linux/mm/percpu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/percpu.c - percpu memory allocator
   4 *
   5 * Copyright (C) 2009           SUSE Linux Products GmbH
   6 * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
   7 *
   8 * Copyright (C) 2017           Facebook Inc.
   9 * Copyright (C) 2017           Dennis Zhou <dennis@kernel.org>
  10 *
  11 * The percpu allocator handles both static and dynamic areas.  Percpu
  12 * areas are allocated in chunks which are divided into units.  There is
  13 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
  14 * based on NUMA properties of the machine.
  15 *
  16 *  c0                           c1                         c2
  17 *  -------------------          -------------------        ------------
  18 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  19 *  -------------------  ......  -------------------  ....  ------------
  20 *
  21 * Allocation is done by offsets into a unit's address space.  Ie., an
  22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
  23 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
  24 * and even sparse.  Access is handled by configuring percpu base
  25 * registers according to the cpu to unit mappings and offsetting the
  26 * base address using pcpu_unit_size.
  27 *
  28 * There is special consideration for the first chunk which must handle
  29 * the static percpu variables in the kernel image as allocation services
  30 * are not online yet.  In short, the first chunk is structured like so:
  31 *
  32 *                  <Static | [Reserved] | Dynamic>
  33 *
  34 * The static data is copied from the original section managed by the
  35 * linker.  The reserved section, if non-zero, primarily manages static
  36 * percpu variables from kernel modules.  Finally, the dynamic section
  37 * takes care of normal allocations.
  38 *
  39 * The allocator organizes chunks into lists according to free size and
  40 * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
  41 * flag should be passed.  All memcg-aware allocations are sharing one set
  42 * of chunks and all unaccounted allocations and allocations performed
  43 * by processes belonging to the root memory cgroup are using the second set.
  44 *
  45 * The allocator tries to allocate from the fullest chunk first. Each chunk
  46 * is managed by a bitmap with metadata blocks.  The allocation map is updated
  47 * on every allocation and free to reflect the current state while the boundary
  48 * map is only updated on allocation.  Each metadata block contains
  49 * information to help mitigate the need to iterate over large portions
  50 * of the bitmap.  The reverse mapping from page to chunk is stored in
  51 * the page's index.  Lastly, units are lazily backed and grow in unison.
  52 *
  53 * There is a unique conversion that goes on here between bytes and bits.
  54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
  55 * tracks the number of pages it is responsible for in nr_pages.  Helper
  56 * functions are used to convert from between the bytes, bits, and blocks.
  57 * All hints are managed in bits unless explicitly stated.
  58 *
  59 * To use this allocator, arch code should do the following:
  60 *
  61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  62 *   regular address to percpu pointer and back if they need to be
  63 *   different from the default
  64 *
  65 * - use pcpu_setup_first_chunk() during percpu area initialization to
  66 *   setup the first chunk containing the kernel static percpu area
  67 */
  68
  69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  70
  71#include <linux/bitmap.h>
  72#include <linux/cpumask.h>
  73#include <linux/memblock.h>
  74#include <linux/err.h>
  75#include <linux/lcm.h>
  76#include <linux/list.h>
  77#include <linux/log2.h>
  78#include <linux/mm.h>
  79#include <linux/module.h>
  80#include <linux/mutex.h>
  81#include <linux/percpu.h>
  82#include <linux/pfn.h>
  83#include <linux/slab.h>
  84#include <linux/spinlock.h>
  85#include <linux/vmalloc.h>
  86#include <linux/workqueue.h>
  87#include <linux/kmemleak.h>
  88#include <linux/sched.h>
  89#include <linux/sched/mm.h>
  90#include <linux/memcontrol.h>
  91
  92#include <asm/cacheflush.h>
  93#include <asm/sections.h>
  94#include <asm/tlbflush.h>
  95#include <asm/io.h>
  96
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/percpu.h>
  99
 100#include "percpu-internal.h"
 101
 102/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
 103#define PCPU_SLOT_BASE_SHIFT            5
 104/* chunks in slots below this are subject to being sidelined on failed alloc */
 105#define PCPU_SLOT_FAIL_THRESHOLD        3
 106
 107#define PCPU_EMPTY_POP_PAGES_LOW        2
 108#define PCPU_EMPTY_POP_PAGES_HIGH       4
 109
 110#ifdef CONFIG_SMP
 111/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 112#ifndef __addr_to_pcpu_ptr
 113#define __addr_to_pcpu_ptr(addr)                                        \
 114        (void __percpu *)((unsigned long)(addr) -                       \
 115                          (unsigned long)pcpu_base_addr +               \
 116                          (unsigned long)__per_cpu_start)
 117#endif
 118#ifndef __pcpu_ptr_to_addr
 119#define __pcpu_ptr_to_addr(ptr)                                         \
 120        (void __force *)((unsigned long)(ptr) +                         \
 121                         (unsigned long)pcpu_base_addr -                \
 122                         (unsigned long)__per_cpu_start)
 123#endif
 124#else   /* CONFIG_SMP */
 125/* on UP, it's always identity mapped */
 126#define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
 127#define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
 128#endif  /* CONFIG_SMP */
 129
 130static int pcpu_unit_pages __ro_after_init;
 131static int pcpu_unit_size __ro_after_init;
 132static int pcpu_nr_units __ro_after_init;
 133static int pcpu_atom_size __ro_after_init;
 134int pcpu_nr_slots __ro_after_init;
 135static size_t pcpu_chunk_struct_size __ro_after_init;
 136
 137/* cpus with the lowest and highest unit addresses */
 138static unsigned int pcpu_low_unit_cpu __ro_after_init;
 139static unsigned int pcpu_high_unit_cpu __ro_after_init;
 140
 141/* the address of the first chunk which starts with the kernel static area */
 142void *pcpu_base_addr __ro_after_init;
 143EXPORT_SYMBOL_GPL(pcpu_base_addr);
 144
 145static const int *pcpu_unit_map __ro_after_init;                /* cpu -> unit */
 146const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
 147
 148/* group information, used for vm allocation */
 149static int pcpu_nr_groups __ro_after_init;
 150static const unsigned long *pcpu_group_offsets __ro_after_init;
 151static const size_t *pcpu_group_sizes __ro_after_init;
 152
 153/*
 154 * The first chunk which always exists.  Note that unlike other
 155 * chunks, this one can be allocated and mapped in several different
 156 * ways and thus often doesn't live in the vmalloc area.
 157 */
 158struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 159
 160/*
 161 * Optional reserved chunk.  This chunk reserves part of the first
 162 * chunk and serves it for reserved allocations.  When the reserved
 163 * region doesn't exist, the following variable is NULL.
 164 */
 165struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 166
 167DEFINE_SPINLOCK(pcpu_lock);     /* all internal data structures */
 168static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop, map ext */
 169
 170struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
 171
 172/* chunks which need their map areas extended, protected by pcpu_lock */
 173static LIST_HEAD(pcpu_map_extend_chunks);
 174
 175/*
 176 * The number of empty populated pages by chunk type, protected by pcpu_lock.
 177 * The reserved chunk doesn't contribute to the count.
 178 */
 179int pcpu_nr_empty_pop_pages[PCPU_NR_CHUNK_TYPES];
 180
 181/*
 182 * The number of populated pages in use by the allocator, protected by
 183 * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
 184 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
 185 * and increments/decrements this count by 1).
 186 */
 187static unsigned long pcpu_nr_populated;
 188
 189/*
 190 * Balance work is used to populate or destroy chunks asynchronously.  We
 191 * try to keep the number of populated free pages between
 192 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 193 * empty chunk.
 194 */
 195static void pcpu_balance_workfn(struct work_struct *work);
 196static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 197static bool pcpu_async_enabled __read_mostly;
 198static bool pcpu_atomic_alloc_failed;
 199
 200static void pcpu_schedule_balance_work(void)
 201{
 202        if (pcpu_async_enabled)
 203                schedule_work(&pcpu_balance_work);
 204}
 205
 206/**
 207 * pcpu_addr_in_chunk - check if the address is served from this chunk
 208 * @chunk: chunk of interest
 209 * @addr: percpu address
 210 *
 211 * RETURNS:
 212 * True if the address is served from this chunk.
 213 */
 214static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 215{
 216        void *start_addr, *end_addr;
 217
 218        if (!chunk)
 219                return false;
 220
 221        start_addr = chunk->base_addr + chunk->start_offset;
 222        end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 223                   chunk->end_offset;
 224
 225        return addr >= start_addr && addr < end_addr;
 226}
 227
 228static int __pcpu_size_to_slot(int size)
 229{
 230        int highbit = fls(size);        /* size is in bytes */
 231        return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 232}
 233
 234static int pcpu_size_to_slot(int size)
 235{
 236        if (size == pcpu_unit_size)
 237                return pcpu_nr_slots - 1;
 238        return __pcpu_size_to_slot(size);
 239}
 240
 241static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 242{
 243        const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 244
 245        if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
 246            chunk_md->contig_hint == 0)
 247                return 0;
 248
 249        return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
 250}
 251
 252/* set the pointer to a chunk in a page struct */
 253static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 254{
 255        page->index = (unsigned long)pcpu;
 256}
 257
 258/* obtain pointer to a chunk from a page struct */
 259static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 260{
 261        return (struct pcpu_chunk *)page->index;
 262}
 263
 264static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 265{
 266        return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 267}
 268
 269static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 270{
 271        return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 272}
 273
 274static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 275                                     unsigned int cpu, int page_idx)
 276{
 277        return (unsigned long)chunk->base_addr +
 278               pcpu_unit_page_offset(cpu, page_idx);
 279}
 280
 281/*
 282 * The following are helper functions to help access bitmaps and convert
 283 * between bitmap offsets to address offsets.
 284 */
 285static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 286{
 287        return chunk->alloc_map +
 288               (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 289}
 290
 291static unsigned long pcpu_off_to_block_index(int off)
 292{
 293        return off / PCPU_BITMAP_BLOCK_BITS;
 294}
 295
 296static unsigned long pcpu_off_to_block_off(int off)
 297{
 298        return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 299}
 300
 301static unsigned long pcpu_block_off_to_off(int index, int off)
 302{
 303        return index * PCPU_BITMAP_BLOCK_BITS + off;
 304}
 305
 306/*
 307 * pcpu_next_hint - determine which hint to use
 308 * @block: block of interest
 309 * @alloc_bits: size of allocation
 310 *
 311 * This determines if we should scan based on the scan_hint or first_free.
 312 * In general, we want to scan from first_free to fulfill allocations by
 313 * first fit.  However, if we know a scan_hint at position scan_hint_start
 314 * cannot fulfill an allocation, we can begin scanning from there knowing
 315 * the contig_hint will be our fallback.
 316 */
 317static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
 318{
 319        /*
 320         * The three conditions below determine if we can skip past the
 321         * scan_hint.  First, does the scan hint exist.  Second, is the
 322         * contig_hint after the scan_hint (possibly not true iff
 323         * contig_hint == scan_hint).  Third, is the allocation request
 324         * larger than the scan_hint.
 325         */
 326        if (block->scan_hint &&
 327            block->contig_hint_start > block->scan_hint_start &&
 328            alloc_bits > block->scan_hint)
 329                return block->scan_hint_start + block->scan_hint;
 330
 331        return block->first_free;
 332}
 333
 334/**
 335 * pcpu_next_md_free_region - finds the next hint free area
 336 * @chunk: chunk of interest
 337 * @bit_off: chunk offset
 338 * @bits: size of free area
 339 *
 340 * Helper function for pcpu_for_each_md_free_region.  It checks
 341 * block->contig_hint and performs aggregation across blocks to find the
 342 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 343 * loop.
 344 */
 345static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 346                                     int *bits)
 347{
 348        int i = pcpu_off_to_block_index(*bit_off);
 349        int block_off = pcpu_off_to_block_off(*bit_off);
 350        struct pcpu_block_md *block;
 351
 352        *bits = 0;
 353        for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 354             block++, i++) {
 355                /* handles contig area across blocks */
 356                if (*bits) {
 357                        *bits += block->left_free;
 358                        if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 359                                continue;
 360                        return;
 361                }
 362
 363                /*
 364                 * This checks three things.  First is there a contig_hint to
 365                 * check.  Second, have we checked this hint before by
 366                 * comparing the block_off.  Third, is this the same as the
 367                 * right contig hint.  In the last case, it spills over into
 368                 * the next block and should be handled by the contig area
 369                 * across blocks code.
 370                 */
 371                *bits = block->contig_hint;
 372                if (*bits && block->contig_hint_start >= block_off &&
 373                    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 374                        *bit_off = pcpu_block_off_to_off(i,
 375                                        block->contig_hint_start);
 376                        return;
 377                }
 378                /* reset to satisfy the second predicate above */
 379                block_off = 0;
 380
 381                *bits = block->right_free;
 382                *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 383        }
 384}
 385
 386/**
 387 * pcpu_next_fit_region - finds fit areas for a given allocation request
 388 * @chunk: chunk of interest
 389 * @alloc_bits: size of allocation
 390 * @align: alignment of area (max PAGE_SIZE)
 391 * @bit_off: chunk offset
 392 * @bits: size of free area
 393 *
 394 * Finds the next free region that is viable for use with a given size and
 395 * alignment.  This only returns if there is a valid area to be used for this
 396 * allocation.  block->first_free is returned if the allocation request fits
 397 * within the block to see if the request can be fulfilled prior to the contig
 398 * hint.
