1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/module.h>
34#include <linux/kernel.h>
35#include <linux/sched.h>
36#include <linux/magic.h>
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <linux/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
46#include <linux/vmalloc.h>
47#include <linux/preempt.h>
48#include <linux/spinlock.h>
49#include <linux/shrinker.h>
50#include <linux/types.h>
51#include <linux/debugfs.h>
52#include <linux/zsmalloc.h>
53#include <linux/zpool.h>
54#include <linux/mount.h>
55#include <linux/pseudo_fs.h>
56#include <linux/migrate.h>
57#include <linux/wait.h>
58#include <linux/pagemap.h>
59#include <linux/fs.h>
60
61#define ZSPAGE_MAGIC 0x58
62
63
64
65
66
67
68
69#define ZS_ALIGN 8
70
71
72
73
74
75#define ZS_MAX_ZSPAGE_ORDER 2
76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80
81
82
83
84
85
86
87
88
89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
90#ifdef MAX_PHYSMEM_BITS
91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92#else
93
94
95
96
97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98#endif
99#endif
100
101#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103
104
105
106
107
108
109
110#define HANDLE_PIN_BIT 0
111
112
113
114
115
116
117
118
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124#define FULLNESS_BITS 2
125#define CLASS_BITS 8
126#define ISOLATED_BITS 3
127#define MAGIC_VAL_BITS 8
128
129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
130
131#define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133
134#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
152
153enum fullness_group {
154 ZS_EMPTY,
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
159};
160
161enum zs_stat_type {
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
166 OBJ_ALLOCATED,
167 OBJ_USED,
168 NR_ZS_STAT_TYPE,
169};
170
171struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173};
174
175#ifdef CONFIG_ZSMALLOC_STAT
176static struct dentry *zs_stat_root;
177#endif
178
179#ifdef CONFIG_COMPACTION
180static struct vfsmount *zsmalloc_mnt;
181#endif
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197static const int fullness_threshold_frac = 4;
198static size_t huge_class_size;
199
200struct size_class {
201 spinlock_t lock;
202 struct list_head fullness_list[NR_ZS_FULLNESS];
203
204
205
206
207 int size;
208 int objs_per_zspage;
209
210 int pages_per_zspage;
211
212 unsigned int index;
213 struct zs_size_stat stats;
214};
215
216
217static void SetPageHugeObject(struct page *page)
218{
219 SetPageOwnerPriv1(page);
220}
221
222static void ClearPageHugeObject(struct page *page)
223{
224 ClearPageOwnerPriv1(page);
225}
226
227static int PageHugeObject(struct page *page)
228{
229 return PageOwnerPriv1(page);
230}
231
232
233
234
235
236
237
238struct link_free {
239 union {
240
241
242
243
244 unsigned long next;
245
246
247
248 unsigned long handle;
249 };
250};
251
252struct zs_pool {
253 const char *name;
254
255 struct size_class *size_class[ZS_SIZE_CLASSES];
256 struct kmem_cache *handle_cachep;
257 struct kmem_cache *zspage_cachep;
258
259 atomic_long_t pages_allocated;
260
261 struct zs_pool_stats stats;
262
263
264 struct shrinker shrinker;
265
266#ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268#endif
269#ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
272
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
276#endif
277};
278
279struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
282 unsigned int class:CLASS_BITS + 1;
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
285 };
286 unsigned int inuse;
287 unsigned int freeobj;
288 struct page *first_page;
289 struct list_head list;
290#ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292#endif
293};
294
295struct mapping_area {
296 char *vm_buf;
297 char *vm_addr;
298 enum zs_mapmode vm_mm;
299};
300
301#ifdef CONFIG_COMPACTION
302static int zs_register_migration(struct zs_pool *pool);
303static void zs_unregister_migration(struct zs_pool *pool);
304static void migrate_lock_init(struct zspage *zspage);
305static void migrate_read_lock(struct zspage *zspage);
306static void migrate_read_unlock(struct zspage *zspage);
307static void kick_deferred_free(struct zs_pool *pool);
308static void init_deferred_free(struct zs_pool *pool);
309static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310#else
311static int zsmalloc_mount(void) { return 0; }
312static void zsmalloc_unmount(void) {}
313static int zs_register_migration(struct zs_pool *pool) { return 0; }
314static void zs_unregister_migration(struct zs_pool *pool) {}
315static void migrate_lock_init(struct zspage *zspage) {}
316static void migrate_read_lock(struct zspage *zspage) {}
317static void migrate_read_unlock(struct zspage *zspage) {}
318static void kick_deferred_free(struct zs_pool *pool) {}
319static void init_deferred_free(struct zs_pool *pool) {}
320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321#endif
322
323static int create_cache(struct zs_pool *pool)
324{
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
339}
340
341static void destroy_cache(struct zs_pool *pool)
342{
343 kmem_cache_destroy(pool->handle_cachep);
344 kmem_cache_destroy(pool->zspage_cachep);
345}
346
347static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348{
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351}
352
353static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354{
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356}
357
358static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359{
360 return kmem_cache_zalloc(pool->zspage_cachep,
361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362}
363
364static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365{
366 kmem_cache_free(pool->zspage_cachep, zspage);
367}
368
369static void record_obj(unsigned long handle, unsigned long obj)
370{
371
372
373
374
375
376 WRITE_ONCE(*(unsigned long *)handle, obj);
377}
378
379
380
381#ifdef CONFIG_ZPOOL
382
383static void *zs_zpool_create(const char *name, gfp_t gfp,
384 const struct zpool_ops *zpool_ops,
385 struct zpool *zpool)
386{
387
388
389
390
391
392 return zs_create_pool(name);
393}
394
395static void zs_zpool_destroy(void *pool)
396{
397 zs_destroy_pool(pool);
398}
399
400static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402{
403 *handle = zs_malloc(pool, size, gfp);
404 return *handle ? 0 : -1;
405}
406static void zs_zpool_free(void *pool, unsigned long handle)
407{
408 zs_free(pool, handle);
409}
410
411static void *zs_zpool_map(void *pool, unsigned long handle,
412 enum zpool_mapmode mm)
413{
414 enum zs_mapmode zs_mm;
415
416 switch (mm) {
417 case ZPOOL_MM_RO:
