linux/mm/memory-failure.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 * 
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.  The tricky part
  14 * here is that we can access any page asynchronously in respect to 
  15 * other VM users, because memory failures could happen anytime and 
  16 * anywhere. This could violate some of their assumptions. This is why 
  17 * this code has to be extremely careful. Generally it tries to use 
  18 * normal locking rules, as in get the standard locks, even if that means 
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/vm/page-types when running a real workload.
  28 * 
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back 
  31 * from RMAP chains to processes has to walk the complete process list and 
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core 
  34 * VM.
  35 */
  36#include <linux/kernel.h>
  37#include <linux/mm.h>
  38#include <linux/page-flags.h>
  39#include <linux/kernel-page-flags.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/task.h>
  42#include <linux/ksm.h>
  43#include <linux/rmap.h>
  44#include <linux/export.h>
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
  49#include <linux/suspend.h>
  50#include <linux/slab.h>
  51#include <linux/swapops.h>
  52#include <linux/hugetlb.h>
  53#include <linux/memory_hotplug.h>
  54#include <linux/mm_inline.h>
  55#include <linux/memremap.h>
  56#include <linux/kfifo.h>
  57#include <linux/ratelimit.h>
  58#include <linux/page-isolation.h>
  59#include "internal.h"
  60#include "ras/ras_event.h"
  61
  62int sysctl_memory_failure_early_kill __read_mostly = 0;
  63
  64int sysctl_memory_failure_recovery __read_mostly = 1;
  65
  66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  67
  68static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
  69{
  70        if (hugepage_or_freepage) {
  71                /*
  72                 * Doing this check for free pages is also fine since dissolve_free_huge_page
  73                 * returns 0 for non-hugetlb pages as well.
  74                 */
  75                if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
  76                        /*
  77                         * We could fail to take off the target page from buddy
  78                         * for example due to racy page allocation, but that's
  79                         * acceptable because soft-offlined page is not broken
  80                         * and if someone really want to use it, they should
  81                         * take it.
  82                         */
  83                        return false;
  84        }
  85
  86        SetPageHWPoison(page);
  87        if (release)
  88                put_page(page);
  89        page_ref_inc(page);
  90        num_poisoned_pages_inc();
  91
  92        return true;
  93}
  94
  95#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  96
  97u32 hwpoison_filter_enable = 0;
  98u32 hwpoison_filter_dev_major = ~0U;
  99u32 hwpoison_filter_dev_minor = ~0U;
 100u64 hwpoison_filter_flags_mask;
 101u64 hwpoison_filter_flags_value;
 102EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
 103EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
 104EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
 105EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
 106EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
 107
 108static int hwpoison_filter_dev(struct page *p)
 109{
 110        struct address_space *mapping;
 111        dev_t dev;
 112
 113        if (hwpoison_filter_dev_major == ~0U &&
 114            hwpoison_filter_dev_minor == ~0U)
 115                return 0;
 116
 117        /*
 118         * page_mapping() does not accept slab pages.
 119         */
 120        if (PageSlab(p))
 121                return -EINVAL;
 122
 123        mapping = page_mapping(p);
 124        if (mapping == NULL || mapping->host == NULL)
 125                return -EINVAL;
 126
 127        dev = mapping->host->i_sb->s_dev;
 128        if (hwpoison_filter_dev_major != ~0U &&
 129            hwpoison_filter_dev_major != MAJOR(dev))
 130                return -EINVAL;
 131        if (hwpoison_filter_dev_minor != ~0U &&
 132            hwpoison_filter_dev_minor != MINOR(dev))
 133                return -EINVAL;
 134
 135        return 0;
 136}
 137
 138static int hwpoison_filter_flags(struct page *p)
 139{
 140        if (!hwpoison_filter_flags_mask)
 141                return 0;
 142
 143        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 144                                    hwpoison_filter_flags_value)
 145                return 0;
 146        else
 147                return -EINVAL;
 148}
 149
 150/*
 151 * This allows stress tests to limit test scope to a collection of tasks
 152 * by putting them under some memcg. This prevents killing unrelated/important
 153 * processes such as /sbin/init. Note that the target task may share clean
 154 * pages with init (eg. libc text), which is harmless. If the target task
 155 * share _dirty_ pages with another task B, the test scheme must make sure B
 156 * is also included in the memcg. At last, due to race conditions this filter
 157 * can only guarantee that the page either belongs to the memcg tasks, or is
 158 * a freed page.
 159 */
 160#ifdef CONFIG_MEMCG
 161u64 hwpoison_filter_memcg;
 162EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 163static int hwpoison_filter_task(struct page *p)
 164{
 165        if (!hwpoison_filter_memcg)
 166                return 0;
 167
 168        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 169                return -EINVAL;
 170
 171        return 0;
 172}
 173#else
 174static int hwpoison_filter_task(struct page *p) { return 0; }
 175#endif
 176
 177int hwpoison_filter(struct page *p)
 178{
 179        if (!hwpoison_filter_enable)
 180                return 0;
 181
 182        if (hwpoison_filter_dev(p))
 183                return -EINVAL;
 184
 185        if (hwpoison_filter_flags(p))
 186                return -EINVAL;
 187
 188        if (hwpoison_filter_task(p))
 189                return -EINVAL;
 190
 191        return 0;
 192}
 193#else
 194int hwpoison_filter(struct page *p)
 195{
 196        return 0;
 197}
 198#endif
 199
 200EXPORT_SYMBOL_GPL(hwpoison_filter);
 201
 202/*
 203 * Kill all processes that have a poisoned page mapped and then isolate
 204 * the page.
 205 *
 206 * General strategy:
 207 * Find all processes having the page mapped and kill them.
 208 * But we keep a page reference around so that the page is not
 209 * actually freed yet.
 210 * Then stash the page away
 211 *
 212 * There's no convenient way to get back to mapped processes
 213 * from the VMAs. So do a brute-force search over all
 214 * running processes.
 215 *
 216 * Remember that machine checks are not common (or rather
 217 * if they are common you have other problems), so this shouldn't
 218 * be a performance issue.
 219 *
 220 * Also there are some races possible while we get from the
 221 * error detection to actually handle it.
 222 */
 223
 224struct to_kill {
 225        struct list_head nd;
 226        struct task_struct *tsk;
 227        unsigned long addr;
 228        short size_shift;
 229};
 230
 231/*
 232 * Send all the processes who have the page mapped a signal.
 233 * ``action optional'' if they are not immediately affected by the error
 234 * ``action required'' if error happened in current execution context
 235 */
 236static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 237{
 238        struct task_struct *t = tk->tsk;
 239        short addr_lsb = tk->size_shift;
 240        int ret = 0;
 241
 242        pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 243                        pfn, t->comm, t->pid);
 244
 245        if (flags & MF_ACTION_REQUIRED) {
 246                if (t == current)
 247                        ret = force_sig_mceerr(BUS_MCEERR_AR,
 248                                         (void __user *)tk->addr, addr_lsb);
 249                else
 250                        /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
 251                        ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 252                                addr_lsb, t);
 253        } else {
 254                /*
 255                 * Don't use force here, it's convenient if the signal
 256                 * can be temporarily blocked.
 257                 * This could cause a loop when the user sets SIGBUS
 258                 * to SIG_IGN, but hopefully no one will do that?
 259                 */
 260                ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 261                                      addr_lsb, t);  /* synchronous? */
 262        }
 263        if (ret < 0)
 264                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 265                        t->comm, t->pid, ret);
 266        return ret;
 267}
 268
 269/*
 270 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 271 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
 272 */
 273void shake_page(struct page *p, int access)
 274{
 275        if (PageHuge(p))
 276                return;
 277
 278        if (!PageSlab(p)) {
 279                lru_add_drain_all();
 280                if (PageLRU(p) || is_free_buddy_page(p))
 281                        return;
 282        }
 283
 284        /*
 285         * Only call shrink_node_slabs here (which would also shrink
 286         * other caches) if access is not potentially fatal.
