linux/mm/memory_hotplug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/highmem.h>
  25#include <linux/vmalloc.h>
  26#include <linux/ioport.h>
  27#include <linux/delay.h>
  28#include <linux/migrate.h>
  29#include <linux/page-isolation.h>
  30#include <linux/pfn.h>
  31#include <linux/suspend.h>
  32#include <linux/mm_inline.h>
  33#include <linux/firmware-map.h>
  34#include <linux/stop_machine.h>
  35#include <linux/hugetlb.h>
  36#include <linux/memblock.h>
  37#include <linux/compaction.h>
  38#include <linux/rmap.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45
  46/*
  47 * memory_hotplug.memmap_on_memory parameter
  48 */
  49static bool memmap_on_memory __ro_after_init;
  50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  51module_param(memmap_on_memory, bool, 0444);
  52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
  53#endif
  54
  55/*
  56 * online_page_callback contains pointer to current page onlining function.
  57 * Initially it is generic_online_page(). If it is required it could be
  58 * changed by calling set_online_page_callback() for callback registration
  59 * and restore_online_page_callback() for generic callback restore.
  60 */
  61
  62static online_page_callback_t online_page_callback = generic_online_page;
  63static DEFINE_MUTEX(online_page_callback_lock);
  64
  65DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
  66
  67void get_online_mems(void)
  68{
  69        percpu_down_read(&mem_hotplug_lock);
  70}
  71
  72void put_online_mems(void)
  73{
  74        percpu_up_read(&mem_hotplug_lock);
  75}
  76
  77bool movable_node_enabled = false;
  78
  79#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  80int mhp_default_online_type = MMOP_OFFLINE;
  81#else
  82int mhp_default_online_type = MMOP_ONLINE;
  83#endif
  84
  85static int __init setup_memhp_default_state(char *str)
  86{
  87        const int online_type = mhp_online_type_from_str(str);
  88
  89        if (online_type >= 0)
  90                mhp_default_online_type = online_type;
  91
  92        return 1;
  93}
  94__setup("memhp_default_state=", setup_memhp_default_state);
  95
  96void mem_hotplug_begin(void)
  97{
  98        cpus_read_lock();
  99        percpu_down_write(&mem_hotplug_lock);
 100}
 101
 102void mem_hotplug_done(void)
 103{
 104        percpu_up_write(&mem_hotplug_lock);
 105        cpus_read_unlock();
 106}
 107
 108u64 max_mem_size = U64_MAX;
 109
 110/* add this memory to iomem resource */
 111static struct resource *register_memory_resource(u64 start, u64 size,
 112                                                 const char *resource_name)
 113{
 114        struct resource *res;
 115        unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 116
 117        if (strcmp(resource_name, "System RAM"))
 118                flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 119
 120        if (!mhp_range_allowed(start, size, true))
 121                return ERR_PTR(-E2BIG);
 122
 123        /*
 124         * Make sure value parsed from 'mem=' only restricts memory adding
 125         * while booting, so that memory hotplug won't be impacted. Please
 126         * refer to document of 'mem=' in kernel-parameters.txt for more
 127         * details.
 128         */
 129        if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 130                return ERR_PTR(-E2BIG);
 131
 132        /*
 133         * Request ownership of the new memory range.  This might be
 134         * a child of an existing resource that was present but
 135         * not marked as busy.
 136         */
 137        res = __request_region(&iomem_resource, start, size,
 138                               resource_name, flags);
 139
 140        if (!res) {
 141                pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 142                                start, start + size);
 143                return ERR_PTR(-EEXIST);
 144        }
 145        return res;
 146}
 147
 148static void release_memory_resource(struct resource *res)
 149{
 150        if (!res)
 151                return;
 152        release_resource(res);
 153        kfree(res);
 154}
 155
 156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 157void get_page_bootmem(unsigned long info,  struct page *page,
 158                      unsigned long type)
 159{
 160        page->freelist = (void *)type;
 161        SetPagePrivate(page);
 162        set_page_private(page, info);
 163        page_ref_inc(page);
 164}
 165
 166void put_page_bootmem(struct page *page)
 167{
 168        unsigned long type;
 169
 170        type = (unsigned long) page->freelist;
 171        BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 172               type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 173
 174        if (page_ref_dec_return(page) == 1) {
 175                page->freelist = NULL;
 176                ClearPagePrivate(page);
 177                set_page_private(page, 0);
 178                INIT_LIST_HEAD(&page->lru);
 179                free_reserved_page(page);
 180        }
 181}
 182
 183#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 184#ifndef CONFIG_SPARSEMEM_VMEMMAP
 185static void register_page_bootmem_info_section(unsigned long start_pfn)
 186{
 187        unsigned long mapsize, section_nr, i;
 188        struct mem_section *ms;
 189        struct page *page, *memmap;
 190        struct mem_section_usage *usage;
 191
 192        section_nr = pfn_to_section_nr(start_pfn);
 193        ms = __nr_to_section(section_nr);
 194
 195        /* Get section's memmap address */
 196        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 197
 198        /*
 199         * Get page for the memmap's phys address
 200         * XXX: need more consideration for sparse_vmemmap...
 201         */
 202        page = virt_to_page(memmap);
 203        mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 204        mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 205
 206        /* remember memmap's page */
 207        for (i = 0; i < mapsize; i++, page++)
 208                get_page_bootmem(section_nr, page, SECTION_INFO);
 209
 210        usage = ms->usage;
 211        page = virt_to_page(usage);
 212
 213        mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
 214
 215        for (i = 0; i < mapsize; i++, page++)
 216                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 217
 218}
 219#else /* CONFIG_SPARSEMEM_VMEMMAP */
 220static void register_page_bootmem_info_section(unsigned long start_pfn)
 221{
 222        unsigned long mapsize, section_nr, i;
 223        struct mem_section *ms;
 224        struct page *page, *memmap;
 225        struct mem_section_usage *usage;
 226
 227        section_nr = pfn_to_section_nr(start_pfn);
 228        ms = __nr_to_section(section_nr);
 229
 230        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 231
 232        register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 233
 234        usage = ms->usage;
 235        page = virt_to_page(usage);
 236
 237        mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
 238
 239        for (i = 0; i < mapsize; i++, page++)
 240                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 241}
 242#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 243
 244void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
 245{
 246        unsigned long i, pfn, end_pfn, nr_pages;
 247        int node = pgdat->node_id;
 248        struct page *page;
 249
 250        nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 251        page = virt_to_page(pgdat);
 252
 253        for (i = 0; i < nr_pages; i++, page++)
 254                get_page_bootmem(node, page, NODE_INFO);
 255
 256        pfn = pgdat->node_start_pfn;
 257        end_pfn = pgdat_end_pfn(pgdat);
 258
 259        /* register section info */
 260        for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 261                /*
 262                 * Some platforms can assign the same pfn to multiple nodes - on
 263                 * node0 as well as nodeN.  To avoid registering a pfn against
 264                 * multiple nodes we check that this pfn does not already
 265                 * reside in some other nodes.
 266                 */
 267                if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
 268                        register_page_bootmem_info_section(pfn);
 269        }
 270}
 271#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 272
 273static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
 274                const char *reason)
 275{
 276        /*
 277         * Disallow all operations smaller than a sub-section and only
 278         * allow operations smaller than a section for
 279         * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 280         * enforces a larger memory_block_size_bytes() granularity for
 281         * memory that will be marked online, so this check should only
 282         * fire for direct arch_{add,remove}_memory() users outside of
 283         * add_memory_resource().
 284         */
 285        unsigned long min_align;
 286
 287        if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 288                min_align = PAGES_PER_SUBSECTION;
 289        else
 290                min_align = PAGES_PER_SECTION;
 291        if (!IS_ALIGNED(pfn, min_align)
 292                        || !IS_ALIGNED(nr_pages, min_align)) {
 293                WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
 294                                reason, pfn, pfn + nr_pages - 1);
 295                return -EINVAL;
 296        }
 297        return 0;
 298}
 299
 300/*
 301 * Return page for the valid pfn only if the page is online. All pfn
 302 * walkers which rely on the fully initialized page->flags and others
 303 * should use this rather than pfn_valid && pfn_to_page
 304 */
 305struct page *pfn_to_online_page(unsigned long pfn)
 306{
 307        unsigned long nr = pfn_to_section_nr(pfn);
 308        struct dev_pagemap *pgmap;
 309        struct mem_section *ms;
 310
 311        if (nr >= NR_MEM_SECTIONS)
 312                return NULL;
 313
 314        ms = __nr_to_section(nr);
 315        if (!online_section(ms))
 316                return NULL;
 317
 318        /*
 319         * Save some code text when online_section() +
 320         * pfn_section_valid() are sufficient.
