_running = false;
 507                return;
 508        }
 509
 510        if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 511                        !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 512                cpu = smp_processor_id();
 513
 514                if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 515                        pr_warn("NO_HZ: Clearing %d from nohz_full range "
 516                                "for timekeeping\n", cpu);
 517                        cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 518                }
 519        }
 520
 521        for_each_cpu(cpu, tick_nohz_full_mask)
 522                context_tracking_cpu_set(cpu);
 523
 524        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 525                                        "kernel/nohz:predown", NULL,
 526                                        tick_nohz_cpu_down);
 527        WARN_ON(ret < 0);
 528        pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 529                cpumask_pr_args(tick_nohz_full_mask));
 530}
 531#endif
 532
 533/*
 534 * NOHZ - aka dynamic tick functionality
 535 */
 536#ifdef CONFIG_NO_HZ_COMMON
 537/*
 538 * NO HZ enabled ?
 539 */
 540bool tick_nohz_enabled __read_mostly  = true;
 541unsigned long tick_nohz_active  __read_mostly;
 542/*
 543 * Enable / Disable tickless mode
 544 */
 545static int __init setup_tick_nohz(char *str)
 546{
 547        return (kstrtobool(str, &tick_nohz_enabled) == 0);
 548}
 549
 550__setup("nohz=", setup_tick_nohz);
 551
 552bool tick_nohz_tick_stopped(void)
 553{
 554        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 555
 556        return ts->tick_stopped;
 557}
 558
 559bool tick_nohz_tick_stopped_cpu(int cpu)
 560{
 561        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 562
 563        return ts->tick_stopped;
 564}
 565
 566/**
 567 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 568 *
 569 * Called from interrupt entry when the CPU was idle
 570 *
 571 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 572 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 573 * value. We do this unconditionally on any CPU, as we don't know whether the
 574 * CPU, which has the update task assigned is in a long sleep.
 575 */
 576static void tick_nohz_update_jiffies(ktime_t now)
 577{
 578        unsigned long flags;
 579
 580        __this_cpu_write(tick_cpu_sched.idle_waketime, now);
 581
 582        local_irq_save(flags);
 583        tick_do_update_jiffies64(now);
 584        local_irq_restore(flags);
 585
 586        touch_softlockup_watchdog_sched();
 587}
 588
 589/*
 590 * Updates the per-CPU time idle statistics counters
 591 */
 592static void
 593update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 594{
 595        ktime_t delta;
 596
 597        if (ts->idle_active) {
 598                delta = ktime_sub(now, ts->idle_entrytime);
 599                if (nr_iowait_cpu(cpu) > 0)
 600                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 601                else
 602                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 603                ts->idle_entrytime = now;
 604        }
 605
 606        if (last_update_time)
 607                *last_update_time = ktime_to_us(now);
 608
 609}
 610
 611static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 612{
 613        update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 614        ts->idle_active = 0;
 615
 616        sched_clock_idle_wakeup_event();
 617}
 618
 619static void tick_nohz_start_idle(struct tick_sched *ts)
 620{
 621        ts->idle_entrytime = ktime_get();
 622        ts->idle_active = 1;
 623        sched_clock_idle_sleep_event();
 624}
 625
 626/**
 627 * get_cpu_idle_time_us - get the total idle time of a CPU
 628 * @cpu: CPU number to query
 629 * @last_update_time: variable to store update time in. Do not update
 630 * counters if NULL.
 631 *
 632 * Return the cumulative idle time (since boot) for a given
 633 * CPU, in microseconds.
 634 *
 635 * This time is measured via accounting rather than sampling,
 636 * and is as accurate as ktime_get() is.
 637 *
 638 * This function returns -1 if NOHZ is not enabled.