 287         */
 288        if (access)
 289                drop_slab_node(page_to_nid(p));
 290}
 291EXPORT_SYMBOL_GPL(shake_page);
 292
 293static unsigned long dev_pagemap_mapping_shift(struct page *page,
 294                struct vm_area_struct *vma)
 295{
 296        unsigned long address = vma_address(page, vma);
 297        pgd_t *pgd;
 298        p4d_t *p4d;
 299        pud_t *pud;
 300        pmd_t *pmd;
 301        pte_t *pte;
 302
 303        pgd = pgd_offset(vma->vm_mm, address);
 304        if (!pgd_present(*pgd))
 305                return 0;
 306        p4d = p4d_offset(pgd, address);
 307        if (!p4d_present(*p4d))
 308                return 0;
 309        pud = pud_offset(p4d, address);
 310        if (!pud_present(*pud))
 311                return 0;
 312        if (pud_devmap(*pud))
 313                return PUD_SHIFT;
 314        pmd = pmd_offset(pud, address);
 315        if (!pmd_present(*pmd))
 316                return 0;
 317        if (pmd_devmap(*pmd))
 318                return PMD_SHIFT;
 319        pte = pte_offset_map(pmd, address);
 320        if (!pte_present(*pte))
 321                return 0;
 322        if (pte_devmap(*pte))
 323                return PAGE_SHIFT;
 324        return 0;
 325}
 326
 327/*
 328 * Failure handling: if we can't find or can't kill a process there's
 329 * not much we can do.  We just print a message and ignore otherwise.
 330 */
 331
 332/*
 333 * Schedule a process for later kill.
 334 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 335 */
 336static void add_to_kill(struct task_struct *tsk, struct page *p,
 337                       struct vm_area_struct *vma,
 338                       struct list_head *to_kill)
 339{
 340        struct to_kill *tk;
 341
 342        tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 343        if (!tk) {
 344                pr_err("Memory failure: Out of memory while machine check handling\n");
 345                return;
 346        }
 347
 348        tk->addr = page_address_in_vma(p, vma);
 349        if (is_zone_device_page(p))
 350                tk->size_shift = dev_pagemap_mapping_shift(p, vma);
 351        else
 352                tk->size_shift = page_shift(compound_head(p));
 353
 354        /*
 355         * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 356         * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 357         * so "tk->size_shift == 0" effectively checks no mapping on
 358         * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 359         * to a process' address space, it's possible not all N VMAs
 360         * contain mappings for the page, but at least one VMA does.
 361         * Only deliver SIGBUS with payload derived from the VMA that
 362         * has a mapping for the page.
 363         */
 364        if (tk->addr == -EFAULT) {
 365                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 366                        page_to_pfn(p), tsk->comm);
 367        } else if (tk->size_shift == 0) {
 368                kfree(tk);
 369                return;
 370        }
 371
 372        get_task_struct(tsk);
 373        tk->tsk = tsk;
 374        list_add_tail(&tk->nd, to_kill);
 375}
 376
 377/*
 378 * Kill the processes that have been collected earlier.
 379 *
 380 * Only do anything when DOIT is set, otherwise just free the list
 381 * (this is used for clean pages which do not need killing)
 382 * Also when FAIL is set do a force kill because something went
 383 * wrong earlier.
 384 */
 385static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 386                unsigned long pfn, int flags)
 387{
 388        struct to_kill *tk, *next;
 389
 390        list_for_each_entry_safe (tk, next, to_kill, nd) {
 391                if (forcekill) {
 392                        /*
 393                         * In case something went wrong with munmapping
 394                         * make sure the process doesn't catch the
 395                         * signal and then access the memory. Just kill it.
 396                         */
 397                        if (fail || tk->addr == -EFAULT) {
 398                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 399                                       pfn, tk->tsk->comm, tk->tsk->pid);
 400                                do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 401                                                 tk->tsk, PIDTYPE_PID);
 402                        }
 403
 404                        /*
 405                         * In theory the process could have mapped
 406                         * something else on the address in-between. We could
 407                         * check for that, but we need to tell the
 408                         * process anyways.
 409                         */
 410                        else if (kill_proc(tk, pfn, flags) < 0)
 411                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 412                                       pfn, tk->tsk->comm, tk->tsk->pid);
 413                }
 414                put_task_struct(tk->tsk);
 415                kfree(tk);
 416        }
 417}
 418
 419/*
 420 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 421 * on behalf of the thread group. Return task_struct of the (first found)
 422 * dedicated thread if found, and return NULL otherwise.
 423 *
 424 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 425 * have to call rcu_read_lock/unlock() in this function.
 426 */
 427static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 428{
 429        struct task_struct *t;
 430
 431        for_each_thread(tsk, t) {
 432                if (t->flags & PF_MCE_PROCESS) {
 433                        if (t->flags & PF_MCE_EARLY)
 434                                return t;
 435                } else {
 436                        if (sysctl_memory_failure_early_kill)
 437                                return t;
 438                }
 439        }
 440        return NULL;
 441}
 442
 443/*
 444 * Determine whether a given process is "early kill" process which expects
 445 * to be signaled when some page under the process is hwpoisoned.
 446 * Return task_struct of the dedicated thread (main thread unless explicitly
 447 * specified) if the process is "early kill" and otherwise returns NULL.
 448 *
 449 * Note that the above is true for Action Optional case. For Action Required
 450 * case, it's only meaningful to the current thread which need to be signaled
 451 * with SIGBUS, this error is Action Optional for other non current
 452 * processes sharing the same error page,if the process is "early kill", the
 453 * task_struct of the dedicated thread will also be returned.
 454 */
 455static struct task_struct *task_early_kill(struct task_struct *tsk,
 456                                           int force_early)
 457{
 458        if (!tsk->mm)
 459                return NULL;
 460        /*
 461         * Comparing ->mm here because current task might represent
 462         * a subthread, while tsk always points to the main thread.
 463         */
 464        if (force_early && tsk->mm == current->mm)
 465                return current;
 466
 467        return find_early_kill_thread(tsk);
 468}
 469
 470/*
 471 * Collect processes when the error hit an anonymous page.
 472 */
 473static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 474                                int force_early)
 475{
 476        struct vm_area_struct *vma;
 477        struct task_struct *tsk;
 478        struct anon_vma *av;
 479        pgoff_t pgoff;
 480
 481        av = page_lock_anon_vma_read(page);
 482        if (av == NULL) /* Not actually mapped anymore */
 483                return;
 484
 485        pgoff = page_to_pgoff(page);
 486        read_lock(&tasklist_lock);
 487        for_each_process (tsk) {
 488                struct anon_vma_chain *vmac;
 489                struct task_struct *t = task_early_kill(tsk, force_early);
 490
 491                if (!t)
 492                        continue;
 493                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 494                                               pgoff, pgoff) {
 495                        vma = vmac->vma;
 496                        if (!page_mapped_in_vma(page, vma))
 497                                continue;
 498                        if (vma->vm_mm == t->mm)
 499                                add_to_kill(t, page, vma, to_kill);
 500                }
 501        }
 502        read_unlock(&tasklist_lock);
 503        page_unlock_anon_vma_read(av);
 504}
 505
 506/*
 507 * Collect processes when the error hit a file mapped page.
