linux/net/core/dev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      NET3    Protocol independent device support routines.
   4 *
   5 *      Derived from the non IP parts of dev.c 1.0.19
   6 *              Authors:        Ross Biro
   7 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   8 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
   9 *
  10 *      Additional Authors:
  11 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  12 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  13 *              David Hinds <dahinds@users.sourceforge.net>
  14 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  15 *              Adam Sulmicki <adam@cfar.umd.edu>
  16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  17 *
  18 *      Changes:
  19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  20 *                                      to 2 if register_netdev gets called
  21 *                                      before net_dev_init & also removed a
  22 *                                      few lines of code in the process.
  23 *              Alan Cox        :       device private ioctl copies fields back.
  24 *              Alan Cox        :       Transmit queue code does relevant
  25 *                                      stunts to keep the queue safe.
  26 *              Alan Cox        :       Fixed double lock.
  27 *              Alan Cox        :       Fixed promisc NULL pointer trap
  28 *              ????????        :       Support the full private ioctl range
  29 *              Alan Cox        :       Moved ioctl permission check into
  30 *                                      drivers
  31 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  32 *              Alan Cox        :       100 backlog just doesn't cut it when
  33 *                                      you start doing multicast video 8)
  34 *              Alan Cox        :       Rewrote net_bh and list manager.
  35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  36 *              Alan Cox        :       Took out transmit every packet pass
  37 *                                      Saved a few bytes in the ioctl handler
  38 *              Alan Cox        :       Network driver sets packet type before
  39 *                                      calling netif_rx. Saves a function
  40 *                                      call a packet.
  41 *              Alan Cox        :       Hashed net_bh()
  42 *              Richard Kooijman:       Timestamp fixes.
  43 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  44 *              Alan Cox        :       Device lock protection.
  45 *              Alan Cox        :       Fixed nasty side effect of device close
  46 *                                      changes.
  47 *              Rudi Cilibrasi  :       Pass the right thing to
  48 *                                      set_mac_address()
  49 *              Dave Miller     :       32bit quantity for the device lock to
  50 *                                      make it work out on a Sparc.
  51 *              Bjorn Ekwall    :       Added KERNELD hack.
  52 *              Alan Cox        :       Cleaned up the backlog initialise.
  53 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  54 *                                      1 device.
  55 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  56 *                                      is no device open function.
  57 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  58 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  59 *              Cyrus Durgin    :       Cleaned for KMOD
  60 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  61 *                                      A network device unload needs to purge
  62 *                                      the backlog queue.
  63 *      Paul Rusty Russell      :       SIOCSIFNAME
  64 *              Pekka Riikonen  :       Netdev boot-time settings code
  65 *              Andrew Morton   :       Make unregister_netdevice wait
  66 *                                      indefinitely on dev->refcnt
  67 *              J Hadi Salim    :       - Backlog queue sampling
  68 *                                      - netif_rx() feedback
  69 */
  70
  71#include <linux/uaccess.h>
  72#include <linux/bitops.h>
  73#include <linux/capability.h>
  74#include <linux/cpu.h>
  75#include <linux/types.h>
  76#include <linux/kernel.h>
  77#include <linux/hash.h>
  78#include <linux/slab.h>
  79#include <linux/sched.h>
  80#include <linux/sched/mm.h>
  81#include <linux/mutex.h>
  82#include <linux/rwsem.h>
  83#include <linux/string.h>
  84#include <linux/mm.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/errno.h>
  88#include <linux/interrupt.h>
  89#include <linux/if_ether.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/ethtool.h>
  93#include <linux/skbuff.h>
  94#include <linux/kthread.h>
  95#include <linux/bpf.h>
  96#include <linux/bpf_trace.h>
  97#include <net/net_namespace.h>
  98#include <net/sock.h>
  99#include <net/busy_poll.h>
 100#include <linux/rtnetlink.h>
 101#include <linux/stat.h>
 102#include <net/dsa.h>
 103#include <net/dst.h>
 104#include <net/dst_metadata.h>
 105#include <net/gro.h>
 106#include <net/pkt_sched.h>
 107#include <net/pkt_cls.h>
 108#include <net/checksum.h>
 109#include <net/xfrm.h>
 110#include <linux/highmem.h>
 111#include <linux/init.h>
 112#include <linux/module.h>
 113#include <linux/netpoll.h>
 114#include <linux/rcupdate.h>
 115#include <linux/delay.h>
 116#include <net/iw_handler.h>
 117#include <asm/current.h>
 118#include <linux/audit.h>
 119#include <linux/dmaengine.h>
 120#include <linux/err.h>
 121#include <linux/ctype.h>
 122#include <linux/if_arp.h>
 123#include <linux/if_vlan.h>
 124#include <linux/ip.h>
 125#include <net/ip.h>
 126#include <net/mpls.h>
 127#include <linux/ipv6.h>
 128#include <linux/in.h>
 129#include <linux/jhash.h>
 130#include <linux/random.h>
 131#include <trace/events/napi.h>
 132#include <trace/events/net.h>
 133#include <trace/events/skb.h>
 134#include <linux/inetdevice.h>
 135#include <linux/cpu_rmap.h>
 136#include <linux/static_key.h>
 137#include <linux/hashtable.h>
 138#include <linux/vmalloc.h>
 139#include <linux/if_macvlan.h>
 140#include <linux/errqueue.h>
 141#include <linux/hrtimer.h>
 142#include <linux/netfilter_ingress.h>
 143#include <linux/crash_dump.h>
 144#include <linux/sctp.h>
 145#include <net/udp_tunnel.h>
 146#include <linux/net_namespace.h>
 147#include <linux/indirect_call_wrapper.h>
 148#include <net/devlink.h>
 149#include <linux/pm_runtime.h>
 150#include <linux/prandom.h>
 151
 152#include "net-sysfs.h"
 153
 154#define MAX_GRO_SKBS 8
 155
 156/* This should be increased if a protocol with a bigger head is added. */
 157#define GRO_MAX_HEAD (MAX_HEADER + 128)
 158
 159static DEFINE_SPINLOCK(ptype_lock);
 160static DEFINE_SPINLOCK(offload_lock);
 161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 162struct list_head ptype_all __read_mostly;       /* Taps */
 163static struct list_head offload_base __read_mostly;
 164
 165static int netif_rx_internal(struct sk_buff *skb);
 166static int call_netdevice_notifiers_info(unsigned long val,
 167                                         struct netdev_notifier_info *info);
 168static int call_netdevice_notifiers_extack(unsigned long val,
 169                                           struct net_device *dev,
 170                                           struct netlink_ext_ack *extack);
 171static struct napi_struct *napi_by_id(unsigned int napi_id);
 172
 173/*
 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 175 * semaphore.
 176 *
 177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 178 *
 179 * Writers must hold the rtnl semaphore while they loop through the
 180 * dev_base_head list, and hold dev_base_lock for writing when they do the
 181 * actual updates.  This allows pure readers to access the list even
 182 * while a writer is preparing to update it.
 183 *
 184 * To put it another way, dev_base_lock is held for writing only to
 185 * protect against pure readers; the rtnl semaphore provides the
 186 * protection against other writers.
 187 *
 188 * See, for example usages, register_netdevice() and
 189 * unregister_netdevice(), which must be called with the rtnl
 190 * semaphore held.
 191 */
 192DEFINE_RWLOCK(dev_base_lock);
 193EXPORT_SYMBOL(dev_base_lock);
 194
 195static DEFINE_MUTEX(ifalias_mutex);
 196
 197/* protects napi_hash addition/deletion and napi_gen_id */
 198static DEFINE_SPINLOCK(napi_hash_lock);
 199
 200static unsigned int napi_gen_id = NR_CPUS;
 201static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 202
 203static DECLARE_RWSEM(devnet_rename_sem);
 204
 205static inline void dev_base_seq_inc(struct net *net)
 206{
 207        while (++net->dev_base_seq == 0)
 208                ;
 209}
 210
 211static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 212{
 213        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 214
 215        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 216}
 217
 218static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 219{
 220        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 221}
 222
 223static inline void rps_lock(struct softnet_data *sd)
 224{
 225#ifdef CONFIG_RPS
 226        spin_lock(&sd->input_pkt_queue.lock);
 227#endif
 228}
 229
 230static inline void rps_unlock(struct softnet_data *sd)
 231{
 232#ifdef CONFIG_RPS
 233        spin_unlock(&sd->input_pkt_queue.lock);
 234#endif
 235}
 236
 237static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
 238                                                       const char *name)
 239{
 240        struct netdev_name_node *name_node;
 241
 242        name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
 243        if (!name_node)
 244                return NULL;
 245        INIT_HLIST_NODE(&name_node->hlist);
 246        name_node->dev = dev;
 247        name_node->name = name;
 248        return name_node;
 249}
 250
 251static struct netdev_name_node *
 252netdev_name_node_head_alloc(struct net_device *dev)
 253{
 254        struct netdev_name_node *name_node;
 255
 256        name_node = netdev_name_node_alloc(dev, dev->name);
 257        if (!name_node)
 258                return NULL;
 259        INIT_LIST_HEAD(&name_node->list);
 260        return name_node;
 261}
 262
 263static void netdev_name_node_free(struct netdev_name_node *name_node)
 264{
 265        kfree(name_node);
 266}
 267
 268static void netdev_name_node_add(struct net *net,
 269                                 struct netdev_name_node *name_node)
 270{
 271        hlist_add_head_rcu(&name_node->hlist,
 272                           dev_name_hash(net, name_node->name));
 273}
 274
 275static void netdev_name_node_del(struct netdev_name_node *name_node)
 276{
 277        hlist_del_rcu(&name_node->hlist);
 278}
 279
 280static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
 281                                                        const char *name)
 282{
 283        struct hlist_head *head = dev_name_hash(net, name);
 284        struct netdev_name_node *name_node;
 285
 286        hlist_for_each_entry(name_node, head, hlist)
 287                if (!strcmp(name_node->name, name))
 288                        return name_node;
 289        return NULL;
 290}
 291
 292static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
 293                                                            const char *name)
 294{
 295        struct hlist_head *head = dev_name_hash(net, name);
 296        struct netdev_name_node *name_node;
 297
 298        hlist_for_each_entry_rcu(name_node, head, hlist)
 299                if (!strcmp(name_node->name, name))
 300                        return name_node;
 301        return NULL;
 302}
 303
 304int netdev_name_node_alt_create(struct net_device *dev, const char *name)
 305{
 306        struct netdev_name_node *name_node;
 307        struct net *net = dev_net(dev);
 308
 309        name_node = netdev_name_node_lookup(net, name);
 310        if (name_node)
 311                return -EEXIST;
 312        name_node = netdev_name_node_alloc(dev, name);
 313        if (!name_node)
 314                return -ENOMEM;
 315        netdev_name_node_add(net, name_node);
 316        /* The node that holds dev->name acts as a head of per-device list. */
 317        list_add_tail(&name_node->list, &dev->name_node->list);
 318
 319        return 0;
 320}
 321EXPORT_SYMBOL(netdev_name_node_alt_create);
 322
 323static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
 324{
 325        list_del(&name_node->list);
 326        netdev_name_node_del(name_node);
 327        kfree(name_node->name);
 328        netdev_name_node_free(name_node);
 329}
 330
 331int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
 332{
 333        struct netdev_name_node *name_node;
 334        struct net *net = dev_net(dev);
 335
 336        name_node = netdev_name_node_lookup(net, name);
 337        if (!name_node)
 338                return -ENOENT;
 339        /* lookup might have found our primary name or a name belonging
 340         * to another device.