418 zs_mm = ZS_MM_RO;
419 break;
420 case ZPOOL_MM_WO:
421 zs_mm = ZS_MM_WO;
422 break;
423 case ZPOOL_MM_RW:
424 default:
425 zs_mm = ZS_MM_RW;
426 break;
427 }
428
429 return zs_map_object(pool, handle, zs_mm);
430}
431static void zs_zpool_unmap(void *pool, unsigned long handle)
432{
433 zs_unmap_object(pool, handle);
434}
435
436static u64 zs_zpool_total_size(void *pool)
437{
438 return zs_get_total_pages(pool) << PAGE_SHIFT;
439}
440
441static struct zpool_driver zs_zpool_driver = {
442 .type = "zsmalloc",
443 .owner = THIS_MODULE,
444 .create = zs_zpool_create,
445 .destroy = zs_zpool_destroy,
446 .malloc_support_movable = true,
447 .malloc = zs_zpool_malloc,
448 .free = zs_zpool_free,
449 .map = zs_zpool_map,
450 .unmap = zs_zpool_unmap,
451 .total_size = zs_zpool_total_size,
452};
453
454MODULE_ALIAS("zpool-zsmalloc");
455#endif
456
457
458static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
460static bool is_zspage_isolated(struct zspage *zspage)
461{
462 return zspage->isolated;
463}
464
465static __maybe_unused int is_first_page(struct page *page)
466{
467 return PagePrivate(page);
468}
469
470
471static inline int get_zspage_inuse(struct zspage *zspage)
472{
473 return zspage->inuse;
474}
475
476
477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478{
479 zspage->inuse += val;
480}
481
482static inline struct page *get_first_page(struct zspage *zspage)
483{
484 struct page *first_page = zspage->first_page;
485
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
488}
489
490static inline int get_first_obj_offset(struct page *page)
491{
492 return page->units;
493}
494
495static inline void set_first_obj_offset(struct page *page, int offset)
496{
497 page->units = offset;
498}
499
500static inline unsigned int get_freeobj(struct zspage *zspage)
501{
502 return zspage->freeobj;
503}
504
505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506{
507 zspage->freeobj = obj;
508}
509
510static void get_zspage_mapping(struct zspage *zspage,
511 unsigned int *class_idx,
512 enum fullness_group *fullness)
513{
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
518}
519
520static void set_zspage_mapping(struct zspage *zspage,
521 unsigned int class_idx,
522 enum fullness_group fullness)
523{
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
526}
527
528
529
530
531
532
533
534
535static int get_size_class_index(int size)
536{
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544}
545
546
547static inline void zs_stat_inc(struct size_class *class,
548 int type, unsigned long cnt)
549{
550 class->stats.objs[type] += cnt;
551}
552
553
554static inline void zs_stat_dec(struct size_class *class,
555 int type, unsigned long cnt)
556{
557 class->stats.objs[type] -= cnt;
558}
559
560
561static inline unsigned long zs_stat_get(struct size_class *class,
562 int type)
563{
564 return class->stats.objs[type];
565}
566
567#ifdef CONFIG_ZSMALLOC_STAT
568
569static void __init zs_stat_init(void)
570{
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577}
578
579static void __exit zs_stat_exit(void)
580{
581 debugfs_remove_recursive(zs_stat_root);
582}
583
584static unsigned long zs_can_compact(struct size_class *class);
585
586static int zs_stats_size_show(struct seq_file *s, void *v)
587{
588 int i;
589 struct zs_pool *pool = s->private;
590 struct size_class *class;
591 int objs_per_zspage;
592 unsigned long class_almost_full, class_almost_empty;
593 unsigned long obj_allocated, obj_used, pages_used, freeable;
594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
596 unsigned long total_freeable = 0;
597
598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
599 "class", "size", "almost_full", "almost_empty",
600 "obj_allocated", "obj_used", "pages_used",
601 "pages_per_zspage", "freeable");
602
603 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
604 class = pool->size_class[i];
605
606 if (class->index != i)
607 continue;
608
609 spin_lock(&class->lock);
610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613 obj_used = zs_stat_get(class, OBJ_USED);
614 freeable = zs_can_compact(class);
615 spin_unlock(&class->lock);
616
617 objs_per_zspage = class->objs_per_zspage;
618 pages_used = obj_allocated / objs_per_zspage *
619 class->pages_per_zspage;
620
621 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622 " %10lu %10lu %16d %8lu\n",
623 i, class->size, class_almost_full, class_almost_empty,
624 obj_allocated, obj_used, pages_used,
625 class->pages_per_zspage, freeable);
626
627 total_class_almost_full += class_almost_full;
628 total_class_almost_empty += class_almost_empty;
629 total_objs += obj_allocated;
630 total_used_objs += obj_used;
631 total_pages += pages_used;
632 total_freeable += freeable;
633 }
634
635 seq_puts(s, "\n");
636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
637 "Total", "", total_class_almost_full,
638 total_class_almost_empty, total_objs,
639 total_used_objs, total_pages, "", total_freeable);
640
641 return 0;
642}
643DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
644
645static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
646{
647 if (!zs_stat_root) {
648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
649 return;
650 }
651
652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655 &zs_stats_size_fops);
656}
657
658static void zs_pool_stat_destroy(struct zs_pool *pool)
659{
660 debugfs_remove_recursive(pool->stat_dentry);
661}
662
663#else
664static void __init zs_stat_init(void)
665{
666}
667
668static void __exit zs_stat_exit(void)
669{
670}
671
672static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673{
674}
675
676static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677{
678}
679#endif
680
681
682
683
684
685
686
687
688
689static enum fullness_group get_fullness_group(struct size_class *class,
690 struct zspage *zspage)
691{
692 int inuse, objs_per_zspage;
693 enum fullness_group fg;
694
695 inuse = get_zspage_inuse(zspage);
696 objs_per_zspage = class->objs_per_zspage;
697
698 if (inuse == 0)
699 fg = ZS_EMPTY;
700 else if (inuse == objs_per_zspage)
701 fg = ZS_FULL;
702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
703 fg = ZS_ALMOST_EMPTY;
704 else
705 fg = ZS_ALMOST_FULL;
706
707 return fg;
708}
709
710
711
712
713
714
715
716static void insert_zspage(struct size_class *class,
717 struct zspage *zspage,
718 enum fullness_group fullness)
719{
720 struct zspage *head;
721
722 zs_stat_inc(class, fullness, 1);
723 head = list_first_entry_or_null(&class->fullness_list[fullness],
724 struct zspage, list);
725
726
727
728
729 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
730 list_add(&zspage->list, &head->list);