 399 */
 400static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 401                                 int align, int *bit_off, int *bits)
 402{
 403        int i = pcpu_off_to_block_index(*bit_off);
 404        int block_off = pcpu_off_to_block_off(*bit_off);
 405        struct pcpu_block_md *block;
 406
 407        *bits = 0;
 408        for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 409             block++, i++) {
 410                /* handles contig area across blocks */
 411                if (*bits) {
 412                        *bits += block->left_free;
 413                        if (*bits >= alloc_bits)
 414                                return;
 415                        if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 416                                continue;
 417                }
 418
 419                /* check block->contig_hint */
 420                *bits = ALIGN(block->contig_hint_start, align) -
 421                        block->contig_hint_start;
 422                /*
 423                 * This uses the block offset to determine if this has been
 424                 * checked in the prior iteration.
 425                 */
 426                if (block->contig_hint &&
 427                    block->contig_hint_start >= block_off &&
 428                    block->contig_hint >= *bits + alloc_bits) {
 429                        int start = pcpu_next_hint(block, alloc_bits);
 430
 431                        *bits += alloc_bits + block->contig_hint_start -
 432                                 start;
 433                        *bit_off = pcpu_block_off_to_off(i, start);
 434                        return;
 435                }
 436                /* reset to satisfy the second predicate above */
 437                block_off = 0;
 438
 439                *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 440                                 align);
 441                *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 442                *bit_off = pcpu_block_off_to_off(i, *bit_off);
 443                if (*bits >= alloc_bits)
 444                        return;
 445        }
 446
 447        /* no valid offsets were found - fail condition */
 448        *bit_off = pcpu_chunk_map_bits(chunk);
 449}
 450
 451/*
 452 * Metadata free area iterators.  These perform aggregation of free areas
 453 * based on the metadata blocks and return the offset @bit_off and size in
 454 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 455 * a fit is found for the allocation request.
 456 */
 457#define pcpu_for_each_md_free_region(chunk, bit_off, bits)              \
 458        for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));    \
 459             (bit_off) < pcpu_chunk_map_bits((chunk));                  \
 460             (bit_off) += (bits) + 1,                                   \
 461             pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 462
 463#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 464        for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 465                                  &(bits));                                   \
 466             (bit_off) < pcpu_chunk_map_bits((chunk));                        \
 467             (bit_off) += (bits),                                             \
 468             pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 469                                  &(bits)))
 470
 471/**
 472 * pcpu_mem_zalloc - allocate memory
 473 * @size: bytes to allocate
 474 * @gfp: allocation flags
 475 *
 476 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 477 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 478 * This is to facilitate passing through whitelisted flags.  The
 479 * returned memory is always zeroed.
 480 *
 481 * RETURNS:
 482 * Pointer to the allocated area on success, NULL on failure.
 483 */
 484static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 485{
 486        if (WARN_ON_ONCE(!slab_is_available()))
 487                return NULL;
 488
 489        if (size <= PAGE_SIZE)
 490                return kzalloc(size, gfp);
 491        else
 492                return __vmalloc(size, gfp | __GFP_ZERO);
 493}
 494
 495/**
 496 * pcpu_mem_free - free memory
 497 * @ptr: memory to free
 498 *
 499 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 500 */
 501static void pcpu_mem_free(void *ptr)
 502{
 503        kvfree(ptr);
 504}
 505
 506static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
 507                              bool move_front)
 508{
 509        if (chunk != pcpu_reserved_chunk) {
 510                struct list_head *pcpu_slot;
 511
 512                pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
 513                if (move_front)
 514                        list_move(&chunk->list, &pcpu_slot[slot]);
 515                else
 516                        list_move_tail(&chunk->list, &pcpu_slot[slot]);
 517        }
 518}
 519
 520static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
 521{
 522        __pcpu_chunk_move(chunk, slot, true);
 523}
 524
 525/**
 526 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 527 * @chunk: chunk of interest
 528 * @oslot: the previous slot it was on
 529 *
 530 * This function is called after an allocation or free changed @chunk.
 531 * New slot according to the changed state is determined and @chunk is
 532 * moved to the slot.  Note that the reserved chunk is never put on
 533 * chunk slots.
 534 *
 535 * CONTEXT:
 536 * pcpu_lock.
 537 */
 538static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 539{
 540        int nslot = pcpu_chunk_slot(chunk);
 541
 542        if (oslot != nslot)
 543                __pcpu_chunk_move(chunk, nslot, oslot < nslot);
 544}
 545
 546/*
 547 * pcpu_update_empty_pages - update empty page counters
 548 * @chunk: chunk of interest
 549 * @nr: nr of empty pages
 550 *
 551 * This is used to keep track of the empty pages now based on the premise
 552 * a md_block covers a page.  The hint update functions recognize if a block
 553 * is made full or broken to calculate deltas for keeping track of free pages.
 554 */
 555static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
 556{
 557        chunk->nr_empty_pop_pages += nr;
 558        if (chunk != pcpu_reserved_chunk)
 559                pcpu_nr_empty_pop_pages[pcpu_chunk_type(chunk)] += nr;
 560}
 561
 562/*
 563 * pcpu_region_overlap - determines if two regions overlap
 564 * @a: start of first region, inclusive
 565 * @b: end of first region, exclusive
 566 * @x: start of second region, inclusive
 567 * @y: end of second region, exclusive
 568 *
 569 * This is used to determine if the hint region [a, b) overlaps with the
 570 * allocated region [x, y).
 571 */
 572static inline bool pcpu_region_overlap(int a, int b, int x, int y)
 573{
 574        return (a < y) && (x < b);
 575}
 576
 577/**
 578 * pcpu_block_update - updates a block given a free area
 579 * @block: block of interest
 580 * @start: start offset in block
 581 * @end: end offset in block
 582 *
 583 * Updates a block given a known free area.  The region [start, end) is
 584 * expected to be the entirety of the free area within a block.  Chooses
 585 * the best starting offset if the contig hints are equal.
 586 */
 587static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 588{
 589        int contig = end - start;
 590
 591        block->first_free = min(block->first_free, start);
 592        if (start == 0)
 593                block->left_free = contig;
 594
 595        if (end == block->nr_bits)
 596                block->right_free = contig;
 597
 598        if (contig > block->contig_hint) {
 599                /* promote the old contig_hint to be the new scan_hint */
 600                if (start > block->contig_hint_start) {
 601                        if (block->contig_hint > block->scan_hint) {
 602                                block->scan_hint_start =
 603                                        block->contig_hint_start;
 604                                block->scan_hint = block->contig_hint;
 605                        } else if (start < block->scan_hint_start) {
 606                                /*
 607                                 * The old contig_hint == scan_hint.  But, the
 608                                 * new contig is larger so hold the invariant
 609                                 * scan_hint_start < contig_hint_start.
 610                                 */
 611                                block->scan_hint = 0;
 612                        }
 613                } else {
 614                        block->scan_hint = 0;
 615                }
 616                block->contig_hint_start = start;
 617                block->contig_hint = contig;
 618        } else if (contig == block->contig_hint) {
 619                if (block->contig_hint_start &&
 620                    (!start ||
 621                     __ffs(start) > __ffs(block->contig_hint_start))) {
 622                        /* start has a better alignment so use it */
 623                        block->contig_hint_start = start;
 624                        if (start < block->scan_hint_start &&
 625                            block->contig_hint > block->scan_hint)
 626                                block->scan_hint = 0;
 627                } else if (start > block->scan_hint_start ||
 628                           block->contig_hint > block->scan_hint) {
 629                        /*
 630                         * Knowing contig == contig_hint, update the scan_hint
 631                         * if it is farther than or larger than the current
 632                         * scan_hint.
 633                         */
 634                        block->scan_hint_start = start;
 635                        block->scan_hint = contig;
 636                }
 637        } else {
 638                /*
 639                 * The region is smaller than the contig_hint.  So only update
 640                 * the scan_hint if it is larger than or equal and farther than
 641                 * the current scan_hint.
 642                 */
 643                if ((start < block->contig_hint_start &&
 644                     (contig > block->scan_hint ||
 645                      (contig == block->scan_hint &&
 646                       start > block->scan_hint_start)))) {
 647                        block->scan_hint_start = start;
 648                        block->scan_hint = contig;
 649                }
 650        }
 651}
 652
 653/*
 654 * pcpu_block_update_scan - update a block given a free area from a scan
 655 * @chunk: chunk of interest
 656 * @bit_off: chunk offset
 657 * @bits: size of free area
 658 *
 659 * Finding the final allocation spot first goes through pcpu_find_block_fit()
 660 * to find a block that can hold the allocation and then pcpu_alloc_area()
 661 * where a scan is used.  When allocations require specific alignments,
 662 * we can inadvertently create holes which will not be seen in the alloc
 663 * or free paths.
 664 *
 665 * This takes a given free area hole and updates a block as it may change the
 666 * scan_hint.  We need to scan backwards to ensure we don't miss free bits
 667 * from alignment.
 668 */
 669static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
 670                                   int bits)
 671{
 672        int s_off = pcpu_off_to_block_off(bit_off);
 673        int e_off = s_off + bits;
 674        int s_index, l_bit;
 675        struct pcpu_block_md *block;
 676
 677        if (e_off > PCPU_BITMAP_BLOCK_BITS)
 678                return;
 679
 680        s_index = pcpu_off_to_block_index(bit_off);
 681        block = chunk->md_blocks + s_index;
 682
 683        /* scan backwards in case of alignment skipping free bits */
 684        l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
 685        s_off = (s_off == l_bit) ? 0 : l_bit + 1;
 686
 687        pcpu_block_update(block, s_off, e_off);
 688}
 689
 690/**
 691 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 692 * @chunk: chunk of interest
 693 * @full_scan: if we should scan from the beginning
 694 *
 695 * Iterates over the metadata blocks to find the largest contig area.
 696 * A full scan can be avoided on the allocation path as this is triggered
 697 * if we broke the contig_hint.  In doing so, the scan_hint will be before
 698 * the contig_hint or after if the scan_hint == contig_hint.  This cannot
 699 * be prevented on freeing as we want to find the largest area possibly
 700 * spanning blocks.
 701 */
 702static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
 703{
 704        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 705        int bit_off, bits;
 706
 707        /* promote scan_hint to contig_hint */
 708        if (!full_scan && chunk_md->scan_hint) {
 709                bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
 710                chunk_md->contig_hint_start = chunk_md->scan_hint_start;
 711                chunk_md->contig_hint = chunk_md->scan_hint;
 712                chunk_md->scan_hint = 0;
 713        } else {
 714                bit_off = chunk_md->first_free;
 715                chunk_md->contig_hint = 0;
 716        }
 717
 718        bits = 0;
 719        pcpu_for_each_md_free_region(chunk, bit_off, bits)
 720                pcpu_block_update(chunk_md, bit_off, bit_off + bits);
 721}
 722
 723/**
 724 * pcpu_block_refresh_hint
 725 * @chunk: chunk of interest
 726 * @index: index of the metadata block
 727 *
 728 * Scans over the block beginning at first_free and updates the block
 729 * metadata accordingly.
 730 */
 731static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 732{
 733        struct pcpu_block_md *block = chunk->md_blocks + index;
 734        unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 735        unsigned int rs, re, start;     /* region start, region end */
 736
 737        /* promote scan_hint to contig_hint */
 738        if (block->scan_hint) {
 739                start = block->scan_hint_start + block->scan_hint;
 740                block->contig_hint_start = block->scan_hint_start;
 741                block->contig_hint = block->scan_hint;
 742                block->scan_hint = 0;
 743        } else {
 744                start = block->first_free;
 745                block->contig_hint = 0;
 746        }
 747
 748        block->right_free = 0;
 749
 750        /* iterate over free areas and update the contig hints */
 751        bitmap_for_each_clear_region(alloc_map, rs, re, start,
 752                                     PCPU_BITMAP_BLOCK_BITS)
 753                pcpu_block_update(block, rs, re);
 754}
 755
 756/**
 757 * pcpu_block_update_hint_alloc - update hint on allocation path
 758 * @chunk: chunk of interest
 759 * @bit_off: chunk offset
 760 * @bits: size of request
 761 *
 762 * Updates metadata for the allocation path.  The metadata only has to be
 763 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 764 * scans are required if the block's contig hint is broken.
 765 */
 766static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 767                                         int bits)
 768{
 769        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 770        int nr_empty_pages = 0;
 771        struct pcpu_block_md *s_block, *e_block, *block;
 772        int s_index, e_index;   /* block indexes of the freed allocation */
 773        int s_off, e_off;       /* block offsets of the freed allocation */
 774
 775        /*
 776         * Calculate per block offsets.
 777         * The calculation uses an inclusive range, but the resulting offsets
 778         * are [start, end).  e_index always points to the last block in the
 779         * range.