 341         */
 342        if (name_node == dev->name_node || name_node->dev != dev)
 343                return -EINVAL;
 344
 345        __netdev_name_node_alt_destroy(name_node);
 346
 347        return 0;
 348}
 349EXPORT_SYMBOL(netdev_name_node_alt_destroy);
 350
 351static void netdev_name_node_alt_flush(struct net_device *dev)
 352{
 353        struct netdev_name_node *name_node, *tmp;
 354
 355        list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
 356                __netdev_name_node_alt_destroy(name_node);
 357}
 358
 359/* Device list insertion */
 360static void list_netdevice(struct net_device *dev)
 361{
 362        struct net *net = dev_net(dev);
 363
 364        ASSERT_RTNL();
 365
 366        write_lock_bh(&dev_base_lock);
 367        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 368        netdev_name_node_add(net, dev->name_node);
 369        hlist_add_head_rcu(&dev->index_hlist,
 370                           dev_index_hash(net, dev->ifindex));
 371        write_unlock_bh(&dev_base_lock);
 372
 373        dev_base_seq_inc(net);
 374}
 375
 376/* Device list removal
 377 * caller must respect a RCU grace period before freeing/reusing dev
 378 */
 379static void unlist_netdevice(struct net_device *dev)
 380{
 381        ASSERT_RTNL();
 382
 383        /* Unlink dev from the device chain */
 384        write_lock_bh(&dev_base_lock);
 385        list_del_rcu(&dev->dev_list);
 386        netdev_name_node_del(dev->name_node);
 387        hlist_del_rcu(&dev->index_hlist);
 388        write_unlock_bh(&dev_base_lock);
 389
 390        dev_base_seq_inc(dev_net(dev));
 391}
 392
 393/*
 394 *      Our notifier list
 395 */
 396
 397static RAW_NOTIFIER_HEAD(netdev_chain);
 398
 399/*
 400 *      Device drivers call our routines to queue packets here. We empty the
 401 *      queue in the local softnet handler.
 402 */
 403
 404DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 405EXPORT_PER_CPU_SYMBOL(softnet_data);
 406
 407#ifdef CONFIG_LOCKDEP
 408/*
 409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 410 * according to dev->type
 411 */
 412static const unsigned short netdev_lock_type[] = {
 413         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 414         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 415         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 416         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 417         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 418         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 419         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 420         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 421         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 422         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 423         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 424         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 425         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 426         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 427         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 428
 429static const char *const netdev_lock_name[] = {
 430        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 431        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 432        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 433        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 434        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 435        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 436        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 437        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 438        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 439        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 440        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 441        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 442        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 443        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 444        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 445
 446static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 447static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 448
 449static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 450{
 451        int i;
 452
 453        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 454                if (netdev_lock_type[i] == dev_type)
 455                        return i;
 456        /* the last key is used by default */
 457        return ARRAY_SIZE(netdev_lock_type) - 1;
 458}
 459
 460static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 461                                                 unsigned short dev_type)
 462{
 463        int i;
 464
 465        i = netdev_lock_pos(dev_type);
 466        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 467                                   netdev_lock_name[i]);
 468}
 469
 470static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 471{
 472        int i;
 473
 474        i = netdev_lock_pos(dev->type);
 475        lockdep_set_class_and_name(&dev->addr_list_lock,
 476                                   &netdev_addr_lock_key[i],
 477                                   netdev_lock_name[i]);
 478}
 479#else
 480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 481                                                 unsigned short dev_type)
 482{
 483}
 484
 485static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 486{
 487}
 488#endif
 489
 490/*******************************************************************************
 491 *
 492 *              Protocol management and registration routines
 493 *
 494 *******************************************************************************/
 495
 496
 497/*
 498 *      Add a protocol ID to the list. Now that the input handler is
 499 *      smarter we can dispense with all the messy stuff that used to be
 500 *      here.
 501 *
 502 *      BEWARE!!! Protocol handlers, mangling input packets,
 503 *      MUST BE last in hash buckets and checking protocol handlers
 504 *      MUST start from promiscuous ptype_all chain in net_bh.
 505 *      It is true now, do not change it.
 506 *      Explanation follows: if protocol handler, mangling packet, will
 507 *      be the first on list, it is not able to sense, that packet
 508 *      is cloned and should be copied-on-write, so that it will
 509 *      change it and subsequent readers will get broken packet.
 510 *                                                      --ANK (980803)
 511 */
 512
 513static inline struct list_head *ptype_head(const struct packet_type *pt)
 514{
 515        if (pt->type == htons(ETH_P_ALL))
 516                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 517        else
 518                return pt->dev ? &pt->dev->ptype_specific :
 519                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 520}
 521
 522/**
 523 *      dev_add_pack - add packet handler
 524 *      @pt: packet type declaration
 525 *
 526 *      Add a protocol handler to the networking stack. The passed &packet_type
 527 *      is linked into kernel lists and may not be freed until it has been
 528 *      removed from the kernel lists.
 529 *
 530 *      This call does not sleep therefore it can not
 531 *      guarantee all CPU's that are in middle of receiving packets
 532 *      will see the new packet type (until the next received packet).
 533 */
 534
 535void dev_add_pack(struct packet_type *pt)
 536{
 537        struct list_head *head = ptype_head(pt);
 538
 539        spin_lock(&ptype_lock);
 540        list_add_rcu(&pt->list, head);
 541        spin_unlock(&ptype_lock);
 542}
 543EXPORT_SYMBOL(dev_add_pack);
 544
 545/**
 546 *      __dev_remove_pack        - remove packet handler
 547 *      @pt: packet type declaration
 548 *
 549 *      Remove a protocol handler that was previously added to the kernel
 550 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 551 *      from the kernel lists and can be freed or reused once this function
 552 *      returns.
 553 *
 554 *      The packet type might still be in use by receivers
 555 *      and must not be freed until after all the CPU's have gone
 556 *      through a quiescent state.
 557 */
 558void __dev_remove_pack(struct packet_type *pt)
 559{
 560        struct list_head *head = ptype_head(pt);
 561        struct packet_type *pt1;
 562
 563        spin_lock(&ptype_lock);
 564
 565        list_for_each_entry(pt1, head, list) {
 566                if (pt == pt1) {
 567                        list_del_rcu(&pt->list);
 568                        goto out;
 569                }
 570        }
 571
 572        pr_warn("dev_remove_pack: %p not found\n", pt);
 573out:
 574        spin_unlock(&ptype_lock);
 575}
 576EXPORT_SYMBOL(__dev_remove_pack);
 577
 578/**
 579 *      dev_remove_pack  - remove packet handler
 580 *      @pt: packet type declaration
 581 *
 582 *      Remove a protocol handler that was previously added to the kernel
 583 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 584 *      from the kernel lists and can be freed or reused once this function
 585 *      returns.
 586 *
 587 *      This call sleeps to guarantee that no CPU is looking at the packet
 588 *      type after return.
 589 */
 590void dev_remove_pack(struct packet_type *pt)
 591{
 592        __dev_remove_pack(pt);
 593
 594        synchronize_net();
 595}
 596EXPORT_SYMBOL(dev_remove_pack);
 597
 598
 599/**
 600 *      dev_add_offload - register offload handlers
 601 *      @po: protocol offload declaration
 602 *
 603 *      Add protocol offload handlers to the networking stack. The passed
 604 *      &proto_offload is linked into kernel lists and may not be freed until
 605 *      it has been removed from the kernel lists.
 606 *
 607 *      This call does not sleep therefore it can not
 608 *      guarantee all CPU's that are in middle of receiving packets
 609 *      will see the new offload handlers (until the next received packet).
 610 */
 611void dev_add_offload(struct packet_offload *po)
 612{
 613        struct packet_offload *elem;
 614
 615        spin_lock(&offload_lock);
 616        list_for_each_entry(elem, &offload_base, list) {
 617                if (po->priority < elem->priority)
 618                        break;
 619        }
 620        list_add_rcu(&po->list, elem->list.prev);
 621        spin_unlock(&offload_lock);
 622}
 623EXPORT_SYMBOL(dev_add_offload);
 624
 625/**
 626 *      __dev_remove_offload     - remove offload handler
 627 *      @po: packet offload declaration
 628 *
 629 *      Remove a protocol offload handler that was previously added to the
 630 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 631 *      is removed from the kernel lists and can be freed or reused once this
 632 *      function returns.
 633 *
 634 *      The packet type might still be in use by receivers
 635 *      and must not be freed until after all the CPU's have gone
 636 *      through a quiescent state.
 637 */
 638static void __dev_remove_offload(struct packet_offload *po)
 639{
 640        struct list_head *head = &offload_base;
 641        struct packet_offload *po1;
 642
 643        spin_lock(&offload_lock);
 644
 645        list_for_each_entry(po1, head, list) {
 646                if (po == po1) {
 647                        list_del_rcu(&po->list);
 648                        goto out;
 649                }
 650        }
 651
 652        pr_warn("dev_remove_offload: %p not found\n", po);
 653out:
 654        spin_unlock(&offload_lock);
 655}
 656
 657/**
 658 *      dev_remove_offload       - remove packet offload handler
 659 *      @po: packet offload declaration
 660 *
 661 *      Remove a packet offload handler that was previously added to the kernel
 662 *      offload handlers by dev_add_offload(). The passed &offload_type is
 663 *      removed from the kernel lists and can be freed or reused once this
 664 *      function returns.
 665 *
 666 *      This call sleeps to guarantee that no CPU is looking at the packet
 667 *      type after return.
 668 */
 669void dev_remove_offload(struct packet_offload *po)
 670{
 671        __dev_remove_offload(po);
 672
 673        synchronize_net();
 674}
 675EXPORT_SYMBOL(dev_remove_offload);
 676
 677/******************************************************************************
 678 *
 679 *                    Device Boot-time Settings Routines
 680 *
 681 ******************************************************************************/
 682
 683/* Boot time configuration table */
 684static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 685
 686/**
 687 *      netdev_boot_setup_add   - add new setup entry
 688 *      @name: name of the device
 689 *      @map: configured settings for the device
 690 *
 691 *      Adds new setup entry to the dev_boot_setup list.  The function
 692 *      returns 0 on error and 1 on success.  This is a generic routine to
 693 *      all netdevices.
 694 */
 695static int netdev_boot_setup_add(char *name, struct ifmap *map)
 696{
 697        struct netdev_boot_setup *s;
 698        int i;
 699
 700        s = dev_boot_setup;
 701        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 702                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 703                        memset(s[i].name, 0, sizeof(s[i].name));
 704                        strlcpy(s[i].name, name, IFNAMSIZ);
 705                        memcpy(&s[i].map, map, sizeof(s[i].map));
 706                        break;
 707                }
 708        }
 709
 710        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 711}
 712
 713/**
 714 * netdev_boot_setup_check      - check boot time settings
 715 * @dev: the netdevice
 716 *
 717 * Check boot time settings for the device.
 718 * The found settings are set for the device to be used
 719 * later in the device probing.
 720 * Returns 0 if no settings found, 1 if they are.
 721 */
 722int netdev_boot_setup_check(struct net_device *dev)
 723{
 724        struct netdev_boot_setup *s = dev_boot_setup;
 725        int i;
 726
 727        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 728                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 729                    !strcmp(dev->name, s[i].name)) {
 730                        dev->irq = s[i].map.irq;
 731                        dev->base_addr = s[i].map.base_addr;
 732                        dev->mem_start = s[i].map.mem_start;
 733                        dev->mem_end = s[i].map.mem_end;
 734                        return 1;
 735                }
 736        }
 737        return 0;
 738}
 739EXPORT_SYMBOL(netdev_boot_setup_check);
 740
 741
 742/**
 743 * netdev_boot_base     - get address from boot time settings
 744 * @prefix: prefix for network device
 745 * @unit: id for network device
 746 *
 747 * Check boot time settings for the base address of device.
 748 * The found settings are set for the device to be used
 749 * later in the device probing.
 750 * Returns 0 if no settings found.
 751 */
 752unsigned long netdev_boot_base(const char *prefix, int unit)
 753{
 754        const struct netdev_boot_setup *s = dev_boot_setup;
 755        char name[IFNAMSIZ];
 756        int i;
 757
 758        sprintf(name, "%s%d", prefix, unit);
 759
 760        /*
 761         * If device already registered then return base of 1
 762         * to indicate not to probe for this interface
 763         */
 764        if (__dev_get_by_name(&init_net, name))
 765                return 1;
 766
 767        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 768                if (!strcmp(name, s[i].name))
 769                        return s[i].map.base_addr;
 770        return 0;
 771}
 772
 773/*
 774 * Saves at boot time configured settings for any netdevice.