 508 */
 509static void collect_procs_file(struct page *page, struct list_head *to_kill,
 510                                int force_early)
 511{
 512        struct vm_area_struct *vma;
 513        struct task_struct *tsk;
 514        struct address_space *mapping = page->mapping;
 515        pgoff_t pgoff;
 516
 517        i_mmap_lock_read(mapping);
 518        read_lock(&tasklist_lock);
 519        pgoff = page_to_pgoff(page);
 520        for_each_process(tsk) {
 521                struct task_struct *t = task_early_kill(tsk, force_early);
 522
 523                if (!t)
 524                        continue;
 525                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 526                                      pgoff) {
 527                        /*
 528                         * Send early kill signal to tasks where a vma covers
 529                         * the page but the corrupted page is not necessarily
 530                         * mapped it in its pte.
 531                         * Assume applications who requested early kill want
 532                         * to be informed of all such data corruptions.
 533                         */
 534                        if (vma->vm_mm == t->mm)
 535                                add_to_kill(t, page, vma, to_kill);
 536                }
 537        }
 538        read_unlock(&tasklist_lock);
 539        i_mmap_unlock_read(mapping);
 540}
 541
 542/*
 543 * Collect the processes who have the corrupted page mapped to kill.
 544 */
 545static void collect_procs(struct page *page, struct list_head *tokill,
 546                                int force_early)
 547{
 548        if (!page->mapping)
 549                return;
 550
 551        if (PageAnon(page))
 552                collect_procs_anon(page, tokill, force_early);
 553        else
 554                collect_procs_file(page, tokill, force_early);
 555}
 556
 557static const char *action_name[] = {
 558        [MF_IGNORED] = "Ignored",
 559        [MF_FAILED] = "Failed",
 560        [MF_DELAYED] = "Delayed",
 561        [MF_RECOVERED] = "Recovered",
 562};
 563
 564static const char * const action_page_types[] = {
 565        [MF_MSG_KERNEL]                 = "reserved kernel page",
 566        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 567        [MF_MSG_SLAB]                   = "kernel slab page",
 568        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 569        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 570        [MF_MSG_HUGE]                   = "huge page",
 571        [MF_MSG_FREE_HUGE]              = "free huge page",
 572        [MF_MSG_NON_PMD_HUGE]           = "non-pmd-sized huge page",
 573        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 574        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 575        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 576        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 577        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 578        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 579        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 580        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 581        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 582        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 583        [MF_MSG_BUDDY]                  = "free buddy page",
 584        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 585        [MF_MSG_DAX]                    = "dax page",
 586        [MF_MSG_UNSPLIT_THP]            = "unsplit thp",
 587        [MF_MSG_UNKNOWN]                = "unknown page",
 588};
 589
 590/*
 591 * XXX: It is possible that a page is isolated from LRU cache,
 592 * and then kept in swap cache or failed to remove from page cache.
 593 * The page count will stop it from being freed by unpoison.
 594 * Stress tests should be aware of this memory leak problem.
 595 */
 596static int delete_from_lru_cache(struct page *p)
 597{
 598        if (!isolate_lru_page(p)) {
 599                /*
 600                 * Clear sensible page flags, so that the buddy system won't
 601                 * complain when the page is unpoison-and-freed.
 602                 */
 603                ClearPageActive(p);
 604                ClearPageUnevictable(p);
 605
 606                /*
 607                 * Poisoned page might never drop its ref count to 0 so we have
 608                 * to uncharge it manually from its memcg.
 609                 */
 610                mem_cgroup_uncharge(p);
 611
 612                /*
 613                 * drop the page count elevated by isolate_lru_page()
 614                 */
 615                put_page(p);
 616                return 0;
 617        }
 618        return -EIO;
 619}
 620
 621static int truncate_error_page(struct page *p, unsigned long pfn,
 622                                struct address_space *mapping)
 623{
 624        int ret = MF_FAILED;
 625
 626        if (mapping->a_ops->error_remove_page) {
 627                int err = mapping->a_ops->error_remove_page(mapping, p);
 628
 629                if (err != 0) {
 630                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 631                                pfn, err);
 632                } else if (page_has_private(p) &&
 633                           !try_to_release_page(p, GFP_NOIO)) {
 634                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 635                                pfn);
 636                } else {
 637                        ret = MF_RECOVERED;
 638                }
 639        } else {
 640                /*
 641                 * If the file system doesn't support it just invalidate
 642                 * This fails on dirty or anything with private pages
 643                 */
 644                if (invalidate_inode_page(p))
 645                        ret = MF_RECOVERED;
 646                else
 647                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 648                                pfn);
 649        }
 650
 651        return ret;
 652}
 653
 654/*
 655 * Error hit kernel page.
 656 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 657 * could be more sophisticated.
 658 */
 659static int me_kernel(struct page *p, unsigned long pfn)
 660{
 661        unlock_page(p);
 662        return MF_IGNORED;
 663}
 664
 665/*
 666 * Page in unknown state. Do nothing.
 667 */
 668static int me_unknown(struct page *p, unsigned long pfn)
 669{
 670        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 671        unlock_page(p);
 672        return MF_FAILED;
 673}
 674
 675/*
 676 * Clean (or cleaned) page cache page.
 677 */
 678static int me_pagecache_clean(struct page *p, unsigned long pfn)
 679{
 680        int ret;
 681        struct address_space *mapping;
 682
 683        delete_from_lru_cache(p);
 684
 685        /*
 686         * For anonymous pages we're done the only reference left
 687         * should be the one m_f() holds.
 688         */
 689        if (PageAnon(p)) {
 690                ret = MF_RECOVERED;
 691                goto out;
 692        }
 693
 694        /*
 695         * Now truncate the page in the page cache. This is really
 696         * more like a "temporary hole punch"
 697         * Don't do this for block devices when someone else
 698         * has a reference, because it could be file system metadata
 699         * and that's not safe to truncate.
 700         */
 701        mapping = page_mapping(p);
 702        if (!mapping) {
 703                /*
 704                 * Page has been teared down in the meanwhile
 705                 */
 706                ret = MF_FAILED;
 707                goto out;
 708        }
 709
 710        /*
 711         * Truncation is a bit tricky. Enable it per file system for now.
 712         *
 713         * Open: to take i_mutex or not for this? Right now we don't.
 714         */
 715        ret = truncate_error_page(p, pfn, mapping);
 716out:
 717        unlock_page(p);
 718        return ret;
 719}
 720
 721/*
 722 * Dirty pagecache page
 723 * Issues: when the error hit a hole page the error is not properly
 724 * propagated.
 725 */
 726static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 727{
 728        struct address_space *mapping = page_mapping(p);
 729
 730        SetPageError(p);
 731        /* TBD: print more information about the file. */
 732        if (mapping) {
 733                /*
 734                 * IO error will be reported by write(), fsync(), etc.
 735                 * who check the mapping.
 736                 * This way the application knows that something went
 737                 * wrong with its dirty file data.
 738                 *
 739                 * There's one open issue:
 740                 *
 741                 * The EIO will be only reported on the next IO
 742                 * operation and then cleared through the IO map.
 743                 * Normally Linux has two mechanisms to pass IO error
 744                 * first through the AS_EIO flag in the address space
 745                 * and then through the PageError flag in the page.
 746                 * Since we drop pages on memory failure handling the
 747                 * only mechanism open to use is through AS_AIO.
 748                 *
 749                 * This has the disadvantage that it gets cleared on
 750                 * the first operation that returns an error, while
 751                 * the PageError bit is more sticky and only cleared
 752                 * when the page is reread or dropped.  If an
 753                 * application assumes it will always get error on
 754                 * fsync, but does other operations on the fd before
 755                 * and the page is dropped between then the error
 756                 * will not be properly reported.