 321         */
 322        if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 323                return NULL;
 324
 325        if (!pfn_section_valid(ms, pfn))
 326                return NULL;
 327
 328        if (!online_device_section(ms))
 329                return pfn_to_page(pfn);
 330
 331        /*
 332         * Slowpath: when ZONE_DEVICE collides with
 333         * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 334         * the section may be 'offline' but 'valid'. Only
 335         * get_dev_pagemap() can determine sub-section online status.
 336         */
 337        pgmap = get_dev_pagemap(pfn, NULL);
 338        put_dev_pagemap(pgmap);
 339
 340        /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 341        if (pgmap)
 342                return NULL;
 343
 344        return pfn_to_page(pfn);
 345}
 346EXPORT_SYMBOL_GPL(pfn_to_online_page);
 347
 348/*
 349 * Reasonably generic function for adding memory.  It is
 350 * expected that archs that support memory hotplug will
 351 * call this function after deciding the zone to which to
 352 * add the new pages.
 353 */
 354int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 355                struct mhp_params *params)
 356{
 357        const unsigned long end_pfn = pfn + nr_pages;
 358        unsigned long cur_nr_pages;
 359        int err;
 360        struct vmem_altmap *altmap = params->altmap;
 361
 362        if (WARN_ON_ONCE(!params->pgprot.pgprot))
 363                return -EINVAL;
 364
 365        VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 366
 367        if (altmap) {
 368                /*
 369                 * Validate altmap is within bounds of the total request
 370                 */
 371                if (altmap->base_pfn != pfn
 372                                || vmem_altmap_offset(altmap) > nr_pages) {
 373                        pr_warn_once("memory add fail, invalid altmap\n");
 374                        return -EINVAL;
 375                }
 376                altmap->alloc = 0;
 377        }
 378
 379        err = check_pfn_span(pfn, nr_pages, "add");
 380        if (err)
 381                return err;
 382
 383        for (; pfn < end_pfn; pfn += cur_nr_pages) {
 384                /* Select all remaining pages up to the next section boundary */
 385                cur_nr_pages = min(end_pfn - pfn,
 386                                   SECTION_ALIGN_UP(pfn + 1) - pfn);
 387                err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
 388                if (err)
 389                        break;
 390                cond_resched();
 391        }
 392        vmemmap_populate_print_last();
 393        return err;
 394}
 395
 396/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 397static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 398                                     unsigned long start_pfn,
 399                                     unsigned long end_pfn)
 400{
 401        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 402                if (unlikely(!pfn_to_online_page(start_pfn)))
 403                        continue;
 404
 405                if (unlikely(pfn_to_nid(start_pfn) != nid))
 406                        continue;
 407
 408                if (zone != page_zone(pfn_to_page(start_pfn)))
 409                        continue;
 410
 411                return start_pfn;
 412        }
 413
 414        return 0;
 415}
 416
 417/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 418static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 419                                    unsigned long start_pfn,
 420                                    unsigned long end_pfn)
 421{
 422        unsigned long pfn;
 423
 424        /* pfn is the end pfn of a memory section. */
 425        pfn = end_pfn - 1;
 426        for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 427                if (unlikely(!pfn_to_online_page(pfn)))
 428                        continue;
 429
 430                if (unlikely(pfn_to_nid(pfn) != nid))
 431                        continue;
 432
 433                if (zone != page_zone(pfn_to_page(pfn)))
 434                        continue;
 435
 436                return pfn;
 437        }
 438
 439        return 0;
 440}
 441
 442static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 443                             unsigned long end_pfn)
 444{
 445        unsigned long pfn;
 446        int nid = zone_to_nid(zone);
 447
 448        zone_span_writelock(zone);
 449        if (zone->zone_start_pfn == start_pfn) {
 450                /*
 451                 * If the section is smallest section in the zone, it need
 452                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 453                 * In this case, we find second smallest valid mem_section
 454                 * for shrinking zone.
 455                 */
 456                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 457                                                zone_end_pfn(zone));
 458                if (pfn) {
 459                        zone->spanned_pages = zone_end_pfn(zone) - pfn;
 460                        zone->zone_start_pfn = pfn;
 461                } else {
 462                        zone->zone_start_pfn = 0;
 463                        zone->spanned_pages = 0;
 464                }
 465        } else if (zone_end_pfn(zone) == end_pfn) {
 466                /*
 467                 * If the section is biggest section in the zone, it need
 468                 * shrink zone->spanned_pages.
 469                 * In this case, we find second biggest valid mem_section for
 470                 * shrinking zone.
 471                 */
 472                pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 473                                               start_pfn);
 474                if (pfn)
 475                        zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 476                else {
 477                        zone->zone_start_pfn = 0;
 478                        zone->spanned_pages = 0;
 479                }
 480        }
 481        zone_span_writeunlock(zone);
 482}
 483
 484static void update_pgdat_span(struct pglist_data *pgdat)
 485{
 486        unsigned long node_start_pfn = 0, node_end_pfn = 0;
 487        struct zone *zone;
 488
 489        for (zone = pgdat->node_zones;
 490             zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 491                unsigned long end_pfn = zone_end_pfn(zone);
 492
 493                /* No need to lock the zones, they can't change. */
 494                if (!zone->spanned_pages)
 495                        continue;
 496                if (!node_end_pfn) {
 497                        node_start_pfn = zone->zone_start_pfn;
 498                        node_end_pfn = end_pfn;
 499                        continue;
 500                }
 501
 502                if (end_pfn > node_end_pfn)
 503                        node_end_pfn = end_pfn;
 504                if (zone->zone_start_pfn < node_start_pfn)
 505                        node_start_pfn = zone->zone_start_pfn;
 506        }
 507
 508        pgdat->node_start_pfn = node_start_pfn;
 509        pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 510}
 511
 512void __ref remove_pfn_range_from_zone(struct zone *zone,
 513                                      unsigned long start_pfn,
 514                                      unsigned long nr_pages)
 515{
 516        const unsigned long end_pfn = start_pfn + nr_pages;
 517        struct pglist_data *pgdat = zone->zone_pgdat;
 518        unsigned long pfn, cur_nr_pages, flags;
 519
 520        /* Poison struct pages because they are now uninitialized again. */
 521        for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 522                cond_resched();
 523
 524                /* Select all remaining pages up to the next section boundary */
 525                cur_nr_pages =
 526                        min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 527                page_init_poison(pfn_to_page(pfn),
 528                                 sizeof(struct page) * cur_nr_pages);
 529        }
 530
 531#ifdef CONFIG_ZONE_DEVICE
 532        /*
 533         * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 534         * we will not try to shrink the zones - which is okay as
 535         * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 536         */
 537        if (zone_idx(zone) == ZONE_DEVICE)
 538                return;
 539#endif
 540
 541        clear_zone_contiguous(zone);
 542
 543        pgdat_resize_lock(zone->zone_pgdat, &flags);
 544        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 545        update_pgdat_span(pgdat);
 546        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 547
 548        set_zone_contiguous(zone);
 549}
 550
 551static void __remove_section(unsigned long pfn, unsigned long nr_pages,
 552                             unsigned long map_offset,
 553                             struct vmem_altmap *altmap)
 554{
 555        struct mem_section *ms = __pfn_to_section(pfn);
 556
 557        if (WARN_ON_ONCE(!valid_section(ms)))
 558                return;
 559
 560        sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 561}
 562
 563/**
 564 * __remove_pages() - remove sections of pages
 565 * @pfn: starting pageframe (must be aligned to start of a section)
 566 * @nr_pages: number of pages to remove (must be multiple of section size)
 567 * @altmap: alternative device page map or %NULL if default memmap is used
 568 *
 569 * Generic helper function to remove section mappings and sysfs entries
 570 * for the section of the memory we are removing. Caller needs to make
 571 * sure that pages are marked reserved and zones are adjust properly by
 572 * calling offline_pages().