 639 */
 640u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 641{
 642        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 643        ktime_t now, idle;
 644
 645        if (!tick_nohz_active)
 646                return -1;
 647
 648        now = ktime_get();
 649        if (last_update_time) {
 650                update_ts_time_stats(cpu, ts, now, last_update_time);
 651                idle = ts->idle_sleeptime;
 652        } else {
 653                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 654                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 655
 656                        idle = ktime_add(ts->idle_sleeptime, delta);
 657                } else {
 658                        idle = ts->idle_sleeptime;
 659                }
 660        }
 661
 662        return ktime_to_us(idle);
 663
 664}
 665EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 666
 667/**
 668 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 669 * @cpu: CPU number to query
 670 * @last_update_time: variable to store update time in. Do not update
 671 * counters if NULL.
 672 *
 673 * Return the cumulative iowait time (since boot) for a given
 674 * CPU, in microseconds.
 675 *
 676 * This time is measured via accounting rather than sampling,
 677 * and is as accurate as ktime_get() is.
 678 *
 679 * This function returns -1 if NOHZ is not enabled.
 680 */
 681u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 682{
 683        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 684        ktime_t now, iowait;
 685
 686        if (!tick_nohz_active)
 687                return -1;
 688
 689        now = ktime_get();
 690        if (last_update_time) {
 691                update_ts_time_stats(cpu, ts, now, last_update_time);
 692                iowait = ts->iowait_sleeptime;
 693        } else {
 694                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 695                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 696
 697                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 698                } else {
 699                        iowait = ts->iowait_sleeptime;
 700                }
 701        }
 702
 703        return ktime_to_us(iowait);
 704}
 705EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 706
 707static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 708{
 709        hrtimer_cancel(&ts->sched_timer);
 710        hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 711
 712        /* Forward the time to expire in the future */
 713        hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 714
 715        if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 716                hrtimer_start_expires(&ts->sched_timer,
 717                                      HRTIMER_MODE_ABS_PINNED_HARD);
 718        } else {
 719                tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 720        }
 721
 722        /*
 723         * Reset to make sure next tick stop doesn't get fooled by past
 724         * cached clock deadline.
 725         */
 726        ts->next_tick = 0;
 727}
 728
 729static inline bool local_timer_softirq_pending(void)
 730{
 731        return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 732}
 733
 734static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 735{
 736        u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 737        unsigned long basejiff;
 738        unsigned int seq;
 739
 740        /* Read jiffies and the time when jiffies were updated last */
 741        do {
 742                seq = read_seqcount_begin(&jiffies_seq);
 743                basemono = last_jiffies_update;
 744                basejiff = jiffies;
 745        } while (read_seqcount_retry(&jiffies_seq, seq));
 746        ts->last_jiffies = basejiff;
 747        ts->timer_expires_base = basemono;
 748
 749        /*
 750         * Keep the periodic tick, when RCU, architecture or irq_work
 751         * requests it.
 752         * Aside of that check whether the local timer softirq is
 753         * pending. If so its a bad idea to call get_next_timer_interrupt()
 754         * because there is an already expired timer, so it will request
 755         * immediate expiry, which rearms the hardware timer with a
 756         * minimal delta which brings us back to this place
 757         * immediately. Lather, rinse and repeat...
 758         */
 759        if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 760            irq_work_needs_cpu() || local_timer_softirq_pending()) {
 761                next_tick = basemono + TICK_NSEC;
 762        } else {
 763                /*
 764                 * Get the next pending timer. If high resolution
 765                 * timers are enabled this only takes the timer wheel
 766                 * timers into account. If high resolution timers are
 767                 * disabled this also looks at the next expiring
 768                 * hrtimer.
 769                 */
 770                next_tmr = get_next_timer_interrupt(basejiff, basemono);
 771                ts->next_timer = next_tmr;
 772                /* Take the next rcu event into account */
 773                next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 774        }
 775
 776        /*
 777         * If the tick is due in the next period, keep it ticking or
 778         * force prod the timer.
 779         */
 780        delta = next_tick - basemono;
 781        if (delta <= (u64)TICK_NSEC) {
 782                /*
 783                 * Tell the timer code that the base is not idle, i.e. undo
 784                 * the effect of get_next_timer_interrupt():
 785                 */
 786                timer_clear_idle();
 787                /*
 788                 * We've not stopped the tick yet, and there's a timer in the
 789                 * next period, so no point in stopping it either, bail.