731 else
732 list_add(&zspage->list, &class->fullness_list[fullness]);
733}
734
735
736
737
738
739static void remove_zspage(struct size_class *class,
740 struct zspage *zspage,
741 enum fullness_group fullness)
742{
743 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
744 VM_BUG_ON(is_zspage_isolated(zspage));
745
746 list_del_init(&zspage->list);
747 zs_stat_dec(class, fullness, 1);
748}
749
750
751
752
753
754
755
756
757
758
759static enum fullness_group fix_fullness_group(struct size_class *class,
760 struct zspage *zspage)
761{
762 int class_idx;
763 enum fullness_group currfg, newfg;
764
765 get_zspage_mapping(zspage, &class_idx, &currfg);
766 newfg = get_fullness_group(class, zspage);
767 if (newfg == currfg)
768 goto out;
769
770 if (!is_zspage_isolated(zspage)) {
771 remove_zspage(class, zspage, currfg);
772 insert_zspage(class, zspage, newfg);
773 }
774
775 set_zspage_mapping(zspage, class_idx, newfg);
776
777out:
778 return newfg;
779}
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794static int get_pages_per_zspage(int class_size)
795{
796 int i, max_usedpc = 0;
797
798 int max_usedpc_order = 1;
799
800 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
801 int zspage_size;
802 int waste, usedpc;
803
804 zspage_size = i * PAGE_SIZE;
805 waste = zspage_size % class_size;
806 usedpc = (zspage_size - waste) * 100 / zspage_size;
807
808 if (usedpc > max_usedpc) {
809 max_usedpc = usedpc;
810 max_usedpc_order = i;
811 }
812 }
813
814 return max_usedpc_order;
815}
816
817static struct zspage *get_zspage(struct page *page)
818{
819 struct zspage *zspage = (struct zspage *)page_private(page);
820
821 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
822 return zspage;
823}
824
825static struct page *get_next_page(struct page *page)
826{
827 if (unlikely(PageHugeObject(page)))
828 return NULL;
829
830 return page->freelist;
831}
832
833
834
835
836
837
838
839static void obj_to_location(unsigned long obj, struct page **page,
840 unsigned int *obj_idx)
841{
842 obj >>= OBJ_TAG_BITS;
843 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
844 *obj_idx = (obj & OBJ_INDEX_MASK);
845}
846
847
848
849
850
851
852static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
853{
854 unsigned long obj;
855
856 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
857 obj |= obj_idx & OBJ_INDEX_MASK;
858 obj <<= OBJ_TAG_BITS;
859
860 return obj;
861}
862
863static unsigned long handle_to_obj(unsigned long handle)
864{
865 return *(unsigned long *)handle;
866}
867
868static unsigned long obj_to_head(struct page *page, void *obj)
869{
870 if (unlikely(PageHugeObject(page))) {
871 VM_BUG_ON_PAGE(!is_first_page(page), page);
872 return page->index;
873 } else
874 return *(unsigned long *)obj;
875}
876
877static inline int testpin_tag(unsigned long handle)
878{
879 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
880}
881
882static inline int trypin_tag(unsigned long handle)
883{
884 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
885}
886
887static void pin_tag(unsigned long handle) __acquires(bitlock)
888{
889 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
890}
891
892static void unpin_tag(unsigned long handle) __releases(bitlock)
893{
894 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
895}
896
897static void reset_page(struct page *page)
898{
899 __ClearPageMovable(page);
900 ClearPagePrivate(page);
901 set_page_private(page, 0);
902 page_mapcount_reset(page);
903 ClearPageHugeObject(page);
904 page->freelist = NULL;
905}
906
907static int trylock_zspage(struct zspage *zspage)
908{
909 struct page *cursor, *fail;
910
911 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
912 get_next_page(cursor)) {
913 if (!trylock_page(cursor)) {
914 fail = cursor;
915 goto unlock;
916 }
917 }
918
919 return 1;
920unlock:
921 for (cursor = get_first_page(zspage); cursor != fail; cursor =
922 get_next_page(cursor))
923 unlock_page(cursor);
924
925 return 0;
926}
927
928static void __free_zspage(struct zs_pool *pool, struct size_class *class,
929 struct zspage *zspage)
930{
931 struct page *page, *next;
932 enum fullness_group fg;
933 unsigned int class_idx;
934
935 get_zspage_mapping(zspage, &class_idx, &fg);
936
937 assert_spin_locked(&class->lock);
938
939 VM_BUG_ON(get_zspage_inuse(zspage));
940 VM_BUG_ON(fg != ZS_EMPTY);
941
942 next = page = get_first_page(zspage);
943 do {
944 VM_BUG_ON_PAGE(!PageLocked(page), page);
945 next = get_next_page(page);
946 reset_page(page);
947 unlock_page(page);
948 dec_zone_page_state(page, NR_ZSPAGES);
949 put_page(page);
950 page = next;
951 } while (page != NULL);
952
953 cache_free_zspage(pool, zspage);
954
955 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
956 atomic_long_sub(class->pages_per_zspage,
957 &pool->pages_allocated);
958}
959
960static void free_zspage(struct zs_pool *pool, struct size_class *class,
961 struct zspage *zspage)
962{
963 VM_BUG_ON(get_zspage_inuse(zspage));
964 VM_BUG_ON(list_empty(&zspage->list));
965
966 if (!trylock_zspage(zspage)) {
967 kick_deferred_free(pool);
968 return;
969 }
970
971 remove_zspage(class, zspage, ZS_EMPTY);
972 __free_zspage(pool, class, zspage);
973}
974
975
976static void init_zspage(struct size_class *class, struct zspage *zspage)
977{
978 unsigned int freeobj = 1;
979 unsigned long off = 0;
980 struct page *page = get_first_page(zspage);
981
982 while (page) {
983 struct page *next_page;
984 struct link_free *link;
985 void *vaddr;
986
987 set_first_obj_offset(page, off);
988
989 vaddr = kmap_atomic(page);
990 link = (struct link_free *)vaddr + off / sizeof(*link);
991
992 while ((off += class->size) < PAGE_SIZE) {
993 link->next = freeobj++ << OBJ_TAG_BITS;
994 link += class->size / sizeof(*link);
995 }
996
997
998
999
1000
1001
1002 next_page = get_next_page(page);
1003 if (next_page) {
1004 link->next = freeobj++ << OBJ_TAG_BITS;
1005 } else {
1006
1007
1008
1009
1010 link->next = -1UL << OBJ_TAG_BITS;
1011 }
1012 kunmap_atomic(vaddr);
1013 page = next_page;
1014 off %= PAGE_SIZE;
1015 }
1016
1017 set_freeobj(zspage, 0);
1018}
1019
1020static void create_page_chain(struct size_class *class, struct zspage *zspage,
1021 struct page *pages[])
1022{
1023 int i;
1024 struct page *page;
1025 struct page *prev_page = NULL;
1026 int nr_pages = class->pages_per_zspage;
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036 for (i = 0; i < nr_pages; i++) {
1037 page = pages[i];
1038 set_page_private(page, (unsigned long)zspage);
1039 page->freelist = NULL;
1040 if (i == 0) {
1041 zspage->first_page = page;
1042 SetPagePrivate(page);
1043 if (unlikely(class->objs_per_zspage == 1 &&