 780         */
 781        s_index = pcpu_off_to_block_index(bit_off);
 782        e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 783        s_off = pcpu_off_to_block_off(bit_off);
 784        e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 785
 786        s_block = chunk->md_blocks + s_index;
 787        e_block = chunk->md_blocks + e_index;
 788
 789        /*
 790         * Update s_block.
 791         * block->first_free must be updated if the allocation takes its place.
 792         * If the allocation breaks the contig_hint, a scan is required to
 793         * restore this hint.
 794         */
 795        if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 796                nr_empty_pages++;
 797
 798        if (s_off == s_block->first_free)
 799                s_block->first_free = find_next_zero_bit(
 800                                        pcpu_index_alloc_map(chunk, s_index),
 801                                        PCPU_BITMAP_BLOCK_BITS,
 802                                        s_off + bits);
 803
 804        if (pcpu_region_overlap(s_block->scan_hint_start,
 805                                s_block->scan_hint_start + s_block->scan_hint,
 806                                s_off,
 807                                s_off + bits))
 808                s_block->scan_hint = 0;
 809
 810        if (pcpu_region_overlap(s_block->contig_hint_start,
 811                                s_block->contig_hint_start +
 812                                s_block->contig_hint,
 813                                s_off,
 814                                s_off + bits)) {
 815                /* block contig hint is broken - scan to fix it */
 816                if (!s_off)
 817                        s_block->left_free = 0;
 818                pcpu_block_refresh_hint(chunk, s_index);
 819        } else {
 820                /* update left and right contig manually */
 821                s_block->left_free = min(s_block->left_free, s_off);
 822                if (s_index == e_index)
 823                        s_block->right_free = min_t(int, s_block->right_free,
 824                                        PCPU_BITMAP_BLOCK_BITS - e_off);
 825                else
 826                        s_block->right_free = 0;
 827        }
 828
 829        /*
 830         * Update e_block.
 831         */
 832        if (s_index != e_index) {
 833                if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 834                        nr_empty_pages++;
 835
 836                /*
 837                 * When the allocation is across blocks, the end is along
 838                 * the left part of the e_block.
 839                 */
 840                e_block->first_free = find_next_zero_bit(
 841                                pcpu_index_alloc_map(chunk, e_index),
 842                                PCPU_BITMAP_BLOCK_BITS, e_off);
 843
 844                if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 845                        /* reset the block */
 846                        e_block++;
 847                } else {
 848                        if (e_off > e_block->scan_hint_start)
 849                                e_block->scan_hint = 0;
 850
 851                        e_block->left_free = 0;
 852                        if (e_off > e_block->contig_hint_start) {
 853                                /* contig hint is broken - scan to fix it */
 854                                pcpu_block_refresh_hint(chunk, e_index);
 855                        } else {
 856                                e_block->right_free =
 857                                        min_t(int, e_block->right_free,
 858                                              PCPU_BITMAP_BLOCK_BITS - e_off);
 859                        }
 860                }
 861
 862                /* update in-between md_blocks */
 863                nr_empty_pages += (e_index - s_index - 1);
 864                for (block = s_block + 1; block < e_block; block++) {
 865                        block->scan_hint = 0;
 866                        block->contig_hint = 0;
 867                        block->left_free = 0;
 868                        block->right_free = 0;
 869                }
 870        }
 871
 872        if (nr_empty_pages)
 873                pcpu_update_empty_pages(chunk, -nr_empty_pages);
 874
 875        if (pcpu_region_overlap(chunk_md->scan_hint_start,
 876                                chunk_md->scan_hint_start +
 877                                chunk_md->scan_hint,
 878                                bit_off,
 879                                bit_off + bits))
 880                chunk_md->scan_hint = 0;
 881
 882        /*
 883         * The only time a full chunk scan is required is if the chunk
 884         * contig hint is broken.  Otherwise, it means a smaller space
 885         * was used and therefore the chunk contig hint is still correct.
 886         */
 887        if (pcpu_region_overlap(chunk_md->contig_hint_start,
 888                                chunk_md->contig_hint_start +
 889                                chunk_md->contig_hint,
 890                                bit_off,
 891                                bit_off + bits))
 892                pcpu_chunk_refresh_hint(chunk, false);
 893}
 894
 895/**
 896 * pcpu_block_update_hint_free - updates the block hints on the free path
 897 * @chunk: chunk of interest
 898 * @bit_off: chunk offset
 899 * @bits: size of request
 900 *
 901 * Updates metadata for the allocation path.  This avoids a blind block
 902 * refresh by making use of the block contig hints.  If this fails, it scans
 903 * forward and backward to determine the extent of the free area.  This is
 904 * capped at the boundary of blocks.
 905 *
 906 * A chunk update is triggered if a page becomes free, a block becomes free,
 907 * or the free spans across blocks.  This tradeoff is to minimize iterating
 908 * over the block metadata to update chunk_md->contig_hint.
 909 * chunk_md->contig_hint may be off by up to a page, but it will never be more
 910 * than the available space.  If the contig hint is contained in one block, it
 911 * will be accurate.
 912 */
 913static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 914                                        int bits)
 915{
 916        int nr_empty_pages = 0;
 917        struct pcpu_block_md *s_block, *e_block, *block;
 918        int s_index, e_index;   /* block indexes of the freed allocation */
 919        int s_off, e_off;       /* block offsets of the freed allocation */
 920        int start, end;         /* start and end of the whole free area */
 921
 922        /*
 923         * Calculate per block offsets.
 924         * The calculation uses an inclusive range, but the resulting offsets
 925         * are [start, end).  e_index always points to the last block in the
 926         * range.
 927         */
 928        s_index = pcpu_off_to_block_index(bit_off);
 929        e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 930        s_off = pcpu_off_to_block_off(bit_off);
 931        e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 932
 933        s_block = chunk->md_blocks + s_index;
 934        e_block = chunk->md_blocks + e_index;
 935
 936        /*
 937         * Check if the freed area aligns with the block->contig_hint.
 938         * If it does, then the scan to find the beginning/end of the
 939         * larger free area can be avoided.
 940         *
 941         * start and end refer to beginning and end of the free area
 942         * within each their respective blocks.  This is not necessarily
 943         * the entire free area as it may span blocks past the beginning
 944         * or end of the block.
 945         */
 946        start = s_off;
 947        if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 948                start = s_block->contig_hint_start;
 949        } else {
 950                /*
 951                 * Scan backwards to find the extent of the free area.
 952                 * find_last_bit returns the starting bit, so if the start bit
 953                 * is returned, that means there was no last bit and the
 954                 * remainder of the chunk is free.
 955                 */
 956                int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
 957                                          start);
 958                start = (start == l_bit) ? 0 : l_bit + 1;
 959        }
 960
 961        end = e_off;
 962        if (e_off == e_block->contig_hint_start)
 963                end = e_block->contig_hint_start + e_block->contig_hint;
 964        else
 965                end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
 966                                    PCPU_BITMAP_BLOCK_BITS, end);
 967
 968        /* update s_block */
 969        e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
 970        if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
 971                nr_empty_pages++;
 972        pcpu_block_update(s_block, start, e_off);
 973
 974        /* freeing in the same block */
 975        if (s_index != e_index) {
 976                /* update e_block */
 977                if (end == PCPU_BITMAP_BLOCK_BITS)
 978                        nr_empty_pages++;
 979                pcpu_block_update(e_block, 0, end);
 980
 981                /* reset md_blocks in the middle */
 982                nr_empty_pages += (e_index - s_index - 1);
 983                for (block = s_block + 1; block < e_block; block++) {
 984                        block->first_free = 0;
 985                        block->scan_hint = 0;
 986                        block->contig_hint_start = 0;
 987                        block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
 988                        block->left_free = PCPU_BITMAP_BLOCK_BITS;
 989                        block->right_free = PCPU_BITMAP_BLOCK_BITS;
 990                }
 991        }
 992
 993        if (nr_empty_pages)
 994                pcpu_update_empty_pages(chunk, nr_empty_pages);
 995
 996        /*
 997         * Refresh chunk metadata when the free makes a block free or spans
 998         * across blocks.  The contig_hint may be off by up to a page, but if
 999         * the contig_hint is contained in a block, it will be accurate with
1000         * the else condition below.
1001         */
1002        if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1003                pcpu_chunk_refresh_hint(chunk, true);
1004        else
1005                pcpu_block_update(&chunk->chunk_md,
1006                                  pcpu_block_off_to_off(s_index, start),
1007                                  end);
1008}
1009
1010/**
1011 * pcpu_is_populated - determines if the region is populated
1012 * @chunk: chunk of interest
1013 * @bit_off: chunk offset
1014 * @bits: size of area
1015 * @next_off: return value for the next offset to start searching
1016 *
1017 * For atomic allocations, check if the backing pages are populated.
1018 *
1019 * RETURNS:
1020 * Bool if the backing pages are populated.
1021 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1022 */
1023static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1024                              int *next_off)
1025{
1026        unsigned int page_start, page_end, rs, re;
1027
1028        page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1029        page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1030
1031        rs = page_start;
1032        bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1033        if (rs >= page_end)
1034                return true;
1035
1036        *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1037        return false;
1038}
1039
1040/**
1041 * pcpu_find_block_fit - finds the block index to start searching
1042 * @chunk: chunk of interest
1043 * @alloc_bits: size of request in allocation units
1044 * @align: alignment of area (max PAGE_SIZE bytes)
1045 * @pop_only: use populated regions only
1046 *
1047 * Given a chunk and an allocation spec, find the offset to begin searching
1048 * for a free region.  This iterates over the bitmap metadata blocks to
1049 * find an offset that will be guaranteed to fit the requirements.  It is
1050 * not quite first fit as if the allocation does not fit in the contig hint
1051 * of a block or chunk, it is skipped.  This errs on the side of caution
1052 * to prevent excess iteration.  Poor alignment can cause the allocator to
1053 * skip over blocks and chunks that have valid free areas.
1054 *
1055 * RETURNS:
1056 * The offset in the bitmap to begin searching.
1057 * -1 if no offset is found.
1058 */
1059static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1060                               size_t align, bool pop_only)
1061{
1062        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1063        int bit_off, bits, next_off;
1064
1065        /*
1066         * Check to see if the allocation can fit in the chunk's contig hint.
1067         * This is an optimization to prevent scanning by assuming if it
1068         * cannot fit in the global hint, there is memory pressure and creating
1069         * a new chunk would happen soon.
1070         */
1071        bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1072                  chunk_md->contig_hint_start;
1073        if (bit_off + alloc_bits > chunk_md->contig_hint)
1074                return -1;
1075
1076        bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1077        bits = 0;
1078        pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1079                if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1080                                                   &next_off))
1081                        break;
1082
1083                bit_off = next_off;
1084                bits = 0;
1085        }
1086
1087        if (bit_off == pcpu_chunk_map_bits(chunk))
1088                return -1;
1089
1090        return bit_off;
1091}
1092
1093/*
1094 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1095 * @map: the address to base the search on
1096 * @size: the bitmap size in bits
1097 * @start: the bitnumber to start searching at
1098 * @nr: the number of zeroed bits we're looking for
1099 * @align_mask: alignment mask for zero area
1100 * @largest_off: offset of the largest area skipped
1101 * @largest_bits: size of the largest area skipped
1102 *
1103 * The @align_mask should be one less than a power of 2.
1104 *
1105 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1106 * the largest area that was skipped.  This is imperfect, but in general is
1107 * good enough.  The largest remembered region is the largest failed region
1108 * seen.  This does not include anything we possibly skipped due to alignment.
1109 * pcpu_block_update_scan() does scan backwards to try and recover what was
1110 * lost to alignment.  While this can cause scanning to miss earlier possible
1111 * free areas, smaller allocations will eventually fill those holes.
1112 */
1113static unsigned long pcpu_find_zero_area(unsigned long *map,
1114                                         unsigned long size,
1115                                         unsigned long start,
1116                                         unsigned long nr,
1117                                         unsigned long align_mask,
1118                                         unsigned long *largest_off,
1119                                         unsigned long *largest_bits)
1120{
1121        unsigned long index, end, i, area_off, area_bits;
1122again:
1123        index = find_next_zero_bit(map, size, start);
1124
1125        /* Align allocation */
1126        index = __ALIGN_MASK(index, align_mask);
1127        area_off = index;
1128
1129        end = index + nr;
1130        if (end > size)
1131                return end;
1132        i = find_next_bit(map, end, index);
1133        if (i < end) {
1134                area_bits = i - area_off;
1135                /* remember largest unused area with best alignment */
1136                if (area_bits > *largest_bits ||
1137                    (area_bits == *largest_bits && *largest_off &&
1138                     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1139                        *largest_off = area_off;
1140                        *largest_bits = area_bits;
1141                }
1142
1143                start = i + 1;
1144                goto again;
1145        }
1146        return index;
1147}
1148
1149/**
1150 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1151 * @chunk: chunk of interest
1152 * @alloc_bits: size of request in allocation units
1153 * @align: alignment of area (max PAGE_SIZE)
1154 * @start: bit_off to start searching
1155 *
1156 * This function takes in a @start offset to begin searching to fit an
1157 * allocation of @alloc_bits with alignment @align.  It needs to scan
1158 * the allocation map because if it fits within the block's contig hint,
1159 * @start will be block->first_free. This is an attempt to fill the
1160 * allocation prior to breaking the contig hint.  The allocation and
1161 * boundary maps are updated accordingly if it confirms a valid
1162 * free area.