 790                 */
 791                if (!ts->tick_stopped) {
 792                        ts->timer_expires = 0;
 793                        goto out;
 794                }
 795        }
 796
 797        /*
 798         * If this CPU is the one which had the do_timer() duty last, we limit
 799         * the sleep time to the timekeeping max_deferment value.
 800         * Otherwise we can sleep as long as we want.
 801         */
 802        delta = timekeeping_max_deferment();
 803        if (cpu != tick_do_timer_cpu &&
 804            (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 805                delta = KTIME_MAX;
 806
 807        /* Calculate the next expiry time */
 808        if (delta < (KTIME_MAX - basemono))
 809                expires = basemono + delta;
 810        else
 811                expires = KTIME_MAX;
 812
 813        ts->timer_expires = min_t(u64, expires, next_tick);
 814
 815out:
 816        return ts->timer_expires;
 817}
 818
 819static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 820{
 821        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 822        u64 basemono = ts->timer_expires_base;
 823        u64 expires = ts->timer_expires;
 824        ktime_t tick = expires;
 825
 826        /* Make sure we won't be trying to stop it twice in a row. */
 827        ts->timer_expires_base = 0;
 828
 829        /*
 830         * If this CPU is the one which updates jiffies, then give up
 831         * the assignment and let it be taken by the CPU which runs
 832         * the tick timer next, which might be this CPU as well. If we
 833         * don't drop this here the jiffies might be stale and
 834         * do_timer() never invoked. Keep track of the fact that it
 835         * was the one which had the do_timer() duty last.
 836         */
 837        if (cpu == tick_do_timer_cpu) {
 838                tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 839                ts->do_timer_last = 1;
 840        } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 841                ts->do_timer_last = 0;
 842        }
 843
 844        /* Skip reprogram of event if its not changed */
 845        if (ts->tick_stopped && (expires == ts->next_tick)) {
 846                /* Sanity check: make sure clockevent is actually programmed */
 847                if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 848                        return;
 849
 850                WARN_ON_ONCE(1);
 851                printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 852                            basemono, ts->next_tick, dev->next_event,
 853                            hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 854        }
 855
 856        /*
 857         * nohz_stop_sched_tick can be called several times before
 858         * the nohz_restart_sched_tick is called. This happens when
 859         * interrupts arrive which do not cause a reschedule. In the
 860         * first call we save the current tick time, so we can restart
 861         * the scheduler tick in nohz_restart_sched_tick.
 862         */
 863        if (!ts->tick_stopped) {
 864                calc_load_nohz_start();
 865                quiet_vmstat();
 866
 867                ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 868                ts->tick_stopped = 1;
 869                trace_tick_stop(1, TICK_DEP_MASK_NONE);
 870        }
 871
 872        ts->next_tick = tick;
 873
 874        /*
 875         * If the expiration time == KTIME_MAX, then we simply stop
 876         * the tick timer.