1044 class->pages_per_zspage == 1))
1045 SetPageHugeObject(page);
1046 } else {
1047 prev_page->freelist = page;
1048 }
1049 prev_page = page;
1050 }
1051}
1052
1053
1054
1055
1056static struct zspage *alloc_zspage(struct zs_pool *pool,
1057 struct size_class *class,
1058 gfp_t gfp)
1059{
1060 int i;
1061 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1062 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1063
1064 if (!zspage)
1065 return NULL;
1066
1067 zspage->magic = ZSPAGE_MAGIC;
1068 migrate_lock_init(zspage);
1069
1070 for (i = 0; i < class->pages_per_zspage; i++) {
1071 struct page *page;
1072
1073 page = alloc_page(gfp);
1074 if (!page) {
1075 while (--i >= 0) {
1076 dec_zone_page_state(pages[i], NR_ZSPAGES);
1077 __free_page(pages[i]);
1078 }
1079 cache_free_zspage(pool, zspage);
1080 return NULL;
1081 }
1082
1083 inc_zone_page_state(page, NR_ZSPAGES);
1084 pages[i] = page;
1085 }
1086
1087 create_page_chain(class, zspage, pages);
1088 init_zspage(class, zspage);
1089
1090 return zspage;
1091}
1092
1093static struct zspage *find_get_zspage(struct size_class *class)
1094{
1095 int i;
1096 struct zspage *zspage;
1097
1098 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1099 zspage = list_first_entry_or_null(&class->fullness_list[i],
1100 struct zspage, list);
1101 if (zspage)
1102 break;
1103 }
1104
1105 return zspage;
1106}
1107
1108static inline int __zs_cpu_up(struct mapping_area *area)
1109{
1110
1111
1112
1113
1114 if (area->vm_buf)
1115 return 0;
1116 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1117 if (!area->vm_buf)
1118 return -ENOMEM;
1119 return 0;
1120}
1121
1122static inline void __zs_cpu_down(struct mapping_area *area)
1123{
1124 kfree(area->vm_buf);
1125 area->vm_buf = NULL;
1126}
1127
1128static void *__zs_map_object(struct mapping_area *area,
1129 struct page *pages[2], int off, int size)
1130{
1131 int sizes[2];
1132 void *addr;
1133 char *buf = area->vm_buf;
1134
1135
1136 pagefault_disable();
1137
1138
1139 if (area->vm_mm == ZS_MM_WO)
1140 goto out;
1141
1142 sizes[0] = PAGE_SIZE - off;
1143 sizes[1] = size - sizes[0];
1144
1145
1146 addr = kmap_atomic(pages[0]);
1147 memcpy(buf, addr + off, sizes[0]);
1148 kunmap_atomic(addr);
1149 addr = kmap_atomic(pages[1]);
1150 memcpy(buf + sizes[0], addr, sizes[1]);
1151 kunmap_atomic(addr);
1152out:
1153 return area->vm_buf;
1154}
1155
1156static void __zs_unmap_object(struct mapping_area *area,
1157 struct page *pages[2], int off, int size)
1158{
1159 int sizes[2];
1160 void *addr;
1161 char *buf;
1162
1163
1164 if (area->vm_mm == ZS_MM_RO)
1165 goto out;
1166
1167 buf = area->vm_buf;
1168 buf = buf + ZS_HANDLE_SIZE;
1169 size -= ZS_HANDLE_SIZE;
1170 off += ZS_HANDLE_SIZE;
1171
1172 sizes[0] = PAGE_SIZE - off;
1173 sizes[1] = size - sizes[0];
1174
1175
1176 addr = kmap_atomic(pages[0]);
1177 memcpy(addr + off, buf, sizes[0]);
1178 kunmap_atomic(addr);
1179 addr = kmap_atomic(pages[1]);
1180 memcpy(addr, buf + sizes[0], sizes[1]);
1181 kunmap_atomic(addr);
1182
1183out:
1184
1185 pagefault_enable();
1186}
1187
1188static int zs_cpu_prepare(unsigned int cpu)
1189{
1190 struct mapping_area *area;
1191
1192 area = &per_cpu(zs_map_area, cpu);
1193 return __zs_cpu_up(area);
1194}
1195
1196static int zs_cpu_dead(unsigned int cpu)
1197{
1198 struct mapping_area *area;
1199
1200 area = &per_cpu(zs_map_area, cpu);
1201 __zs_cpu_down(area);
1202 return 0;
1203}
1204
1205static bool can_merge(struct size_class *prev, int pages_per_zspage,
1206 int objs_per_zspage)
1207{
1208 if (prev->pages_per_zspage == pages_per_zspage &&
1209 prev->objs_per_zspage == objs_per_zspage)
1210 return true;
1211
1212 return false;
1213}
1214
1215static bool zspage_full(struct size_class *class, struct zspage *zspage)
1216{
1217 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1218}
1219
1220unsigned long zs_get_total_pages(struct zs_pool *pool)
1221{
1222 return atomic_long_read(&pool->pages_allocated);
1223}
1224EXPORT_SYMBOL_GPL(zs_get_total_pages);
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1242 enum zs_mapmode mm)
1243{
1244 struct zspage *zspage;
1245 struct page *page;
1246 unsigned long obj, off;
1247 unsigned int obj_idx;
1248
1249 unsigned int class_idx;
1250 enum fullness_group fg;
1251 struct size_class *class;
1252 struct mapping_area *area;
1253 struct page *pages[2];
1254 void *ret;
1255
1256
1257
1258
1259
1260
1261 BUG_ON(in_interrupt());
1262
1263
1264 pin_tag(handle);
1265
1266 obj = handle_to_obj(handle);
1267 obj_to_location(obj, &page, &obj_idx);
1268 zspage = get_zspage(page);
1269
1270
1271 migrate_read_lock(zspage);
1272
1273 get_zspage_mapping(zspage, &class_idx, &fg);
1274 class = pool->size_class[class_idx];
1275 off = (class->size * obj_idx) & ~PAGE_MASK;
1276
1277 area = &get_cpu_var(zs_map_area);
1278 area->vm_mm = mm;
1279 if (off + class->size <= PAGE_SIZE) {
1280
1281 area->vm_addr = kmap_atomic(page);
1282 ret = area->vm_addr + off;
1283 goto out;
1284 }
1285
1286
1287 pages[0] = page;
1288 pages[1] = get_next_page(page);
1289 BUG_ON(!pages[1]);
1290
1291 ret = __zs_map_object(area, pages, off, class->size);
1292out:
1293 if (likely(!PageHugeObject(page)))
1294 ret += ZS_HANDLE_SIZE;
1295
1296 return ret;
1297}
1298EXPORT_SYMBOL_GPL(zs_map_object);
1299
1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301{
1302 struct zspage *zspage;
1303 struct page *page;
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
1306
1307 unsigned int class_idx;
1308 enum fullness_group fg;
1309 struct size_class *class;
1310 struct mapping_area *area;
1311
1312 obj = handle_to_obj(handle);
1313 obj_to_location(obj, &page, &obj_idx);
1314 zspage = get_zspage(page);
1315 get_zspage_mapping(zspage, &class_idx, &fg);
1316 class = pool->size_class[class_idx];
1317 off = (class->size * obj_idx) & ~PAGE_MASK;
1318
1319 area = this_cpu_ptr(&zs_map_area);
1320 if (off + class->size <= PAGE_SIZE)
1321 kunmap_atomic(area->vm_addr);
1322 else {
1323 struct page *pages[2];
1324
1325 pages[0] = page;
1326 pages[1] = get_next_page(page);
1327 BUG_ON(!pages[1]);
1328
1329 __zs_unmap_object(area, pages, off, class->size);
1330 }
1331 put_cpu_var(zs_map_area);
1332
1333 migrate_read_unlock(zspage);
1334 unpin_tag(handle);
1335}
1336EXPORT_SYMBOL_GPL(zs_unmap_object);
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351size_t zs_huge_class_size(struct zs_pool *pool)
1352{
1353 return huge_class_size;
1354}
1355EXPORT_SYMBOL_GPL(zs_huge_class_size);
1356
1357static unsigned long obj_malloc(struct size_class *class,
1358 struct zspage *zspage, unsigned long handle)
1359{
1360 int i, nr_page, offset;
1361 unsigned long obj;
1362 struct link_free *link;