 573 */
 574void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 575                    struct vmem_altmap *altmap)
 576{
 577        const unsigned long end_pfn = pfn + nr_pages;
 578        unsigned long cur_nr_pages;
 579        unsigned long map_offset = 0;
 580
 581        map_offset = vmem_altmap_offset(altmap);
 582
 583        if (check_pfn_span(pfn, nr_pages, "remove"))
 584                return;
 585
 586        for (; pfn < end_pfn; pfn += cur_nr_pages) {
 587                cond_resched();
 588                /* Select all remaining pages up to the next section boundary */
 589                cur_nr_pages = min(end_pfn - pfn,
 590                                   SECTION_ALIGN_UP(pfn + 1) - pfn);
 591                __remove_section(pfn, cur_nr_pages, map_offset, altmap);
 592                map_offset = 0;
 593        }
 594}
 595
 596int set_online_page_callback(online_page_callback_t callback)
 597{
 598        int rc = -EINVAL;
 599
 600        get_online_mems();
 601        mutex_lock(&online_page_callback_lock);
 602
 603        if (online_page_callback == generic_online_page) {
 604                online_page_callback = callback;
 605                rc = 0;
 606        }
 607
 608        mutex_unlock(&online_page_callback_lock);
 609        put_online_mems();
 610
 611        return rc;
 612}
 613EXPORT_SYMBOL_GPL(set_online_page_callback);
 614
 615int restore_online_page_callback(online_page_callback_t callback)
 616{
 617        int rc = -EINVAL;
 618
 619        get_online_mems();
 620        mutex_lock(&online_page_callback_lock);
 621
 622        if (online_page_callback == callback) {
 623                online_page_callback = generic_online_page;
 624                rc = 0;
 625        }
 626
 627        mutex_unlock(&online_page_callback_lock);
 628        put_online_mems();
 629
 630        return rc;
 631}
 632EXPORT_SYMBOL_GPL(restore_online_page_callback);
 633
 634void generic_online_page(struct page *page, unsigned int order)
 635{
 636        /*
 637         * Freeing the page with debug_pagealloc enabled will try to unmap it,
 638         * so we should map it first. This is better than introducing a special
 639         * case in page freeing fast path.
 640         */
 641        debug_pagealloc_map_pages(page, 1 << order);
 642        __free_pages_core(page, order);
 643        totalram_pages_add(1UL << order);
 644#ifdef CONFIG_HIGHMEM
 645        if (PageHighMem(page))
 646                totalhigh_pages_add(1UL << order);
 647#endif
 648}
 649EXPORT_SYMBOL_GPL(generic_online_page);
 650
 651static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 652{
 653        const unsigned long end_pfn = start_pfn + nr_pages;
 654        unsigned long pfn;
 655
 656        /*
 657         * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
 658         * decide to not expose all pages to the buddy (e.g., expose them
 659         * later). We account all pages as being online and belonging to this
 660         * zone ("present").
 661         * When using memmap_on_memory, the range might not be aligned to
 662         * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 663         * this and the first chunk to online will be pageblock_nr_pages.
 664         */
 665        for (pfn = start_pfn; pfn < end_pfn;) {
 666                int order = min(MAX_ORDER - 1UL, __ffs(pfn));
 667
 668                (*online_page_callback)(pfn_to_page(pfn), order);
 669                pfn += (1UL << order);
 670        }
 671
 672        /* mark all involved sections as online */
 673        online_mem_sections(start_pfn, end_pfn);
 674}
 675
 676/* check which state of node_states will be changed when online memory */
 677static void node_states_check_changes_online(unsigned long nr_pages,
 678        struct zone *zone, struct memory_notify *arg)
 679{
 680        int nid = zone_to_nid(zone);
 681
 682        arg->status_change_nid = NUMA_NO_NODE;
 683        arg->status_change_nid_normal = NUMA_NO_NODE;
 684        arg->status_change_nid_high = NUMA_NO_NODE;
 685
 686        if (!node_state(nid, N_MEMORY))
 687                arg->status_change_nid = nid;
 688        if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 689                arg->status_change_nid_normal = nid;
 690#ifdef CONFIG_HIGHMEM
 691        if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
 692                arg->status_change_nid_high = nid;
 693#endif
 694}
 695
 696static void node_states_set_node(int node, struct memory_notify *arg)
 697{
 698        if (arg->status_change_nid_normal >= 0)
 699                node_set_state(node, N_NORMAL_MEMORY);
 700
 701        if (arg->status_change_nid_high >= 0)
 702                node_set_state(node, N_HIGH_MEMORY);
 703
 704        if (arg->status_change_nid >= 0)
 705                node_set_state(node, N_MEMORY);
 706}
 707
 708static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 709                unsigned long nr_pages)
 710{
 711        unsigned long old_end_pfn = zone_end_pfn(zone);
 712
 713        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 714                zone->zone_start_pfn = start_pfn;
 715
 716        zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 717}
 718
 719static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 720                                     unsigned long nr_pages)
 721{
 722        unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 723
 724        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 725                pgdat->node_start_pfn = start_pfn;
 726
 727        pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 728
 729}
 730
 731static void section_taint_zone_device(unsigned long pfn)
 732{
 733        struct mem_section *ms = __pfn_to_section(pfn);
 734
 735        ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 736}
 737
 738/*
 739 * Associate the pfn range with the given zone, initializing the memmaps
 740 * and resizing the pgdat/zone data to span the added pages. After this
 741 * call, all affected pages are PG_reserved.
 742 *
 743 * All aligned pageblocks are initialized to the specified migratetype
 744 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 745 * zone stats (e.g., nr_isolate_pageblock) are touched.
 746 */
 747void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 748                                  unsigned long nr_pages,
 749                                  struct vmem_altmap *altmap, int migratetype)
 750{
 751        struct pglist_data *pgdat = zone->zone_pgdat;
 752        int nid = pgdat->node_id;
 753        unsigned long flags;
 754
 755        clear_zone_contiguous(zone);
 756
 757        /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
 758        pgdat_resize_lock(pgdat, &flags);
 759        zone_span_writelock(zone);
 760        if (zone_is_empty(zone))
 761                init_currently_empty_zone(zone, start_pfn, nr_pages);
 762        resize_zone_range(zone, start_pfn, nr_pages);
 763        zone_span_writeunlock(zone);
 764        resize_pgdat_range(pgdat, start_pfn, nr_pages);
 765        pgdat_resize_unlock(pgdat, &flags);
 766
 767        /*
 768         * Subsection population requires care in pfn_to_online_page().
 769         * Set the taint to enable the slow path detection of
 770         * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 771         * section.
 772         */
 773        if (zone_is_zone_device(zone)) {
 774                if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 775                        section_taint_zone_device(start_pfn);
 776                if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 777                        section_taint_zone_device(start_pfn + nr_pages);
 778        }
 779
 780        /*
 781         * TODO now we have a visible range of pages which are not associated
 782         * with their zone properly. Not nice but set_pfnblock_flags_mask
 783         * expects the zone spans the pfn range. All the pages in the range
 784         * are reserved so nobody should be touching them so we should be safe
 785         */
 786        memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 787                         MEMINIT_HOTPLUG, altmap, migratetype);
 788
 789        set_zone_contiguous(zone);
 790}
 791
 792/*
 793 * Returns a default kernel memory zone for the given pfn range.
 794 * If no kernel zone covers this pfn range it will automatically go
 795 * to the ZONE_NORMAL.
 796 */
 797static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 798                unsigned long nr_pages)
 799{
 800        struct pglist_data *pgdat = NODE_DATA(nid);
 801        int zid;
 802
 803        for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 804                struct zone *zone = &pgdat->node_zones[zid];
 805
 806                if (zone_intersects(zone, start_pfn, nr_pages))
 807                        return zone;
 808        }
 809
 810        return &pgdat->node_zones[ZONE_NORMAL];
 811}
 812
 813static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 814                unsigned long nr_pages)
 815{
 816        struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 817                        nr_pages);
 818        struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 819        bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 820        bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 821
 822        /*
 823         * We inherit the existing zone in a simple case where zones do not
 824         * overlap in the given range
 825         */
 826        if (in_kernel ^ in_movable)
 827                return (in_kernel) ? kernel_zone : movable_zone;
 828
 829        /*
 830         * If the range doesn't belong to any zone or two zones overlap in the
 831         * given range then we use movable zone only if movable_node is
 832         * enabled because we always online to a kernel zone by default.