1163 *
1164 * RETURNS:
1165 * Allocated addr offset in @chunk on success.
1166 * -1 if no matching area is found.
1167 */
1168static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1169                           size_t align, int start)
1170{
1171        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1172        size_t align_mask = (align) ? (align - 1) : 0;
1173        unsigned long area_off = 0, area_bits = 0;
1174        int bit_off, end, oslot;
1175
1176        lockdep_assert_held(&pcpu_lock);
1177
1178        oslot = pcpu_chunk_slot(chunk);
1179
1180        /*
1181         * Search to find a fit.
1182         */
1183        end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1184                    pcpu_chunk_map_bits(chunk));
1185        bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1186                                      align_mask, &area_off, &area_bits);
1187        if (bit_off >= end)
1188                return -1;
1189
1190        if (area_bits)
1191                pcpu_block_update_scan(chunk, area_off, area_bits);
1192
1193        /* update alloc map */
1194        bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1195
1196        /* update boundary map */
1197        set_bit(bit_off, chunk->bound_map);
1198        bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1199        set_bit(bit_off + alloc_bits, chunk->bound_map);
1200
1201        chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1202
1203        /* update first free bit */
1204        if (bit_off == chunk_md->first_free)
1205                chunk_md->first_free = find_next_zero_bit(
1206                                        chunk->alloc_map,
1207                                        pcpu_chunk_map_bits(chunk),
1208                                        bit_off + alloc_bits);
1209
1210        pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1211
1212        pcpu_chunk_relocate(chunk, oslot);
1213
1214        return bit_off * PCPU_MIN_ALLOC_SIZE;
1215}
1216
1217/**
1218 * pcpu_free_area - frees the corresponding offset
1219 * @chunk: chunk of interest
1220 * @off: addr offset into chunk
1221 *
1222 * This function determines the size of an allocation to free using
1223 * the boundary bitmap and clears the allocation map.
1224 *
1225 * RETURNS:
1226 * Number of freed bytes.
1227 */
1228static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1229{
1230        struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1231        int bit_off, bits, end, oslot, freed;
1232
1233        lockdep_assert_held(&pcpu_lock);
1234        pcpu_stats_area_dealloc(chunk);
1235
1236        oslot = pcpu_chunk_slot(chunk);
1237
1238        bit_off = off / PCPU_MIN_ALLOC_SIZE;
1239
1240        /* find end index */
1241        end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1242                            bit_off + 1);
1243        bits = end - bit_off;
1244        bitmap_clear(chunk->alloc_map, bit_off, bits);
1245
1246        freed = bits * PCPU_MIN_ALLOC_SIZE;
1247
1248        /* update metadata */
1249        chunk->free_bytes += freed;
1250
1251        /* update first free bit */
1252        chunk_md->first_free = min(chunk_md->first_free, bit_off);
1253
1254        pcpu_block_update_hint_free(chunk, bit_off, bits);
1255
1256        pcpu_chunk_relocate(chunk, oslot);
1257
1258        return freed;
1259}
1260
1261static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1262{
1263        block->scan_hint = 0;
1264        block->contig_hint = nr_bits;
1265        block->left_free = nr_bits;
1266        block->right_free = nr_bits;
1267        block->first_free = 0;
1268        block->nr_bits = nr_bits;
1269}
1270
1271static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1272{
1273        struct pcpu_block_md *md_block;
1274
1275        /* init the chunk's block */
1276        pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1277
1278        for (md_block = chunk->md_blocks;
1279             md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1280             md_block++)
1281                pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1282}
1283
1284/**
1285 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1286 * @tmp_addr: the start of the region served
1287 * @map_size: size of the region served
1288 *
1289 * This is responsible for creating the chunks that serve the first chunk.  The
1290 * base_addr is page aligned down of @tmp_addr while the region end is page
1291 * aligned up.  Offsets are kept track of to determine the region served. All
1292 * this is done to appease the bitmap allocator in avoiding partial blocks.
1293 *
1294 * RETURNS:
1295 * Chunk serving the region at @tmp_addr of @map_size.
1296 */
1297static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1298                                                         int map_size)
1299{
1300        struct pcpu_chunk *chunk;
1301        unsigned long aligned_addr, lcm_align;
1302        int start_offset, offset_bits, region_size, region_bits;
1303        size_t alloc_size;
1304
1305        /* region calculations */
1306        aligned_addr = tmp_addr & PAGE_MASK;
1307
1308        start_offset = tmp_addr - aligned_addr;
1309
1310        /*
1311         * Align the end of the region with the LCM of PAGE_SIZE and
1312         * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1313         * the other.
1314         */
1315        lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1316        region_size = ALIGN(start_offset + map_size, lcm_align);
1317
1318        /* allocate chunk */
1319        alloc_size = struct_size(chunk, populated,
1320                                 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1321        chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1322        if (!chunk)
1323                panic("%s: Failed to allocate %zu bytes\n", __func__,
1324                      alloc_size);
1325
1326        INIT_LIST_HEAD(&chunk->list);
1327
1328        chunk->base_addr = (void *)aligned_addr;
1329        chunk->start_offset = start_offset;
1330        chunk->end_offset = region_size - chunk->start_offset - map_size;
1331
1332        chunk->nr_pages = region_size >> PAGE_SHIFT;
1333        region_bits = pcpu_chunk_map_bits(chunk);
1334
1335        alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1336        chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1337        if (!chunk->alloc_map)
1338                panic("%s: Failed to allocate %zu bytes\n", __func__,
1339                      alloc_size);
1340
1341        alloc_size =
1342                BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1343        chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1344        if (!chunk->bound_map)
1345                panic("%s: Failed to allocate %zu bytes\n", __func__,
1346                      alloc_size);
1347
1348        alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1349        chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1350        if (!chunk->md_blocks)
1351                panic("%s: Failed to allocate %zu bytes\n", __func__,
1352                      alloc_size);
1353
1354#ifdef CONFIG_MEMCG_KMEM
1355        /* first chunk isn't memcg-aware */
1356        chunk->obj_cgroups = NULL;
1357#endif
1358        pcpu_init_md_blocks(chunk);
1359
1360        /* manage populated page bitmap */
1361        chunk->immutable = true;
1362        bitmap_fill(chunk->populated, chunk->nr_pages);
1363        chunk->nr_populated = chunk->nr_pages;
1364        chunk->nr_empty_pop_pages = chunk->nr_pages;
1365
1366        chunk->free_bytes = map_size;
1367
1368        if (chunk->start_offset) {
1369                /* hide the beginning of the bitmap */
1370                offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1371                bitmap_set(chunk->alloc_map, 0, offset_bits);
1372                set_bit(0, chunk->bound_map);
1373                set_bit(offset_bits, chunk->bound_map);
1374
1375                chunk->chunk_md.first_free = offset_bits;
1376
1377                pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1378        }
1379
1380        if (chunk->end_offset) {
1381                /* hide the end of the bitmap */
1382                offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1383                bitmap_set(chunk->alloc_map,
1384                           pcpu_chunk_map_bits(chunk) - offset_bits,
1385                           offset_bits);
1386                set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1387                        chunk->bound_map);
1388                set_bit(region_bits, chunk->bound_map);
1389
1390                pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1391                                             - offset_bits, offset_bits);
1392        }
1393
1394        return chunk;
1395}
1396
1397static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp)
1398{
1399        struct pcpu_chunk *chunk;
1400        int region_bits;
1401
1402        chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1403        if (!chunk)
1404                return NULL;
1405
1406        INIT_LIST_HEAD(&chunk->list);
1407        chunk->nr_pages = pcpu_unit_pages;
1408        region_bits = pcpu_chunk_map_bits(chunk);
1409
1410        chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1411                                           sizeof(chunk->alloc_map[0]), gfp);
1412        if (!chunk->alloc_map)
1413                goto alloc_map_fail;
1414
1415        chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1416                                           sizeof(chunk->bound_map[0]), gfp);
1417        if (!chunk->bound_map)
1418                goto bound_map_fail;
1419
1420        chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1421                                           sizeof(chunk->md_blocks[0]), gfp);
1422        if (!chunk->md_blocks)
1423                goto md_blocks_fail;
1424
1425#ifdef CONFIG_MEMCG_KMEM
1426        if (pcpu_is_memcg_chunk(type)) {
1427                chunk->obj_cgroups =
1428                        pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1429                                        sizeof(struct obj_cgroup *), gfp);
1430                if (!chunk->obj_cgroups)
1431                        goto objcg_fail;
1432        }
1433#endif
1434
1435        pcpu_init_md_blocks(chunk);
1436
1437        /* init metadata */
1438        chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1439
1440        return chunk;
1441
1442#ifdef CONFIG_MEMCG_KMEM
1443objcg_fail:
1444        pcpu_mem_free(chunk->md_blocks);
1445#endif
1446md_blocks_fail:
1447        pcpu_mem_free(chunk->bound_map);
1448bound_map_fail:
1449        pcpu_mem_free(chunk->alloc_map);
1450alloc_map_fail:
1451        pcpu_mem_free(chunk);
1452
1453        return NULL;
1454}
1455
1456static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1457{
1458        if (!chunk)
1459                return;
1460#ifdef CONFIG_MEMCG_KMEM
1461        pcpu_mem_free(chunk->obj_cgroups);
1462#endif
1463        pcpu_mem_free(chunk->md_blocks);
1464        pcpu_mem_free(chunk->bound_map);
1465        pcpu_mem_free(chunk->alloc_map);
1466        pcpu_mem_free(chunk);
1467}
1468
1469/**
1470 * pcpu_chunk_populated - post-population bookkeeping
1471 * @chunk: pcpu_chunk which got populated
1472 * @page_start: the start page
1473 * @page_end: the end page
1474 *
1475 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1476 * the bookkeeping information accordingly.  Must be called after each
1477 * successful population.
1478 *
1479 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1480 * is to serve an allocation in that area.
1481 */
1482static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1483                                 int page_end)
1484{
1485        int nr = page_end - page_start;
1486
1487        lockdep_assert_held(&pcpu_lock);
1488
1489        bitmap_set(chunk->populated, page_start, nr);
1490        chunk->nr_populated += nr;
1491        pcpu_nr_populated += nr;
1492
1493        pcpu_update_empty_pages(chunk, nr);
1494}
1495
1496/**
1497 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1498 * @chunk: pcpu_chunk which got depopulated
1499 * @page_start: the start page
1500 * @page_end: the end page
1501 *
1502 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1503 * Update the bookkeeping information accordingly.  Must be called after
1504 * each successful depopulation.
1505 */
1506static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1507                                   int page_start, int page_end)
1508{
1509        int nr = page_end - page_start;
1510
1511        lockdep_assert_held(&pcpu_lock);
1512
1513        bitmap_clear(chunk->populated, page_start, nr);
1514        chunk->nr_populated -= nr;
1515        pcpu_nr_populated -= nr;
1516
1517        pcpu_update_empty_pages(chunk, -nr);
1518}
1519
1520/*
1521 * Chunk management implementation.
1522 *
1523 * To allow different implementations, chunk alloc/free and
1524 * [de]population are implemented in a separate file which is pulled
1525 * into this file and compiled together.  The following functions
1526 * should be implemented.
1527 *
1528 * pcpu_populate_chunk          - populate the specified range of a chunk
1529 * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
1530 * pcpu_create_chunk            - create a new chunk
1531 * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
1532 * pcpu_addr_to_page            - translate address to physical address
1533 * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
1534 */
1535static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1536                               int page_start, int page_end, gfp_t gfp);
1537static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1538                                  int page_start, int page_end);
1539static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
1540                                            gfp_t gfp);
1541static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1542static struct page *pcpu_addr_to_page(void *addr);
1543static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1544
1545#ifdef CONFIG_NEED_PER_CPU_KM
1546#include "percpu-km.c"
1547#else
1548#include "percpu-vm.c"
1549#endif
1550
1551/**
1552 * pcpu_chunk_addr_search - determine chunk containing specified address
1553 * @addr: address for which the chunk needs to be determined.
1554 *
1555 * This is an internal function that handles all but static allocations.
1556 * Static percpu address values should never be passed into the allocator.
1557 *
1558 * RETURNS:
1559 * The address of the found chunk.
1560 */
1561static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1562{
1563        /* is it in the dynamic region (first chunk)? */
1564        if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1565                return pcpu_first_chunk;
1566
1567        /* is it in the reserved region? */
1568        if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1569                return pcpu_reserved_chunk;
1570
1571        /*
1572         * The address is relative to unit0 which might be unused and
1573         * thus unmapped.  Offset the address to the unit space of the
1574         * current processor before looking it up in the vmalloc
1575         * space.  Note that any possible cpu id can be used here, so
1576         * there's no need to worry about preemption or cpu hotplug.