1363
1364 struct page *m_page;
1365 unsigned long m_offset;
1366 void *vaddr;
1367
1368 handle |= OBJ_ALLOCATED_TAG;
1369 obj = get_freeobj(zspage);
1370
1371 offset = obj * class->size;
1372 nr_page = offset >> PAGE_SHIFT;
1373 m_offset = offset & ~PAGE_MASK;
1374 m_page = get_first_page(zspage);
1375
1376 for (i = 0; i < nr_page; i++)
1377 m_page = get_next_page(m_page);
1378
1379 vaddr = kmap_atomic(m_page);
1380 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1381 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1382 if (likely(!PageHugeObject(m_page)))
1383
1384 link->handle = handle;
1385 else
1386
1387 zspage->first_page->index = handle;
1388
1389 kunmap_atomic(vaddr);
1390 mod_zspage_inuse(zspage, 1);
1391 zs_stat_inc(class, OBJ_USED, 1);
1392
1393 obj = location_to_obj(m_page, obj);
1394
1395 return obj;
1396}
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1410{
1411 unsigned long handle, obj;
1412 struct size_class *class;
1413 enum fullness_group newfg;
1414 struct zspage *zspage;
1415
1416 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1417 return 0;
1418
1419 handle = cache_alloc_handle(pool, gfp);
1420 if (!handle)
1421 return 0;
1422
1423
1424 size += ZS_HANDLE_SIZE;
1425 class = pool->size_class[get_size_class_index(size)];
1426
1427 spin_lock(&class->lock);
1428 zspage = find_get_zspage(class);
1429 if (likely(zspage)) {
1430 obj = obj_malloc(class, zspage, handle);
1431
1432 fix_fullness_group(class, zspage);
1433 record_obj(handle, obj);
1434 spin_unlock(&class->lock);
1435
1436 return handle;
1437 }
1438
1439 spin_unlock(&class->lock);
1440
1441 zspage = alloc_zspage(pool, class, gfp);
1442 if (!zspage) {
1443 cache_free_handle(pool, handle);
1444 return 0;
1445 }
1446
1447 spin_lock(&class->lock);
1448 obj = obj_malloc(class, zspage, handle);
1449 newfg = get_fullness_group(class, zspage);
1450 insert_zspage(class, zspage, newfg);
1451 set_zspage_mapping(zspage, class->index, newfg);
1452 record_obj(handle, obj);
1453 atomic_long_add(class->pages_per_zspage,
1454 &pool->pages_allocated);
1455 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1456
1457
1458 SetZsPageMovable(pool, zspage);
1459 spin_unlock(&class->lock);
1460
1461 return handle;
1462}
1463EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465static void obj_free(struct size_class *class, unsigned long obj)
1466{
1467 struct link_free *link;
1468 struct zspage *zspage;
1469 struct page *f_page;
1470 unsigned long f_offset;
1471 unsigned int f_objidx;
1472 void *vaddr;
1473
1474 obj &= ~OBJ_ALLOCATED_TAG;
1475 obj_to_location(obj, &f_page, &f_objidx);
1476 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1477 zspage = get_zspage(f_page);
1478
1479 vaddr = kmap_atomic(f_page);
1480
1481
1482 link = (struct link_free *)(vaddr + f_offset);
1483 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1484 kunmap_atomic(vaddr);
1485 set_freeobj(zspage, f_objidx);
1486 mod_zspage_inuse(zspage, -1);
1487 zs_stat_dec(class, OBJ_USED, 1);
1488}
1489
1490void zs_free(struct zs_pool *pool, unsigned long handle)
1491{
1492 struct zspage *zspage;
1493 struct page *f_page;
1494 unsigned long obj;
1495 unsigned int f_objidx;
1496 int class_idx;
1497 struct size_class *class;
1498 enum fullness_group fullness;
1499 bool isolated;
1500
1501 if (unlikely(!handle))
1502 return;
1503
1504 pin_tag(handle);
1505 obj = handle_to_obj(handle);
1506 obj_to_location(obj, &f_page, &f_objidx);
1507 zspage = get_zspage(f_page);
1508
1509 migrate_read_lock(zspage);
1510
1511 get_zspage_mapping(zspage, &class_idx, &fullness);
1512 class = pool->size_class[class_idx];
1513
1514 spin_lock(&class->lock);
1515 obj_free(class, obj);
1516 fullness = fix_fullness_group(class, zspage);
1517 if (fullness != ZS_EMPTY) {
1518 migrate_read_unlock(zspage);
1519 goto out;
1520 }
1521
1522 isolated = is_zspage_isolated(zspage);
1523 migrate_read_unlock(zspage);
1524
1525 if (likely(!isolated))
1526 free_zspage(pool, class, zspage);
1527out:
1528
1529 spin_unlock(&class->lock);
1530 unpin_tag(handle);
1531 cache_free_handle(pool, handle);
1532}
1533EXPORT_SYMBOL_GPL(zs_free);
1534
1535static void zs_object_copy(struct size_class *class, unsigned long dst,
1536 unsigned long src)
1537{
1538 struct page *s_page, *d_page;
1539 unsigned int s_objidx, d_objidx;
1540 unsigned long s_off, d_off;
1541 void *s_addr, *d_addr;
1542 int s_size, d_size, size;
1543 int written = 0;
1544
1545 s_size = d_size = class->size;
1546
1547 obj_to_location(src, &s_page, &s_objidx);
1548 obj_to_location(dst, &d_page, &d_objidx);
1549
1550 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1551 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1552
1553 if (s_off + class->size > PAGE_SIZE)
1554 s_size = PAGE_SIZE - s_off;
1555
1556 if (d_off + class->size > PAGE_SIZE)
1557 d_size = PAGE_SIZE - d_off;
1558
1559 s_addr = kmap_atomic(s_page);
1560 d_addr = kmap_atomic(d_page);
1561
1562 while (1) {
1563 size = min(s_size, d_size);
1564 memcpy(d_addr + d_off, s_addr + s_off, size);
1565 written += size;
1566
1567 if (written == class->size)
1568 break;
1569
1570 s_off += size;
1571 s_size -= size;
1572 d_off += size;
1573 d_size -= size;
1574
1575 if (s_off >= PAGE_SIZE) {
1576 kunmap_atomic(d_addr);
1577 kunmap_atomic(s_addr);
1578 s_page = get_next_page(s_page);
1579 s_addr = kmap_atomic(s_page);
1580 d_addr = kmap_atomic(d_page);
1581 s_size = class->size - written;
1582 s_off = 0;
1583 }
1584
1585 if (d_off >= PAGE_SIZE) {
1586 kunmap_atomic(d_addr);
1587 d_page = get_next_page(d_page);
1588 d_addr = kmap_atomic(d_page);
1589 d_size = class->size - written;
1590 d_off = 0;
1591 }
1592 }
1593
1594 kunmap_atomic(d_addr);
1595 kunmap_atomic(s_addr);
1596}
1597
1598
1599
1600
1601
1602static unsigned long find_alloced_obj(struct size_class *class,
1603 struct page *page, int *obj_idx)
1604{
1605 unsigned long head;
1606 int offset = 0;
1607 int index = *obj_idx;
1608 unsigned long handle = 0;
1609 void *addr = kmap_atomic(page);
1610
1611 offset = get_first_obj_offset(page);
1612 offset += class->size * index;
1613
1614 while (offset < PAGE_SIZE) {
1615 head = obj_to_head(page, addr + offset);
1616 if (head & OBJ_ALLOCATED_TAG) {
1617 handle = head & ~OBJ_ALLOCATED_TAG;
1618 if (trypin_tag(handle))
1619 break;
1620 handle = 0;
1621 }
1622
1623 offset += class->size;
1624 index++;
1625 }
1626
1627 kunmap_atomic(addr);
1628
1629 *obj_idx = index;
1630
1631 return handle;
1632}
1633
1634struct zs_compact_control {
1635
1636 struct page *s_page;
1637
1638
1639 struct page *d_page;
1640
1641
1642 int obj_idx;
1643};
1644
1645static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1646 struct zs_compact_control *cc)