 775 */
 776int __init netdev_boot_setup(char *str)
 777{
 778        int ints[5];
 779        struct ifmap map;
 780
 781        str = get_options(str, ARRAY_SIZE(ints), ints);
 782        if (!str || !*str)
 783                return 0;
 784
 785        /* Save settings */
 786        memset(&map, 0, sizeof(map));
 787        if (ints[0] > 0)
 788                map.irq = ints[1];
 789        if (ints[0] > 1)
 790                map.base_addr = ints[2];
 791        if (ints[0] > 2)
 792                map.mem_start = ints[3];
 793        if (ints[0] > 3)
 794                map.mem_end = ints[4];
 795
 796        /* Add new entry to the list */
 797        return netdev_boot_setup_add(str, &map);
 798}
 799
 800__setup("netdev=", netdev_boot_setup);
 801
 802/*******************************************************************************
 803 *
 804 *                          Device Interface Subroutines
 805 *
 806 *******************************************************************************/
 807
 808/**
 809 *      dev_get_iflink  - get 'iflink' value of a interface
 810 *      @dev: targeted interface
 811 *
 812 *      Indicates the ifindex the interface is linked to.
 813 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 814 */
 815
 816int dev_get_iflink(const struct net_device *dev)
 817{
 818        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 819                return dev->netdev_ops->ndo_get_iflink(dev);
 820
 821        return dev->ifindex;
 822}
 823EXPORT_SYMBOL(dev_get_iflink);
 824
 825/**
 826 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 827 *      @dev: targeted interface
 828 *      @skb: The packet.
 829 *
 830 *      For better visibility of tunnel traffic OVS needs to retrieve
 831 *      egress tunnel information for a packet. Following API allows
 832 *      user to get this info.
 833 */
 834int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 835{
 836        struct ip_tunnel_info *info;
 837
 838        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 839                return -EINVAL;
 840
 841        info = skb_tunnel_info_unclone(skb);
 842        if (!info)
 843                return -ENOMEM;
 844        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 845                return -EINVAL;
 846
 847        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 848}
 849EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 850
 851static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
 852{
 853        int k = stack->num_paths++;
 854
 855        if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
 856                return NULL;
 857
 858        return &stack->path[k];
 859}
 860
 861int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
 862                          struct net_device_path_stack *stack)
 863{
 864        const struct net_device *last_dev;
 865        struct net_device_path_ctx ctx = {
 866                .dev    = dev,
 867                .daddr  = daddr,
 868        };
 869        struct net_device_path *path;
 870        int ret = 0;
 871
 872        stack->num_paths = 0;
 873        while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
 874                last_dev = ctx.dev;
 875                path = dev_fwd_path(stack);
 876                if (!path)
 877                        return -1;
 878
 879                memset(path, 0, sizeof(struct net_device_path));
 880                ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
 881                if (ret < 0)
 882                        return -1;
 883
 884                if (WARN_ON_ONCE(last_dev == ctx.dev))
 885                        return -1;
 886        }
 887        path = dev_fwd_path(stack);
 888        if (!path)
 889                return -1;
 890        path->type = DEV_PATH_ETHERNET;
 891        path->dev = ctx.dev;
 892
 893        return ret;
 894}
 895EXPORT_SYMBOL_GPL(dev_fill_forward_path);
 896
 897/**
 898 *      __dev_get_by_name       - find a device by its name
 899 *      @net: the applicable net namespace
 900 *      @name: name to find
 901 *
 902 *      Find an interface by name. Must be called under RTNL semaphore
 903 *      or @dev_base_lock. If the name is found a pointer to the device
 904 *      is returned. If the name is not found then %NULL is returned. The
 905 *      reference counters are not incremented so the caller must be
 906 *      careful with locks.
 907 */
 908
 909struct net_device *__dev_get_by_name(struct net *net, const char *name)
 910{
 911        struct netdev_name_node *node_name;
 912
 913        node_name = netdev_name_node_lookup(net, name);
 914        return node_name ? node_name->dev : NULL;
 915}
 916EXPORT_SYMBOL(__dev_get_by_name);
 917
 918/**
 919 * dev_get_by_name_rcu  - find a device by its name
 920 * @net: the applicable net namespace
 921 * @name: name to find
 922 *
 923 * Find an interface by name.
 924 * If the name is found a pointer to the device is returned.
 925 * If the name is not found then %NULL is returned.
 926 * The reference counters are not incremented so the caller must be
 927 * careful with locks. The caller must hold RCU lock.
 928 */
 929
 930struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 931{
 932        struct netdev_name_node *node_name;
 933
 934        node_name = netdev_name_node_lookup_rcu(net, name);
 935        return node_name ? node_name->dev : NULL;
 936}
 937EXPORT_SYMBOL(dev_get_by_name_rcu);
 938
 939/**
 940 *      dev_get_by_name         - find a device by its name
 941 *      @net: the applicable net namespace
 942 *      @name: name to find
 943 *
 944 *      Find an interface by name. This can be called from any
 945 *      context and does its own locking. The returned handle has
 946 *      the usage count incremented and the caller must use dev_put() to
 947 *      release it when it is no longer needed. %NULL is returned if no
 948 *      matching device is found.
 949 */
 950
 951struct net_device *dev_get_by_name(struct net *net, const char *name)
 952{
 953        struct net_device *dev;
 954
 955        rcu_read_lock();
 956        dev = dev_get_by_name_rcu(net, name);
 957        if (dev)
 958                dev_hold(dev);
 959        rcu_read_unlock();
 960        return dev;
 961}
 962EXPORT_SYMBOL(dev_get_by_name);
 963
 964/**
 965 *      __dev_get_by_index - find a device by its ifindex
 966 *      @net: the applicable net namespace
 967 *      @ifindex: index of device
 968 *
 969 *      Search for an interface by index. Returns %NULL if the device
 970 *      is not found or a pointer to the device. The device has not
 971 *      had its reference counter increased so the caller must be careful
 972 *      about locking. The caller must hold either the RTNL semaphore
 973 *      or @dev_base_lock.
 974 */
 975
 976struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 977{
 978        struct net_device *dev;
 979        struct hlist_head *head = dev_index_hash(net, ifindex);
 980
 981        hlist_for_each_entry(dev, head, index_hlist)
 982                if (dev->ifindex == ifindex)
 983                        return dev;
 984
 985        return NULL;
 986}
 987EXPORT_SYMBOL(__dev_get_by_index);
 988
 989/**
 990 *      dev_get_by_index_rcu - find a device by its ifindex
 991 *      @net: the applicable net namespace
 992 *      @ifindex: index of device
 993 *
 994 *      Search for an interface by index. Returns %NULL if the device
 995 *      is not found or a pointer to the device. The device has not
 996 *      had its reference counter increased so the caller must be careful
 997 *      about locking. The caller must hold RCU lock.
 998 */
 999
1000struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001{
1002        struct net_device *dev;
1003        struct hlist_head *head = dev_index_hash(net, ifindex);
1004
1005        hlist_for_each_entry_rcu(dev, head, index_hlist)
1006                if (dev->ifindex == ifindex)
1007                        return dev;
1008
1009        return NULL;
1010}
1011EXPORT_SYMBOL(dev_get_by_index_rcu);
1012
1013
1014/**
1015 *      dev_get_by_index - find a device by its ifindex
1016 *      @net: the applicable net namespace
1017 *      @ifindex: index of device
1018 *
1019 *      Search for an interface by index. Returns NULL if the device
1020 *      is not found or a pointer to the device. The device returned has
1021 *      had a reference added and the pointer is safe until the user calls
1022 *      dev_put to indicate they have finished with it.
1023 */
1024
1025struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026{
1027        struct net_device *dev;
1028
1029        rcu_read_lock();
1030        dev = dev_get_by_index_rcu(net, ifindex);
1031        if (dev)
1032                dev_hold(dev);
1033        rcu_read_unlock();
1034        return dev;
1035}
1036EXPORT_SYMBOL(dev_get_by_index);
1037
1038/**
1039 *      dev_get_by_napi_id - find a device by napi_id
1040 *      @napi_id: ID of the NAPI struct
1041 *
1042 *      Search for an interface by NAPI ID. Returns %NULL if the device
1043 *      is not found or a pointer to the device. The device has not had
1044 *      its reference counter increased so the caller must be careful
1045 *      about locking. The caller must hold RCU lock.
1046 */
1047
1048struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049{
1050        struct napi_struct *napi;
1051
1052        WARN_ON_ONCE(!rcu_read_lock_held());
1053
1054        if (napi_id < MIN_NAPI_ID)
1055                return NULL;
1056
1057        napi = napi_by_id(napi_id);
1058
1059        return napi ? napi->dev : NULL;
1060}
1061EXPORT_SYMBOL(dev_get_by_napi_id);
1062
1063/**
1064 *      netdev_get_name - get a netdevice name, knowing its ifindex.
1065 *      @net: network namespace
1066 *      @name: a pointer to the buffer where the name will be stored.
1067 *      @ifindex: the ifindex of the interface to get the name from.
1068 */
1069int netdev_get_name(struct net *net, char *name, int ifindex)
1070{
1071        struct net_device *dev;
1072        int ret;
1073
1074        down_read(&devnet_rename_sem);
1075        rcu_read_lock();
1076
1077        dev = dev_get_by_index_rcu(net, ifindex);
1078        if (!dev) {
1079                ret = -ENODEV;
1080                goto out;
1081        }
1082
1083        strcpy(name, dev->name);
1084
1085        ret = 0;
1086out:
1087        rcu_read_unlock();
1088        up_read(&devnet_rename_sem);
1089        return ret;
1090}
1091
1092/**
1093 *      dev_getbyhwaddr_rcu - find a device by its hardware address
1094 *      @net: the applicable net namespace
1095 *      @type: media type of device
1096 *      @ha: hardware address
1097 *
1098 *      Search for an interface by MAC address. Returns NULL if the device
1099 *      is not found or a pointer to the device.
1100 *      The caller must hold RCU or RTNL.
1101 *      The returned device has not had its ref count increased
1102 *      and the caller must therefore be careful about locking
1103 *
1104 */
1105
1106struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107                                       const char *ha)
1108{
1109        struct net_device *dev;
1110
1111        for_each_netdev_rcu(net, dev)
1112                if (dev->type == type &&
1113                    !memcmp(dev->dev_addr, ha, dev->addr_len))
1114                        return dev;
1115
1116        return NULL;
1117}
1118EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119
1120struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121{
1122        struct net_device *dev, *ret = NULL;
1123
1124        rcu_read_lock();
1125        for_each_netdev_rcu(net, dev)
1126                if (dev->type == type) {
1127                        dev_hold(dev);
1128                        ret = dev;
1129                        break;
1130                }
1131        rcu_read_unlock();
1132        return ret;
1133}
1134EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135
1136/**
1137 *      __dev_get_by_flags - find any device with given flags
1138 *      @net: the applicable net namespace
1139 *      @if_flags: IFF_* values
1140 *      @mask: bitmask of bits in if_flags to check
1141 *
1142 *      Search for any interface with the given flags. Returns NULL if a device
1143 *      is not found or a pointer to the device. Must be called inside
1144 *      rtnl_lock(), and result refcount is unchanged.
1145 */
1146
1147struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148                                      unsigned short mask)
1149{
1150        struct net_device *dev, *ret;
1151
1152        ASSERT_RTNL();
1153
1154        ret = NULL;
1155        for_each_netdev(net, dev) {
1156                if (((dev->flags ^ if_flags) & mask) == 0) {
1157                        ret = dev;
1158                        break;
1159                }
1160        }
1161        return ret;
1162}
1163EXPORT_SYMBOL(__dev_get_by_flags);
1164
1165/**
1166 *      dev_valid_name - check if name is okay for network device
1167 *      @name: name string
1168 *
1169 *      Network device names need to be valid file names to
1170 *      allow sysfs to work.  We also disallow any kind of
1171 *      whitespace.