 877         */
 878        if (unlikely(expires == KTIME_MAX)) {
 879                if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 880                        hrtimer_cancel(&ts->sched_timer);
 881                return;
 882        }
 883
 884        if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 885                hrtimer_start(&ts->sched_timer, tick,
 886                              HRTIMER_MODE_ABS_PINNED_HARD);
 887        } else {
 888                hrtimer_set_expires(&ts->sched_timer, tick);
 889                tick_program_event(tick, 1);
 890        }
 891}
 892
 893static void tick_nohz_retain_tick(struct tick_sched *ts)
 894{
 895        ts->timer_expires_base = 0;
 896}
 897
 898#ifdef CONFIG_NO_HZ_FULL
 899static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 900{
 901        if (tick_nohz_next_event(ts, cpu))
 902                tick_nohz_stop_tick(ts, cpu);
 903        else
 904                tick_nohz_retain_tick(ts);
 905}
 906#endif /* CONFIG_NO_HZ_FULL */
 907
 908static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 909{
 910        /* Update jiffies first */
 911        tick_do_update_jiffies64(now);
 912
 913        /*
 914         * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 915         * the clock forward checks in the enqueue path:
 916         */
 917        timer_clear_idle();
 918
 919        calc_load_nohz_stop();
 920        touch_softlockup_watchdog_sched();
 921        /*
 922         * Cancel the scheduled timer and restore the tick
 923         */
 924        ts->tick_stopped  = 0;
 925        ts->idle_exittime = now;
 926
 927        tick_nohz_restart(ts, now);
 928}
 929
 930static void tick_nohz_full_update_tick(struct tick_sched *ts)
 931{
 932#ifdef CONFIG_NO_HZ_FULL
 933        int cpu = smp_processor_id();
 934
 935        if (!tick_nohz_full_cpu(cpu))
 936                return;
 937
 938        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 939                return;
 940
 941        if (can_stop_full_tick(cpu, ts))
 942                tick_nohz_stop_sched_tick(ts, cpu);
 943        else if (ts->tick_stopped)
 944                tick_nohz_restart_sched_tick(ts, ktime_get());
 945#endif
 946}
 947
 948static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 949{
 950        /*
 951         * If this CPU is offline and it is the one which updates
 952         * jiffies, then give up the assignment and let it be taken by
 953         * the CPU which runs the tick timer next. If we don't drop
 954         * this here the jiffies might be stale and do_timer() never
 955         * invoked.
 956         */
 957        if (unlikely(!cpu_online(cpu))) {
 958                if (cpu == tick_do_timer_cpu)
 959                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 960                /*
 961                 * Make sure the CPU doesn't get fooled by obsolete tick
 962                 * deadline if it comes back online later.
 963                 */
 964                ts->next_tick = 0;
 965                return false;
 966        }
 967
 968        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 969                return false;
 970
 971        if (need_resched())
 972                return false;
 973
 974        if (unlikely(local_softirq_pending())) {
 975                static int ratelimit;
 976
 977                if (ratelimit < 10 && !local_bh_blocked() &&
 978                    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 979                        pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
 980                                (unsigned int) local_softirq_pending());
 981                        ratelimit++;
 982                }
 983                return false;
 984        }
 985
 986        if (tick_nohz_full_enabled()) {
 987                /*
 988                 * Keep the tick alive to guarantee timekeeping progression
 989                 * if there are full dynticks CPUs around
 990                 */
 991                if (tick_do_timer_cpu == cpu)
 992                        return false;
 993
 994                /* Should not happen for nohz-full */
 995                if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 996                        return false;
 997        }
 998
 999        return true;
1000}
1001
1002static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1003{
1004        ktime_t expires;
1005        int cpu = smp_processor_id();
1006
1007        /*
1008         * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1009         * tick timer expiration time is known already.
1010         */
1011        if (ts->timer_expires_base)
1012                expires = ts->timer_expires;
1013        else if (can_stop_idle_tick(cpu, ts))
1014                expires = tick_nohz_next_event(ts, cpu);
1015        else
1016                return;
1017
1018        ts->idle_calls++;
1019
1020        if (expires > 0LL) {
1021                int was_stopped = ts->tick_stopped;
1022
1023                tick_nohz_stop_tick(ts, cpu);
1024
1025                ts->idle_sleeps++;
1026                ts->idle_expires = expires;
1027
1028                if (!was_stopped && ts->tick_stopped) {
1029                        ts->idle_jiffies = ts->last_jiffies;
1030                        nohz_balance_enter_idle(cpu);
1031                }
1032        } else {
1033                tick_nohz_retain_tick(ts);
1034        }
1035}
1036
1037/**
1038 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1039 *
1040 * When the next event is more than a tick into the future, stop the idle tick
1041 */
1042void tick_nohz_idle_stop_tick(void)
1043{
1044        __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1045}
1046
1047void tick_nohz_idle_retain_tick(void)
1048{
1049        tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1050        /*
1051         * Undo the effect of get_next_timer_interrupt() called from
1052         * tick_nohz_next_event().
1053         */
1054        timer_clear_idle();
1055}
1056
1057/**
1058 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1059 *
1060 * Called when we start the idle loop.