 757                 *
 758                 * This can already happen even without hwpoisoned
 759                 * pages: first on metadata IO errors (which only
 760                 * report through AS_EIO) or when the page is dropped
 761                 * at the wrong time.
 762                 *
 763                 * So right now we assume that the application DTRT on
 764                 * the first EIO, but we're not worse than other parts
 765                 * of the kernel.
 766                 */
 767                mapping_set_error(mapping, -EIO);
 768        }
 769
 770        return me_pagecache_clean(p, pfn);
 771}
 772
 773/*
 774 * Clean and dirty swap cache.
 775 *
 776 * Dirty swap cache page is tricky to handle. The page could live both in page
 777 * cache and swap cache(ie. page is freshly swapped in). So it could be
 778 * referenced concurrently by 2 types of PTEs:
 779 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 780 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 781 * and then
 782 *      - clear dirty bit to prevent IO
 783 *      - remove from LRU
 784 *      - but keep in the swap cache, so that when we return to it on
 785 *        a later page fault, we know the application is accessing
 786 *        corrupted data and shall be killed (we installed simple
 787 *        interception code in do_swap_page to catch it).
 788 *
 789 * Clean swap cache pages can be directly isolated. A later page fault will
 790 * bring in the known good data from disk.
 791 */
 792static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 793{
 794        int ret;
 795
 796        ClearPageDirty(p);
 797        /* Trigger EIO in shmem: */
 798        ClearPageUptodate(p);
 799
 800        ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
 801        unlock_page(p);
 802        return ret;
 803}
 804
 805static int me_swapcache_clean(struct page *p, unsigned long pfn)
 806{
 807        int ret;
 808
 809        delete_from_swap_cache(p);
 810
 811        ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
 812        unlock_page(p);
 813        return ret;
 814}
 815
 816/*
 817 * Huge pages. Needs work.
 818 * Issues:
 819 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 820 *   To narrow down kill region to one page, we need to break up pmd.
 821 */
 822static int me_huge_page(struct page *p, unsigned long pfn)
 823{
 824        int res;
 825        struct page *hpage = compound_head(p);
 826        struct address_space *mapping;
 827
 828        if (!PageHuge(hpage))
 829                return MF_DELAYED;
 830
 831        mapping = page_mapping(hpage);
 832        if (mapping) {
 833                res = truncate_error_page(hpage, pfn, mapping);
 834                unlock_page(hpage);
 835        } else {
 836                res = MF_FAILED;
 837                unlock_page(hpage);
 838                /*
 839                 * migration entry prevents later access on error anonymous
 840                 * hugepage, so we can free and dissolve it into buddy to
 841                 * save healthy subpages.
 842                 */
 843                if (PageAnon(hpage))
 844                        put_page(hpage);
 845                if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
 846                        page_ref_inc(p);
 847                        res = MF_RECOVERED;
 848                }
 849        }
 850
 851        return res;
 852}
 853
 854/*
 855 * Various page states we can handle.
 856 *
 857 * A page state is defined by its current page->flags bits.
 858 * The table matches them in order and calls the right handler.
 859 *
 860 * This is quite tricky because we can access page at any time
 861 * in its live cycle, so all accesses have to be extremely careful.
 862 *
 863 * This is not complete. More states could be added.
 864 * For any missing state don't attempt recovery.
 865 */
 866
 867#define dirty           (1UL << PG_dirty)
 868#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 869#define unevict         (1UL << PG_unevictable)
 870#define mlock           (1UL << PG_mlocked)
 871#define lru             (1UL << PG_lru)
 872#define head            (1UL << PG_head)
 873#define slab            (1UL << PG_slab)
 874#define reserved        (1UL << PG_reserved)
 875
 876static struct page_state {
 877        unsigned long mask;
 878        unsigned long res;
 879        enum mf_action_page_type type;
 880
 881        /* Callback ->action() has to unlock the relevant page inside it. */
 882        int (*action)(struct page *p, unsigned long pfn);
 883} error_states[] = {
 884        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 885        /*
 886         * free pages are specially detected outside this table:
 887         * PG_buddy pages only make a small fraction of all free pages.
 888         */
 889
 890        /*
 891         * Could in theory check if slab page is free or if we can drop
 892         * currently unused objects without touching them. But just
 893         * treat it as standard kernel for now.
 894         */
 895        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 896
 897        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 898
 899        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 900        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 901
 902        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 903        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 904
 905        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 906        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 907
 908        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 909        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 910
 911        /*
 912         * Catchall entry: must be at end.
 913         */
 914        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 915};
 916
 917#undef dirty
 918#undef sc
 919#undef unevict
 920#undef mlock
 921#undef lru
 922#undef head
 923#undef slab
 924#undef reserved
 925
 926/*
 927 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 928 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 929 */
 930static void action_result(unsigned long pfn, enum mf_action_page_type type,
 931                          enum mf_result result)
 932{
 933        trace_memory_failure_event(pfn, type, result);
 934
 935        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 936                pfn, action_page_types[type], action_name[result]);
 937}
 938
 939static int page_action(struct page_state *ps, struct page *p,
 940                        unsigned long pfn)
 941{
 942        int result;
 943        int count;
 944
 945        /* page p should be unlocked after returning from ps->action().  */
 946        result = ps->action(p, pfn);
 947
 948        count = page_count(p) - 1;
 949        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 950                count--;
 951        if (count > 0) {
 952                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 953                       pfn, action_page_types[ps->type], count);
 954                result = MF_FAILED;
 955        }
 956        action_result(pfn, ps->type, result);
 957
 958        /* Could do more checks here if page looks ok */
 959        /*
 960         * Could adjust zone counters here to correct for the missing page.
 961         */
 962
 963        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 964}
 965
 966/*
 967 * Return true if a page type of a given page is supported by hwpoison
 968 * mechanism (while handling could fail), otherwise false.  This function
 969 * does not return true for hugetlb or device memory pages, so it's assumed
 970 * to be called only in the context where we never have such pages.
 971 */
 972static inline bool HWPoisonHandlable(struct page *page)
 973{
 974        return PageLRU(page) || __PageMovable(page);
 975}
 976
 977/**
 978 * __get_hwpoison_page() - Get refcount for memory error handling:
 979 * @page:       raw error page (hit by memory error)
 980 *
 981 * Return: return 0 if failed to grab the refcount, otherwise true (some
 982 * non-zero value.)
 983 */
 984static int __get_hwpoison_page(struct page *page)
 985{
 986        struct page *head = compound_head(page);
 987        int ret = 0;
 988        bool hugetlb = false;
 989
 990        ret = get_hwpoison_huge_page(head, &hugetlb);
 991        if (hugetlb)
 992                return ret;
 993
 994        /*
 995         * This check prevents from calling get_hwpoison_unless_zero()
 996         * for any unsupported type of page in order to reduce the risk of
 997         * unexpected races caused by taking a page refcount.
 998         */
 999        if (!HWPoisonHandlable(head))
1000                return 0;
1001
1002        if (PageTransHuge(head)) {
1003                /*
1004                 * Non anonymous thp exists only in allocation/free time. We
1005                 * can't handle such a case correctly, so let's give it up.
1006                 * This should be better than triggering BUG_ON when kernel
1007                 * tries to touch the "partially handled" page.
1008                 */
1009                if (!PageAnon(head)) {
1010                        pr_err("Memory failure: %#lx: non anonymous thp\n",
1011                                page_to_pfn(page));
1012                        return 0;
1013                }
1014        }
1015
1016        if (get_page_unless_zero(head)) {
1017                if (head == compound_head(page))
1018                        return 1;
1019
1020                pr_info("Memory failure: %#lx cannot catch tail\n",
1021                        page_to_pfn(page));
1022                put_page(head);
1023        }
1024
1025        return 0;
1026}
1027
1028/*
1029 * Safely get reference count of an arbitrary page.