1577         */
1578        addr += pcpu_unit_offsets[raw_smp_processor_id()];
1579        return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1580}
1581
1582#ifdef CONFIG_MEMCG_KMEM
1583static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1584                                                     struct obj_cgroup **objcgp)
1585{
1586        struct obj_cgroup *objcg;
1587
1588        if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
1589                return PCPU_CHUNK_ROOT;
1590
1591        objcg = get_obj_cgroup_from_current();
1592        if (!objcg)
1593                return PCPU_CHUNK_ROOT;
1594
1595        if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1596                obj_cgroup_put(objcg);
1597                return PCPU_FAIL_ALLOC;
1598        }
1599
1600        *objcgp = objcg;
1601        return PCPU_CHUNK_MEMCG;
1602}
1603
1604static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1605                                       struct pcpu_chunk *chunk, int off,
1606                                       size_t size)
1607{
1608        if (!objcg)
1609                return;
1610
1611        if (chunk) {
1612                chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1613
1614                rcu_read_lock();
1615                mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1616                                size * num_possible_cpus());
1617                rcu_read_unlock();
1618        } else {
1619                obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1620                obj_cgroup_put(objcg);
1621        }
1622}
1623
1624static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1625{
1626        struct obj_cgroup *objcg;
1627
1628        if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)))
1629                return;
1630
1631        objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1632        chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1633
1634        obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1635
1636        rcu_read_lock();
1637        mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1638                        -(size * num_possible_cpus()));
1639        rcu_read_unlock();
1640
1641        obj_cgroup_put(objcg);
1642}
1643
1644#else /* CONFIG_MEMCG_KMEM */
1645static enum pcpu_chunk_type
1646pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1647{
1648        return PCPU_CHUNK_ROOT;
1649}
1650
1651static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1652                                       struct pcpu_chunk *chunk, int off,
1653                                       size_t size)
1654{
1655}
1656
1657static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1658{
1659}
1660#endif /* CONFIG_MEMCG_KMEM */
1661
1662/**
1663 * pcpu_alloc - the percpu allocator
1664 * @size: size of area to allocate in bytes
1665 * @align: alignment of area (max PAGE_SIZE)
1666 * @reserved: allocate from the reserved chunk if available
1667 * @gfp: allocation flags
1668 *
1669 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1670 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1671 * then no warning will be triggered on invalid or failed allocation
1672 * requests.
1673 *
1674 * RETURNS:
1675 * Percpu pointer to the allocated area on success, NULL on failure.
1676 */
1677static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1678                                 gfp_t gfp)
1679{
1680        gfp_t pcpu_gfp;
1681        bool is_atomic;
1682        bool do_warn;
1683        enum pcpu_chunk_type type;
1684        struct list_head *pcpu_slot;
1685        struct obj_cgroup *objcg = NULL;
1686        static int warn_limit = 10;
1687        struct pcpu_chunk *chunk, *next;
1688        const char *err;
1689        int slot, off, cpu, ret;
1690        unsigned long flags;
1691        void __percpu *ptr;
1692        size_t bits, bit_align;
1693
1694        gfp = current_gfp_context(gfp);
1695        /* whitelisted flags that can be passed to the backing allocators */
1696        pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1697        is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1698        do_warn = !(gfp & __GFP_NOWARN);
1699
1700        /*
1701         * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1702         * therefore alignment must be a minimum of that many bytes.
1703         * An allocation may have internal fragmentation from rounding up
1704         * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1705         */
1706        if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1707                align = PCPU_MIN_ALLOC_SIZE;
1708
1709        size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1710        bits = size >> PCPU_MIN_ALLOC_SHIFT;
1711        bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1712
1713        if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1714                     !is_power_of_2(align))) {
1715                WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1716                     size, align);
1717                return NULL;
1718        }
1719
1720        type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg);
1721        if (unlikely(type == PCPU_FAIL_ALLOC))
1722                return NULL;
1723        pcpu_slot = pcpu_chunk_list(type);
1724
1725        if (!is_atomic) {
1726                /*
1727                 * pcpu_balance_workfn() allocates memory under this mutex,
1728                 * and it may wait for memory reclaim. Allow current task
1729                 * to become OOM victim, in case of memory pressure.
1730                 */
1731                if (gfp & __GFP_NOFAIL) {
1732                        mutex_lock(&pcpu_alloc_mutex);
1733                } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1734                        pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1735                        return NULL;
1736                }
1737        }
1738
1739        spin_lock_irqsave(&pcpu_lock, flags);
1740
1741        /* serve reserved allocations from the reserved chunk if available */
1742        if (reserved && pcpu_reserved_chunk) {
1743                chunk = pcpu_reserved_chunk;
1744
1745                off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1746                if (off < 0) {
1747                        err = "alloc from reserved chunk failed";
1748                        goto fail_unlock;
1749                }
1750
1751                off = pcpu_alloc_area(chunk, bits, bit_align, off);
1752                if (off >= 0)
1753                        goto area_found;
1754
1755                err = "alloc from reserved chunk failed";
1756                goto fail_unlock;
1757        }
1758
1759restart:
1760        /* search through normal chunks */
1761        for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1762                list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1763                        off = pcpu_find_block_fit(chunk, bits, bit_align,
1764                                                  is_atomic);
1765                        if (off < 0) {
1766                                if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1767                                        pcpu_chunk_move(chunk, 0);
1768                                continue;
1769                        }
1770
1771                        off = pcpu_alloc_area(chunk, bits, bit_align, off);
1772                        if (off >= 0)
1773                                goto area_found;
1774
1775                }
1776        }
1777
1778        spin_unlock_irqrestore(&pcpu_lock, flags);
1779
1780        /*
1781         * No space left.  Create a new chunk.  We don't want multiple
1782         * tasks to create chunks simultaneously.  Serialize and create iff
1783         * there's still no empty chunk after grabbing the mutex.
1784         */
1785        if (is_atomic) {
1786                err = "atomic alloc failed, no space left";
1787                goto fail;
1788        }
1789
1790        if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1791                chunk = pcpu_create_chunk(type, pcpu_gfp);
1792                if (!chunk) {
1793                        err = "failed to allocate new chunk";
1794                        goto fail;
1795                }
1796
1797                spin_lock_irqsave(&pcpu_lock, flags);
1798                pcpu_chunk_relocate(chunk, -1);
1799        } else {
1800                spin_lock_irqsave(&pcpu_lock, flags);
1801        }
1802
1803        goto restart;
1804
1805area_found:
1806        pcpu_stats_area_alloc(chunk, size);
1807        spin_unlock_irqrestore(&pcpu_lock, flags);
1808
1809        /* populate if not all pages are already there */
1810        if (!is_atomic) {
1811                unsigned int page_start, page_end, rs, re;
1812
1813                page_start = PFN_DOWN(off);
1814                page_end = PFN_UP(off + size);
1815
1816                bitmap_for_each_clear_region(chunk->populated, rs, re,
1817                                             page_start, page_end) {
1818                        WARN_ON(chunk->immutable);
1819
1820                        ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1821
1822                        spin_lock_irqsave(&pcpu_lock, flags);
1823                        if (ret) {
1824                                pcpu_free_area(chunk, off);
1825                                err = "failed to populate";
1826                                goto fail_unlock;
1827                        }
1828                        pcpu_chunk_populated(chunk, rs, re);
1829                        spin_unlock_irqrestore(&pcpu_lock, flags);
1830                }
1831
1832                mutex_unlock(&pcpu_alloc_mutex);
1833        }
1834
1835        if (pcpu_nr_empty_pop_pages[type] < PCPU_EMPTY_POP_PAGES_LOW)
1836                pcpu_schedule_balance_work();
1837
1838        /* clear the areas and return address relative to base address */
1839        for_each_possible_cpu(cpu)
1840                memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1841
1842        ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1843        kmemleak_alloc_percpu(ptr, size, gfp);
1844
1845        trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1846                        chunk->base_addr, off, ptr);
1847
1848        pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1849
1850        return ptr;
1851
1852fail_unlock:
1853        spin_unlock_irqrestore(&pcpu_lock, flags);
1854fail:
1855        trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1856
1857        if (!is_atomic && do_warn && warn_limit) {
1858                pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1859                        size, align, is_atomic, err);
1860                dump_stack();
1861                if (!--warn_limit)
1862                        pr_info("limit reached, disable warning\n");
1863        }
1864        if (is_atomic) {
1865                /* see the flag handling in pcpu_balance_workfn() */
1866                pcpu_atomic_alloc_failed = true;
1867                pcpu_schedule_balance_work();
1868        } else {
1869                mutex_unlock(&pcpu_alloc_mutex);
1870        }
1871
1872        pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1873
1874        return NULL;
1875}
1876
1877/**
1878 * __alloc_percpu_gfp - allocate dynamic percpu area
1879 * @size: size of area to allocate in bytes
1880 * @align: alignment of area (max PAGE_SIZE)
1881 * @gfp: allocation flags
1882 *
1883 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1884 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1885 * be called from any context but is a lot more likely to fail. If @gfp
1886 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1887 * allocation requests.
1888 *
1889 * RETURNS:
1890 * Percpu pointer to the allocated area on success, NULL on failure.
1891 */
1892void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1893{
1894        return pcpu_alloc(size, align, false, gfp);
1895}
1896EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1897
1898/**
1899 * __alloc_percpu - allocate dynamic percpu area
1900 * @size: size of area to allocate in bytes
1901 * @align: alignment of area (max PAGE_SIZE)
1902 *
1903 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1904 */
1905void __percpu *__alloc_percpu(size_t size, size_t align)
1906{
1907        return pcpu_alloc(size, align, false, GFP_KERNEL);
1908}
1909EXPORT_SYMBOL_GPL(__alloc_percpu);
1910
1911/**
1912 * __alloc_reserved_percpu - allocate reserved percpu area
1913 * @size: size of area to allocate in bytes
1914 * @align: alignment of area (max PAGE_SIZE)
1915 *
1916 * Allocate zero-filled percpu area of @size bytes aligned at @align
1917 * from reserved percpu area if arch has set it up; otherwise,
1918 * allocation is served from the same dynamic area.  Might sleep.
1919 * Might trigger writeouts.
1920 *
1921 * CONTEXT:
1922 * Does GFP_KERNEL allocation.
1923 *
1924 * RETURNS:
1925 * Percpu pointer to the allocated area on success, NULL on failure.
1926 */
1927void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1928{
1929        return pcpu_alloc(size, align, true, GFP_KERNEL);
1930}
1931
1932/**
1933 * __pcpu_balance_workfn - manage the amount of free chunks and populated pages
1934 * @type: chunk type
1935 *
1936 * Reclaim all fully free chunks except for the first one.  This is also
1937 * responsible for maintaining the pool of empty populated pages.  However,
1938 * it is possible that this is called when physical memory is scarce causing
1939 * OOM killer to be triggered.  We should avoid doing so until an actual
1940 * allocation causes the failure as it is possible that requests can be
1941 * serviced from already backed regions.
1942 */
1943static void __pcpu_balance_workfn(enum pcpu_chunk_type type)
1944{
1945        /* gfp flags passed to underlying allocators */
1946        const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1947        LIST_HEAD(to_free);
1948        struct list_head *pcpu_slot = pcpu_chunk_list(type);
1949        struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1950        struct pcpu_chunk *chunk, *next;
1951        int slot, nr_to_pop, ret;
1952
1953        /*
1954         * There's no reason to keep around multiple unused chunks and VM
1955         * areas can be scarce.  Destroy all free chunks except for one.
1956         */
1957        mutex_lock(&pcpu_alloc_mutex);
1958        spin_lock_irq(&pcpu_lock);
1959
1960        list_for_each_entry_safe(chunk, next, free_head, list) {
1961                WARN_ON(chunk->immutable);
1962
1963                /* spare the first one */
1964                if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1965                        continue;
1966
1967                list_move(&chunk->list, &to_free);
1968        }
1969
1970        spin_unlock_irq(&pcpu_lock);
1971
1972        list_for_each_entry_safe(chunk, next, &to_free, list) {
1973                unsigned int rs, re;
1974
1975                bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1976                                           chunk->nr_pages) {
1977                        pcpu_depopulate_chunk(chunk, rs, re);
1978                        spin_lock_irq(&pcpu_lock);
1979                        pcpu_chunk_depopulated(chunk, rs, re);
1980                        spin_unlock_irq(&pcpu_lock);
1981                }
1982                pcpu_destroy_chunk(chunk);
1983                cond_resched();
1984        }
1985
1986        /*
1987         * Ensure there are certain number of free populated pages for
1988         * atomic allocs.  Fill up from the most packed so that atomic
1989         * allocs don't increase fragmentation.  If atomic allocation
1990         * failed previously, always populate the maximum amount.  This
1991         * should prevent atomic allocs larger than PAGE_SIZE from keeping
1992         * failing indefinitely; however, large atomic allocs are not
1993         * something we support properly and can be highly unreliable and
1994         * inefficient.