 833         */
 834        return movable_node_enabled ? movable_zone : kernel_zone;
 835}
 836
 837struct zone *zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
 838                unsigned long nr_pages)
 839{
 840        if (online_type == MMOP_ONLINE_KERNEL)
 841                return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 842
 843        if (online_type == MMOP_ONLINE_MOVABLE)
 844                return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 845
 846        return default_zone_for_pfn(nid, start_pfn, nr_pages);
 847}
 848
 849/*
 850 * This function should only be called by memory_block_{online,offline},
 851 * and {online,offline}_pages.
 852 */
 853void adjust_present_page_count(struct zone *zone, long nr_pages)
 854{
 855        unsigned long flags;
 856
 857        zone->present_pages += nr_pages;
 858        pgdat_resize_lock(zone->zone_pgdat, &flags);
 859        zone->zone_pgdat->node_present_pages += nr_pages;
 860        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 861}
 862
 863int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
 864                              struct zone *zone)
 865{
 866        unsigned long end_pfn = pfn + nr_pages;
 867        int ret;
 868
 869        ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
 870        if (ret)
 871                return ret;
 872
 873        move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
 874
 875        /*
 876         * It might be that the vmemmap_pages fully span sections. If that is
 877         * the case, mark those sections online here as otherwise they will be
 878         * left offline.
 879         */
 880        if (nr_pages >= PAGES_PER_SECTION)
 881                online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
 882
 883        return ret;
 884}
 885
 886void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
 887{
 888        unsigned long end_pfn = pfn + nr_pages;
 889
 890        /*
 891         * It might be that the vmemmap_pages fully span sections. If that is
 892         * the case, mark those sections offline here as otherwise they will be
 893         * left online.
 894         */
 895        if (nr_pages >= PAGES_PER_SECTION)
 896                offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
 897
 898        /*
 899         * The pages associated with this vmemmap have been offlined, so
 900         * we can reset its state here.
 901         */
 902        remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
 903        kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
 904}
 905
 906int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
 907{
 908        unsigned long flags;
 909        int need_zonelists_rebuild = 0;
 910        const int nid = zone_to_nid(zone);
 911        int ret;
 912        struct memory_notify arg;
 913
 914        /*
 915         * {on,off}lining is constrained to full memory sections (or more
 916         * precisly to memory blocks from the user space POV).
 917         * memmap_on_memory is an exception because it reserves initial part
 918         * of the physical memory space for vmemmaps. That space is pageblock
 919         * aligned.
 920         */
 921        if (WARN_ON_ONCE(!nr_pages ||
 922                         !IS_ALIGNED(pfn, pageblock_nr_pages) ||
 923                         !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
 924                return -EINVAL;
 925
 926        mem_hotplug_begin();
 927
 928        /* associate pfn range with the zone */
 929        move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
 930
 931        arg.start_pfn = pfn;
 932        arg.nr_pages = nr_pages;
 933        node_states_check_changes_online(nr_pages, zone, &arg);
 934
 935        ret = memory_notify(MEM_GOING_ONLINE, &arg);
 936        ret = notifier_to_errno(ret);
 937        if (ret)
 938                goto failed_addition;
 939
 940        /*
 941         * Fixup the number of isolated pageblocks before marking the sections
 942         * onlining, such that undo_isolate_page_range() works correctly.
 943         */
 944        spin_lock_irqsave(&zone->lock, flags);
 945        zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
 946        spin_unlock_irqrestore(&zone->lock, flags);
 947
 948        /*
 949         * If this zone is not populated, then it is not in zonelist.
 950         * This means the page allocator ignores this zone.
 951         * So, zonelist must be updated after online.
 952         */
 953        if (!populated_zone(zone)) {
 954                need_zonelists_rebuild = 1;
 955                setup_zone_pageset(zone);
 956        }
 957
 958        online_pages_range(pfn, nr_pages);
 959        adjust_present_page_count(zone, nr_pages);
 960
 961        node_states_set_node(nid, &arg);
 962        if (need_zonelists_rebuild)
 963                build_all_zonelists(NULL);
 964        zone_pcp_update(zone);
 965
 966        /* Basic onlining is complete, allow allocation of onlined pages. */
 967        undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
 968
 969        /*
 970         * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
 971         * the tail of the freelist when undoing isolation). Shuffle the whole
 972         * zone to make sure the just onlined pages are properly distributed
 973         * across the whole freelist - to create an initial shuffle.
 974         */
 975        shuffle_zone(zone);
 976
 977        init_per_zone_wmark_min();
 978
 979        kswapd_run(nid);
 980        kcompactd_run(nid);
 981
 982        writeback_set_ratelimit();
 983
 984        memory_notify(MEM_ONLINE, &arg);
 985        mem_hotplug_done();
 986        return 0;
 987
 988failed_addition:
 989        pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
 990                 (unsigned long long) pfn << PAGE_SHIFT,
 991                 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
 992        memory_notify(MEM_CANCEL_ONLINE, &arg);
 993        remove_pfn_range_from_zone(zone, pfn, nr_pages);
 994        mem_hotplug_done();
 995        return ret;
 996}
 997#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 998
 999static void reset_node_present_pages(pg_data_t *pgdat)
1000{
1001        struct zone *z;
1002
1003        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1004                z->present_pages = 0;
1005
1006        pgdat->node_present_pages = 0;
1007}
1008
1009/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1010static pg_data_t __ref *hotadd_new_pgdat(int nid)
1011{
1012        struct pglist_data *pgdat;
1013
1014        pgdat = NODE_DATA(nid);
1015        if (!pgdat) {
1016                pgdat = arch_alloc_nodedata(nid);
1017                if (!pgdat)
1018                        return NULL;
1019
1020                pgdat->per_cpu_nodestats =
1021                        alloc_percpu(struct per_cpu_nodestat);
1022                arch_refresh_nodedata(nid, pgdat);
1023        } else {
1024                int cpu;
1025                /*
1026                 * Reset the nr_zones, order and highest_zoneidx before reuse.
1027                 * Note that kswapd will init kswapd_highest_zoneidx properly
1028                 * when it starts in the near future.
1029                 */
1030                pgdat->nr_zones = 0;
1031                pgdat->kswapd_order = 0;
1032                pgdat->kswapd_highest_zoneidx = 0;
1033                for_each_online_cpu(cpu) {
1034                        struct per_cpu_nodestat *p;
1035
1036                        p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1037                        memset(p, 0, sizeof(*p));
1038                }
1039        }
1040
1041        /* we can use NODE_DATA(nid) from here */
1042        pgdat->node_id = nid;
1043        pgdat->node_start_pfn = 0;
1044
1045        /* init node's zones as empty zones, we don't have any present pages.*/
1046        free_area_init_core_hotplug(nid);
1047
1048        /*
1049         * The node we allocated has no zone fallback lists. For avoiding
1050         * to access not-initialized zonelist, build here.
1051         */
1052        build_all_zonelists(pgdat);
1053
1054        /*
1055         * When memory is hot-added, all the memory is in offline state. So
1056         * clear all zones' present_pages because they will be updated in
1057         * online_pages() and offline_pages().
1058         */
1059        reset_node_managed_pages(pgdat);
1060        reset_node_present_pages(pgdat);
1061
1062        return pgdat;
1063}
1064
1065static void rollback_node_hotadd(int nid)
1066{
1067        pg_data_t *pgdat = NODE_DATA(nid);
1068
1069        arch_refresh_nodedata(nid, NULL);
1070        free_percpu(pgdat->per_cpu_nodestats);
1071        arch_free_nodedata(pgdat);
1072}
1073
1074
1075/**
1076 * try_online_node - online a node if offlined
1077 * @nid: the node ID
1078 * @set_node_online: Whether we want to online the node
1079 * called by cpu_up() to online a node without onlined memory.