1647{
1648 unsigned long used_obj, free_obj;
1649 unsigned long handle;
1650 struct page *s_page = cc->s_page;
1651 struct page *d_page = cc->d_page;
1652 int obj_idx = cc->obj_idx;
1653 int ret = 0;
1654
1655 while (1) {
1656 handle = find_alloced_obj(class, s_page, &obj_idx);
1657 if (!handle) {
1658 s_page = get_next_page(s_page);
1659 if (!s_page)
1660 break;
1661 obj_idx = 0;
1662 continue;
1663 }
1664
1665
1666 if (zspage_full(class, get_zspage(d_page))) {
1667 unpin_tag(handle);
1668 ret = -ENOMEM;
1669 break;
1670 }
1671
1672 used_obj = handle_to_obj(handle);
1673 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1674 zs_object_copy(class, free_obj, used_obj);
1675 obj_idx++;
1676
1677
1678
1679
1680
1681
1682 free_obj |= BIT(HANDLE_PIN_BIT);
1683 record_obj(handle, free_obj);
1684 unpin_tag(handle);
1685 obj_free(class, used_obj);
1686 }
1687
1688
1689 cc->s_page = s_page;
1690 cc->obj_idx = obj_idx;
1691
1692 return ret;
1693}
1694
1695static struct zspage *isolate_zspage(struct size_class *class, bool source)
1696{
1697 int i;
1698 struct zspage *zspage;
1699 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1700
1701 if (!source) {
1702 fg[0] = ZS_ALMOST_FULL;
1703 fg[1] = ZS_ALMOST_EMPTY;
1704 }
1705
1706 for (i = 0; i < 2; i++) {
1707 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1708 struct zspage, list);
1709 if (zspage) {
1710 VM_BUG_ON(is_zspage_isolated(zspage));
1711 remove_zspage(class, zspage, fg[i]);
1712 return zspage;
1713 }
1714 }
1715
1716 return zspage;
1717}
1718
1719
1720
1721
1722
1723
1724
1725
1726static enum fullness_group putback_zspage(struct size_class *class,
1727 struct zspage *zspage)
1728{
1729 enum fullness_group fullness;
1730
1731 VM_BUG_ON(is_zspage_isolated(zspage));
1732
1733 fullness = get_fullness_group(class, zspage);
1734 insert_zspage(class, zspage, fullness);
1735 set_zspage_mapping(zspage, class->index, fullness);
1736
1737 return fullness;
1738}
1739
1740#ifdef CONFIG_COMPACTION
1741
1742
1743
1744
1745static void lock_zspage(struct zspage *zspage)
1746{
1747 struct page *page = get_first_page(zspage);
1748
1749 do {
1750 lock_page(page);
1751 } while ((page = get_next_page(page)) != NULL);
1752}
1753
1754static int zs_init_fs_context(struct fs_context *fc)
1755{
1756 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1757}
1758
1759static struct file_system_type zsmalloc_fs = {
1760 .name = "zsmalloc",
1761 .init_fs_context = zs_init_fs_context,
1762 .kill_sb = kill_anon_super,
1763};
1764
1765static int zsmalloc_mount(void)
1766{
1767 int ret = 0;
1768
1769 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1770 if (IS_ERR(zsmalloc_mnt))
1771 ret = PTR_ERR(zsmalloc_mnt);
1772
1773 return ret;
1774}
1775
1776static void zsmalloc_unmount(void)
1777{
1778 kern_unmount(zsmalloc_mnt);
1779}
1780
1781static void migrate_lock_init(struct zspage *zspage)
1782{
1783 rwlock_init(&zspage->lock);
1784}
1785
1786static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1787{
1788 read_lock(&zspage->lock);
1789}
1790
1791static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1792{
1793 read_unlock(&zspage->lock);
1794}
1795
1796static void migrate_write_lock(struct zspage *zspage)
1797{
1798 write_lock(&zspage->lock);
1799}
1800
1801static void migrate_write_unlock(struct zspage *zspage)
1802{
1803 write_unlock(&zspage->lock);
1804}
1805
1806
1807static void inc_zspage_isolation(struct zspage *zspage)
1808{
1809 zspage->isolated++;
1810}
1811
1812static void dec_zspage_isolation(struct zspage *zspage)
1813{
1814 zspage->isolated--;
1815}
1816
1817static void putback_zspage_deferred(struct zs_pool *pool,
1818 struct size_class *class,
1819 struct zspage *zspage)
1820{
1821 enum fullness_group fg;
1822
1823 fg = putback_zspage(class, zspage);
1824 if (fg == ZS_EMPTY)
1825 schedule_work(&pool->free_work);
1826
1827}
1828
1829static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1830{
1831 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1832 atomic_long_dec(&pool->isolated_pages);
1833
1834
1835
1836
1837
1838 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1839 wake_up_all(&pool->migration_wait);
1840}
1841
1842static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1843 struct page *newpage, struct page *oldpage)
1844{
1845 struct page *page;
1846 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1847 int idx = 0;
1848
1849 page = get_first_page(zspage);
1850 do {
1851 if (page == oldpage)
1852 pages[idx] = newpage;
1853 else
1854 pages[idx] = page;
1855 idx++;
1856 } while ((page = get_next_page(page)) != NULL);
1857
1858 create_page_chain(class, zspage, pages);
1859 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1860 if (unlikely(PageHugeObject(oldpage)))
1861 newpage->index = oldpage->index;
1862 __SetPageMovable(newpage, page_mapping(oldpage));
1863}
1864
1865static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1866{
1867 struct zs_pool *pool;
1868 struct size_class *class;
1869 int class_idx;
1870 enum fullness_group fullness;
1871 struct zspage *zspage;
1872 struct address_space *mapping;
1873
1874
1875
1876
1877
1878 VM_BUG_ON_PAGE(!PageMovable(page), page);
1879 VM_BUG_ON_PAGE(PageIsolated(page), page);
1880
1881 zspage = get_zspage(page);
1882
1883
1884
1885
1886
1887
1888 get_zspage_mapping(zspage, &class_idx, &fullness);
1889 mapping = page_mapping(page);
1890 pool = mapping->private_data;
1891 class = pool->size_class[class_idx];
1892
1893 spin_lock(&class->lock);
1894 if (get_zspage_inuse(zspage) == 0) {
1895 spin_unlock(&class->lock);
1896 return false;
1897 }
1898
1899
1900 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1901 spin_unlock(&class->lock);
1902 return false;
1903 }
1904
1905
1906
1907
1908
1909 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1910 get_zspage_mapping(zspage, &class_idx, &fullness);
1911 atomic_long_inc(&pool->isolated_pages);
1912 remove_zspage(class, zspage, fullness);
1913 }
1914
1915 inc_zspage_isolation(zspage);
1916 spin_unlock(&class->lock);
1917
1918 return true;
1919}
1920
1921static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1922 struct page *page, enum migrate_mode mode)
1923{
1924 struct zs_pool *pool;
1925 struct size_class *class;
1926 int class_idx;
1927 enum fullness_group fullness;
1928 struct zspage *zspage;
1929 struct page *dummy;
1930 void *s_addr, *d_addr, *addr;
1931 int offset, pos;
1932 unsigned long handle, head;
1933 unsigned long old_obj, new_obj;
1934 unsigned int obj_idx;
1935 int ret = -EAGAIN;
1936
1937
1938
1939
1940
1941
1942 if (mode == MIGRATE_SYNC_NO_COPY)
1943 return -EINVAL;
1944