1995         */
1996retry_pop:
1997        if (pcpu_atomic_alloc_failed) {
1998                nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1999                /* best effort anyway, don't worry about synchronization */
2000                pcpu_atomic_alloc_failed = false;
2001        } else {
2002                nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2003                                  pcpu_nr_empty_pop_pages[type],
2004                                  0, PCPU_EMPTY_POP_PAGES_HIGH);
2005        }
2006
2007        for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
2008                unsigned int nr_unpop = 0, rs, re;
2009
2010                if (!nr_to_pop)
2011                        break;
2012
2013                spin_lock_irq(&pcpu_lock);
2014                list_for_each_entry(chunk, &pcpu_slot[slot], list) {
2015                        nr_unpop = chunk->nr_pages - chunk->nr_populated;
2016                        if (nr_unpop)
2017                                break;
2018                }
2019                spin_unlock_irq(&pcpu_lock);
2020
2021                if (!nr_unpop)
2022                        continue;
2023
2024                /* @chunk can't go away while pcpu_alloc_mutex is held */
2025                bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2026                                             chunk->nr_pages) {
2027                        int nr = min_t(int, re - rs, nr_to_pop);
2028
2029                        ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2030                        if (!ret) {
2031                                nr_to_pop -= nr;
2032                                spin_lock_irq(&pcpu_lock);
2033                                pcpu_chunk_populated(chunk, rs, rs + nr);
2034                                spin_unlock_irq(&pcpu_lock);
2035                        } else {
2036                                nr_to_pop = 0;
2037                        }
2038
2039                        if (!nr_to_pop)
2040                                break;
2041                }
2042        }
2043
2044        if (nr_to_pop) {
2045                /* ran out of chunks to populate, create a new one and retry */
2046                chunk = pcpu_create_chunk(type, gfp);
2047                if (chunk) {
2048                        spin_lock_irq(&pcpu_lock);
2049                        pcpu_chunk_relocate(chunk, -1);
2050                        spin_unlock_irq(&pcpu_lock);
2051                        goto retry_pop;
2052                }
2053        }
2054
2055        mutex_unlock(&pcpu_alloc_mutex);
2056}
2057
2058/**
2059 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2060 * @work: unused
2061 *
2062 * Call __pcpu_balance_workfn() for each chunk type.
2063 */
2064static void pcpu_balance_workfn(struct work_struct *work)
2065{
2066        enum pcpu_chunk_type type;
2067
2068        for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2069                __pcpu_balance_workfn(type);
2070}
2071
2072/**
2073 * free_percpu - free percpu area
2074 * @ptr: pointer to area to free
2075 *
2076 * Free percpu area @ptr.
2077 *
2078 * CONTEXT:
2079 * Can be called from atomic context.
2080 */
2081void free_percpu(void __percpu *ptr)
2082{
2083        void *addr;
2084        struct pcpu_chunk *chunk;
2085        unsigned long flags;
2086        int size, off;
2087        bool need_balance = false;
2088        struct list_head *pcpu_slot;
2089
2090        if (!ptr)
2091                return;
2092
2093        kmemleak_free_percpu(ptr);
2094
2095        addr = __pcpu_ptr_to_addr(ptr);
2096
2097        spin_lock_irqsave(&pcpu_lock, flags);
2098
2099        chunk = pcpu_chunk_addr_search(addr);
2100        off = addr - chunk->base_addr;
2101
2102        size = pcpu_free_area(chunk, off);
2103
2104        pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
2105
2106        pcpu_memcg_free_hook(chunk, off, size);
2107
2108        /* if there are more than one fully free chunks, wake up grim reaper */
2109        if (chunk->free_bytes == pcpu_unit_size) {
2110                struct pcpu_chunk *pos;
2111
2112                list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
2113                        if (pos != chunk) {
2114                                need_balance = true;
2115                                break;
2116                        }
2117        }
2118
2119        trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2120
2121        spin_unlock_irqrestore(&pcpu_lock, flags);
2122
2123        if (need_balance)
2124                pcpu_schedule_balance_work();
2125}
2126EXPORT_SYMBOL_GPL(free_percpu);
2127
2128bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2129{
2130#ifdef CONFIG_SMP
2131        const size_t static_size = __per_cpu_end - __per_cpu_start;
2132        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2133        unsigned int cpu;
2134
2135        for_each_possible_cpu(cpu) {
2136                void *start = per_cpu_ptr(base, cpu);
2137                void *va = (void *)addr;
2138
2139                if (va >= start && va < start + static_size) {
2140                        if (can_addr) {
2141                                *can_addr = (unsigned long) (va - start);
2142                                *can_addr += (unsigned long)
2143                                        per_cpu_ptr(base, get_boot_cpu_id());
2144                        }
2145                        return true;
2146                }
2147        }
2148#endif
2149        /* on UP, can't distinguish from other static vars, always false */
2150        return false;
2151}
2152
2153/**
2154 * is_kernel_percpu_address - test whether address is from static percpu area
2155 * @addr: address to test
2156 *
2157 * Test whether @addr belongs to in-kernel static percpu area.  Module
2158 * static percpu areas are not considered.  For those, use
2159 * is_module_percpu_address().
2160 *
2161 * RETURNS:
2162 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2163 */
2164bool is_kernel_percpu_address(unsigned long addr)
2165{
2166        return __is_kernel_percpu_address(addr, NULL);
2167}
2168
2169/**
2170 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2171 * @addr: the address to be converted to physical address
2172 *
2173 * Given @addr which is dereferenceable address obtained via one of
2174 * percpu access macros, this function translates it into its physical
2175 * address.  The caller is responsible for ensuring @addr stays valid
2176 * until this function finishes.
2177 *
2178 * percpu allocator has special setup for the first chunk, which currently
2179 * supports either embedding in linear address space or vmalloc mapping,
2180 * and, from the second one, the backing allocator (currently either vm or
2181 * km) provides translation.
2182 *
2183 * The addr can be translated simply without checking if it falls into the
2184 * first chunk. But the current code reflects better how percpu allocator
2185 * actually works, and the verification can discover both bugs in percpu
2186 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2187 * code.
2188 *
2189 * RETURNS:
2190 * The physical address for @addr.
2191 */
2192phys_addr_t per_cpu_ptr_to_phys(void *addr)
2193{
2194        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2195        bool in_first_chunk = false;
2196        unsigned long first_low, first_high;
2197        unsigned int cpu;
2198
2199        /*
2200         * The following test on unit_low/high isn't strictly
2201         * necessary but will speed up lookups of addresses which
2202         * aren't in the first chunk.
2203         *
2204         * The address check is against full chunk sizes.  pcpu_base_addr
2205         * points to the beginning of the first chunk including the
2206         * static region.  Assumes good intent as the first chunk may
2207         * not be full (ie. < pcpu_unit_pages in size).
2208         */
2209        first_low = (unsigned long)pcpu_base_addr +
2210                    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2211        first_high = (unsigned long)pcpu_base_addr +
2212                     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2213        if ((unsigned long)addr >= first_low &&
2214            (unsigned long)addr < first_high) {
2215                for_each_possible_cpu(cpu) {
2216                        void *start = per_cpu_ptr(base, cpu);
2217
2218                        if (addr >= start && addr < start + pcpu_unit_size) {
2219                                in_first_chunk = true;
2220                                break;
2221                        }
2222                }
2223        }
2224
2225        if (in_first_chunk) {
2226                if (!is_vmalloc_addr(addr))
2227                        return __pa(addr);
2228                else
2229                        return page_to_phys(vmalloc_to_page(addr)) +
2230                               offset_in_page(addr);
2231        } else
2232                return page_to_phys(pcpu_addr_to_page(addr)) +
2233                       offset_in_page(addr);
2234}
2235
2236/**
2237 * pcpu_alloc_alloc_info - allocate percpu allocation info
2238 * @nr_groups: the number of groups
2239 * @nr_units: the number of units
2240 *
2241 * Allocate ai which is large enough for @nr_groups groups containing
2242 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2243 * cpu_map array which is long enough for @nr_units and filled with
2244 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2245 * pointer of other groups.
2246 *
2247 * RETURNS:
2248 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2249 * failure.
2250 */
2251struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2252                                                      int nr_units)
2253{
2254        struct pcpu_alloc_info *ai;
2255        size_t base_size, ai_size;
2256        void *ptr;
2257        int unit;
2258
2259        base_size = ALIGN(struct_size(ai, groups, nr_groups),
2260                          __alignof__(ai->groups[0].cpu_map[0]));
2261        ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2262
2263        ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2264        if (!ptr)
2265                return NULL;
2266        ai = ptr;
2267        ptr += base_size;
2268
2269        ai->groups[0].cpu_map = ptr;
2270
2271        for (unit = 0; unit < nr_units; unit++)
2272                ai->groups[0].cpu_map[unit] = NR_CPUS;
2273
2274        ai->nr_groups = nr_groups;
2275        ai->__ai_size = PFN_ALIGN(ai_size);
2276
2277        return ai;
2278}
2279
2280/**
2281 * pcpu_free_alloc_info - free percpu allocation info
2282 * @ai: pcpu_alloc_info to free
2283 *
2284 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2285 */
2286void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2287{
2288        memblock_free_early(__pa(ai), ai->__ai_size);
2289}
2290
2291/**
2292 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2293 * @lvl: loglevel
2294 * @ai: allocation info to dump
2295 *
2296 * Print out information about @ai using loglevel @lvl.
2297 */
2298static void pcpu_dump_alloc_info(const char *lvl,
2299                                 const struct pcpu_alloc_info *ai)
2300{
2301        int group_width = 1, cpu_width = 1, width;
2302        char empty_str[] = "--------";
2303        int alloc = 0, alloc_end = 0;
2304        int group, v;
2305        int upa, apl;   /* units per alloc, allocs per line */
2306
2307        v = ai->nr_groups;
2308        while (v /= 10)
2309                group_width++;
2310
2311        v = num_possible_cpus();
2312        while (v /= 10)
2313                cpu_width++;
2314        empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2315
2316        upa = ai->alloc_size / ai->unit_size;
2317        width = upa * (cpu_width + 1) + group_width + 3;
2318        apl = rounddown_pow_of_two(max(60 / width, 1));
2319
2320        printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2321               lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2322               ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2323
2324        for (group = 0; group < ai->nr_groups; group++) {
2325                const struct pcpu_group_info *gi = &ai->groups[group];
2326                int unit = 0, unit_end = 0;
2327
2328                BUG_ON(gi->nr_units % upa);
2329                for (alloc_end += gi->nr_units / upa;
2330                     alloc < alloc_end; alloc++) {
2331                        if (!(alloc % apl)) {
2332                                pr_cont("\n");
2333                                printk("%spcpu-alloc: ", lvl);
2334                        }
2335                        pr_cont("[%0*d] ", group_width, group);
2336
2337                        for (unit_end += upa; unit < unit_end; unit++)
2338                                if (gi->cpu_map[unit] != NR_CPUS)
2339                                        pr_cont("%0*d ",
2340                                                cpu_width, gi->cpu_map[unit]);
2341                                else
2342                                        pr_cont("%s ", empty_str);
2343                }
2344        }
2345        pr_cont("\n");
2346}
2347
2348/**
2349 * pcpu_setup_first_chunk - initialize the first percpu chunk
2350 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2351 * @base_addr: mapped address
2352 *
2353 * Initialize the first percpu chunk which contains the kernel static
2354 * percpu area.  This function is to be called from arch percpu area
2355 * setup path.
2356 *
2357 * @ai contains all information necessary to initialize the first
2358 * chunk and prime the dynamic percpu allocator.
2359 *
2360 * @ai->static_size is the size of static percpu area.
2361 *
2362 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2363 * reserve after the static area in the first chunk.  This reserves
2364 * the first chunk such that it's available only through reserved
2365 * percpu allocation.  This is primarily used to serve module percpu
2366 * static areas on architectures where the addressing model has
2367 * limited offset range for symbol relocations to guarantee module
2368 * percpu symbols fall inside the relocatable range.
2369 *
2370 * @ai->dyn_size determines the number of bytes available for dynamic
2371 * allocation in the first chunk.  The area between @ai->static_size +
2372 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2373 *
2374 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2375 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2376 * @ai->dyn_size.
2377 *
2378 * @ai->atom_size is the allocation atom size and used as alignment
2379 * for vm areas.
2380 *
2381 * @ai->alloc_size is the allocation size and always multiple of
2382 * @ai->atom_size.  This is larger than @ai->atom_size if
2383 * @ai->unit_size is larger than @ai->atom_size.
2384 *
2385 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2386 * percpu areas.  Units which should be colocated are put into the
2387 * same group.  Dynamic VM areas will be allocated according to these
2388 * groupings.  If @ai->nr_groups is zero, a single group containing
2389 * all units is assumed.
2390 *
2391 * The caller should have mapped the first chunk at @base_addr and
2392 * copied static data to each unit.
2393 *
2394 * The first chunk will always contain a static and a dynamic region.
2395 * However, the static region is not managed by any chunk.  If the first
2396 * chunk also contains a reserved region, it is served by two chunks -
2397 * one for the reserved region and one for the dynamic region.  They
2398 * share the same vm, but use offset regions in the area allocation map.
2399 * The chunk serving the dynamic region is circulated in the chunk slots
2400 * and available for dynamic allocation like any other chunk.