1061 */
1062void tick_nohz_idle_enter(void)
1063{
1064        struct tick_sched *ts;
1065
1066        lockdep_assert_irqs_enabled();
1067
1068        local_irq_disable();
1069
1070        ts = this_cpu_ptr(&tick_cpu_sched);
1071
1072        WARN_ON_ONCE(ts->timer_expires_base);
1073
1074        ts->inidle = 1;
1075        tick_nohz_start_idle(ts);
1076
1077        local_irq_enable();
1078}
1079
1080/**
1081 * tick_nohz_irq_exit - update next tick event from interrupt exit
1082 *
1083 * When an interrupt fires while we are idle and it doesn't cause
1084 * a reschedule, it may still add, modify or delete a timer, enqueue
1085 * an RCU callback, etc...
1086 * So we need to re-calculate and reprogram the next tick event.
1087 */
1088void tick_nohz_irq_exit(void)
1089{
1090        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1091
1092        if (ts->inidle)
1093                tick_nohz_start_idle(ts);
1094        else
1095                tick_nohz_full_update_tick(ts);
1096}
1097
1098/**
1099 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1100 */
1101bool tick_nohz_idle_got_tick(void)
1102{
1103        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1104
1105        if (ts->got_idle_tick) {
1106                ts->got_idle_tick = 0;
1107                return true;
1108        }
1109        return false;
1110}
1111
1112/**
1113 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1114 * or the tick, whatever that expires first. Note that, if the tick has been
1115 * stopped, it returns the next hrtimer.
1116 *
1117 * Called from power state control code with interrupts disabled
1118 */
1119ktime_t tick_nohz_get_next_hrtimer(void)
1120{
1121        return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1122}
1123
1124/**
1125 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1126 * @delta_next: duration until the next event if the tick cannot be stopped
1127 *
1128 * Called from power state control code with interrupts disabled.
1129 *
1130 * The return value of this function and/or the value returned by it through the
1131 * @delta_next pointer can be negative which must be taken into account by its
1132 * callers.
1133 */
1134ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1135{
1136        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1137        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1138        int cpu = smp_processor_id();
1139        /*
1140         * The idle entry time is expected to be a sufficient approximation of
1141         * the current time at this point.
1142         */
1143        ktime_t now = ts->idle_entrytime;
1144        ktime_t next_event;
1145
1146        WARN_ON_ONCE(!ts->inidle);
1147
1148        *delta_next = ktime_sub(dev->next_event, now);
1149
1150        if (!can_stop_idle_tick(cpu, ts))
1151                return *delta_next;
1152
1153        next_event = tick_nohz_next_event(ts, cpu);
1154        if (!next_event)
1155                return *delta_next;
1156
1157        /*
1158         * If the next highres timer to expire is earlier than next_event, the
1159         * idle governor needs to know that.
1160         */
1161        next_event = min_t(u64, next_event,
1162                           hrtimer_next_event_without(&ts->sched_timer));
1163
1164        return ktime_sub(next_event, now);
1165}
1166
1167/**
1168 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1169 * for a particular CPU.
1170 *
1171 * Called from the schedutil frequency scaling governor in scheduler context.
1172 */
1173unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1174{
1175        struct tick_sched *ts = tick_get_tick_sched(cpu);
1176
1177        return ts->idle_calls;
1178}
1179
1180/**
1181 * tick_nohz_get_idle_calls - return the current idle calls counter value
1182 *
1183 * Called from the schedutil frequency scaling governor in scheduler context.
1184 */
1185unsigned long tick_nohz_get_idle_calls(void)
1186{
1187        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1188
1189        return ts->idle_calls;
1190}
1191
1192static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1193{
1194#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1195        unsigned long ticks;
1196
1197        if (vtime_accounting_enabled_this_cpu())
1198                return;
1199        /*
1200         * We stopped the tick in idle. Update process times would miss the
1201         * time we slept as update_process_times does only a 1 tick
1202         * accounting. Enforce that this is accounted to idle !