1172 */
1173bool dev_valid_name(const char *name)
1174{
1175        if (*name == '\0')
1176                return false;
1177        if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178                return false;
1179        if (!strcmp(name, ".") || !strcmp(name, ".."))
1180                return false;
1181
1182        while (*name) {
1183                if (*name == '/' || *name == ':' || isspace(*name))
1184                        return false;
1185                name++;
1186        }
1187        return true;
1188}
1189EXPORT_SYMBOL(dev_valid_name);
1190
1191/**
1192 *      __dev_alloc_name - allocate a name for a device
1193 *      @net: network namespace to allocate the device name in
1194 *      @name: name format string
1195 *      @buf:  scratch buffer and result name string
1196 *
1197 *      Passed a format string - eg "lt%d" it will try and find a suitable
1198 *      id. It scans list of devices to build up a free map, then chooses
1199 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1200 *      while allocating the name and adding the device in order to avoid
1201 *      duplicates.
1202 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203 *      Returns the number of the unit assigned or a negative errno code.
1204 */
1205
1206static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207{
1208        int i = 0;
1209        const char *p;
1210        const int max_netdevices = 8*PAGE_SIZE;
1211        unsigned long *inuse;
1212        struct net_device *d;
1213
1214        if (!dev_valid_name(name))
1215                return -EINVAL;
1216
1217        p = strchr(name, '%');
1218        if (p) {
1219                /*
1220                 * Verify the string as this thing may have come from
1221                 * the user.  There must be either one "%d" and no other "%"
1222                 * characters.
1223                 */
1224                if (p[1] != 'd' || strchr(p + 2, '%'))
1225                        return -EINVAL;
1226
1227                /* Use one page as a bit array of possible slots */
1228                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229                if (!inuse)
1230                        return -ENOMEM;
1231
1232                for_each_netdev(net, d) {
1233                        struct netdev_name_node *name_node;
1234                        list_for_each_entry(name_node, &d->name_node->list, list) {
1235                                if (!sscanf(name_node->name, name, &i))
1236                                        continue;
1237                                if (i < 0 || i >= max_netdevices)
1238                                        continue;
1239
1240                                /*  avoid cases where sscanf is not exact inverse of printf */
1241                                snprintf(buf, IFNAMSIZ, name, i);
1242                                if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243                                        set_bit(i, inuse);
1244                        }
1245                        if (!sscanf(d->name, name, &i))
1246                                continue;
1247                        if (i < 0 || i >= max_netdevices)
1248                                continue;
1249
1250                        /*  avoid cases where sscanf is not exact inverse of printf */
1251                        snprintf(buf, IFNAMSIZ, name, i);
1252                        if (!strncmp(buf, d->name, IFNAMSIZ))
1253                                set_bit(i, inuse);
1254                }
1255
1256                i = find_first_zero_bit(inuse, max_netdevices);
1257                free_page((unsigned long) inuse);
1258        }
1259
1260        snprintf(buf, IFNAMSIZ, name, i);
1261        if (!__dev_get_by_name(net, buf))
1262                return i;
1263
1264        /* It is possible to run out of possible slots
1265         * when the name is long and there isn't enough space left
1266         * for the digits, or if all bits are used.
1267         */
1268        return -ENFILE;
1269}
1270
1271static int dev_alloc_name_ns(struct net *net,
1272                             struct net_device *dev,
1273                             const char *name)
1274{
1275        char buf[IFNAMSIZ];
1276        int ret;
1277
1278        BUG_ON(!net);
1279        ret = __dev_alloc_name(net, name, buf);
1280        if (ret >= 0)
1281                strlcpy(dev->name, buf, IFNAMSIZ);
1282        return ret;
1283}
1284
1285/**
1286 *      dev_alloc_name - allocate a name for a device
1287 *      @dev: device
1288 *      @name: name format string
1289 *
1290 *      Passed a format string - eg "lt%d" it will try and find a suitable
1291 *      id. It scans list of devices to build up a free map, then chooses
1292 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1293 *      while allocating the name and adding the device in order to avoid
1294 *      duplicates.
1295 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296 *      Returns the number of the unit assigned or a negative errno code.
1297 */
1298
1299int dev_alloc_name(struct net_device *dev, const char *name)
1300{
1301        return dev_alloc_name_ns(dev_net(dev), dev, name);
1302}
1303EXPORT_SYMBOL(dev_alloc_name);
1304
1305static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306                              const char *name)
1307{
1308        BUG_ON(!net);
1309
1310        if (!dev_valid_name(name))
1311                return -EINVAL;
1312
1313        if (strchr(name, '%'))
1314                return dev_alloc_name_ns(net, dev, name);
1315        else if (__dev_get_by_name(net, name))
1316                return -EEXIST;
1317        else if (dev->name != name)
1318                strlcpy(dev->name, name, IFNAMSIZ);
1319
1320        return 0;
1321}
1322
1323/**
1324 *      dev_change_name - change name of a device
1325 *      @dev: device
1326 *      @newname: name (or format string) must be at least IFNAMSIZ
1327 *
1328 *      Change name of a device, can pass format strings "eth%d".
1329 *      for wildcarding.
1330 */
1331int dev_change_name(struct net_device *dev, const char *newname)
1332{
1333        unsigned char old_assign_type;
1334        char oldname[IFNAMSIZ];
1335        int err = 0;
1336        int ret;
1337        struct net *net;
1338
1339        ASSERT_RTNL();
1340        BUG_ON(!dev_net(dev));
1341
1342        net = dev_net(dev);
1343
1344        /* Some auto-enslaved devices e.g. failover slaves are
1345         * special, as userspace might rename the device after
1346         * the interface had been brought up and running since
1347         * the point kernel initiated auto-enslavement. Allow
1348         * live name change even when these slave devices are
1349         * up and running.
1350         *
1351         * Typically, users of these auto-enslaving devices
1352         * don't actually care about slave name change, as
1353         * they are supposed to operate on master interface
1354         * directly.
1355         */
1356        if (dev->flags & IFF_UP &&
1357            likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358                return -EBUSY;
1359
1360        down_write(&devnet_rename_sem);
1361
1362        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363                up_write(&devnet_rename_sem);
1364                return 0;
1365        }
1366
1367        memcpy(oldname, dev->name, IFNAMSIZ);
1368
1369        err = dev_get_valid_name(net, dev, newname);
1370        if (err < 0) {
1371                up_write(&devnet_rename_sem);
1372                return err;
1373        }
1374
1375        if (oldname[0] && !strchr(oldname, '%'))
1376                netdev_info(dev, "renamed from %s\n", oldname);
1377
1378        old_assign_type = dev->name_assign_type;
1379        dev->name_assign_type = NET_NAME_RENAMED;
1380
1381rollback:
1382        ret = device_rename(&dev->dev, dev->name);
1383        if (ret) {
1384                memcpy(dev->name, oldname, IFNAMSIZ);
1385                dev->name_assign_type = old_assign_type;
1386                up_write(&devnet_rename_sem);
1387                return ret;
1388        }
1389
1390        up_write(&devnet_rename_sem);
1391
1392        netdev_adjacent_rename_links(dev, oldname);
1393
1394        write_lock_bh(&dev_base_lock);
1395        netdev_name_node_del(dev->name_node);
1396        write_unlock_bh(&dev_base_lock);
1397
1398        synchronize_rcu();
1399
1400        write_lock_bh(&dev_base_lock);
1401        netdev_name_node_add(net, dev->name_node);
1402        write_unlock_bh(&dev_base_lock);
1403
1404        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405        ret = notifier_to_errno(ret);
1406
1407        if (ret) {
1408                /* err >= 0 after dev_alloc_name() or stores the first errno */
1409                if (err >= 0) {
1410                        err = ret;
1411                        down_write(&devnet_rename_sem);
1412                        memcpy(dev->name, oldname, IFNAMSIZ);
1413                        memcpy(oldname, newname, IFNAMSIZ);
1414                        dev->name_assign_type = old_assign_type;
1415                        old_assign_type = NET_NAME_RENAMED;
1416                        goto rollback;
1417                } else {
1418                        pr_err("%s: name change rollback failed: %d\n",
1419                               dev->name, ret);
1420                }
1421        }
1422
1423        return err;
1424}
1425
1426/**
1427 *      dev_set_alias - change ifalias of a device
1428 *      @dev: device
1429 *      @alias: name up to IFALIASZ
1430 *      @len: limit of bytes to copy from info
1431 *
1432 *      Set ifalias for a device,
1433 */
1434int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435{
1436        struct dev_ifalias *new_alias = NULL;
1437
1438        if (len >= IFALIASZ)
1439                return -EINVAL;
1440
1441        if (len) {
1442                new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443                if (!new_alias)
1444                        return -ENOMEM;
1445
1446                memcpy(new_alias->ifalias, alias, len);
1447                new_alias->ifalias[len] = 0;
1448        }
1449
1450        mutex_lock(&ifalias_mutex);
1451        new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452                                        mutex_is_locked(&ifalias_mutex));
1453        mutex_unlock(&ifalias_mutex);
1454
1455        if (new_alias)
1456                kfree_rcu(new_alias, rcuhead);
1457
1458        return len;
1459}
1460EXPORT_SYMBOL(dev_set_alias);
1461
1462/**
1463 *      dev_get_alias - get ifalias of a device
1464 *      @dev: device
1465 *      @name: buffer to store name of ifalias
1466 *      @len: size of buffer
1467 *
1468 *      get ifalias for a device.  Caller must make sure dev cannot go
1469 *      away,  e.g. rcu read lock or own a reference count to device.
1470 */
1471int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472{
1473        const struct dev_ifalias *alias;
1474        int ret = 0;
1475
1476        rcu_read_lock();
1477        alias = rcu_dereference(dev->ifalias);
1478        if (alias)
1479                ret = snprintf(name, len, "%s", alias->ifalias);
1480        rcu_read_unlock();
1481
1482        return ret;
1483}
1484
1485/**
1486 *      netdev_features_change - device changes features
1487 *      @dev: device to cause notification
1488 *
1489 *      Called to indicate a device has changed features.
1490 */
1491void netdev_features_change(struct net_device *dev)
1492{
1493        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494}
1495EXPORT_SYMBOL(netdev_features_change);
1496
1497/**
1498 *      netdev_state_change - device changes state
1499 *      @dev: device to cause notification
1500 *
1501 *      Called to indicate a device has changed state. This function calls
1502 *      the notifier chains for netdev_chain and sends a NEWLINK message
1503 *      to the routing socket.
1504 */
1505void netdev_state_change(struct net_device *dev)
1506{
1507        if (dev->flags & IFF_UP) {
1508                struct netdev_notifier_change_info change_info = {
1509                        .info.dev = dev,
1510                };
1511
1512                call_netdevice_notifiers_info(NETDEV_CHANGE,
1513                                              &change_info.info);
1514                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515        }
1516}
1517EXPORT_SYMBOL(netdev_state_change);
1518
1519/**
1520 * __netdev_notify_peers - notify network peers about existence of @dev,
1521 * to be called when rtnl lock is already held.
1522 * @dev: network device
1523 *
1524 * Generate traffic such that interested network peers are aware of
1525 * @dev, such as by generating a gratuitous ARP. This may be used when
1526 * a device wants to inform the rest of the network about some sort of
1527 * reconfiguration such as a failover event or virtual machine
1528 * migration.
1529 */
1530void __netdev_notify_peers(struct net_device *dev)
1531{
1532        ASSERT_RTNL();
1533        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535}
1536EXPORT_SYMBOL(__netdev_notify_peers);
1537
1538/**
1539 * netdev_notify_peers - notify network peers about existence of @dev
1540 * @dev: network device
1541 *
1542 * Generate traffic such that interested network peers are aware of
1543 * @dev, such as by generating a gratuitous ARP. This may be used when
1544 * a device wants to inform the rest of the network about some sort of
1545 * reconfiguration such as a failover event or virtual machine
1546 * migration.