1945 VM_BUG_ON_PAGE(!PageMovable(page), page);
1946 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1947
1948 zspage = get_zspage(page);
1949
1950
1951 migrate_write_lock(zspage);
1952 get_zspage_mapping(zspage, &class_idx, &fullness);
1953 pool = mapping->private_data;
1954 class = pool->size_class[class_idx];
1955 offset = get_first_obj_offset(page);
1956
1957 spin_lock(&class->lock);
1958 if (!get_zspage_inuse(zspage)) {
1959
1960
1961
1962
1963 offset = PAGE_SIZE;
1964 }
1965
1966 pos = offset;
1967 s_addr = kmap_atomic(page);
1968 while (pos < PAGE_SIZE) {
1969 head = obj_to_head(page, s_addr + pos);
1970 if (head & OBJ_ALLOCATED_TAG) {
1971 handle = head & ~OBJ_ALLOCATED_TAG;
1972 if (!trypin_tag(handle))
1973 goto unpin_objects;
1974 }
1975 pos += class->size;
1976 }
1977
1978
1979
1980
1981 d_addr = kmap_atomic(newpage);
1982 memcpy(d_addr, s_addr, PAGE_SIZE);
1983 kunmap_atomic(d_addr);
1984
1985 for (addr = s_addr + offset; addr < s_addr + pos;
1986 addr += class->size) {
1987 head = obj_to_head(page, addr);
1988 if (head & OBJ_ALLOCATED_TAG) {
1989 handle = head & ~OBJ_ALLOCATED_TAG;
1990 BUG_ON(!testpin_tag(handle));
1991
1992 old_obj = handle_to_obj(handle);
1993 obj_to_location(old_obj, &dummy, &obj_idx);
1994 new_obj = (unsigned long)location_to_obj(newpage,
1995 obj_idx);
1996 new_obj |= BIT(HANDLE_PIN_BIT);
1997 record_obj(handle, new_obj);
1998 }
1999 }
2000
2001 replace_sub_page(class, zspage, newpage, page);
2002 get_page(newpage);
2003
2004 dec_zspage_isolation(zspage);
2005
2006
2007
2008
2009
2010 if (!is_zspage_isolated(zspage)) {
2011
2012
2013
2014
2015
2016
2017 putback_zspage_deferred(pool, class, zspage);
2018 zs_pool_dec_isolated(pool);
2019 }
2020
2021 if (page_zone(newpage) != page_zone(page)) {
2022 dec_zone_page_state(page, NR_ZSPAGES);
2023 inc_zone_page_state(newpage, NR_ZSPAGES);
2024 }
2025
2026 reset_page(page);
2027 put_page(page);
2028 page = newpage;
2029
2030 ret = MIGRATEPAGE_SUCCESS;
2031unpin_objects:
2032 for (addr = s_addr + offset; addr < s_addr + pos;
2033 addr += class->size) {
2034 head = obj_to_head(page, addr);
2035 if (head & OBJ_ALLOCATED_TAG) {
2036 handle = head & ~OBJ_ALLOCATED_TAG;
2037 BUG_ON(!testpin_tag(handle));
2038 unpin_tag(handle);
2039 }
2040 }
2041 kunmap_atomic(s_addr);
2042 spin_unlock(&class->lock);
2043 migrate_write_unlock(zspage);
2044
2045 return ret;
2046}
2047
2048static void zs_page_putback(struct page *page)
2049{
2050 struct zs_pool *pool;
2051 struct size_class *class;
2052 int class_idx;
2053 enum fullness_group fg;
2054 struct address_space *mapping;
2055 struct zspage *zspage;
2056
2057 VM_BUG_ON_PAGE(!PageMovable(page), page);
2058 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2059
2060 zspage = get_zspage(page);
2061 get_zspage_mapping(zspage, &class_idx, &fg);
2062 mapping = page_mapping(page);
2063 pool = mapping->private_data;
2064 class = pool->size_class[class_idx];
2065
2066 spin_lock(&class->lock);
2067 dec_zspage_isolation(zspage);
2068 if (!is_zspage_isolated(zspage)) {
2069
2070
2071
2072
2073 putback_zspage_deferred(pool, class, zspage);
2074 zs_pool_dec_isolated(pool);
2075 }
2076 spin_unlock(&class->lock);
2077}
2078
2079static const struct address_space_operations zsmalloc_aops = {
2080 .isolate_page = zs_page_isolate,
2081 .migratepage = zs_page_migrate,
2082 .putback_page = zs_page_putback,
2083};
2084
2085static int zs_register_migration(struct zs_pool *pool)
2086{
2087 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2088 if (IS_ERR(pool->inode)) {
2089 pool->inode = NULL;
2090 return 1;
2091 }
2092
2093 pool->inode->i_mapping->private_data = pool;
2094 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2095 return 0;
2096}
2097
2098static bool pool_isolated_are_drained(struct zs_pool *pool)
2099{
2100 return atomic_long_read(&pool->isolated_pages) == 0;
2101}
2102
2103
2104static void wait_for_isolated_drain(struct zs_pool *pool)
2105{
2106
2107
2108
2109
2110
2111
2112
2113 wait_event(pool->migration_wait,
2114 pool_isolated_are_drained(pool));
2115}
2116
2117static void zs_unregister_migration(struct zs_pool *pool)
2118{
2119 pool->destroying = true;
2120
2121
2122
2123
2124
2125
2126 smp_mb();
2127 wait_for_isolated_drain(pool);
2128 flush_work(&pool->free_work);
2129 iput(pool->inode);
2130}
2131
2132
2133
2134
2135
2136static void async_free_zspage(struct work_struct *work)
2137{
2138 int i;
2139 struct size_class *class;
2140 unsigned int class_idx;
2141 enum fullness_group fullness;
2142 struct zspage *zspage, *tmp;
2143 LIST_HEAD(free_pages);
2144 struct zs_pool *pool = container_of(work, struct zs_pool,
2145 free_work);
2146
2147 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2148 class = pool->size_class[i];
2149 if (class->index != i)
2150 continue;
2151
2152 spin_lock(&class->lock);
2153 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2154 spin_unlock(&class->lock);
2155 }
2156
2157
2158 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2159 list_del(&zspage->list);
2160 lock_zspage(zspage);
2161
2162 get_zspage_mapping(zspage, &class_idx, &fullness);
2163 VM_BUG_ON(fullness != ZS_EMPTY);
2164 class = pool->size_class[class_idx];
2165 spin_lock(&class->lock);
2166 __free_zspage(pool, pool->size_class[class_idx], zspage);
2167 spin_unlock(&class->lock);
2168 }
2169};
2170
2171static void kick_deferred_free(struct zs_pool *pool)
2172{
2173 schedule_work(&pool->free_work);
2174}
2175
2176static void init_deferred_free(struct zs_pool *pool)
2177{
2178 INIT_WORK(&pool->free_work, async_free_zspage);
2179}
2180
2181static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2182{
2183 struct page *page = get_first_page(zspage);
2184
2185 do {
2186 WARN_ON(!trylock_page(page));
2187 __SetPageMovable(page, pool->inode->i_mapping);
2188 unlock_page(page);
2189 } while ((page = get_next_page(page)) != NULL);
2190}
2191#endif
2192
2193
2194
2195
2196
2197
2198static unsigned long zs_can_compact(struct size_class *class)
2199{
2200 unsigned long obj_wasted;
2201 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2202 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2203
2204 if (obj_allocated <= obj_used)
2205 return 0;
2206
2207 obj_wasted = obj_allocated - obj_used;
2208 obj_wasted /= class->objs_per_zspage;
2209
2210 return obj_wasted * class->pages_per_zspage;
2211}
2212
2213static unsigned long __zs_compact(struct zs_pool *pool,
2214 struct size_class *class)
2215{
2216 struct zs_compact_control cc;
2217 struct zspage *src_zspage;
2218 struct zspage *dst_zspage = NULL;
2219 unsigned long pages_freed = 0;
2220
2221 spin_lock(&class->lock);
2222 while ((src_zspage = isolate_zspage(class, true))) {