1080 *
1081 * Returns:
1082 * 1 -> a new node has been allocated
1083 * 0 -> the node is already online
1084 * -ENOMEM -> the node could not be allocated
1085 */
1086static int __try_online_node(int nid, bool set_node_online)
1087{
1088        pg_data_t *pgdat;
1089        int ret = 1;
1090
1091        if (node_online(nid))
1092                return 0;
1093
1094        pgdat = hotadd_new_pgdat(nid);
1095        if (!pgdat) {
1096                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1097                ret = -ENOMEM;
1098                goto out;
1099        }
1100
1101        if (set_node_online) {
1102                node_set_online(nid);
1103                ret = register_one_node(nid);
1104                BUG_ON(ret);
1105        }
1106out:
1107        return ret;
1108}
1109
1110/*
1111 * Users of this function always want to online/register the node
1112 */
1113int try_online_node(int nid)
1114{
1115        int ret;
1116
1117        mem_hotplug_begin();
1118        ret =  __try_online_node(nid, true);
1119        mem_hotplug_done();
1120        return ret;
1121}
1122
1123static int check_hotplug_memory_range(u64 start, u64 size)
1124{
1125        /* memory range must be block size aligned */
1126        if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1127            !IS_ALIGNED(size, memory_block_size_bytes())) {
1128                pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1129                       memory_block_size_bytes(), start, size);
1130                return -EINVAL;
1131        }
1132
1133        return 0;
1134}
1135
1136static int online_memory_block(struct memory_block *mem, void *arg)
1137{
1138        mem->online_type = mhp_default_online_type;
1139        return device_online(&mem->dev);
1140}
1141
1142bool mhp_supports_memmap_on_memory(unsigned long size)
1143{
1144        unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1145        unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1146        unsigned long remaining_size = size - vmemmap_size;
1147
1148        /*
1149         * Besides having arch support and the feature enabled at runtime, we
1150         * need a few more assumptions to hold true:
1151         *
1152         * a) We span a single memory block: memory onlining/offlinin;g happens
1153         *    in memory block granularity. We don't want the vmemmap of online
1154         *    memory blocks to reside on offline memory blocks. In the future,
1155         *    we might want to support variable-sized memory blocks to make the
1156         *    feature more versatile.
1157         *
1158         * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1159         *    to populate memory from the altmap for unrelated parts (i.e.,
1160         *    other memory blocks)
1161         *
1162         * c) The vmemmap pages (and thereby the pages that will be exposed to
1163         *    the buddy) have to cover full pageblocks: memory onlining/offlining
1164         *    code requires applicable ranges to be page-aligned, for example, to
1165         *    set the migratetypes properly.
1166         *
1167         * TODO: Although we have a check here to make sure that vmemmap pages
1168         *       fully populate a PMD, it is not the right place to check for
1169         *       this. A much better solution involves improving vmemmap code
1170         *       to fallback to base pages when trying to populate vmemmap using
1171         *       altmap as an alternative source of memory, and we do not exactly
1172         *       populate a single PMD.
1173         */
1174        return memmap_on_memory &&
1175               IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1176               size == memory_block_size_bytes() &&
1177               IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1178               IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1179}
1180
1181/*
1182 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1183 * and online/offline operations (triggered e.g. by sysfs).
1184 *
1185 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1186 */
1187int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1188{
1189        struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1190        struct vmem_altmap mhp_altmap = {};
1191        u64 start, size;
1192        bool new_node = false;
1193        int ret;
1194
1195        start = res->start;
1196        size = resource_size(res);
1197
1198        ret = check_hotplug_memory_range(start, size);
1199        if (ret)
1200                return ret;
1201
1202        if (!node_possible(nid)) {
1203                WARN(1, "node %d was absent from the node_possible_map\n", nid);
1204                return -EINVAL;
1205        }
1206
1207        mem_hotplug_begin();
1208
1209        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1210                memblock_add_node(start, size, nid);
1211
1212        ret = __try_online_node(nid, false);
1213        if (ret < 0)
1214                goto error;
1215        new_node = ret;
1216
1217        /*
1218         * Self hosted memmap array
1219         */
1220        if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1221                if (!mhp_supports_memmap_on_memory(size)) {
1222                        ret = -EINVAL;
1223                        goto error;
1224                }
1225                mhp_altmap.free = PHYS_PFN(size);
1226                mhp_altmap.base_pfn = PHYS_PFN(start);
1227                params.altmap = &mhp_altmap;
1228        }
1229
1230        /* call arch's memory hotadd */
1231        ret = arch_add_memory(nid, start, size, &params);
1232        if (ret < 0)
1233                goto error;
1234
1235        /* create memory block devices after memory was added */
1236        ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1237        if (ret) {
1238                arch_remove_memory(nid, start, size, NULL);
1239                goto error;
1240        }
1241
1242        if (new_node) {
1243                /* If sysfs file of new node can't be created, cpu on the node
1244                 * can't be hot-added. There is no rollback way now.
1245                 * So, check by BUG_ON() to catch it reluctantly..
1246                 * We online node here. We can't roll back from here.
1247                 */
1248                node_set_online(nid);
1249                ret = __register_one_node(nid);
1250                BUG_ON(ret);
1251        }
1252
1253        /* link memory sections under this node.*/
1254        link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1255                          MEMINIT_HOTPLUG);
1256
1257        /* create new memmap entry */
1258        if (!strcmp(res->name, "System RAM"))
1259                firmware_map_add_hotplug(start, start + size, "System RAM");
1260
1261        /* device_online() will take the lock when calling online_pages() */
1262        mem_hotplug_done();
1263
1264        /*
1265         * In case we're allowed to merge the resource, flag it and trigger
1266         * merging now that adding succeeded.
1267         */
1268        if (mhp_flags & MHP_MERGE_RESOURCE)
1269                merge_system_ram_resource(res);
1270
1271        /* online pages if requested */
1272        if (mhp_default_online_type != MMOP_OFFLINE)
1273                walk_memory_blocks(start, size, NULL, online_memory_block);
1274
1275        return ret;
1276error:
1277        /* rollback pgdat allocation and others */
1278        if (new_node)
1279                rollback_node_hotadd(nid);
1280        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1281                memblock_remove(start, size);
1282        mem_hotplug_done();
1283        return ret;
1284}
1285
1286/* requires device_hotplug_lock, see add_memory_resource() */
1287int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1288{
1289        struct resource *res;
1290        int ret;
1291
1292        res = register_memory_resource(start, size, "System RAM");
1293        if (IS_ERR(res))
1294                return PTR_ERR(res);
1295
1296        ret = add_memory_resource(nid, res, mhp_flags);
1297        if (ret < 0)
1298                release_memory_resource(res);
1299        return ret;
1300}
1301
1302int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1303{
1304        int rc;
1305
1306        lock_device_hotplug();
1307        rc = __add_memory(nid, start, size, mhp_flags);
1308        unlock_device_hotplug();
1309
1310        return rc;
1311}
1312EXPORT_SYMBOL_GPL(add_memory);
1313
1314/*
1315 * Add special, driver-managed memory to the system as system RAM. Such
1316 * memory is not exposed via the raw firmware-provided memmap as system
1317 * RAM, instead, it is detected and added by a driver - during cold boot,
1318 * after a reboot, and after kexec.
1319 *
1320 * Reasons why this memory should not be used for the initial memmap of a
1321 * kexec kernel or for placing kexec images:
1322 * - The booting kernel is in charge of determining how this memory will be
1323 *   used (e.g., use persistent memory as system RAM)
1324 * - Coordination with a hypervisor is required before this memory
1325 *   can be used (e.g., inaccessible parts).
1326 *
1327 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1328 * memory map") are created. Also, the created memory resource is flagged
1329 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1330 * this memory as well (esp., not place kexec images onto it).
1331 *
1332 * The resource_name (visible via /proc/iomem) has to have the format
1333 * "System RAM ($DRIVER)".
1334 */
1335int add_memory_driver_managed(int nid, u64 start, u64 size,
1336                              const char *resource_name, mhp_t mhp_flags)
1337{
1338        struct resource *res;
1339        int rc;
1340
1341        if (!resource_name ||
1342            strstr(resource_name, "System RAM (") != resource_name ||
1343            resource_name[strlen(resource_name) - 1] != ')')
1344                return -EINVAL;
1345
1346        lock_device_hotplug();
1347
1348        res = register_memory_resource(start, size, resource_name);
1349        if (IS_ERR(res)) {
1350                rc = PTR_ERR(res);
1351                goto out_unlock;
1352        }
1353
1354        rc = add_memory_resource(nid, res, mhp_flags);
1355        if (rc < 0)
1356                release_memory_resource(res);
1357
1358out_unlock:
1359        unlock_device_hotplug();
1360        return rc;
1361}
1362EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1363
1364/*
1365 * Platforms should define arch_get_mappable_range() that provides
1366 * maximum possible addressable physical memory range for which the
1367 * linear mapping could be created. The platform returned address
1368 * range must adhere to these following semantics.
1369 *
1370 * - range.start <= range.end
1371 * - Range includes both end points [range.start..range.end]
1372 *
1373 * There is also a fallback definition provided here, allowing the
1374 * entire possible physical address range in case any platform does
1375 * not define arch_get_mappable_range().