1547 */
1548void netdev_notify_peers(struct net_device *dev)
1549{
1550        rtnl_lock();
1551        __netdev_notify_peers(dev);
1552        rtnl_unlock();
1553}
1554EXPORT_SYMBOL(netdev_notify_peers);
1555
1556static int napi_threaded_poll(void *data);
1557
1558static int napi_kthread_create(struct napi_struct *n)
1559{
1560        int err = 0;
1561
1562        /* Create and wake up the kthread once to put it in
1563         * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564         * warning and work with loadavg.
1565         */
1566        n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567                                n->dev->name, n->napi_id);
1568        if (IS_ERR(n->thread)) {
1569                err = PTR_ERR(n->thread);
1570                pr_err("kthread_run failed with err %d\n", err);
1571                n->thread = NULL;
1572        }
1573
1574        return err;
1575}
1576
1577static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578{
1579        const struct net_device_ops *ops = dev->netdev_ops;
1580        int ret;
1581
1582        ASSERT_RTNL();
1583
1584        if (!netif_device_present(dev)) {
1585                /* may be detached because parent is runtime-suspended */
1586                if (dev->dev.parent)
1587                        pm_runtime_resume(dev->dev.parent);
1588                if (!netif_device_present(dev))
1589                        return -ENODEV;
1590        }
1591
1592        /* Block netpoll from trying to do any rx path servicing.
1593         * If we don't do this there is a chance ndo_poll_controller
1594         * or ndo_poll may be running while we open the device
1595         */
1596        netpoll_poll_disable(dev);
1597
1598        ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599        ret = notifier_to_errno(ret);
1600        if (ret)
1601                return ret;
1602
1603        set_bit(__LINK_STATE_START, &dev->state);
1604
1605        if (ops->ndo_validate_addr)
1606                ret = ops->ndo_validate_addr(dev);
1607
1608        if (!ret && ops->ndo_open)
1609                ret = ops->ndo_open(dev);
1610
1611        netpoll_poll_enable(dev);
1612
1613        if (ret)
1614                clear_bit(__LINK_STATE_START, &dev->state);
1615        else {
1616                dev->flags |= IFF_UP;
1617                dev_set_rx_mode(dev);
1618                dev_activate(dev);
1619                add_device_randomness(dev->dev_addr, dev->addr_len);
1620        }
1621
1622        return ret;
1623}
1624
1625/**
1626 *      dev_open        - prepare an interface for use.
1627 *      @dev: device to open
1628 *      @extack: netlink extended ack
1629 *
1630 *      Takes a device from down to up state. The device's private open
1631 *      function is invoked and then the multicast lists are loaded. Finally
1632 *      the device is moved into the up state and a %NETDEV_UP message is
1633 *      sent to the netdev notifier chain.
1634 *
1635 *      Calling this function on an active interface is a nop. On a failure
1636 *      a negative errno code is returned.
1637 */
1638int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639{
1640        int ret;
1641
1642        if (dev->flags & IFF_UP)
1643                return 0;
1644
1645        ret = __dev_open(dev, extack);
1646        if (ret < 0)
1647                return ret;
1648
1649        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650        call_netdevice_notifiers(NETDEV_UP, dev);
1651
1652        return ret;
1653}
1654EXPORT_SYMBOL(dev_open);
1655
1656static void __dev_close_many(struct list_head *head)
1657{
1658        struct net_device *dev;
1659
1660        ASSERT_RTNL();
1661        might_sleep();
1662
1663        list_for_each_entry(dev, head, close_list) {
1664                /* Temporarily disable netpoll until the interface is down */
1665                netpoll_poll_disable(dev);
1666
1667                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668
1669                clear_bit(__LINK_STATE_START, &dev->state);
1670
1671                /* Synchronize to scheduled poll. We cannot touch poll list, it
1672                 * can be even on different cpu. So just clear netif_running().
1673                 *
1674                 * dev->stop() will invoke napi_disable() on all of it's
1675                 * napi_struct instances on this device.
1676                 */
1677                smp_mb__after_atomic(); /* Commit netif_running(). */
1678        }
1679
1680        dev_deactivate_many(head);
1681
1682        list_for_each_entry(dev, head, close_list) {
1683                const struct net_device_ops *ops = dev->netdev_ops;
1684
1685                /*
1686                 *      Call the device specific close. This cannot fail.
1687                 *      Only if device is UP
1688                 *
1689                 *      We allow it to be called even after a DETACH hot-plug
1690                 *      event.
1691                 */
1692                if (ops->ndo_stop)
1693                        ops->ndo_stop(dev);
1694
1695                dev->flags &= ~IFF_UP;
1696                netpoll_poll_enable(dev);
1697        }
1698}
1699
1700static void __dev_close(struct net_device *dev)
1701{
1702        LIST_HEAD(single);
1703
1704        list_add(&dev->close_list, &single);
1705        __dev_close_many(&single);
1706        list_del(&single);
1707}
1708
1709void dev_close_many(struct list_head *head, bool unlink)
1710{
1711        struct net_device *dev, *tmp;
1712
1713        /* Remove the devices that don't need to be closed */
1714        list_for_each_entry_safe(dev, tmp, head, close_list)
1715                if (!(dev->flags & IFF_UP))
1716                        list_del_init(&dev->close_list);
1717
1718        __dev_close_many(head);
1719
1720        list_for_each_entry_safe(dev, tmp, head, close_list) {
1721                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722                call_netdevice_notifiers(NETDEV_DOWN, dev);
1723                if (unlink)
1724                        list_del_init(&dev->close_list);
1725        }
1726}
1727EXPORT_SYMBOL(dev_close_many);
1728
1729/**
1730 *      dev_close - shutdown an interface.
1731 *      @dev: device to shutdown
1732 *
1733 *      This function moves an active device into down state. A
1734 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736 *      chain.
1737 */
1738void dev_close(struct net_device *dev)
1739{
1740        if (dev->flags & IFF_UP) {
1741                LIST_HEAD(single);
1742
1743                list_add(&dev->close_list, &single);
1744                dev_close_many(&single, true);
1745                list_del(&single);
1746        }
1747}
1748EXPORT_SYMBOL(dev_close);
1749
1750
1751/**
1752 *      dev_disable_lro - disable Large Receive Offload on a device
1753 *      @dev: device
1754 *
1755 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1756 *      called under RTNL.  This is needed if received packets may be
1757 *      forwarded to another interface.
1758 */
1759void dev_disable_lro(struct net_device *dev)
1760{
1761        struct net_device *lower_dev;
1762        struct list_head *iter;
1763
1764        dev->wanted_features &= ~NETIF_F_LRO;
1765        netdev_update_features(dev);
1766
1767        if (unlikely(dev->features & NETIF_F_LRO))
1768                netdev_WARN(dev, "failed to disable LRO!\n");
1769
1770        netdev_for_each_lower_dev(dev, lower_dev, iter)
1771                dev_disable_lro(lower_dev);
1772}
1773EXPORT_SYMBOL(dev_disable_lro);
1774
1775/**
1776 *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777 *      @dev: device
1778 *
1779 *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780 *      called under RTNL.  This is needed if Generic XDP is installed on
1781 *      the device.
1782 */
1783static void dev_disable_gro_hw(struct net_device *dev)
1784{
1785        dev->wanted_features &= ~NETIF_F_GRO_HW;
1786        netdev_update_features(dev);
1787
1788        if (unlikely(dev->features & NETIF_F_GRO_HW))
1789                netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790}
1791
1792const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793{
1794#define N(val)                                          \
1795        case NETDEV_##val:                              \
1796                return "NETDEV_" __stringify(val);
1797        switch (cmd) {
1798        N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799        N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800        N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801        N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802        N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803        N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804        N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805        N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806        N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807        N(PRE_CHANGEADDR)
1808        }
1809#undef N
1810        return "UNKNOWN_NETDEV_EVENT";
1811}
1812EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813
1814static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815                                   struct net_device *dev)
1816{
1817        struct netdev_notifier_info info = {
1818                .dev = dev,
1819        };
1820
1821        return nb->notifier_call(nb, val, &info);
1822}
1823
1824static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825                                             struct net_device *dev)
1826{
1827        int err;
1828
1829        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830        err = notifier_to_errno(err);
1831        if (err)
1832                return err;
1833
1834        if (!(dev->flags & IFF_UP))
1835                return 0;
1836
1837        call_netdevice_notifier(nb, NETDEV_UP, dev);
1838        return 0;
1839}
1840
1841static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842                                                struct net_device *dev)
1843{
1844        if (dev->flags & IFF_UP) {
1845                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846                                        dev);
1847                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848        }
1849        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850}
1851
1852static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853                                                 struct net *net)
1854{
1855        struct net_device *dev;
1856        int err;
1857
1858        for_each_netdev(net, dev) {
1859                err = call_netdevice_register_notifiers(nb, dev);
1860                if (err)
1861                        goto rollback;
1862        }
1863        return 0;
1864
1865rollback:
1866        for_each_netdev_continue_reverse(net, dev)
1867                call_netdevice_unregister_notifiers(nb, dev);
1868        return err;
1869}
1870
1871static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872                                                    struct net *net)
1873{
1874        struct net_device *dev;
1875
1876        for_each_netdev(net, dev)
1877                call_netdevice_unregister_notifiers(nb, dev);
1878}
1879
1880static int dev_boot_phase = 1;
1881
1882/**
1883 * register_netdevice_notifier - register a network notifier block
1884 * @nb: notifier
1885 *
1886 * Register a notifier to be called when network device events occur.
1887 * The notifier passed is linked into the kernel structures and must
1888 * not be reused until it has been unregistered. A negative errno code
1889 * is returned on a failure.
1890 *
1891 * When registered all registration and up events are replayed
1892 * to the new notifier to allow device to have a race free
1893 * view of the network device list.
1894 */
1895
1896int register_netdevice_notifier(struct notifier_block *nb)
1897{
1898        struct net *net;
1899        int err;
1900
1901        /* Close race with setup_net() and cleanup_net() */
1902        down_write(&pernet_ops_rwsem);
1903        rtnl_lock();
1904        err = raw_notifier_chain_register(&netdev_chain, nb);
1905        if (err)
1906                goto unlock;
1907        if (dev_boot_phase)
1908                goto unlock;
1909        for_each_net(net) {
1910                err = call_netdevice_register_net_notifiers(nb, net);
1911                if (err)
1912                        goto rollback;
1913        }
1914
1915unlock:
1916        rtnl_unlock();
1917        up_write(&pernet_ops_rwsem);
1918        return err;
1919
1920rollback:
1921        for_each_net_continue_reverse(net)
1922                call_netdevice_unregister_net_notifiers(nb, net);
1923
1924        raw_notifier_chain_unregister(&netdev_chain, nb);
1925        goto unlock;
1926}
1927EXPORT_SYMBOL(register_netdevice_notifier);
1928
1929/**
1930 * unregister_netdevice_notifier - unregister a network notifier block
1931 * @nb: notifier
1932 *
1933 * Unregister a notifier previously registered by
1934 * register_netdevice_notifier(). The notifier is unlinked into the
1935 * kernel structures and may then be reused. A negative errno code
1936 * is returned on a failure.
1937 *
1938 * After unregistering unregister and down device events are synthesized
1939 * for all devices on the device list to the removed notifier to remove
1940 * the need for special case cleanup code.