1203         */
1204        ticks = jiffies - ts->idle_jiffies;
1205        /*
1206         * We might be one off. Do not randomly account a huge number of ticks!
1207         */
1208        if (ticks && ticks < LONG_MAX)
1209                account_idle_ticks(ticks);
1210#endif
1211}
1212
1213static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1214{
1215        tick_nohz_restart_sched_tick(ts, now);
1216        tick_nohz_account_idle_ticks(ts);
1217}
1218
1219void tick_nohz_idle_restart_tick(void)
1220{
1221        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1222
1223        if (ts->tick_stopped)
1224                __tick_nohz_idle_restart_tick(ts, ktime_get());
1225}
1226
1227/**
1228 * tick_nohz_idle_exit - restart the idle tick from the idle task
1229 *
1230 * Restart the idle tick when the CPU is woken up from idle
1231 * This also exit the RCU extended quiescent state. The CPU
1232 * can use RCU again after this function is called.
1233 */
1234void tick_nohz_idle_exit(void)
1235{
1236        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1237        bool idle_active, tick_stopped;
1238        ktime_t now;
1239
1240        local_irq_disable();
1241
1242        WARN_ON_ONCE(!ts->inidle);
1243        WARN_ON_ONCE(ts->timer_expires_base);
1244
1245        ts->inidle = 0;
1246        idle_active = ts->idle_active;
1247        tick_stopped = ts->tick_stopped;
1248
1249        if (idle_active || tick_stopped)
1250                now = ktime_get();
1251
1252        if (idle_active)
1253                tick_nohz_stop_idle(ts, now);
1254
1255        if (tick_stopped)
1256                __tick_nohz_idle_restart_tick(ts, now);
1257
1258        local_irq_enable();
1259}
1260
1261/*
1262 * The nohz low res interrupt handler
1263 */
1264static void tick_nohz_handler(struct clock_event_device *dev)
1265{
1266        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1267        struct pt_regs *regs = get_irq_regs();
1268        ktime_t now = ktime_get();
1269
1270        dev->next_event = KTIME_MAX;
1271
1272        tick_sched_do_timer(ts, now);
1273        tick_sched_handle(ts, regs);
1274
1275        /* No need to reprogram if we are running tickless  */
1276        if (unlikely(ts->tick_stopped))
1277                return;
1278
1279        hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1280        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1281}
1282
1283static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1284{
1285        if (!tick_nohz_enabled)
1286                return;
1287        ts->nohz_mode = mode;
1288        /* One update is enough */
1289        if (!test_and_set_bit(0, &tick_nohz_active))
1290                timers_update_nohz();
1291}
1292
1293/**
1294 * tick_nohz_switch_to_nohz - switch to nohz mode
1295 */
1296static void tick_nohz_switch_to_nohz(void)
1297{
1298        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1299        ktime_t next;
1300
1301        if (!tick_nohz_enabled)
1302                return;
1303
1304        if (tick_switch_to_oneshot(tick_nohz_handler))
1305                return;
1306
1307        /*
1308         * Recycle the hrtimer in ts, so we can share the
1309         * hrtimer_forward with the highres code.
1310         */
1311        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1312        /* Get the next period */
1313        next = tick_init_jiffy_update();
1314
1315        hrtimer_set_expires(&ts->sched_timer, next);
1316        hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1317        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1318        tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1319}
1320
1321static inline void tick_nohz_irq_enter(void)
1322{
1323        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1324        ktime_t now;
1325
1326        if (!ts->idle_active && !ts->tick_stopped)
1327                return;
1328        now = ktime_get();
1329        if (ts->idle_active)
1330                tick_nohz_stop_idle(ts, now);
1331        if (ts->tick_stopped)
1332                tick_nohz_update_jiffies(now);
1333}
1334
1335#else
1336
1337static inline void tick_nohz_switch_to_nohz(void) { }
1338static inline void tick_nohz_irq_enter(void) { }
1339static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1340
1341#endif /* CONFIG_NO_HZ_COMMON */
1342
1343/*
1344 * Called from irq_enter to notify about the possible interruption of idle()
1345 */
1346void tick_irq_enter(void)
1347{
1348        tick_check_oneshot_broadcast_this_cpu();
1349        tick_nohz_irq_enter();
1350}
1351
1352/*
1353 * High resolution timer specific code
1354 */
1355#ifdef CONFIG_HIGH_RES_TIMERS
1356/*
1357 * We rearm the timer until we get disabled by the idle code.