1376 */
1377struct range __weak arch_get_mappable_range(void)
1378{
1379        struct range mhp_range = {
1380                .start = 0UL,
1381                .end = -1ULL,
1382        };
1383        return mhp_range;
1384}
1385
1386struct range mhp_get_pluggable_range(bool need_mapping)
1387{
1388        const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1389        struct range mhp_range;
1390
1391        if (need_mapping) {
1392                mhp_range = arch_get_mappable_range();
1393                if (mhp_range.start > max_phys) {
1394                        mhp_range.start = 0;
1395                        mhp_range.end = 0;
1396                }
1397                mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1398        } else {
1399                mhp_range.start = 0;
1400                mhp_range.end = max_phys;
1401        }
1402        return mhp_range;
1403}
1404EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1405
1406bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1407{
1408        struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1409        u64 end = start + size;
1410
1411        if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1412                return true;
1413
1414        pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1415                start, end, mhp_range.start, mhp_range.end);
1416        return false;
1417}
1418
1419#ifdef CONFIG_MEMORY_HOTREMOVE
1420/*
1421 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1422 * memory holes). When true, return the zone.
1423 */
1424struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1425                                  unsigned long end_pfn)
1426{
1427        unsigned long pfn, sec_end_pfn;
1428        struct zone *zone = NULL;
1429        struct page *page;
1430        int i;
1431        for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1432             pfn < end_pfn;
1433             pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1434                /* Make sure the memory section is present first */
1435                if (!present_section_nr(pfn_to_section_nr(pfn)))
1436                        continue;
1437                for (; pfn < sec_end_pfn && pfn < end_pfn;
1438                     pfn += MAX_ORDER_NR_PAGES) {
1439                        i = 0;
1440                        /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1441                        while ((i < MAX_ORDER_NR_PAGES) &&
1442                                !pfn_valid_within(pfn + i))
1443                                i++;
1444                        if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1445                                continue;
1446                        /* Check if we got outside of the zone */
1447                        if (zone && !zone_spans_pfn(zone, pfn + i))
1448                                return NULL;
1449                        page = pfn_to_page(pfn + i);
1450                        if (zone && page_zone(page) != zone)
1451                                return NULL;
1452                        zone = page_zone(page);
1453                }
1454        }
1455
1456        return zone;
1457}
1458
1459/*
1460 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1461 * non-lru movable pages and hugepages). Will skip over most unmovable
1462 * pages (esp., pages that can be skipped when offlining), but bail out on
1463 * definitely unmovable pages.
1464 *
1465 * Returns:
1466 *      0 in case a movable page is found and movable_pfn was updated.
1467 *      -ENOENT in case no movable page was found.
1468 *      -EBUSY in case a definitely unmovable page was found.
1469 */
1470static int scan_movable_pages(unsigned long start, unsigned long end,
1471                              unsigned long *movable_pfn)
1472{
1473        unsigned long pfn;
1474
1475        for (pfn = start; pfn < end; pfn++) {
1476                struct page *page, *head;
1477                unsigned long skip;
1478
1479                if (!pfn_valid(pfn))
1480                        continue;
1481                page = pfn_to_page(pfn);
1482                if (PageLRU(page))
1483                        goto found;
1484                if (__PageMovable(page))
1485                        goto found;
1486
1487                /*
1488                 * PageOffline() pages that are not marked __PageMovable() and
1489                 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1490                 * definitely unmovable. If their reference count would be 0,
1491                 * they could at least be skipped when offlining memory.
1492                 */
1493                if (PageOffline(page) && page_count(page))
1494                        return -EBUSY;
1495
1496                if (!PageHuge(page))
1497                        continue;
1498                head = compound_head(page);
1499                /*
1500                 * This test is racy as we hold no reference or lock.  The
1501                 * hugetlb page could have been free'ed and head is no longer
1502                 * a hugetlb page before the following check.  In such unlikely
1503                 * cases false positives and negatives are possible.  Calling
1504                 * code must deal with these scenarios.
1505                 */
1506                if (HPageMigratable(head))
1507                        goto found;
1508                skip = compound_nr(head) - (page - head);
1509                pfn += skip - 1;
1510        }
1511        return -ENOENT;
1512found:
1513        *movable_pfn = pfn;
1514        return 0;
1515}
1516
1517static int
1518do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1519{
1520        unsigned long pfn;
1521        struct page *page, *head;
1522        int ret = 0;
1523        LIST_HEAD(source);
1524
1525        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526                if (!pfn_valid(pfn))
1527                        continue;
1528                page = pfn_to_page(pfn);
1529                head = compound_head(page);
1530
1531                if (PageHuge(page)) {
1532                        pfn = page_to_pfn(head) + compound_nr(head) - 1;
1533                        isolate_huge_page(head, &source);
1534                        continue;
1535                } else if (PageTransHuge(page))
1536                        pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1537
1538                /*
1539                 * HWPoison pages have elevated reference counts so the migration would
1540                 * fail on them. It also doesn't make any sense to migrate them in the
1541                 * first place. Still try to unmap such a page in case it is still mapped
1542                 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1543                 * the unmap as the catch all safety net).
1544                 */
1545                if (PageHWPoison(page)) {
1546                        if (WARN_ON(PageLRU(page)))
1547                                isolate_lru_page(page);
1548                        if (page_mapped(page))
1549                                try_to_unmap(page, TTU_IGNORE_MLOCK);
1550                        continue;
1551                }
1552
1553                if (!get_page_unless_zero(page))
1554                        continue;
1555                /*
1556                 * We can skip free pages. And we can deal with pages on
1557                 * LRU and non-lru movable pages.
1558                 */
1559                if (PageLRU(page))
1560                        ret = isolate_lru_page(page);
1561                else
1562                        ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1563                if (!ret) { /* Success */
1564                        list_add_tail(&page->lru, &source);
1565                        if (!__PageMovable(page))
1566                                inc_node_page_state(page, NR_ISOLATED_ANON +
1567                                                    page_is_file_lru(page));
1568
1569                } else {
1570                        pr_warn("failed to isolate pfn %lx\n", pfn);
1571                        dump_page(page, "isolation failed");
1572                }
1573                put_page(page);
1574        }
1575        if (!list_empty(&source)) {
1576                nodemask_t nmask = node_states[N_MEMORY];
1577                struct migration_target_control mtc = {
1578                        .nmask = &nmask,
1579                        .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1580                };
1581
1582                /*
1583                 * We have checked that migration range is on a single zone so
1584                 * we can use the nid of the first page to all the others.
1585                 */
1586                mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1587
1588                /*
1589                 * try to allocate from a different node but reuse this node
1590                 * if there are no other online nodes to be used (e.g. we are
1591                 * offlining a part of the only existing node)
1592                 */
1593                node_clear(mtc.nid, nmask);
1594                if (nodes_empty(nmask))
1595                        node_set(mtc.nid, nmask);
1596                ret = migrate_pages(&source, alloc_migration_target, NULL,
1597                        (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1598                if (ret) {
1599                        list_for_each_entry(page, &source, lru) {
1600                                pr_warn("migrating pfn %lx failed ret:%d ",
1601                                       page_to_pfn(page), ret);
1602                                dump_page(page, "migration failure");
1603                        }
1604                        putback_movable_pages(&source);
1605                }
1606        }
1607
1608        return ret;
1609}
1610
1611static int __init cmdline_parse_movable_node(char *p)
1612{
1613        movable_node_enabled = true;
1614        return 0;
1615}
1616early_param("movable_node", cmdline_parse_movable_node);
1617
1618/* check which state of node_states will be changed when offline memory */
1619static void node_states_check_changes_offline(unsigned long nr_pages,
1620                struct zone *zone, struct memory_notify *arg)
1621{
1622        struct pglist_data *pgdat = zone->zone_pgdat;
1623        unsigned long present_pages = 0;
1624        enum zone_type zt;
1625
1626        arg->status_change_nid = NUMA_NO_NODE;
1627        arg->status_change_nid_normal = NUMA_NO_NODE;
1628        arg->status_change_nid_high = NUMA_NO_NODE;
1629
1630        /*
1631         * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1632         * If the memory to be offline is within the range
1633         * [0..ZONE_NORMAL], and it is the last present memory there,
1634         * the zones in that range will become empty after the offlining,
1635         * thus we can determine that we need to clear the node from
1636         * node_states[N_NORMAL_MEMORY].