2401 */
2402void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2403                                   void *base_addr)
2404{
2405        size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2406        size_t static_size, dyn_size;
2407        struct pcpu_chunk *chunk;
2408        unsigned long *group_offsets;
2409        size_t *group_sizes;
2410        unsigned long *unit_off;
2411        unsigned int cpu;
2412        int *unit_map;
2413        int group, unit, i;
2414        int map_size;
2415        unsigned long tmp_addr;
2416        size_t alloc_size;
2417        enum pcpu_chunk_type type;
2418
2419#define PCPU_SETUP_BUG_ON(cond) do {                                    \
2420        if (unlikely(cond)) {                                           \
2421                pr_emerg("failed to initialize, %s\n", #cond);          \
2422                pr_emerg("cpu_possible_mask=%*pb\n",                    \
2423                         cpumask_pr_args(cpu_possible_mask));           \
2424                pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
2425                BUG();                                                  \
2426        }                                                               \
2427} while (0)
2428
2429        /* sanity checks */
2430        PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2431#ifdef CONFIG_SMP
2432        PCPU_SETUP_BUG_ON(!ai->static_size);
2433        PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2434#endif
2435        PCPU_SETUP_BUG_ON(!base_addr);
2436        PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2437        PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2438        PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2439        PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2440        PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2441        PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2442        PCPU_SETUP_BUG_ON(!ai->dyn_size);
2443        PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2444        PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2445                            IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2446        PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2447
2448        /* process group information and build config tables accordingly */
2449        alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2450        group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2451        if (!group_offsets)
2452                panic("%s: Failed to allocate %zu bytes\n", __func__,
2453                      alloc_size);
2454
2455        alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2456        group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2457        if (!group_sizes)
2458                panic("%s: Failed to allocate %zu bytes\n", __func__,
2459                      alloc_size);
2460
2461        alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2462        unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2463        if (!unit_map)
2464                panic("%s: Failed to allocate %zu bytes\n", __func__,
2465                      alloc_size);
2466
2467        alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2468        unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2469        if (!unit_off)
2470                panic("%s: Failed to allocate %zu bytes\n", __func__,
2471                      alloc_size);
2472
2473        for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2474                unit_map[cpu] = UINT_MAX;
2475
2476        pcpu_low_unit_cpu = NR_CPUS;
2477        pcpu_high_unit_cpu = NR_CPUS;
2478
2479        for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2480                const struct pcpu_group_info *gi = &ai->groups[group];
2481
2482                group_offsets[group] = gi->base_offset;
2483                group_sizes[group] = gi->nr_units * ai->unit_size;
2484
2485                for (i = 0; i < gi->nr_units; i++) {
2486                        cpu = gi->cpu_map[i];
2487                        if (cpu == NR_CPUS)
2488                                continue;
2489
2490                        PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2491                        PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2492                        PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2493
2494                        unit_map[cpu] = unit + i;
2495                        unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2496
2497                        /* determine low/high unit_cpu */
2498                        if (pcpu_low_unit_cpu == NR_CPUS ||
2499                            unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2500                                pcpu_low_unit_cpu = cpu;
2501                        if (pcpu_high_unit_cpu == NR_CPUS ||
2502                            unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2503                                pcpu_high_unit_cpu = cpu;
2504                }
2505        }
2506        pcpu_nr_units = unit;
2507
2508        for_each_possible_cpu(cpu)
2509                PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2510
2511        /* we're done parsing the input, undefine BUG macro and dump config */
2512#undef PCPU_SETUP_BUG_ON
2513        pcpu_dump_alloc_info(KERN_DEBUG, ai);
2514
2515        pcpu_nr_groups = ai->nr_groups;
2516        pcpu_group_offsets = group_offsets;
2517        pcpu_group_sizes = group_sizes;
2518        pcpu_unit_map = unit_map;
2519        pcpu_unit_offsets = unit_off;
2520
2521        /* determine basic parameters */
2522        pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2523        pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2524        pcpu_atom_size = ai->atom_size;
2525        pcpu_chunk_struct_size = struct_size(chunk, populated,
2526                                             BITS_TO_LONGS(pcpu_unit_pages));
2527
2528        pcpu_stats_save_ai(ai);
2529
2530        /*
2531         * Allocate chunk slots.  The additional last slot is for
2532         * empty chunks.
2533         */
2534        pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2535        pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2536                                          sizeof(pcpu_chunk_lists[0]) *
2537                                          PCPU_NR_CHUNK_TYPES,
2538                                          SMP_CACHE_BYTES);
2539        if (!pcpu_chunk_lists)
2540                panic("%s: Failed to allocate %zu bytes\n", __func__,
2541                      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) *
2542                      PCPU_NR_CHUNK_TYPES);
2543
2544        for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2545                for (i = 0; i < pcpu_nr_slots; i++)
2546                        INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]);
2547
2548        /*
2549         * The end of the static region needs to be aligned with the
2550         * minimum allocation size as this offsets the reserved and
2551         * dynamic region.  The first chunk ends page aligned by
2552         * expanding the dynamic region, therefore the dynamic region
2553         * can be shrunk to compensate while still staying above the
2554         * configured sizes.
2555         */
2556        static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2557        dyn_size = ai->dyn_size - (static_size - ai->static_size);
2558
2559        /*
2560         * Initialize first chunk.
2561         * If the reserved_size is non-zero, this initializes the reserved
2562         * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2563         * and the dynamic region is initialized here.  The first chunk,
2564         * pcpu_first_chunk, will always point to the chunk that serves
2565         * the dynamic region.
2566         */
2567        tmp_addr = (unsigned long)base_addr + static_size;
2568        map_size = ai->reserved_size ?: dyn_size;
2569        chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2570
2571        /* init dynamic chunk if necessary */
2572        if (ai->reserved_size) {
2573                pcpu_reserved_chunk = chunk;
2574
2575                tmp_addr = (unsigned long)base_addr + static_size +
2576                           ai->reserved_size;
2577                map_size = dyn_size;
2578                chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2579        }
2580
2581        /* link the first chunk in */
2582        pcpu_first_chunk = chunk;
2583        pcpu_nr_empty_pop_pages[PCPU_CHUNK_ROOT] = pcpu_first_chunk->nr_empty_pop_pages;
2584        pcpu_chunk_relocate(pcpu_first_chunk, -1);
2585
2586        /* include all regions of the first chunk */
2587        pcpu_nr_populated += PFN_DOWN(size_sum);
2588
2589        pcpu_stats_chunk_alloc();
2590        trace_percpu_create_chunk(base_addr);
2591
2592        /* we're done */
2593        pcpu_base_addr = base_addr;
2594}
2595
2596#ifdef CONFIG_SMP
2597
2598const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2599        [PCPU_FC_AUTO]  = "auto",
2600        [PCPU_FC_EMBED] = "embed",
2601        [PCPU_FC_PAGE]  = "page",
2602};
2603
2604enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2605
2606static int __init percpu_alloc_setup(char *str)
2607{
2608        if (!str)
2609                return -EINVAL;
2610
2611        if (0)
2612                /* nada */;
2613#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2614        else if (!strcmp(str, "embed"))
2615                pcpu_chosen_fc = PCPU_FC_EMBED;
2616#endif
2617#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2618        else if (!strcmp(str, "page"))
2619                pcpu_chosen_fc = PCPU_FC_PAGE;
2620#endif
2621        else
2622                pr_warn("unknown allocator %s specified\n", str);
2623
2624        return 0;
2625}
2626early_param("percpu_alloc", percpu_alloc_setup);
2627
2628/*
2629 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2630 * Build it if needed by the arch config or the generic setup is going
2631 * to be used.
2632 */
2633#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2634        !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2635#define BUILD_EMBED_FIRST_CHUNK
2636#endif
2637
2638/* build pcpu_page_first_chunk() iff needed by the arch config */
2639#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2640#define BUILD_PAGE_FIRST_CHUNK
2641#endif
2642
2643/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2644#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2645/**
2646 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2647 * @reserved_size: the size of reserved percpu area in bytes
2648 * @dyn_size: minimum free size for dynamic allocation in bytes
2649 * @atom_size: allocation atom size
2650 * @cpu_distance_fn: callback to determine distance between cpus, optional
2651 *
2652 * This function determines grouping of units, their mappings to cpus
2653 * and other parameters considering needed percpu size, allocation
2654 * atom size and distances between CPUs.
2655 *
2656 * Groups are always multiples of atom size and CPUs which are of
2657 * LOCAL_DISTANCE both ways are grouped together and share space for
2658 * units in the same group.  The returned configuration is guaranteed
2659 * to have CPUs on different nodes on different groups and >=75% usage
2660 * of allocated virtual address space.
2661 *
2662 * RETURNS:
2663 * On success, pointer to the new allocation_info is returned.  On
2664 * failure, ERR_PTR value is returned.
2665 */
2666static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2667                                size_t reserved_size, size_t dyn_size,
2668                                size_t atom_size,
2669                                pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2670{
2671        static int group_map[NR_CPUS] __initdata;
2672        static int group_cnt[NR_CPUS] __initdata;
2673        static struct cpumask mask __initdata;
2674        const size_t static_size = __per_cpu_end - __per_cpu_start;
2675        int nr_groups = 1, nr_units = 0;
2676        size_t size_sum, min_unit_size, alloc_size;
2677        int upa, max_upa, best_upa;     /* units_per_alloc */
2678        int last_allocs, group, unit;
2679        unsigned int cpu, tcpu;
2680        struct pcpu_alloc_info *ai;
2681        unsigned int *cpu_map;
2682
2683        /* this function may be called multiple times */
2684        memset(group_map, 0, sizeof(group_map));
2685        memset(group_cnt, 0, sizeof(group_cnt));
2686        cpumask_clear(&mask);
2687
2688        /* calculate size_sum and ensure dyn_size is enough for early alloc */
2689        size_sum = PFN_ALIGN(static_size + reserved_size +
2690                            max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2691        dyn_size = size_sum - static_size - reserved_size;
2692
2693        /*
2694         * Determine min_unit_size, alloc_size and max_upa such that
2695         * alloc_size is multiple of atom_size and is the smallest
2696         * which can accommodate 4k aligned segments which are equal to
2697         * or larger than min_unit_size.
2698         */
2699        min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2700
2701        /* determine the maximum # of units that can fit in an allocation */
2702        alloc_size = roundup(min_unit_size, atom_size);
2703        upa = alloc_size / min_unit_size;
2704        while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2705                upa--;
2706        max_upa = upa;
2707
2708        cpumask_copy(&mask, cpu_possible_mask);
2709
2710        /* group cpus according to their proximity */
2711        for (group = 0; !cpumask_empty(&mask); group++) {
2712                /* pop the group's first cpu */
2713                cpu = cpumask_first(&mask);
2714                group_map[cpu] = group;
2715                group_cnt[group]++;
2716                cpumask_clear_cpu(cpu, &mask);
2717
2718                for_each_cpu(tcpu, &mask) {
2719                        if (!cpu_distance_fn ||
2720                            (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2721                             cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2722                                group_map[tcpu] = group;
2723                                group_cnt[group]++;
2724                                cpumask_clear_cpu(tcpu, &mask);
2725                        }
2726                }
2727        }
2728        nr_groups = group;
2729
2730        /*
2731         * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2732         * Expand the unit_size until we use >= 75% of the units allocated.
2733         * Related to atom_size, which could be much larger than the unit_size.
2734         */
2735        last_allocs = INT_MAX;
2736        for (upa = max_upa; upa; upa--) {
2737                int allocs = 0, wasted = 0;
2738
2739                if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2740                        continue;
2741
2742                for (group = 0; group < nr_groups; group++) {
2743                        int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2744                        allocs += this_allocs;
2745                        wasted += this_allocs * upa - group_cnt[group];
2746                }
2747
2748                /*
2749                 * Don't accept if wastage is over 1/3.  The
2750                 * greater-than comparison ensures upa==1 always
2751                 * passes the following check.
2752                 */
2753                if (wasted > num_possible_cpus() / 3)
2754                        continue;
2755
2756                /* and then don't consume more memory */
2757                if (allocs > last_allocs)
2758                        break;
2759                last_allocs = allocs;
2760                best_upa = upa;
2761        }
2762        upa = best_upa;
2763
2764        /* allocate and fill alloc_info */
2765        for (group = 0; group < nr_groups; group++)
2766                nr_units += roundup(group_cnt[group], upa);
2767
2768        ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2769        if (!ai)
2770                return ERR_PTR(-ENOMEM);
2771        cpu_map = ai->groups[0].cpu_map;
2772
2773        for (group = 0; group < nr_groups; group++) {
2774                ai->groups[group].cpu_map = cpu_map;
2775                cpu_map += roundup(group_cnt[group], upa);
2776        }
2777
2778        ai->static_size = static_size;
2779        ai->reserved_size = reserved_size;
2780        ai->dyn_size = dyn_size;
2781        ai->unit_size = alloc_size / upa;
2782        ai->atom_size = atom_size;
2783        ai->alloc_size = alloc_size;
2784
2785        for (group = 0, unit = 0; group < nr_groups; group++) {
2786                struct pcpu_group_info *gi = &ai->groups[group];
2787
2788                /*
2789                 * Initialize base_offset as if all groups are located
2790                 * back-to-back.  The caller should update this to
2791                 * reflect actual allocation.