1030 *
1031 * Returns 0 for a free page, 1 for an in-use page,
1032 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
1033 * allocation.
1034 * We only incremented refcount in case the page was already in-use and it
1035 * is a known type we can handle.
1036 */
1037static int get_any_page(struct page *p, unsigned long flags)
1038{
1039        int ret = 0, pass = 0;
1040        bool count_increased = false;
1041
1042        if (flags & MF_COUNT_INCREASED)
1043                count_increased = true;
1044
1045try_again:
1046        if (!count_increased && !__get_hwpoison_page(p)) {
1047                if (page_count(p)) {
1048                        /* We raced with an allocation, retry. */
1049                        if (pass++ < 3)
1050                                goto try_again;
1051                        ret = -EBUSY;
1052                } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1053                        /* We raced with put_page, retry. */
1054                        if (pass++ < 3)
1055                                goto try_again;
1056                        ret = -EIO;
1057                }
1058        } else {
1059                if (PageHuge(p) || HWPoisonHandlable(p)) {
1060                        ret = 1;
1061                } else {
1062                        /*
1063                         * A page we cannot handle. Check whether we can turn
1064                         * it into something we can handle.
1065                         */
1066                        if (pass++ < 3) {
1067                                put_page(p);
1068                                shake_page(p, 1);
1069                                count_increased = false;
1070                                goto try_again;
1071                        }
1072                        put_page(p);
1073                        ret = -EIO;
1074                }
1075        }
1076
1077        return ret;
1078}
1079
1080static int get_hwpoison_page(struct page *p, unsigned long flags,
1081                             enum mf_flags ctxt)
1082{
1083        int ret;
1084
1085        zone_pcp_disable(page_zone(p));
1086        if (ctxt == MF_SOFT_OFFLINE)
1087                ret = get_any_page(p, flags);
1088        else
1089                ret = __get_hwpoison_page(p);
1090        zone_pcp_enable(page_zone(p));
1091
1092        return ret;
1093}
1094
1095/*
1096 * Do all that is necessary to remove user space mappings. Unmap
1097 * the pages and send SIGBUS to the processes if the data was dirty.
1098 */
1099static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1100                                  int flags, struct page **hpagep)
1101{
1102        enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1103        struct address_space *mapping;
1104        LIST_HEAD(tokill);
1105        bool unmap_success = true;
1106        int kill = 1, forcekill;
1107        struct page *hpage = *hpagep;
1108        bool mlocked = PageMlocked(hpage);
1109
1110        /*
1111         * Here we are interested only in user-mapped pages, so skip any
1112         * other types of pages.
1113         */
1114        if (PageReserved(p) || PageSlab(p))
1115                return true;
1116        if (!(PageLRU(hpage) || PageHuge(p)))
1117                return true;
1118
1119        /*
1120         * This check implies we don't kill processes if their pages
1121         * are in the swap cache early. Those are always late kills.
1122         */
1123        if (!page_mapped(hpage))
1124                return true;
1125
1126        if (PageKsm(p)) {
1127                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1128                return false;
1129        }
1130
1131        if (PageSwapCache(p)) {
1132                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1133                        pfn);
1134                ttu |= TTU_IGNORE_HWPOISON;
1135        }
1136
1137        /*
1138         * Propagate the dirty bit from PTEs to struct page first, because we
1139         * need this to decide if we should kill or just drop the page.
1140         * XXX: the dirty test could be racy: set_page_dirty() may not always
1141         * be called inside page lock (it's recommended but not enforced).
1142         */
1143        mapping = page_mapping(hpage);
1144        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1145            mapping_can_writeback(mapping)) {
1146                if (page_mkclean(hpage)) {
1147                        SetPageDirty(hpage);
1148                } else {
1149                        kill = 0;
1150                        ttu |= TTU_IGNORE_HWPOISON;
1151                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1152                                pfn);
1153                }
1154        }
1155
1156        /*
1157         * First collect all the processes that have the page
1158         * mapped in dirty form.  This has to be done before try_to_unmap,
1159         * because ttu takes the rmap data structures down.
1160         *
1161         * Error handling: We ignore errors here because
1162         * there's nothing that can be done.
1163         */
1164        if (kill)
1165                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1166
1167        if (!PageHuge(hpage)) {
1168                unmap_success = try_to_unmap(hpage, ttu);
1169        } else {
1170                if (!PageAnon(hpage)) {
1171                        /*
1172                         * For hugetlb pages in shared mappings, try_to_unmap
1173                         * could potentially call huge_pmd_unshare.  Because of
1174                         * this, take semaphore in write mode here and set
1175                         * TTU_RMAP_LOCKED to indicate we have taken the lock
1176                         * at this higer level.
1177                         */
1178                        mapping = hugetlb_page_mapping_lock_write(hpage);
1179                        if (mapping) {
1180                                unmap_success = try_to_unmap(hpage,
1181                                                     ttu|TTU_RMAP_LOCKED);
1182                                i_mmap_unlock_write(mapping);
1183                        } else {
1184                                pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1185                                unmap_success = false;
1186                        }
1187                } else {
1188                        unmap_success = try_to_unmap(hpage, ttu);
1189                }
1190        }
1191        if (!unmap_success)
1192                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1193                       pfn, page_mapcount(hpage));
1194
1195        /*
1196         * try_to_unmap() might put mlocked page in lru cache, so call
1197         * shake_page() again to ensure that it's flushed.
1198         */
1199        if (mlocked)
1200                shake_page(hpage, 0);
1201
1202        /*
1203         * Now that the dirty bit has been propagated to the
1204         * struct page and all unmaps done we can decide if
1205         * killing is needed or not.  Only kill when the page
1206         * was dirty or the process is not restartable,
1207         * otherwise the tokill list is merely
1208         * freed.  When there was a problem unmapping earlier
1209         * use a more force-full uncatchable kill to prevent
1210         * any accesses to the poisoned memory.
1211         */
1212        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1213        kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1214
1215        return unmap_success;
1216}
1217
1218static int identify_page_state(unsigned long pfn, struct page *p,
1219                                unsigned long page_flags)
1220{
1221        struct page_state *ps;
1222
1223        /*
1224         * The first check uses the current page flags which may not have any
1225         * relevant information. The second check with the saved page flags is
1226         * carried out only if the first check can't determine the page status.
1227         */
1228        for (ps = error_states;; ps++)
1229                if ((p->flags & ps->mask) == ps->res)
1230                        break;
1231
1232        page_flags |= (p->flags & (1UL << PG_dirty));
1233
1234        if (!ps->mask)
1235                for (ps = error_states;; ps++)
1236                        if ((page_flags & ps->mask) == ps->res)
1237                                break;
1238        return page_action(ps, p, pfn);
1239}
1240
1241static int try_to_split_thp_page(struct page *page, const char *msg)
1242{
1243        lock_page(page);
1244        if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1245                unsigned long pfn = page_to_pfn(page);
1246
1247                unlock_page(page);
1248                if (!PageAnon(page))
1249                        pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1250                else
1251                        pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1252                put_page(page);
1253                return -EBUSY;
1254        }
1255        unlock_page(page);
1256
1257        return 0;
1258}
1259
1260static int memory_failure_hugetlb(unsigned long pfn, int flags)
1261{
1262        struct page *p = pfn_to_page(pfn);
1263        struct page *head = compound_head(p);
1264        int res;
1265        unsigned long page_flags;
1266
1267        if (TestSetPageHWPoison(head)) {
1268                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1269                       pfn);
1270                return -EHWPOISON;
1271        }
1272
1273        num_poisoned_pages_inc();
1274
1275        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1276                /*
1277                 * Check "filter hit" and "race with other subpage."