1637         */
1638        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1639                present_pages += pgdat->node_zones[zt].present_pages;
1640        if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1641                arg->status_change_nid_normal = zone_to_nid(zone);
1642
1643#ifdef CONFIG_HIGHMEM
1644        /*
1645         * node_states[N_HIGH_MEMORY] contains nodes which
1646         * have normal memory or high memory.
1647         * Here we add the present_pages belonging to ZONE_HIGHMEM.
1648         * If the zone is within the range of [0..ZONE_HIGHMEM), and
1649         * we determine that the zones in that range become empty,
1650         * we need to clear the node for N_HIGH_MEMORY.
1651         */
1652        present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1653        if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1654                arg->status_change_nid_high = zone_to_nid(zone);
1655#endif
1656
1657        /*
1658         * We have accounted the pages from [0..ZONE_NORMAL), and
1659         * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1660         * as well.
1661         * Here we count the possible pages from ZONE_MOVABLE.
1662         * If after having accounted all the pages, we see that the nr_pages
1663         * to be offlined is over or equal to the accounted pages,
1664         * we know that the node will become empty, and so, we can clear
1665         * it for N_MEMORY as well.
1666         */
1667        present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1668
1669        if (nr_pages >= present_pages)
1670                arg->status_change_nid = zone_to_nid(zone);
1671}
1672
1673static void node_states_clear_node(int node, struct memory_notify *arg)
1674{
1675        if (arg->status_change_nid_normal >= 0)
1676                node_clear_state(node, N_NORMAL_MEMORY);
1677
1678        if (arg->status_change_nid_high >= 0)
1679                node_clear_state(node, N_HIGH_MEMORY);
1680
1681        if (arg->status_change_nid >= 0)
1682                node_clear_state(node, N_MEMORY);
1683}
1684
1685static int count_system_ram_pages_cb(unsigned long start_pfn,
1686                                     unsigned long nr_pages, void *data)
1687{
1688        unsigned long *nr_system_ram_pages = data;
1689
1690        *nr_system_ram_pages += nr_pages;
1691        return 0;
1692}
1693
1694int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1695{
1696        const unsigned long end_pfn = start_pfn + nr_pages;
1697        unsigned long pfn, system_ram_pages = 0;
1698        unsigned long flags;
1699        struct zone *zone;
1700        struct memory_notify arg;
1701        int ret, node;
1702        char *reason;
1703
1704        /*
1705         * {on,off}lining is constrained to full memory sections (or more
1706         * precisly to memory blocks from the user space POV).
1707         * memmap_on_memory is an exception because it reserves initial part
1708         * of the physical memory space for vmemmaps. That space is pageblock
1709         * aligned.
1710         */
1711        if (WARN_ON_ONCE(!nr_pages ||
1712                         !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1713                         !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1714                return -EINVAL;
1715
1716        mem_hotplug_begin();
1717
1718        /*
1719         * Don't allow to offline memory blocks that contain holes.
1720         * Consequently, memory blocks with holes can never get onlined
1721         * via the hotplug path - online_pages() - as hotplugged memory has
1722         * no holes. This way, we e.g., don't have to worry about marking
1723         * memory holes PG_reserved, don't need pfn_valid() checks, and can
1724         * avoid using walk_system_ram_range() later.
1725         */
1726        walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1727                              count_system_ram_pages_cb);
1728        if (system_ram_pages != nr_pages) {
1729                ret = -EINVAL;
1730                reason = "memory holes";
1731                goto failed_removal;
1732        }
1733
1734        /* This makes hotplug much easier...and readable.
1735           we assume this for now. .*/
1736        zone = test_pages_in_a_zone(start_pfn, end_pfn);
1737        if (!zone) {
1738                ret = -EINVAL;
1739                reason = "multizone range";
1740                goto failed_removal;
1741        }
1742        node = zone_to_nid(zone);
1743
1744        /*
1745         * Disable pcplists so that page isolation cannot race with freeing
1746         * in a way that pages from isolated pageblock are left on pcplists.
1747         */
1748        zone_pcp_disable(zone);
1749        lru_cache_disable();
1750
1751        /* set above range as isolated */
1752        ret = start_isolate_page_range(start_pfn, end_pfn,
1753                                       MIGRATE_MOVABLE,
1754                                       MEMORY_OFFLINE | REPORT_FAILURE);
1755        if (ret) {
1756                reason = "failure to isolate range";
1757                goto failed_removal_pcplists_disabled;
1758        }
1759
1760        arg.start_pfn = start_pfn;
1761        arg.nr_pages = nr_pages;
1762        node_states_check_changes_offline(nr_pages, zone, &arg);
1763
1764        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1765        ret = notifier_to_errno(ret);
1766        if (ret) {
1767                reason = "notifier failure";
1768                goto failed_removal_isolated;
1769        }
1770
1771        do {
1772                pfn = start_pfn;
1773                do {
1774                        if (signal_pending(current)) {
1775                                ret = -EINTR;
1776                                reason = "signal backoff";
1777                                goto failed_removal_isolated;
1778                        }
1779
1780                        cond_resched();
1781
1782                        ret = scan_movable_pages(pfn, end_pfn, &pfn);
1783                        if (!ret) {
1784                                /*
1785                                 * TODO: fatal migration failures should bail
1786                                 * out
1787                                 */
1788                                do_migrate_range(pfn, end_pfn);
1789                        }
1790                } while (!ret);
1791
1792                if (ret != -ENOENT) {
1793                        reason = "unmovable page";
1794                        goto failed_removal_isolated;
1795                }
1796
1797                /*
1798                 * Dissolve free hugepages in the memory block before doing
1799                 * offlining actually in order to make hugetlbfs's object
1800                 * counting consistent.
1801                 */
1802                ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1803                if (ret) {
1804                        reason = "failure to dissolve huge pages";
1805                        goto failed_removal_isolated;
1806                }
1807
1808                ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1809
1810        } while (ret);
1811
1812        /* Mark all sections offline and remove free pages from the buddy. */
1813        __offline_isolated_pages(start_pfn, end_pfn);
1814        pr_debug("Offlined Pages %ld\n", nr_pages);
1815
1816        /*
1817         * The memory sections are marked offline, and the pageblock flags
1818         * effectively stale; nobody should be touching them. Fixup the number
1819         * of isolated pageblocks, memory onlining will properly revert this.
1820         */
1821        spin_lock_irqsave(&zone->lock, flags);
1822        zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1823        spin_unlock_irqrestore(&zone->lock, flags);
1824
1825        lru_cache_enable();
1826        zone_pcp_enable(zone);
1827
1828        /* removal success */
1829        adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1830        adjust_present_page_count(zone, -nr_pages);
1831
1832        init_per_zone_wmark_min();
1833
1834        if (!populated_zone(zone)) {
1835                zone_pcp_reset(zone);
1836                build_all_zonelists(NULL);
1837        } else
1838                zone_pcp_update(zone);
1839
1840        node_states_clear_node(node, &arg);
1841        if (arg.status_change_nid >= 0) {
1842                kswapd_stop(node);
1843                kcompactd_stop(node);
1844        }
1845
1846        writeback_set_ratelimit();
1847
1848        memory_notify(MEM_OFFLINE, &arg);
1849        remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1850        mem_hotplug_done();
1851        return 0;
1852
1853failed_removal_isolated:
1854        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1855        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1856failed_removal_pcplists_disabled:
1857        zone_pcp_enable(zone);
1858failed_removal:
1859        pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1860                 (unsigned long long) start_pfn << PAGE_SHIFT,
1861                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1862                 reason);
1863        /* pushback to free area */
1864        mem_hotplug_done();
1865        return ret;
1866}
1867
1868static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1869{
1870        int ret = !is_memblock_offlined(mem);
1871
1872        if (unlikely(ret)) {
1873                phys_addr_t beginpa, endpa;
1874
1875                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1876                endpa = beginpa + memory_block_size_bytes() - 1;
1877                pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1878                        &beginpa, &endpa);
1879
1880                return -EBUSY;
1881        }
1882        return 0;
1883}
1884
1885static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1886{
1887        /*
1888         * If not set, continue with the next block.
1889         */
1890        return mem->nr_vmemmap_pages;
1891}
1892
1893static int check_cpu_on_node(pg_data_t *pgdat)
1894{
1895        int cpu;
1896
1897        for_each_present_cpu(cpu) {
1898                if (cpu_to_node(cpu) == pgdat->node_id)
1899                        /*
1900                         * the cpu on this node isn't removed, and we can't
1901                         * offline this node.