2792                 */
2793                gi->base_offset = unit * ai->unit_size;
2794
2795                for_each_possible_cpu(cpu)
2796                        if (group_map[cpu] == group)
2797                                gi->cpu_map[gi->nr_units++] = cpu;
2798                gi->nr_units = roundup(gi->nr_units, upa);
2799                unit += gi->nr_units;
2800        }
2801        BUG_ON(unit != nr_units);
2802
2803        return ai;
2804}
2805#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2806
2807#if defined(BUILD_EMBED_FIRST_CHUNK)
2808/**
2809 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2810 * @reserved_size: the size of reserved percpu area in bytes
2811 * @dyn_size: minimum free size for dynamic allocation in bytes
2812 * @atom_size: allocation atom size
2813 * @cpu_distance_fn: callback to determine distance between cpus, optional
2814 * @alloc_fn: function to allocate percpu page
2815 * @free_fn: function to free percpu page
2816 *
2817 * This is a helper to ease setting up embedded first percpu chunk and
2818 * can be called where pcpu_setup_first_chunk() is expected.
2819 *
2820 * If this function is used to setup the first chunk, it is allocated
2821 * by calling @alloc_fn and used as-is without being mapped into
2822 * vmalloc area.  Allocations are always whole multiples of @atom_size
2823 * aligned to @atom_size.
2824 *
2825 * This enables the first chunk to piggy back on the linear physical
2826 * mapping which often uses larger page size.  Please note that this
2827 * can result in very sparse cpu->unit mapping on NUMA machines thus
2828 * requiring large vmalloc address space.  Don't use this allocator if
2829 * vmalloc space is not orders of magnitude larger than distances
2830 * between node memory addresses (ie. 32bit NUMA machines).
2831 *
2832 * @dyn_size specifies the minimum dynamic area size.
2833 *
2834 * If the needed size is smaller than the minimum or specified unit
2835 * size, the leftover is returned using @free_fn.
2836 *
2837 * RETURNS:
2838 * 0 on success, -errno on failure.
2839 */
2840int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2841                                  size_t atom_size,
2842                                  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2843                                  pcpu_fc_alloc_fn_t alloc_fn,
2844                                  pcpu_fc_free_fn_t free_fn)
2845{
2846        void *base = (void *)ULONG_MAX;
2847        void **areas = NULL;
2848        struct pcpu_alloc_info *ai;
2849        size_t size_sum, areas_size;
2850        unsigned long max_distance;
2851        int group, i, highest_group, rc = 0;
2852
2853        ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2854                                   cpu_distance_fn);
2855        if (IS_ERR(ai))
2856                return PTR_ERR(ai);
2857
2858        size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2859        areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2860
2861        areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2862        if (!areas) {
2863                rc = -ENOMEM;
2864                goto out_free;
2865        }
2866
2867        /* allocate, copy and determine base address & max_distance */
2868        highest_group = 0;
2869        for (group = 0; group < ai->nr_groups; group++) {
2870                struct pcpu_group_info *gi = &ai->groups[group];
2871                unsigned int cpu = NR_CPUS;
2872                void *ptr;
2873
2874                for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2875                        cpu = gi->cpu_map[i];
2876                BUG_ON(cpu == NR_CPUS);
2877
2878                /* allocate space for the whole group */
2879                ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2880                if (!ptr) {
2881                        rc = -ENOMEM;
2882                        goto out_free_areas;
2883                }
2884                /* kmemleak tracks the percpu allocations separately */
2885                kmemleak_free(ptr);
2886                areas[group] = ptr;
2887
2888                base = min(ptr, base);
2889                if (ptr > areas[highest_group])
2890                        highest_group = group;
2891        }
2892        max_distance = areas[highest_group] - base;
2893        max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2894
2895        /* warn if maximum distance is further than 75% of vmalloc space */
2896        if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2897                pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2898                                max_distance, VMALLOC_TOTAL);
2899#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2900                /* and fail if we have fallback */
2901                rc = -EINVAL;
2902                goto out_free_areas;
2903#endif
2904        }
2905
2906        /*
2907         * Copy data and free unused parts.  This should happen after all
2908         * allocations are complete; otherwise, we may end up with
2909         * overlapping groups.
2910         */
2911        for (group = 0; group < ai->nr_groups; group++) {
2912                struct pcpu_group_info *gi = &ai->groups[group];
2913                void *ptr = areas[group];
2914
2915                for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2916                        if (gi->cpu_map[i] == NR_CPUS) {
2917                                /* unused unit, free whole */
2918                                free_fn(ptr, ai->unit_size);
2919                                continue;
2920                        }
2921                        /* copy and return the unused part */
2922                        memcpy(ptr, __per_cpu_load, ai->static_size);
2923                        free_fn(ptr + size_sum, ai->unit_size - size_sum);
2924                }
2925        }
2926
2927        /* base address is now known, determine group base offsets */
2928        for (group = 0; group < ai->nr_groups; group++) {
2929                ai->groups[group].base_offset = areas[group] - base;
2930        }
2931
2932        pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2933                PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2934                ai->dyn_size, ai->unit_size);
2935
2936        pcpu_setup_first_chunk(ai, base);
2937        goto out_free;
2938
2939out_free_areas:
2940        for (group = 0; group < ai->nr_groups; group++)
2941                if (areas[group])
2942                        free_fn(areas[group],
2943                                ai->groups[group].nr_units * ai->unit_size);
2944out_free:
2945        pcpu_free_alloc_info(ai);
2946        if (areas)
2947                memblock_free_early(__pa(areas), areas_size);
2948        return rc;
2949}
2950#endif /* BUILD_EMBED_FIRST_CHUNK */
2951
2952#ifdef BUILD_PAGE_FIRST_CHUNK
2953/**
2954 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2955 * @reserved_size: the size of reserved percpu area in bytes
2956 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2957 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2958 * @populate_pte_fn: function to populate pte
2959 *
2960 * This is a helper to ease setting up page-remapped first percpu
2961 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2962 *
2963 * This is the basic allocator.  Static percpu area is allocated
2964 * page-by-page into vmalloc area.
2965 *
2966 * RETURNS:
2967 * 0 on success, -errno on failure.
2968 */
2969int __init pcpu_page_first_chunk(size_t reserved_size,
2970                                 pcpu_fc_alloc_fn_t alloc_fn,
2971                                 pcpu_fc_free_fn_t free_fn,
2972                                 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2973{
2974        static struct vm_struct vm;
2975        struct pcpu_alloc_info *ai;
2976        char psize_str[16];
2977        int unit_pages;
2978        size_t pages_size;
2979        struct page **pages;
2980        int unit, i, j, rc = 0;
2981        int upa;
2982        int nr_g0_units;
2983
2984        snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2985
2986        ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2987        if (IS_ERR(ai))
2988                return PTR_ERR(ai);
2989        BUG_ON(ai->nr_groups != 1);
2990        upa = ai->alloc_size/ai->unit_size;
2991        nr_g0_units = roundup(num_possible_cpus(), upa);
2992        if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2993                pcpu_free_alloc_info(ai);
2994                return -EINVAL;
2995        }
2996
2997        unit_pages = ai->unit_size >> PAGE_SHIFT;
2998
2999        /* unaligned allocations can't be freed, round up to page size */
3000        pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3001                               sizeof(pages[0]));
3002        pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3003        if (!pages)
3004                panic("%s: Failed to allocate %zu bytes\n", __func__,
3005                      pages_size);
3006
3007        /* allocate pages */
3008        j = 0;
3009        for (unit = 0; unit < num_possible_cpus(); unit++) {
3010                unsigned int cpu = ai->groups[0].cpu_map[unit];
3011                for (i = 0; i < unit_pages; i++) {
3012                        void *ptr;
3013
3014                        ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
3015                        if (!ptr) {
3016                                pr_warn("failed to allocate %s page for cpu%u\n",
3017                                                psize_str, cpu);
3018                                goto enomem;
3019                        }
3020                        /* kmemleak tracks the percpu allocations separately */
3021                        kmemleak_free(ptr);
3022                        pages[j++] = virt_to_page(ptr);
3023                }
3024        }
3025
3026        /* allocate vm area, map the pages and copy static data */
3027        vm.flags = VM_ALLOC;
3028        vm.size = num_possible_cpus() * ai->unit_size;
3029        vm_area_register_early(&vm, PAGE_SIZE);
3030
3031        for (unit = 0; unit < num_possible_cpus(); unit++) {
3032                unsigned long unit_addr =
3033                        (unsigned long)vm.addr + unit * ai->unit_size;
3034
3035                for (i = 0; i < unit_pages; i++)
3036                        populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3037
3038                /* pte already populated, the following shouldn't fail */
3039                rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3040                                      unit_pages);
3041                if (rc < 0)
3042                        panic("failed to map percpu area, err=%d\n", rc);
3043
3044                /*
3045                 * FIXME: Archs with virtual cache should flush local
3046                 * cache for the linear mapping here - something
3047                 * equivalent to flush_cache_vmap() on the local cpu.
3048                 * flush_cache_vmap() can't be used as most supporting
3049                 * data structures are not set up yet.
3050                 */
3051
3052                /* copy static data */
3053                memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3054        }
3055
3056        /* we're ready, commit */
3057        pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3058                unit_pages, psize_str, ai->static_size,
3059                ai->reserved_size, ai->dyn_size);
3060
3061        pcpu_setup_first_chunk(ai, vm.addr);
3062        goto out_free_ar;
3063
3064enomem:
3065        while (--j >= 0)
3066                free_fn(page_address(pages[j]), PAGE_SIZE);
3067        rc = -ENOMEM;
3068out_free_ar:
3069        memblock_free_early(__pa(pages), pages_size);
3070        pcpu_free_alloc_info(ai);
3071        return rc;
3072}
3073#endif /* BUILD_PAGE_FIRST_CHUNK */
3074
3075#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3076/*
3077 * Generic SMP percpu area setup.
3078 *
3079 * The embedding helper is used because its behavior closely resembles
3080 * the original non-dynamic generic percpu area setup.  This is
3081 * important because many archs have addressing restrictions and might
3082 * fail if the percpu area is located far away from the previous
3083 * location.  As an added bonus, in non-NUMA cases, embedding is
3084 * generally a good idea TLB-wise because percpu area can piggy back
3085 * on the physical linear memory mapping which uses large page
3086 * mappings on applicable archs.
3087 */
3088unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3089EXPORT_SYMBOL(__per_cpu_offset);
3090
3091static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3092                                       size_t align)
3093{
3094        return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
3095}
3096
3097static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3098{
3099        memblock_free_early(__pa(ptr), size);
3100}
3101
3102void __init setup_per_cpu_areas(void)
3103{
3104        unsigned long delta;
3105        unsigned int cpu;
3106        int rc;
3107
3108        /*
3109         * Always reserve area for module percpu variables.  That's
3110         * what the legacy allocator did.
3111         */
3112        rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
3113                                    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3114                                    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
3115        if (rc < 0)
3116                panic("Failed to initialize percpu areas.");
3117
3118        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3119        for_each_possible_cpu(cpu)
3120                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3121}
3122#endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3123
3124#else   /* CONFIG_SMP */
3125
3126/*
3127 * UP percpu area setup.
3128 *
3129 * UP always uses km-based percpu allocator with identity mapping.
3130 * Static percpu variables are indistinguishable from the usual static
3131 * variables and don't require any special preparation.
3132 */
3133void __init setup_per_cpu_areas(void)
3134{
3135        const size_t unit_size =
3136                roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3137                                         PERCPU_DYNAMIC_RESERVE));
3138        struct pcpu_alloc_info *ai;
3139        void *fc;
3140
3141        ai = pcpu_alloc_alloc_info(1, 1);
3142        fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3143        if (!ai || !fc)
3144                panic("Failed to allocate memory for percpu areas.");
3145        /* kmemleak tracks the percpu allocations separately */
3146        kmemleak_free(fc);
3147
3148        ai->dyn_size = unit_size;
3149        ai->unit_size = unit_size;
3150        ai->atom_size = unit_size;
3151        ai->alloc_size = unit_size;
3152        ai->groups[0].nr_units = 1;
3153        ai->groups[0].cpu_map[0] = 0;
3154
3155        pcpu_setup_first_chunk(ai, fc);
3156        pcpu_free_alloc_info(ai);
3157}
3158
3159#endif  /* CONFIG_SMP */
3160
3161/*
3162 * pcpu_nr_pages - calculate total number of populated backing pages
3163 *
3164 * This reflects the number of pages populated to back chunks.  Metadata is
3165 * excluded in the number exposed in meminfo as the number of backing pages
3166 * scales with the number of cpus and can quickly outweigh the memory used for
3167 * metadata.  It also keeps this calculation nice and simple.
3168 *
3169 * RETURNS:
3170 * Total number of populated backing pages in use by the allocator.
3171 */
3172unsigned long pcpu_nr_pages(void)
3173{
3174        return pcpu_nr_populated * pcpu_nr_units;
3175}
3176
3177/*
3178 * Percpu allocator is initialized early during boot when neither slab or
3179 * workqueue is available.  Plug async management until everything is up
3180 * and running.
3181 */
3182static int __init percpu_enable_async(void)
3183{
3184        pcpu_async_enabled = true;
3185        return 0;
3186}
3187subsys_initcall(percpu_enable_async);
3188