1941 */
1942
1943int unregister_netdevice_notifier(struct notifier_block *nb)
1944{
1945        struct net *net;
1946        int err;
1947
1948        /* Close race with setup_net() and cleanup_net() */
1949        down_write(&pernet_ops_rwsem);
1950        rtnl_lock();
1951        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952        if (err)
1953                goto unlock;
1954
1955        for_each_net(net)
1956                call_netdevice_unregister_net_notifiers(nb, net);
1957
1958unlock:
1959        rtnl_unlock();
1960        up_write(&pernet_ops_rwsem);
1961        return err;
1962}
1963EXPORT_SYMBOL(unregister_netdevice_notifier);
1964
1965static int __register_netdevice_notifier_net(struct net *net,
1966                                             struct notifier_block *nb,
1967                                             bool ignore_call_fail)
1968{
1969        int err;
1970
1971        err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972        if (err)
1973                return err;
1974        if (dev_boot_phase)
1975                return 0;
1976
1977        err = call_netdevice_register_net_notifiers(nb, net);
1978        if (err && !ignore_call_fail)
1979                goto chain_unregister;
1980
1981        return 0;
1982
1983chain_unregister:
1984        raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985        return err;
1986}
1987
1988static int __unregister_netdevice_notifier_net(struct net *net,
1989                                               struct notifier_block *nb)
1990{
1991        int err;
1992
1993        err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994        if (err)
1995                return err;
1996
1997        call_netdevice_unregister_net_notifiers(nb, net);
1998        return 0;
1999}
2000
2001/**
2002 * register_netdevice_notifier_net - register a per-netns network notifier block
2003 * @net: network namespace
2004 * @nb: notifier
2005 *
2006 * Register a notifier to be called when network device events occur.
2007 * The notifier passed is linked into the kernel structures and must
2008 * not be reused until it has been unregistered. A negative errno code
2009 * is returned on a failure.
2010 *
2011 * When registered all registration and up events are replayed
2012 * to the new notifier to allow device to have a race free
2013 * view of the network device list.
2014 */
2015
2016int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017{
2018        int err;
2019
2020        rtnl_lock();
2021        err = __register_netdevice_notifier_net(net, nb, false);
2022        rtnl_unlock();
2023        return err;
2024}
2025EXPORT_SYMBOL(register_netdevice_notifier_net);
2026
2027/**
2028 * unregister_netdevice_notifier_net - unregister a per-netns
2029 *                                     network notifier block
2030 * @net: network namespace
2031 * @nb: notifier
2032 *
2033 * Unregister a notifier previously registered by
2034 * register_netdevice_notifier(). The notifier is unlinked into the
2035 * kernel structures and may then be reused. A negative errno code
2036 * is returned on a failure.
2037 *
2038 * After unregistering unregister and down device events are synthesized
2039 * for all devices on the device list to the removed notifier to remove
2040 * the need for special case cleanup code.
2041 */
2042
2043int unregister_netdevice_notifier_net(struct net *net,
2044                                      struct notifier_block *nb)
2045{
2046        int err;
2047
2048        rtnl_lock();
2049        err = __unregister_netdevice_notifier_net(net, nb);
2050        rtnl_unlock();
2051        return err;
2052}
2053EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054
2055int register_netdevice_notifier_dev_net(struct net_device *dev,
2056                                        struct notifier_block *nb,
2057                                        struct netdev_net_notifier *nn)
2058{
2059        int err;
2060
2061        rtnl_lock();
2062        err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063        if (!err) {
2064                nn->nb = nb;
2065                list_add(&nn->list, &dev->net_notifier_list);
2066        }
2067        rtnl_unlock();
2068        return err;
2069}
2070EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071
2072int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073                                          struct notifier_block *nb,
2074                                          struct netdev_net_notifier *nn)
2075{
2076        int err;
2077
2078        rtnl_lock();
2079        list_del(&nn->list);
2080        err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081        rtnl_unlock();
2082        return err;
2083}
2084EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085
2086static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087                                             struct net *net)
2088{
2089        struct netdev_net_notifier *nn;
2090
2091        list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092                __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093                __register_netdevice_notifier_net(net, nn->nb, true);
2094        }
2095}
2096
2097/**
2098 *      call_netdevice_notifiers_info - call all network notifier blocks
2099 *      @val: value passed unmodified to notifier function
2100 *      @info: notifier information data
2101 *
2102 *      Call all network notifier blocks.  Parameters and return value
2103 *      are as for raw_notifier_call_chain().
2104 */
2105
2106static int call_netdevice_notifiers_info(unsigned long val,
2107                                         struct netdev_notifier_info *info)
2108{
2109        struct net *net = dev_net(info->dev);
2110        int ret;
2111
2112        ASSERT_RTNL();
2113
2114        /* Run per-netns notifier block chain first, then run the global one.
2115         * Hopefully, one day, the global one is going to be removed after
2116         * all notifier block registrators get converted to be per-netns.
2117         */
2118        ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119        if (ret & NOTIFY_STOP_MASK)
2120                return ret;
2121        return raw_notifier_call_chain(&netdev_chain, val, info);
2122}
2123
2124static int call_netdevice_notifiers_extack(unsigned long val,
2125                                           struct net_device *dev,
2126                                           struct netlink_ext_ack *extack)
2127{
2128        struct netdev_notifier_info info = {
2129                .dev = dev,
2130                .extack = extack,
2131        };
2132
2133        return call_netdevice_notifiers_info(val, &info);
2134}
2135
2136/**
2137 *      call_netdevice_notifiers - call all network notifier blocks
2138 *      @val: value passed unmodified to notifier function
2139 *      @dev: net_device pointer passed unmodified to notifier function
2140 *
2141 *      Call all network notifier blocks.  Parameters and return value
2142 *      are as for raw_notifier_call_chain().
2143 */
2144
2145int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146{
2147        return call_netdevice_notifiers_extack(val, dev, NULL);
2148}
2149EXPORT_SYMBOL(call_netdevice_notifiers);
2150
2151/**
2152 *      call_netdevice_notifiers_mtu - call all network notifier blocks
2153 *      @val: value passed unmodified to notifier function
2154 *      @dev: net_device pointer passed unmodified to notifier function
2155 *      @arg: additional u32 argument passed to the notifier function
2156 *
2157 *      Call all network notifier blocks.  Parameters and return value
2158 *      are as for raw_notifier_call_chain().
2159 */
2160static int call_netdevice_notifiers_mtu(unsigned long val,
2161                                        struct net_device *dev, u32 arg)
2162{
2163        struct netdev_notifier_info_ext info = {
2164                .info.dev = dev,
2165                .ext.mtu = arg,
2166        };
2167
2168        BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169
2170        return call_netdevice_notifiers_info(val, &info.info);
2171}
2172
2173#ifdef CONFIG_NET_INGRESS
2174static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175
2176void net_inc_ingress_queue(void)
2177{
2178        static_branch_inc(&ingress_needed_key);
2179}
2180EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181
2182void net_dec_ingress_queue(void)
2183{
2184        static_branch_dec(&ingress_needed_key);
2185}
2186EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187#endif
2188
2189#ifdef CONFIG_NET_EGRESS
2190static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191
2192void net_inc_egress_queue(void)
2193{
2194        static_branch_inc(&egress_needed_key);
2195}
2196EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197
2198void net_dec_egress_queue(void)
2199{
2200        static_branch_dec(&egress_needed_key);
2201}
2202EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203#endif
2204
2205static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206#ifdef CONFIG_JUMP_LABEL
2207static atomic_t netstamp_needed_deferred;
2208static atomic_t netstamp_wanted;
2209static void netstamp_clear(struct work_struct *work)
2210{
2211        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212        int wanted;
2213
2214        wanted = atomic_add_return(deferred, &netstamp_wanted);
2215        if (wanted > 0)
2216                static_branch_enable(&netstamp_needed_key);
2217        else
2218                static_branch_disable(&netstamp_needed_key);
2219}
2220static DECLARE_WORK(netstamp_work, netstamp_clear);
2221#endif
2222
2223void net_enable_timestamp(void)
2224{
2225#ifdef CONFIG_JUMP_LABEL
2226        int wanted;
2227
2228        while (1) {
2229                wanted = atomic_read(&netstamp_wanted);
2230                if (wanted <= 0)
2231                        break;
2232                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233                        return;
2234        }
2235        atomic_inc(&netstamp_needed_deferred);
2236        schedule_work(&netstamp_work);
2237#else
2238        static_branch_inc(&netstamp_needed_key);
2239#endif
2240}
2241EXPORT_SYMBOL(net_enable_timestamp);
2242
2243void net_disable_timestamp(void)
2244{
2245#ifdef CONFIG_JUMP_LABEL
2246        int wanted;
2247
2248        while (1) {
2249                wanted = atomic_read(&netstamp_wanted);
2250                if (wanted <= 1)
2251                        break;
2252                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253                        return;
2254        }
2255        atomic_dec(&netstamp_needed_deferred);
2256        schedule_work(&netstamp_work);
2257#else
2258        static_branch_dec(&netstamp_needed_key);
2259#endif
2260}
2261EXPORT_SYMBOL(net_disable_timestamp);
2262
2263static inline void net_timestamp_set(struct sk_buff *skb)
2264{
2265        skb->tstamp = 0;
2266        if (static_branch_unlikely(&netstamp_needed_key))
2267                __net_timestamp(skb);
2268}
2269
2270#define net_timestamp_check(COND, SKB)                          \
2271        if (static_branch_unlikely(&netstamp_needed_key)) {     \
2272                if ((COND) && !(SKB)->tstamp)                   \
2273                        __net_timestamp(SKB);                   \
2274        }                                                       \
2275
2276bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277{
2278        return __is_skb_forwardable(dev, skb, true);
2279}
2280EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281
2282static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283                              bool check_mtu)
2284{
2285        int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286
2287        if (likely(!ret)) {
2288                skb->protocol = eth_type_trans(skb, dev);
2289                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290        }
2291
2292        return ret;
2293}
2294
2295int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296{
2297        return __dev_forward_skb2(dev, skb, true);
2298}
2299EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300
2301/**
2302 * dev_forward_skb - loopback an skb to another netif
2303 *
2304 * @dev: destination network device
2305 * @skb: buffer to forward
2306 *
2307 * return values:
2308 *      NET_RX_SUCCESS  (no congestion)
2309 *      NET_RX_DROP     (packet was dropped, but freed)
2310 *
2311 * dev_forward_skb can be used for injecting an skb from the
2312 * start_xmit function of one device into the receive queue
2313 * of another device.
2314 *
2315 * The receiving device may be in another namespace, so
2316 * we have to clear all information in the skb that could
2317 * impact namespace isolation.
2318 */
2319int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320{
2321        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322}
2323EXPORT_SYMBOL_GPL(dev_forward_skb);
2324
2325int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326{
2327        return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328}
2329
2330static inline int deliver_skb(struct sk_buff *skb,
2331                              struct packet_type *pt_prev,
2332                              struct net_device *orig_dev)
2333{
2334        if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335                return -ENOMEM;
2336        refcount_inc(&skb->users);
2337        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338}
2339
2340static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341                                          struct packet_type **pt,
2342                                          struct net_device *orig_dev,
2343                                          __be16 type,
2344                                          struct list_head *ptype_list)
2345{
2346        struct packet_type *ptype, *pt_prev = *pt;
2347
2348        list_for_each_entry_rcu(ptype, ptype_list, list) {
2349                if (ptype->type != type)
2350                        continue;
2351                if (pt_prev)
2352                        deliver_skb(skb, pt_prev, orig_dev);
2353                pt_prev = ptype;
2354        }
2355        *pt = pt_prev;
2356}
2357
2358static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359{
2360        if (!ptype->af_packet_priv || !skb->sk)
2361                return false;
2362
2363        if (ptype->id_match)
2364                return ptype->id_match(ptype, skb->sk);
2365        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366                return true;
2367
2368        return false;
2369}
2370
2371/**
2372 * dev_nit_active - return true if any network interface taps are in use
2373 *
2374 * @dev: network device to check for the presence of taps
2375 */
2376bool dev_nit_active(struct net_device *dev)
2377{
2378        return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379}
2380EXPORT_SYMBOL_GPL(dev_nit_active);
2381
2382/*
2383 *      Support routine. Sends outgoing frames to any network
2384 *      taps currently in use.