1902                         */
1903                        return -EBUSY;
1904        }
1905
1906        return 0;
1907}
1908
1909static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1910{
1911        int nid = *(int *)arg;
1912
1913        /*
1914         * If a memory block belongs to multiple nodes, the stored nid is not
1915         * reliable. However, such blocks are always online (e.g., cannot get
1916         * offlined) and, therefore, are still spanned by the node.
1917         */
1918        return mem->nid == nid ? -EEXIST : 0;
1919}
1920
1921/**
1922 * try_offline_node
1923 * @nid: the node ID
1924 *
1925 * Offline a node if all memory sections and cpus of the node are removed.
1926 *
1927 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1928 * and online/offline operations before this call.
1929 */
1930void try_offline_node(int nid)
1931{
1932        pg_data_t *pgdat = NODE_DATA(nid);
1933        int rc;
1934
1935        /*
1936         * If the node still spans pages (especially ZONE_DEVICE), don't
1937         * offline it. A node spans memory after move_pfn_range_to_zone(),
1938         * e.g., after the memory block was onlined.
1939         */
1940        if (pgdat->node_spanned_pages)
1941                return;
1942
1943        /*
1944         * Especially offline memory blocks might not be spanned by the
1945         * node. They will get spanned by the node once they get onlined.
1946         * However, they link to the node in sysfs and can get onlined later.
1947         */
1948        rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1949        if (rc)
1950                return;
1951
1952        if (check_cpu_on_node(pgdat))
1953                return;
1954
1955        /*
1956         * all memory/cpu of this node are removed, we can offline this
1957         * node now.
1958         */
1959        node_set_offline(nid);
1960        unregister_one_node(nid);
1961}
1962EXPORT_SYMBOL(try_offline_node);
1963
1964static int __ref try_remove_memory(int nid, u64 start, u64 size)
1965{
1966        int rc = 0;
1967        struct vmem_altmap mhp_altmap = {};
1968        struct vmem_altmap *altmap = NULL;
1969        unsigned long nr_vmemmap_pages;
1970
1971        BUG_ON(check_hotplug_memory_range(start, size));
1972
1973        /*
1974         * All memory blocks must be offlined before removing memory.  Check
1975         * whether all memory blocks in question are offline and return error
1976         * if this is not the case.
1977         */
1978        rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1979        if (rc)
1980                return rc;
1981
1982        /*
1983         * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1984         * the same granularity it was added - a single memory block.
1985         */
1986        if (memmap_on_memory) {
1987                nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1988                                                      get_nr_vmemmap_pages_cb);
1989                if (nr_vmemmap_pages) {
1990                        if (size != memory_block_size_bytes()) {
1991                                pr_warn("Refuse to remove %#llx - %#llx,"
1992                                        "wrong granularity\n",
1993                                        start, start + size);
1994                                return -EINVAL;
1995                        }
1996
1997                        /*
1998                         * Let remove_pmd_table->free_hugepage_table do the
1999                         * right thing if we used vmem_altmap when hot-adding
2000                         * the range.
2001                         */
2002                        mhp_altmap.alloc = nr_vmemmap_pages;
2003                        altmap = &mhp_altmap;
2004                }
2005        }
2006
2007        /* remove memmap entry */
2008        firmware_map_remove(start, start + size, "System RAM");
2009
2010        /*
2011         * Memory block device removal under the device_hotplug_lock is
2012         * a barrier against racing online attempts.
2013         */
2014        remove_memory_block_devices(start, size);
2015
2016        mem_hotplug_begin();
2017
2018        arch_remove_memory(nid, start, size, altmap);
2019
2020        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2021                memblock_free(start, size);
2022                memblock_remove(start, size);
2023        }
2024
2025        release_mem_region_adjustable(start, size);
2026
2027        try_offline_node(nid);
2028
2029        mem_hotplug_done();
2030        return 0;
2031}
2032
2033/**
2034 * remove_memory
2035 * @nid: the node ID
2036 * @start: physical address of the region to remove
2037 * @size: size of the region to remove
2038 *
2039 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2040 * and online/offline operations before this call, as required by
2041 * try_offline_node().
2042 */
2043void __remove_memory(int nid, u64 start, u64 size)
2044{
2045
2046        /*
2047         * trigger BUG() if some memory is not offlined prior to calling this
2048         * function
2049         */
2050        if (try_remove_memory(nid, start, size))
2051                BUG();
2052}
2053
2054/*
2055 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2056 * some memory is not offline
2057 */
2058int remove_memory(int nid, u64 start, u64 size)
2059{
2060        int rc;
2061
2062        lock_device_hotplug();
2063        rc  = try_remove_memory(nid, start, size);
2064        unlock_device_hotplug();
2065
2066        return rc;
2067}
2068EXPORT_SYMBOL_GPL(remove_memory);
2069
2070static int try_offline_memory_block(struct memory_block *mem, void *arg)
2071{
2072        uint8_t online_type = MMOP_ONLINE_KERNEL;
2073        uint8_t **online_types = arg;
2074        struct page *page;
2075        int rc;
2076
2077        /*
2078         * Sense the online_type via the zone of the memory block. Offlining
2079         * with multiple zones within one memory block will be rejected
2080         * by offlining code ... so we don't care about that.
2081         */
2082        page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2083        if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2084                online_type = MMOP_ONLINE_MOVABLE;
2085
2086        rc = device_offline(&mem->dev);
2087        /*
2088         * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2089         * so try_reonline_memory_block() can do the right thing.
2090         */
2091        if (!rc)
2092                **online_types = online_type;
2093
2094        (*online_types)++;
2095        /* Ignore if already offline. */
2096        return rc < 0 ? rc : 0;
2097}
2098
2099static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2100{
2101        uint8_t **online_types = arg;
2102        int rc;
2103
2104        if (**online_types != MMOP_OFFLINE) {
2105                mem->online_type = **online_types;
2106                rc = device_online(&mem->dev);
2107                if (rc < 0)
2108                        pr_warn("%s: Failed to re-online memory: %d",
2109                                __func__, rc);
2110        }
2111
2112        /* Continue processing all remaining memory blocks. */
2113        (*online_types)++;
2114        return 0;
2115}
2116
2117/*
2118 * Try to offline and remove memory. Might take a long time to finish in case
2119 * memory is still in use. Primarily useful for memory devices that logically
2120 * unplugged all memory (so it's no longer in use) and want to offline + remove
2121 * that memory.
2122 */
2123int offline_and_remove_memory(int nid, u64 start, u64 size)
2124{
2125        const unsigned long mb_count = size / memory_block_size_bytes();
2126        uint8_t *online_types, *tmp;
2127        int rc;
2128
2129        if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2130            !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2131                return -EINVAL;
2132
2133        /*
2134         * We'll remember the old online type of each memory block, so we can
2135         * try to revert whatever we did when offlining one memory block fails
2136         * after offlining some others succeeded.
2137         */
2138        online_types = kmalloc_array(mb_count, sizeof(*online_types),
2139                                     GFP_KERNEL);
2140        if (!online_types)
2141                return -ENOMEM;
2142        /*
2143         * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2144         * try_offline_memory_block(), we'll skip all unprocessed blocks in
2145         * try_reonline_memory_block().
2146         */
2147        memset(online_types, MMOP_OFFLINE, mb_count);
2148
2149        lock_device_hotplug();
2150
2151        tmp = online_types;
2152        rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2153
2154        /*
2155         * In case we succeeded to offline all memory, remove it.
2156         * This cannot fail as it cannot get onlined in the meantime.
2157         */
2158        if (!rc) {
2159                rc = try_remove_memory(nid, start, size);
2160                if (rc)
2161                        pr_err("%s: Failed to remove memory: %d", __func__, rc);
2162        }
2163
2164        /*
2165         * Rollback what we did. While memory onlining might theoretically fail
2166         * (nacked by a notifier), it barely ever happens.
2167         */
2168        if (rc) {
2169                tmp = online_types;
2170                walk_memory_blocks(start, size, &tmp,
2171                                   try_reonline_memory_block);
2172        }
2173        unlock_device_hotplug();
2174
2175        kfree(online_types);
2176        return rc;
2177}
2178EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2179#endif /* CONFIG_MEMORY_HOTREMOVE */
2180