1358 * Called with interrupts disabled.
1359 */
1360static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1361{
1362        struct tick_sched *ts =
1363                container_of(timer, struct tick_sched, sched_timer);
1364        struct pt_regs *regs = get_irq_regs();
1365        ktime_t now = ktime_get();
1366
1367        tick_sched_do_timer(ts, now);
1368
1369        /*
1370         * Do not call, when we are not in irq context and have
1371         * no valid regs pointer
1372         */
1373        if (regs)
1374                tick_sched_handle(ts, regs);
1375        else
1376                ts->next_tick = 0;
1377
1378        /* No need to reprogram if we are in idle or full dynticks mode */
1379        if (unlikely(ts->tick_stopped))
1380                return HRTIMER_NORESTART;
1381
1382        hrtimer_forward(timer, now, TICK_NSEC);
1383
1384        return HRTIMER_RESTART;
1385}
1386
1387static int sched_skew_tick;
1388
1389static int __init skew_tick(char *str)
1390{
1391        get_option(&str, &sched_skew_tick);
1392
1393        return 0;
1394}
1395early_param("skew_tick", skew_tick);
1396
1397/**
1398 * tick_setup_sched_timer - setup the tick emulation timer
1399 */
1400void tick_setup_sched_timer(void)
1401{
1402        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1403        ktime_t now = ktime_get();
1404
1405        /*
1406         * Emulate tick processing via per-CPU hrtimers:
1407         */
1408        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1409        ts->sched_timer.function = tick_sched_timer;
1410
1411        /* Get the next period (per-CPU) */
1412        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1413
1414        /* Offset the tick to avert jiffies_lock contention. */
1415        if (sched_skew_tick) {
1416                u64 offset = TICK_NSEC >> 1;
1417                do_div(offset, num_possible_cpus());
1418                offset *= smp_processor_id();
1419                hrtimer_add_expires_ns(&ts->sched_timer, offset);
1420        }
1421
1422        hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1423        hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1424        tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1425}
1426#endif /* HIGH_RES_TIMERS */
1427
1428#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1429void tick_cancel_sched_timer(int cpu)
1430{
1431        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1432
1433# ifdef CONFIG_HIGH_RES_TIMERS
1434        if (ts->sched_timer.base)
1435                hrtimer_cancel(&ts->sched_timer);
1436# endif
1437
1438        memset(ts, 0, sizeof(*ts));
1439}
1440#endif
1441
1442/**
1443 * Async notification about clocksource changes
1444 */
1445void tick_clock_notify(void)
1446{
1447        int cpu;
1448
1449        for_each_possible_cpu(cpu)
1450                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1451}
1452
1453/*
1454 * Async notification about clock event changes
1455 */
1456void tick_oneshot_notify(void)
1457{
1458        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1459
1460        set_bit(0, &ts->check_clocks);
1461}
1462
1463/**
1464 * Check, if a change happened, which makes oneshot possible.
1465 *
1466 * Called cyclic from the hrtimer softirq (driven by the timer
1467 * softirq) allow_nohz signals, that we can switch into low-res nohz
1468 * mode, because high resolution timers are disabled (either compile
1469 * or runtime). Called with interrupts disabled.
1470 */
1471int tick_check_oneshot_change(int allow_nohz)
1472{
1473        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1474
1475        if (!test_and_clear_bit(0, &ts->check_clocks))
1476                return 0;
1477
1478        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1479                return 0;
1480
1481        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1482                return 0;
1483
1484        if (!allow_nohz)
1485                return 1;
1486
1487        tick_nohz_switch_to_nohz();
1488        return 0;
1489}
1490