2385 */
2386
2387void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388{
2389        struct packet_type *ptype;
2390        struct sk_buff *skb2 = NULL;
2391        struct packet_type *pt_prev = NULL;
2392        struct list_head *ptype_list = &ptype_all;
2393
2394        rcu_read_lock();
2395again:
2396        list_for_each_entry_rcu(ptype, ptype_list, list) {
2397                if (ptype->ignore_outgoing)
2398                        continue;
2399
2400                /* Never send packets back to the socket
2401                 * they originated from - MvS (miquels@drinkel.ow.org)
2402                 */
2403                if (skb_loop_sk(ptype, skb))
2404                        continue;
2405
2406                if (pt_prev) {
2407                        deliver_skb(skb2, pt_prev, skb->dev);
2408                        pt_prev = ptype;
2409                        continue;
2410                }
2411
2412                /* need to clone skb, done only once */
2413                skb2 = skb_clone(skb, GFP_ATOMIC);
2414                if (!skb2)
2415                        goto out_unlock;
2416
2417                net_timestamp_set(skb2);
2418
2419                /* skb->nh should be correctly
2420                 * set by sender, so that the second statement is
2421                 * just protection against buggy protocols.
2422                 */
2423                skb_reset_mac_header(skb2);
2424
2425                if (skb_network_header(skb2) < skb2->data ||
2426                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428                                             ntohs(skb2->protocol),
2429                                             dev->name);
2430                        skb_reset_network_header(skb2);
2431                }
2432
2433                skb2->transport_header = skb2->network_header;
2434                skb2->pkt_type = PACKET_OUTGOING;
2435                pt_prev = ptype;
2436        }
2437
2438        if (ptype_list == &ptype_all) {
2439                ptype_list = &dev->ptype_all;
2440                goto again;
2441        }
2442out_unlock:
2443        if (pt_prev) {
2444                if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445                        pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446                else
2447                        kfree_skb(skb2);
2448        }
2449        rcu_read_unlock();
2450}
2451EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452
2453/**
2454 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455 * @dev: Network device
2456 * @txq: number of queues available
2457 *
2458 * If real_num_tx_queues is changed the tc mappings may no longer be
2459 * valid. To resolve this verify the tc mapping remains valid and if
2460 * not NULL the mapping. With no priorities mapping to this
2461 * offset/count pair it will no longer be used. In the worst case TC0
2462 * is invalid nothing can be done so disable priority mappings. If is
2463 * expected that drivers will fix this mapping if they can before
2464 * calling netif_set_real_num_tx_queues.
2465 */
2466static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467{
2468        int i;
2469        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470
2471        /* If TC0 is invalidated disable TC mapping */
2472        if (tc->offset + tc->count > txq) {
2473                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474                dev->num_tc = 0;
2475                return;
2476        }
2477
2478        /* Invalidated prio to tc mappings set to TC0 */
2479        for (i = 1; i < TC_BITMASK + 1; i++) {
2480                int q = netdev_get_prio_tc_map(dev, i);
2481
2482                tc = &dev->tc_to_txq[q];
2483                if (tc->offset + tc->count > txq) {
2484                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485                                i, q);
2486                        netdev_set_prio_tc_map(dev, i, 0);
2487                }
2488        }
2489}
2490
2491int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492{
2493        if (dev->num_tc) {
2494                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495                int i;
2496
2497                /* walk through the TCs and see if it falls into any of them */
2498                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499                        if ((txq - tc->offset) < tc->count)
2500                                return i;
2501                }
2502
2503                /* didn't find it, just return -1 to indicate no match */
2504                return -1;
2505        }
2506
2507        return 0;
2508}
2509EXPORT_SYMBOL(netdev_txq_to_tc);
2510
2511#ifdef CONFIG_XPS
2512static struct static_key xps_needed __read_mostly;
2513static struct static_key xps_rxqs_needed __read_mostly;
2514static DEFINE_MUTEX(xps_map_mutex);
2515#define xmap_dereference(P)             \
2516        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517
2518static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519                             struct xps_dev_maps *old_maps, int tci, u16 index)
2520{
2521        struct xps_map *map = NULL;
2522        int pos;
2523
2524        if (dev_maps)
2525                map = xmap_dereference(dev_maps->attr_map[tci]);
2526        if (!map)
2527                return false;
2528
2529        for (pos = map->len; pos--;) {
2530                if (map->queues[pos] != index)
2531                        continue;
2532
2533                if (map->len > 1) {
2534                        map->queues[pos] = map->queues[--map->len];
2535                        break;
2536                }
2537
2538                if (old_maps)
2539                        RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540                RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541                kfree_rcu(map, rcu);
2542                return false;
2543        }
2544
2545        return true;
2546}
2547
2548static bool remove_xps_queue_cpu(struct net_device *dev,
2549                                 struct xps_dev_maps *dev_maps,
2550                                 int cpu, u16 offset, u16 count)
2551{
2552        int num_tc = dev_maps->num_tc;
2553        bool active = false;
2554        int tci;
2555
2556        for (tci = cpu * num_tc; num_tc--; tci++) {
2557                int i, j;
2558
2559                for (i = count, j = offset; i--; j++) {
2560                        if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561                                break;
2562                }
2563
2564                active |= i < 0;
2565        }
2566
2567        return active;
2568}
2569
2570static void reset_xps_maps(struct net_device *dev,
2571                           struct xps_dev_maps *dev_maps,
2572                           enum xps_map_type type)
2573{
2574        static_key_slow_dec_cpuslocked(&xps_needed);
2575        if (type == XPS_RXQS)
2576                static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577
2578        RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579
2580        kfree_rcu(dev_maps, rcu);
2581}
2582
2583static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584                           u16 offset, u16 count)
2585{
2586        struct xps_dev_maps *dev_maps;
2587        bool active = false;
2588        int i, j;
2589
2590        dev_maps = xmap_dereference(dev->xps_maps[type]);
2591        if (!dev_maps)
2592                return;
2593
2594        for (j = 0; j < dev_maps->nr_ids; j++)
2595                active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596        if (!active)
2597                reset_xps_maps(dev, dev_maps, type);
2598
2599        if (type == XPS_CPUS) {
2600                for (i = offset + (count - 1); count--; i--)
2601                        netdev_queue_numa_node_write(
2602                                netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603        }
2604}
2605
2606static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607                                   u16 count)
2608{
2609        if (!static_key_false(&xps_needed))
2610                return;
2611
2612        cpus_read_lock();
2613        mutex_lock(&xps_map_mutex);
2614
2615        if (static_key_false(&xps_rxqs_needed))
2616                clean_xps_maps(dev, XPS_RXQS, offset, count);
2617
2618        clean_xps_maps(dev, XPS_CPUS, offset, count);
2619
2620        mutex_unlock(&xps_map_mutex);
2621        cpus_read_unlock();
2622}
2623
2624static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625{
2626        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627}
2628
2629static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630                                      u16 index, bool is_rxqs_map)
2631{
2632        struct xps_map *new_map;
2633        int alloc_len = XPS_MIN_MAP_ALLOC;
2634        int i, pos;
2635
2636        for (pos = 0; map && pos < map->len; pos++) {
2637                if (map->queues[pos] != index)
2638                        continue;
2639                return map;
2640        }
2641
2642        /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643        if (map) {
2644                if (pos < map->alloc_len)
2645                        return map;
2646
2647                alloc_len = map->alloc_len * 2;
2648        }
2649
2650        /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651         *  map
2652         */
2653        if (is_rxqs_map)
2654                new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655        else
2656                new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657                                       cpu_to_node(attr_index));
2658        if (!new_map)
2659                return NULL;
2660
2661        for (i = 0; i < pos; i++)
2662                new_map->queues[i] = map->queues[i];
2663        new_map->alloc_len = alloc_len;
2664        new_map->len = pos;
2665
2666        return new_map;
2667}
2668
2669/* Copy xps maps at a given index */
2670static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671                              struct xps_dev_maps *new_dev_maps, int index,
2672                              int tc, bool skip_tc)
2673{
2674        int i, tci = index * dev_maps->num_tc;
2675        struct xps_map *map;
2676
2677        /* copy maps belonging to foreign traffic classes */
2678        for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679                if (i == tc && skip_tc)
2680                        continue;
2681
2682                /* fill in the new device map from the old device map */
2683                map = xmap_dereference(dev_maps->attr_map[tci]);
2684                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685        }
2686}
2687
2688/* Must be called under cpus_read_lock */
2689int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690                          u16 index, enum xps_map_type type)
2691{
2692        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693        const unsigned long *online_mask = NULL;
2694        bool active = false, copy = false;
2695        int i, j, tci, numa_node_id = -2;
2696        int maps_sz, num_tc = 1, tc = 0;
2697        struct xps_map *map, *new_map;
2698        unsigned int nr_ids;
2699
2700        if (dev->num_tc) {
2701                /* Do not allow XPS on subordinate device directly */
2702                num_tc = dev->num_tc;
2703                if (num_tc < 0)
2704                        return -EINVAL;
2705
2706                /* If queue belongs to subordinate dev use its map */
2707                dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708
2709                tc = netdev_txq_to_tc(dev, index);
2710                if (tc < 0)
2711                        return -EINVAL;
2712        }
2713
2714        mutex_lock(&xps_map_mutex);
2715
2716        dev_maps = xmap_dereference(dev->xps_maps[type]);
2717        if (type == XPS_RXQS) {
2718                maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719                nr_ids = dev->num_rx_queues;
2720        } else {
2721                maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722                if (num_possible_cpus() > 1)
2723                        online_mask = cpumask_bits(cpu_online_mask);
2724                nr_ids = nr_cpu_ids;
2725        }
2726
2727        if (maps_sz < L1_CACHE_BYTES)
2728                maps_sz = L1_CACHE_BYTES;
2729
2730        /* The old dev_maps could be larger or smaller than the one we're
2731         * setting up now, as dev->num_tc or nr_ids could have been updated in
2732         * between. We could try to be smart, but let's be safe instead and only
2733         * copy foreign traffic classes if the two map sizes match.
2734         */
2735        if (dev_maps &&
2736            dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737                copy = true;
2738
2739        /* allocate memory for queue storage */
2740        for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741             j < nr_ids;) {
2742                if (!new_dev_maps) {
2743                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744                        if (!new_dev_maps) {
2745                                mutex_unlock(&xps_map_mutex);
2746                                return -ENOMEM;
2747                        }
2748
2749                        new_dev_maps->nr_ids = nr_ids;
2750                        new_dev_maps->num_tc = num_tc;
2751                }
2752
2753                tci = j * num_tc + tc;
2754                map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755
2756                map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757                if (!map)
2758                        goto error;
2759
2760                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761        }
2762
2763        if (!new_dev_maps)
2764                goto out_no_new_maps;
2765
2766        if (!dev_maps) {
2767                /* Increment static keys at most once per type */
2768                static_key_slow_inc_cpuslocked(&xps_needed);
2769                if (type == XPS_RXQS)
2770                        static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771        }
2772
2773        for (j = 0; j < nr_ids; j++) {
2774                bool skip_tc = false;
2775
2776                tci = j * num_tc + tc;
2777                if (netif_attr_test_mask(j, mask, nr_ids) &&
2778                    netif_attr_test_online(j, online_mask, nr_ids)) {
2779                        /* add tx-queue to CPU/rx-queue maps */
2780                        int pos = 0;
2781
2782                        skip_tc = true;
2783
2784                        map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785                        while ((pos < map->len) && (map->queues[pos] != index))
2786                                pos++;
2787
2788                        if (pos == map->len)
2789                                map->queues[map->len++] = index;
2790#ifdef CONFIG_NUMA
2791                        if (type == XPS_CPUS) {
2792                                if (numa_node_id == -2)
2793                                        numa_node_id = cpu_to_node(j);
2794                                else if (numa_node_id != cpu_to_node(j))
2795                                        numa_node_id = -1;
2796                        }
2797#endif
2798                }
2799
2800                if (copy)
2801                        xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802                                          skip_tc);
2803        }
2804
2805        rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806
2807        /* Cleanup old maps */
2808        if (!dev_maps)
2809                goto out_no_old_maps;
2810
2811        for (j = 0; j < dev_maps->nr_ids; j++) {
2812                for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813                        map = xmap_dereference(dev_maps->attr_map[tci]);
2814                        if (!map)
2815                                continue;
2816
2817                        if (copy) {
2818                                new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819                                if (map == new_map)
2820                                        continue;
2821                        }
2822
2823                        RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824                        kfree_rcu(map, rcu);
2825                }
2826        }
2827
2828        old_dev_maps = dev_maps;
2829
2830out_no_old_maps:
2831        dev_maps = new_dev_maps;
2832        active = true;
2833
2834out_no_new_maps:
2835        if (type == XPS_CPUS)
2836                /* update Tx queue numa node */
2837                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838                                             (numa_node_id >= 0) ?