1278                 */
1279                lock_page(head);
1280                if (PageHWPoison(head)) {
1281                        if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1282                            || (p != head && TestSetPageHWPoison(head))) {
1283                                num_poisoned_pages_dec();
1284                                unlock_page(head);
1285                                return 0;
1286                        }
1287                }
1288                unlock_page(head);
1289                res = MF_FAILED;
1290                if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1291                        page_ref_inc(p);
1292                        res = MF_RECOVERED;
1293                }
1294                action_result(pfn, MF_MSG_FREE_HUGE, res);
1295                return res == MF_RECOVERED ? 0 : -EBUSY;
1296        }
1297
1298        lock_page(head);
1299        page_flags = head->flags;
1300
1301        if (!PageHWPoison(head)) {
1302                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1303                num_poisoned_pages_dec();
1304                unlock_page(head);
1305                put_page(head);
1306                return 0;
1307        }
1308
1309        /*
1310         * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1311         * simply disable it. In order to make it work properly, we need
1312         * make sure that:
1313         *  - conversion of a pud that maps an error hugetlb into hwpoison
1314         *    entry properly works, and
1315         *  - other mm code walking over page table is aware of pud-aligned
1316         *    hwpoison entries.
1317         */
1318        if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1319                action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1320                res = -EBUSY;
1321                goto out;
1322        }
1323
1324        if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1325                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1326                res = -EBUSY;
1327                goto out;
1328        }
1329
1330        return identify_page_state(pfn, p, page_flags);
1331out:
1332        unlock_page(head);
1333        return res;
1334}
1335
1336static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1337                struct dev_pagemap *pgmap)
1338{
1339        struct page *page = pfn_to_page(pfn);
1340        const bool unmap_success = true;
1341        unsigned long size = 0;
1342        struct to_kill *tk;
1343        LIST_HEAD(tokill);
1344        int rc = -EBUSY;
1345        loff_t start;
1346        dax_entry_t cookie;
1347
1348        if (flags & MF_COUNT_INCREASED)
1349                /*
1350                 * Drop the extra refcount in case we come from madvise().
1351                 */
1352                put_page(page);
1353
1354        /* device metadata space is not recoverable */
1355        if (!pgmap_pfn_valid(pgmap, pfn)) {
1356                rc = -ENXIO;
1357                goto out;
1358        }
1359
1360        /*
1361         * Prevent the inode from being freed while we are interrogating
1362         * the address_space, typically this would be handled by
1363         * lock_page(), but dax pages do not use the page lock. This
1364         * also prevents changes to the mapping of this pfn until
1365         * poison signaling is complete.
1366         */
1367        cookie = dax_lock_page(page);
1368        if (!cookie)
1369                goto out;
1370
1371        if (hwpoison_filter(page)) {
1372                rc = 0;
1373                goto unlock;
1374        }
1375
1376        if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1377                /*
1378                 * TODO: Handle HMM pages which may need coordination
1379                 * with device-side memory.
1380                 */
1381                goto unlock;
1382        }
1383
1384        /*
1385         * Use this flag as an indication that the dax page has been
1386         * remapped UC to prevent speculative consumption of poison.
1387         */
1388        SetPageHWPoison(page);
1389
1390        /*
1391         * Unlike System-RAM there is no possibility to swap in a
1392         * different physical page at a given virtual address, so all
1393         * userspace consumption of ZONE_DEVICE memory necessitates
1394         * SIGBUS (i.e. MF_MUST_KILL)
1395         */
1396        flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1397        collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1398
1399        list_for_each_entry(tk, &tokill, nd)
1400                if (tk->size_shift)
1401                        size = max(size, 1UL << tk->size_shift);
1402        if (size) {
1403                /*
1404                 * Unmap the largest mapping to avoid breaking up
1405                 * device-dax mappings which are constant size. The
1406                 * actual size of the mapping being torn down is
1407                 * communicated in siginfo, see kill_proc()
1408                 */
1409                start = (page->index << PAGE_SHIFT) & ~(size - 1);
1410                unmap_mapping_range(page->mapping, start, size, 0);
1411        }
1412        kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1413        rc = 0;
1414unlock:
1415        dax_unlock_page(page, cookie);
1416out:
1417        /* drop pgmap ref acquired in caller */
1418        put_dev_pagemap(pgmap);
1419        action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1420        return rc;
1421}
1422
1423/**
1424 * memory_failure - Handle memory failure of a page.
1425 * @pfn: Page Number of the corrupted page
1426 * @flags: fine tune action taken
1427 *
1428 * This function is called by the low level machine check code
1429 * of an architecture when it detects hardware memory corruption
1430 * of a page. It tries its best to recover, which includes
1431 * dropping pages, killing processes etc.
1432 *
1433 * The function is primarily of use for corruptions that
1434 * happen outside the current execution context (e.g. when
1435 * detected by a background scrubber)
1436 *
1437 * Must run in process context (e.g. a work queue) with interrupts
1438 * enabled and no spinlocks hold.
1439 */
1440int memory_failure(unsigned long pfn, int flags)
1441{
1442        struct page *p;
1443        struct page *hpage;
1444        struct page *orig_head;
1445        struct dev_pagemap *pgmap;
1446        int res = 0;
1447        unsigned long page_flags;
1448        bool retry = true;
1449        static DEFINE_MUTEX(mf_mutex);
1450
1451        if (!sysctl_memory_failure_recovery)
1452                panic("Memory failure on page %lx", pfn);
1453
1454        p = pfn_to_online_page(pfn);
1455        if (!p) {
1456                if (pfn_valid(pfn)) {
1457                        pgmap = get_dev_pagemap(pfn, NULL);
1458                        if (pgmap)
1459                                return memory_failure_dev_pagemap(pfn, flags,
1460                                                                  pgmap);
1461                }
1462                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1463                        pfn);
1464                return -ENXIO;
1465        }
1466
1467        mutex_lock(&mf_mutex);
1468
1469try_again:
1470        if (PageHuge(p)) {
1471                res = memory_failure_hugetlb(pfn, flags);
1472                goto unlock_mutex;
1473        }
1474
1475        if (TestSetPageHWPoison(p)) {
1476                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1477                        pfn);
1478                res = -EHWPOISON;
1479                goto unlock_mutex;
1480        }
1481
1482        orig_head = hpage = compound_head(p);
1483        num_poisoned_pages_inc();
1484
1485        /*
1486         * We need/can do nothing about count=0 pages.
1487         * 1) it's a free page, and therefore in safe hand:
1488         *    prep_new_page() will be the gate keeper.
1489         * 2) it's part of a non-compound high order page.
1490         *    Implies some kernel user: cannot stop them from
1491         *    R/W the page; let's pray that the page has been
1492         *    used and will be freed some time later.
1493         * In fact it's dangerous to directly bump up page count from 0,
1494         * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1495         */
1496        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1497                if (is_free_buddy_page(p)) {
1498                        if (take_page_off_buddy(p)) {
1499                                page_ref_inc(p);
1500                                res = MF_RECOVERED;
1501                        } else {
1502                                /* We lost the race, try again */
1503                                if (retry) {
1504                                        ClearPageHWPoison(p);
1505                                        num_poisoned_pages_dec();
1506                                        retry = false;
1507                                        goto try_again;
1508                                }
1509                                res = MF_FAILED;
1510                        }
1511                        action_result(pfn, MF_MSG_BUDDY, res);
1512                        res = res == MF_RECOVERED ? 0 : -EBUSY;
1513                } else {
1514                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1515                        res = -EBUSY;
1516                }
1517                goto unlock_mutex;
1518        }
1519
1520        if (PageTransHuge(hpage)) {
1521                if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1522                        action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1523                        res = -EBUSY;
1524                        goto unlock_mutex;
1525                }
1526                VM_BUG_ON_PAGE(!page_count(p), p);
1527        }
1528
1529        /*
1530         * We ignore non-LRU pages for good reasons.