2223
2224 if (!zs_can_compact(class))
2225 break;
2226
2227 cc.obj_idx = 0;
2228 cc.s_page = get_first_page(src_zspage);
2229
2230 while ((dst_zspage = isolate_zspage(class, false))) {
2231 cc.d_page = get_first_page(dst_zspage);
2232
2233
2234
2235
2236 if (!migrate_zspage(pool, class, &cc))
2237 break;
2238
2239 putback_zspage(class, dst_zspage);
2240 }
2241
2242
2243 if (dst_zspage == NULL)
2244 break;
2245
2246 putback_zspage(class, dst_zspage);
2247 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2248 free_zspage(pool, class, src_zspage);
2249 pages_freed += class->pages_per_zspage;
2250 }
2251 spin_unlock(&class->lock);
2252 cond_resched();
2253 spin_lock(&class->lock);
2254 }
2255
2256 if (src_zspage)
2257 putback_zspage(class, src_zspage);
2258
2259 spin_unlock(&class->lock);
2260
2261 return pages_freed;
2262}
2263
2264unsigned long zs_compact(struct zs_pool *pool)
2265{
2266 int i;
2267 struct size_class *class;
2268 unsigned long pages_freed = 0;
2269
2270 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2271 class = pool->size_class[i];
2272 if (!class)
2273 continue;
2274 if (class->index != i)
2275 continue;
2276 pages_freed += __zs_compact(pool, class);
2277 }
2278 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2279
2280 return pages_freed;
2281}
2282EXPORT_SYMBOL_GPL(zs_compact);
2283
2284void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2285{
2286 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2287}
2288EXPORT_SYMBOL_GPL(zs_pool_stats);
2289
2290static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2291 struct shrink_control *sc)
2292{
2293 unsigned long pages_freed;
2294 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2295 shrinker);
2296
2297
2298
2299
2300
2301
2302 pages_freed = zs_compact(pool);
2303
2304 return pages_freed ? pages_freed : SHRINK_STOP;
2305}
2306
2307static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2308 struct shrink_control *sc)
2309{
2310 int i;
2311 struct size_class *class;
2312 unsigned long pages_to_free = 0;
2313 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2314 shrinker);
2315
2316 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2317 class = pool->size_class[i];
2318 if (!class)
2319 continue;
2320 if (class->index != i)
2321 continue;
2322
2323 pages_to_free += zs_can_compact(class);
2324 }
2325
2326 return pages_to_free;
2327}
2328
2329static void zs_unregister_shrinker(struct zs_pool *pool)
2330{
2331 unregister_shrinker(&pool->shrinker);
2332}
2333
2334static int zs_register_shrinker(struct zs_pool *pool)
2335{
2336 pool->shrinker.scan_objects = zs_shrinker_scan;
2337 pool->shrinker.count_objects = zs_shrinker_count;
2338 pool->shrinker.batch = 0;
2339 pool->shrinker.seeks = DEFAULT_SEEKS;
2340
2341 return register_shrinker(&pool->shrinker);
2342}
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354struct zs_pool *zs_create_pool(const char *name)
2355{
2356 int i;
2357 struct zs_pool *pool;
2358 struct size_class *prev_class = NULL;
2359
2360 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2361 if (!pool)
2362 return NULL;
2363
2364 init_deferred_free(pool);
2365
2366 pool->name = kstrdup(name, GFP_KERNEL);
2367 if (!pool->name)
2368 goto err;
2369
2370#ifdef CONFIG_COMPACTION
2371 init_waitqueue_head(&pool->migration_wait);
2372#endif
2373
2374 if (create_cache(pool))
2375 goto err;
2376
2377
2378
2379
2380
2381 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2382 int size;
2383 int pages_per_zspage;
2384 int objs_per_zspage;
2385 struct size_class *class;
2386 int fullness = 0;
2387
2388 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2389 if (size > ZS_MAX_ALLOC_SIZE)
2390 size = ZS_MAX_ALLOC_SIZE;
2391 pages_per_zspage = get_pages_per_zspage(size);
2392 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2393
2394
2395
2396
2397
2398
2399
2400 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2401 !huge_class_size) {
2402 huge_class_size = size;
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2413 }
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424 if (prev_class) {
2425 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2426 pool->size_class[i] = prev_class;
2427 continue;
2428 }
2429 }
2430
2431 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2432 if (!class)
2433 goto err;
2434
2435 class->size = size;
2436 class->index = i;
2437 class->pages_per_zspage = pages_per_zspage;
2438 class->objs_per_zspage = objs_per_zspage;
2439 spin_lock_init(&class->lock);
2440 pool->size_class[i] = class;
2441 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2442 fullness++)
2443 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2444
2445 prev_class = class;
2446 }
2447
2448
2449 zs_pool_stat_create(pool, name);
2450
2451 if (zs_register_migration(pool))
2452 goto err;
2453
2454
2455
2456
2457
2458
2459
2460 zs_register_shrinker(pool);
2461
2462 return pool;
2463
2464err:
2465 zs_destroy_pool(pool);
2466 return NULL;
2467}
2468EXPORT_SYMBOL_GPL(zs_create_pool);
2469
2470void zs_destroy_pool(struct zs_pool *pool)
2471{
2472 int i;
2473
2474 zs_unregister_shrinker(pool);
2475 zs_unregister_migration(pool);
2476 zs_pool_stat_destroy(pool);
2477
2478 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2479 int fg;
2480 struct size_class *class = pool->size_class[i];
2481
2482 if (!class)
2483 continue;
2484
2485 if (class->index != i)
2486 continue;
2487
2488 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2489 if (!list_empty(&class->fullness_list[fg])) {
2490 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2491 class->size, fg);
2492 }
2493 }
2494 kfree(class);
2495 }
2496
2497 destroy_cache(pool);
2498 kfree(pool->name);
2499 kfree(pool);
2500}
2501EXPORT_SYMBOL_GPL(zs_destroy_pool);
2502
2503static int __init zs_init(void)
2504{
2505 int ret;
2506
2507 ret = zsmalloc_mount();
2508 if (ret)
2509 goto out;
2510
2511 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2512 zs_cpu_prepare, zs_cpu_dead);
2513 if (ret)
2514 goto hp_setup_fail;
2515
2516#ifdef CONFIG_ZPOOL
2517 zpool_register_driver(&zs_zpool_driver);
2518#endif
2519
2520 zs_stat_init();
2521
2522 return 0;
2523
2524hp_setup_fail:
2525 zsmalloc_unmount();
2526out:
2527 return ret;
2528}
2529
2530static void __exit zs_exit(void)
2531{
2532#ifdef CONFIG_ZPOOL
2533 zpool_unregister_driver(&zs_zpool_driver);
2534#endif
2535 zsmalloc_unmount();
2536 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2537
2538 zs_stat_exit();
2539}
2540
2541module_init(zs_init);
2542module_exit(zs_exit);
2543
2544MODULE_LICENSE("Dual BSD/GPL");
2545MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2546