1531         * - PG_locked is only well defined for LRU pages and a few others
1532         * - to avoid races with __SetPageLocked()
1533         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1534         * The check (unnecessarily) ignores LRU pages being isolated and
1535         * walked by the page reclaim code, however that's not a big loss.
1536         */
1537        shake_page(p, 0);
1538
1539        lock_page(p);
1540
1541        /*
1542         * The page could have changed compound pages during the locking.
1543         * If this happens just bail out.
1544         */
1545        if (PageCompound(p) && compound_head(p) != orig_head) {
1546                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1547                res = -EBUSY;
1548                goto unlock_page;
1549        }
1550
1551        /*
1552         * We use page flags to determine what action should be taken, but
1553         * the flags can be modified by the error containment action.  One
1554         * example is an mlocked page, where PG_mlocked is cleared by
1555         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1556         * correctly, we save a copy of the page flags at this time.
1557         */
1558        page_flags = p->flags;
1559
1560        /*
1561         * unpoison always clear PG_hwpoison inside page lock
1562         */
1563        if (!PageHWPoison(p)) {
1564                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1565                num_poisoned_pages_dec();
1566                unlock_page(p);
1567                put_page(p);
1568                goto unlock_mutex;
1569        }
1570        if (hwpoison_filter(p)) {
1571                if (TestClearPageHWPoison(p))
1572                        num_poisoned_pages_dec();
1573                unlock_page(p);
1574                put_page(p);
1575                goto unlock_mutex;
1576        }
1577
1578        /*
1579         * __munlock_pagevec may clear a writeback page's LRU flag without
1580         * page_lock. We need wait writeback completion for this page or it
1581         * may trigger vfs BUG while evict inode.
1582         */
1583        if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1584                goto identify_page_state;
1585
1586        /*
1587         * It's very difficult to mess with pages currently under IO
1588         * and in many cases impossible, so we just avoid it here.
1589         */
1590        wait_on_page_writeback(p);
1591
1592        /*
1593         * Now take care of user space mappings.
1594         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1595         */
1596        if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1597                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1598                res = -EBUSY;
1599                goto unlock_page;
1600        }
1601
1602        /*
1603         * Torn down by someone else?
1604         */
1605        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1606                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1607                res = -EBUSY;
1608                goto unlock_page;
1609        }
1610
1611identify_page_state:
1612        res = identify_page_state(pfn, p, page_flags);
1613        mutex_unlock(&mf_mutex);
1614        return res;
1615unlock_page:
1616        unlock_page(p);
1617unlock_mutex:
1618        mutex_unlock(&mf_mutex);
1619        return res;
1620}
1621EXPORT_SYMBOL_GPL(memory_failure);
1622
1623#define MEMORY_FAILURE_FIFO_ORDER       4
1624#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1625
1626struct memory_failure_entry {
1627        unsigned long pfn;
1628        int flags;
1629};
1630
1631struct memory_failure_cpu {
1632        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1633                      MEMORY_FAILURE_FIFO_SIZE);
1634        spinlock_t lock;
1635        struct work_struct work;
1636};
1637
1638static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1639
1640/**
1641 * memory_failure_queue - Schedule handling memory failure of a page.
1642 * @pfn: Page Number of the corrupted page
1643 * @flags: Flags for memory failure handling
1644 *
1645 * This function is called by the low level hardware error handler
1646 * when it detects hardware memory corruption of a page. It schedules
1647 * the recovering of error page, including dropping pages, killing
1648 * processes etc.
1649 *
1650 * The function is primarily of use for corruptions that
1651 * happen outside the current execution context (e.g. when
1652 * detected by a background scrubber)
1653 *
1654 * Can run in IRQ context.
1655 */
1656void memory_failure_queue(unsigned long pfn, int flags)
1657{
1658        struct memory_failure_cpu *mf_cpu;
1659        unsigned long proc_flags;
1660        struct memory_failure_entry entry = {
1661                .pfn =          pfn,
1662                .flags =        flags,
1663        };
1664
1665        mf_cpu = &get_cpu_var(memory_failure_cpu);
1666        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1667        if (kfifo_put(&mf_cpu->fifo, entry))
1668                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1669        else
1670                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1671                       pfn);
1672        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1673        put_cpu_var(memory_failure_cpu);
1674}
1675EXPORT_SYMBOL_GPL(memory_failure_queue);
1676
1677static void memory_failure_work_func(struct work_struct *work)
1678{
1679        struct memory_failure_cpu *mf_cpu;
1680        struct memory_failure_entry entry = { 0, };
1681        unsigned long proc_flags;
1682        int gotten;
1683
1684        mf_cpu = container_of(work, struct memory_failure_cpu, work);
1685        for (;;) {
1686                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1687                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1688                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1689                if (!gotten)
1690                        break;
1691                if (entry.flags & MF_SOFT_OFFLINE)
1692                        soft_offline_page(entry.pfn, entry.flags);
1693                else
1694                        memory_failure(entry.pfn, entry.flags);
1695        }
1696}
1697
1698/*
1699 * Process memory_failure work queued on the specified CPU.
1700 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1701 */
1702void memory_failure_queue_kick(int cpu)
1703{
1704        struct memory_failure_cpu *mf_cpu;
1705
1706        mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1707        cancel_work_sync(&mf_cpu->work);
1708        memory_failure_work_func(&mf_cpu->work);
1709}
1710
1711static int __init memory_failure_init(void)
1712{
1713        struct memory_failure_cpu *mf_cpu;
1714        int cpu;
1715
1716        for_each_possible_cpu(cpu) {
1717                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1718                spin_lock_init(&mf_cpu->lock);
1719                INIT_KFIFO(mf_cpu->fifo);
1720                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1721        }
1722
1723        return 0;
1724}
1725core_initcall(memory_failure_init);
1726
1727#define unpoison_pr_info(fmt, pfn, rs)                  \
1728({                                                      \
1729        if (__ratelimit(rs))                            \
1730                pr_info(fmt, pfn);                      \
1731})
1732
1733/**
1734 * unpoison_memory - Unpoison a previously poisoned page
1735 * @pfn: Page number of the to be unpoisoned page
1736 *
1737 * Software-unpoison a page that has been poisoned by
1738 * memory_failure() earlier.
1739 *
1740 * This is only done on the software-level, so it only works
1741 * for linux injected failures, not real hardware failures
1742 *
1743 * Returns 0 for success, otherwise -errno.
1744 */
1745int unpoison_memory(unsigned long pfn)
1746{
1747        struct page *page;
1748        struct page *p;
1749        int freeit = 0;
1750        unsigned long flags = 0;
1751        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1752                                        DEFAULT_RATELIMIT_BURST);
1753
1754        if (!pfn_valid(pfn))
1755                return -ENXIO;
1756
1757        p = pfn_to_page(pfn);
1758        page = compound_head(p);
1759
1760        if (!PageHWPoison(p)) {
1761                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1762                                 pfn, &unpoison_rs);
1763                return 0;
1764        }
1765
1766        if (page_count(page) > 1) {
1767                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1768                                 pfn, &unpoison_rs);
1769                return 0;
1770        }
1771
1772        if (page_mapped(page)) {
1773                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1774                                 pfn, &unpoison_rs);
1775                return 0;
1776        }
1777
1778        if (page_mapping(page)) {
1779                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1780                                 pfn, &unpoison_rs);
1781                return 0;
1782        }
1783
1784        /*
1785         * unpoison_memory() can encounter thp only when the thp is being
1786         * worked by memory_failure() and the page lock is not held yet.
1787         * In such case, we yield to memory_failure() and make unpoison fail.
1788         */
1789        if (!PageHuge(page) && PageTransHuge(page)) {
1790                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1791                                 pfn, &unpoison_rs);
1792                return 0;
1793        }
1794
1795        if (!get_hwpoison_page(p, flags, 0)) {
1796                if (TestClearPageHWPoison(p))
1797                        num_poisoned_pages_dec();
1798                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1799                                 pfn, &unpoison_rs);
1800                return 0;
1801        }
1802
1803        lock_page(page);
1804        /*
1805         * This test is racy because PG_hwpoison is set outside of page lock.
1806         * That's acceptable because that won't trigger kernel panic. Instead,
1807         * the PG_hwpoison page will be caught and isolated on the entrance to
1808         * the free buddy page pool.
1809         */
1810        if (TestClearPageHWPoison(page)) {
1811                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1812                                 pfn, &unpoison_rs);
1813                num_poisoned_pages_dec();
1814                freeit = 1;
1815        }
1816        unlock_page(page);
1817
1818        put_page(page);
1819        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1820                put_page(page);
1821
1822        return 0;
1823}
1824EXPORT_SYMBOL(unpoison_memory);
1825
1826static bool isolate_page(struct page *page, struct list_head *pagelist)
1827{
1828        bool isolated = false;
1829        bool lru = PageLRU(page);
1830
1831        if (PageHuge(page)) {
1832                isolated = isolate_huge_page(page, pagelist);
1833        } else {
1834                if (lru)
1835                        isolated = !isolate_lru_page(page);
1836                else
1837                        isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1838
1839                if (isolated)
1840                        list_add(&page->lru, pagelist);
1841        }
1842
1843        if (isolated && lru)
1844                inc_node_page_state(page, NR_ISOLATED_ANON +
1845                                    page_is_file_lru(page));
1846
1847        /*
1848         * If we succeed to isolate the page, we grabbed another refcount on
1849         * the page, so we can safely drop the one we got from get_any_pages().
1850         * If we failed to isolate the page, it means that we cannot go further
1851         * and we will return an error, so drop the reference we got from
1852         * get_any_pages() as well.
1853         */
1854        put_page(page);
1855        return isolated;
1856}
1857
1858/*
1859 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1860 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1861 * If the page is mapped, it migrates the contents over.
1862 */
1863static int __soft_offline_page(struct page *page)
1864{
1865        int ret = 0;
1866        unsigned long pfn = page_to_pfn(page);
1867        struct page *hpage = compound_head(page);
1868        char const *msg_page[] = {"page", "hugepage"};
1869        bool huge = PageHuge(page);
1870        LIST_HEAD(pagelist);
1871        struct migration_target_control mtc = {
1872                .nid = NUMA_NO_NODE,
1873                .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1874        };
1875
1876        /*
1877         * Check PageHWPoison again inside page lock because PageHWPoison
1878         * is set by memory_failure() outside page lock. Note that
1879         * memory_failure() also double-checks PageHWPoison inside page lock,
1880         * so there's no race between soft_offline_page() and memory_failure().
1881         */
1882        lock_page(page);
1883        if (!PageHuge(page))
1884                wait_on_page_writeback(page);
1885        if (PageHWPoison(page)) {
1886                unlock_page(page);
1887                put_page(page);
1888                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1889                return 0;
1890        }
1891
1892        if (!PageHuge(page))
1893                /*
1894                 * Try to invalidate first. This should work for
1895                 * non dirty unmapped page cache pages.
1896                 */
1897                ret = invalidate_inode_page(page);
1898        unlock_page(page);
1899
1900        /*
1901         * RED-PEN would be better to keep it isolated here, but we
1902         * would need to fix isolation locking first.
1903         */
1904        if (ret) {
1905                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1906                page_handle_poison(page, false, true);
1907                return 0;
1908        }
1909
1910        if (isolate_page(hpage, &pagelist)) {
1911                ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1912                        (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1913                if (!ret) {
1914                        bool release = !huge;
1915
1916                        if (!page_handle_poison(page, huge, release))
1917                                ret = -EBUSY;
1918                } else {
1919                        if (!list_empty(&pagelist))
1920                                putback_movable_pages(&pagelist);
1921
1922                        pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1923                                pfn, msg_page[huge], ret, page->flags, &page->flags);
1924                        if (ret > 0)
1925                                ret = -EBUSY;
1926                }
1927        } else {
1928                pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
1929                        pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1930                ret = -EBUSY;
1931        }
1932        return ret;
1933}
1934
1935static int soft_offline_in_use_page(struct page *page)
1936{
1937        struct page *hpage = compound_head(page);
1938
1939        if (!PageHuge(page) && PageTransHuge(hpage))
1940                if (try_to_split_thp_page(page, "soft offline") < 0)
1941                        return -EBUSY;
1942        return __soft_offline_page(page);
1943}
1944
1945static int soft_offline_free_page(struct page *page)
1946{
1947        int rc = 0;
1948
1949        if (!page_handle_poison(page, true, false))
1950                rc = -EBUSY;
1951
1952        return rc;
1953}
1954
1955static void put_ref_page(struct page *page)
1956{
1957        if (page)
1958                put_page(page);
1959}
1960
1961/**
1962 * soft_offline_page - Soft offline a page.
1963 * @pfn: pfn to soft-offline
1964 * @flags: flags. Same as memory_failure().
1965 *
1966 * Returns 0 on success, otherwise negated errno.
1967 *
1968 * Soft offline a page, by migration or invalidation,
1969 * without killing anything. This is for the case when
1970 * a page is not corrupted yet (so it's still valid to access),
1971 * but has had a number of corrected errors and is better taken
1972 * out.
1973 *
1974 * The actual policy on when to do that is maintained by
1975 * user space.
1976 *
1977 * This should never impact any application or cause data loss,
1978 * however it might take some time.
1979 *
1980 * This is not a 100% solution for all memory, but tries to be
1981 * ``good enough'' for the majority of memory.
1982 */
1983int soft_offline_page(unsigned long pfn, int flags)
1984{
1985        int ret;
1986        bool try_again = true;
1987        struct page *page, *ref_page = NULL;
1988
1989        WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1990
1991        if (!pfn_valid(pfn))
1992                return -ENXIO;
1993        if (flags & MF_COUNT_INCREASED)
1994                ref_page = pfn_to_page(pfn);
1995
1996        /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1997        page = pfn_to_online_page(pfn);
1998        if (!page) {
1999                put_ref_page(ref_page);
2000                return -EIO;
2001        }
2002
2003        if (PageHWPoison(page)) {
2004                pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2005                put_ref_page(ref_page);
2006                return 0;
2007        }
2008
2009retry:
2010        get_online_mems();
2011        ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
2012        put_online_mems();
2013
2014        if (ret > 0) {
2015                ret = soft_offline_in_use_page(page);
2016        } else if (ret == 0) {
2017                if (soft_offline_free_page(page) && try_again) {
2018                        try_again = false;
2019                        goto retry;
2020                }
2021        } else if (ret == -EIO) {
2022                pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2023                         __func__, pfn, page->flags, &page->flags);
2024        }
2025
2026        return ret;
2027}
2028