2839                                             numa_node_id : NUMA_NO_NODE);
2840
2841        if (!dev_maps)
2842                goto out_no_maps;
2843
2844        /* removes tx-queue from unused CPUs/rx-queues */
2845        for (j = 0; j < dev_maps->nr_ids; j++) {
2846                tci = j * dev_maps->num_tc;
2847
2848                for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849                        if (i == tc &&
2850                            netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851                            netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852                                continue;
2853
2854                        active |= remove_xps_queue(dev_maps,
2855                                                   copy ? old_dev_maps : NULL,
2856                                                   tci, index);
2857                }
2858        }
2859
2860        if (old_dev_maps)
2861                kfree_rcu(old_dev_maps, rcu);
2862
2863        /* free map if not active */
2864        if (!active)
2865                reset_xps_maps(dev, dev_maps, type);
2866
2867out_no_maps:
2868        mutex_unlock(&xps_map_mutex);
2869
2870        return 0;
2871error:
2872        /* remove any maps that we added */
2873        for (j = 0; j < nr_ids; j++) {
2874                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876                        map = copy ?
2877                              xmap_dereference(dev_maps->attr_map[tci]) :
2878                              NULL;
2879                        if (new_map && new_map != map)
2880                                kfree(new_map);
2881                }
2882        }
2883
2884        mutex_unlock(&xps_map_mutex);
2885
2886        kfree(new_dev_maps);
2887        return -ENOMEM;
2888}
2889EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890
2891int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892                        u16 index)
2893{
2894        int ret;
2895
2896        cpus_read_lock();
2897        ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898        cpus_read_unlock();
2899
2900        return ret;
2901}
2902EXPORT_SYMBOL(netif_set_xps_queue);
2903
2904#endif
2905static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906{
2907        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908
2909        /* Unbind any subordinate channels */
2910        while (txq-- != &dev->_tx[0]) {
2911                if (txq->sb_dev)
2912                        netdev_unbind_sb_channel(dev, txq->sb_dev);
2913        }
2914}
2915
2916void netdev_reset_tc(struct net_device *dev)
2917{
2918#ifdef CONFIG_XPS
2919        netif_reset_xps_queues_gt(dev, 0);
2920#endif
2921        netdev_unbind_all_sb_channels(dev);
2922
2923        /* Reset TC configuration of device */
2924        dev->num_tc = 0;
2925        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927}
2928EXPORT_SYMBOL(netdev_reset_tc);
2929
2930int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931{
2932        if (tc >= dev->num_tc)
2933                return -EINVAL;
2934
2935#ifdef CONFIG_XPS
2936        netif_reset_xps_queues(dev, offset, count);
2937#endif
2938        dev->tc_to_txq[tc].count = count;
2939        dev->tc_to_txq[tc].offset = offset;
2940        return 0;
2941}
2942EXPORT_SYMBOL(netdev_set_tc_queue);
2943
2944int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945{
2946        if (num_tc > TC_MAX_QUEUE)
2947                return -EINVAL;
2948
2949#ifdef CONFIG_XPS
2950        netif_reset_xps_queues_gt(dev, 0);
2951#endif
2952        netdev_unbind_all_sb_channels(dev);
2953
2954        dev->num_tc = num_tc;
2955        return 0;
2956}
2957EXPORT_SYMBOL(netdev_set_num_tc);
2958
2959void netdev_unbind_sb_channel(struct net_device *dev,
2960                              struct net_device *sb_dev)
2961{
2962        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963
2964#ifdef CONFIG_XPS
2965        netif_reset_xps_queues_gt(sb_dev, 0);
2966#endif
2967        memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968        memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969
2970        while (txq-- != &dev->_tx[0]) {
2971                if (txq->sb_dev == sb_dev)
2972                        txq->sb_dev = NULL;
2973        }
2974}
2975EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976
2977int netdev_bind_sb_channel_queue(struct net_device *dev,
2978                                 struct net_device *sb_dev,
2979                                 u8 tc, u16 count, u16 offset)
2980{
2981        /* Make certain the sb_dev and dev are already configured */
2982        if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983                return -EINVAL;
2984
2985        /* We cannot hand out queues we don't have */
2986        if ((offset + count) > dev->real_num_tx_queues)
2987                return -EINVAL;
2988
2989        /* Record the mapping */
2990        sb_dev->tc_to_txq[tc].count = count;
2991        sb_dev->tc_to_txq[tc].offset = offset;
2992
2993        /* Provide a way for Tx queue to find the tc_to_txq map or
2994         * XPS map for itself.
2995         */
2996        while (count--)
2997                netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998
2999        return 0;
3000}
3001EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002
3003int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004{
3005        /* Do not use a multiqueue device to represent a subordinate channel */
3006        if (netif_is_multiqueue(dev))
3007                return -ENODEV;
3008
3009        /* We allow channels 1 - 32767 to be used for subordinate channels.
3010         * Channel 0 is meant to be "native" mode and used only to represent
3011         * the main root device. We allow writing 0 to reset the device back
3012         * to normal mode after being used as a subordinate channel.
3013         */
3014        if (channel > S16_MAX)
3015                return -EINVAL;
3016
3017        dev->num_tc = -channel;
3018
3019        return 0;
3020}
3021EXPORT_SYMBOL(netdev_set_sb_channel);
3022
3023/*
3024 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026 */
3027int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028{
3029        bool disabling;
3030        int rc;
3031
3032        disabling = txq < dev->real_num_tx_queues;
3033
3034        if (txq < 1 || txq > dev->num_tx_queues)
3035                return -EINVAL;
3036
3037        if (dev->reg_state == NETREG_REGISTERED ||
3038            dev->reg_state == NETREG_UNREGISTERING) {
3039                ASSERT_RTNL();
3040
3041                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042                                                  txq);
3043                if (rc)
3044                        return rc;
3045
3046                if (dev->num_tc)
3047                        netif_setup_tc(dev, txq);
3048
3049                dev->real_num_tx_queues = txq;
3050
3051                if (disabling) {
3052                        synchronize_net();
3053                        qdisc_reset_all_tx_gt(dev, txq);
3054#ifdef CONFIG_XPS
3055                        netif_reset_xps_queues_gt(dev, txq);
3056#endif
3057                }
3058        } else {
3059                dev->real_num_tx_queues = txq;
3060        }
3061
3062        return 0;
3063}
3064EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065
3066#ifdef CONFIG_SYSFS
3067/**
3068 *      netif_set_real_num_rx_queues - set actual number of RX queues used
3069 *      @dev: Network device
3070 *      @rxq: Actual number of RX queues
3071 *
3072 *      This must be called either with the rtnl_lock held or before
3073 *      registration of the net device.  Returns 0 on success, or a
3074 *      negative error code.  If called before registration, it always
3075 *      succeeds.
3076 */
3077int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078{
3079        int rc;
3080
3081        if (rxq < 1 || rxq > dev->num_rx_queues)
3082                return -EINVAL;
3083
3084        if (dev->reg_state == NETREG_REGISTERED) {
3085                ASSERT_RTNL();
3086
3087                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088                                                  rxq);
3089                if (rc)
3090                        return rc;
3091        }
3092
3093        dev->real_num_rx_queues = rxq;
3094        return 0;
3095}
3096EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097#endif
3098
3099/**
3100 * netif_get_num_default_rss_queues - default number of RSS queues
3101 *
3102 * This routine should set an upper limit on the number of RSS queues
3103 * used by default by multiqueue devices.
3104 */
3105int netif_get_num_default_rss_queues(void)
3106{
3107        return is_kdump_kernel() ?
3108                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109}
3110EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111
3112static void __netif_reschedule(struct Qdisc *q)
3113{
3114        struct softnet_data *sd;
3115        unsigned long flags;
3116
3117        local_irq_save(flags);
3118        sd = this_cpu_ptr(&softnet_data);
3119        q->next_sched = NULL;
3120        *sd->output_queue_tailp = q;
3121        sd->output_queue_tailp = &q->next_sched;
3122        raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123        local_irq_restore(flags);
3124}
3125
3126void __netif_schedule(struct Qdisc *q)
3127{
3128        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129                __netif_reschedule(q);
3130}
3131EXPORT_SYMBOL(__netif_schedule);
3132
3133struct dev_kfree_skb_cb {
3134        enum skb_free_reason reason;
3135};
3136
3137static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138{
3139        return (struct dev_kfree_skb_cb *)skb->cb;
3140}
3141
3142void netif_schedule_queue(struct netdev_queue *txq)
3143{
3144        rcu_read_lock();
3145        if (!netif_xmit_stopped(txq)) {
3146                struct Qdisc *q = rcu_dereference(txq->qdisc);
3147
3148                __netif_schedule(q);
3149        }
3150        rcu_read_unlock();
3151}
3152EXPORT_SYMBOL(netif_schedule_queue);
3153
3154void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155{
3156        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157                struct Qdisc *q;
3158
3159                rcu_read_lock();
3160                q = rcu_dereference(dev_queue->qdisc);
3161                __netif_schedule(q);
3162                rcu_read_unlock();
3163        }
3164}
3165EXPORT_SYMBOL(netif_tx_wake_queue);
3166
3167void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168{
3169        unsigned long flags;
3170
3171        if (unlikely(!skb))
3172                return;
3173
3174        if (likely(refcount_read(&skb->users) == 1)) {
3175                smp_rmb();
3176                refcount_set(&skb->users, 0);
3177        } else if (likely(!refcount_dec_and_test(&skb->users))) {
3178                return;
3179        }
3180        get_kfree_skb_cb(skb)->reason = reason;
3181        local_irq_save(flags);
3182        skb->next = __this_cpu_read(softnet_data.completion_queue);
3183        __this_cpu_write(softnet_data.completion_queue, skb);
3184        raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185        local_irq_restore(flags);
3186}
3187EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188
3189void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190{
3191        if (in_irq() || irqs_disabled())
3192                __dev_kfree_skb_irq(skb, reason);
3193        else
3194                dev_kfree_skb(skb);
3195}
3196EXPORT_SYMBOL(__dev_kfree_skb_any);
3197
3198
3199/**
3200 * netif_device_detach - mark device as removed
3201 * @dev: network device
3202 *
3203 * Mark device as removed from system and therefore no longer available.
3204 */
3205void netif_device_detach(struct net_device *dev)
3206{
3207        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208            netif_running(dev)) {
3209                netif_tx_stop_all_queues(dev);
3210        }
3211}
3212EXPORT_SYMBOL(netif_device_detach);
3213
3214/**
3215 * netif_device_attach - mark device as attached
3216 * @dev: network device
3217 *
3218 * Mark device as attached from system and restart if needed.
3219 */
3220void netif_device_attach(struct net_device *dev)
3221{
3222        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223            netif_running(dev)) {
3224                netif_tx_wake_all_queues(dev);
3225                __netdev_watchdog_up(dev);
3226        }
3227}
3228EXPORT_SYMBOL(netif_device_attach);
3229
3230/*
3231 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232 * to be used as a distribution range.
3233 */
3234static u16 skb_tx_hash(const struct net_device *dev,
3235                       const struct net_device *sb_dev,
3236                       struct sk_buff *skb)
3237{
3238        u32 hash;
3239        u16 qoffset = 0;
3240        u16 qcount = dev->real_num_tx_queues;
3241
3242        if (dev->num_tc) {
3243                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244
3245                qoffset = sb_dev->tc_to_txq[tc].offset;
3246                qcount = sb_dev->tc_to_txq[tc].count;
3247        }
3248
3249        if (skb_rx_queue_recorded(skb)) {
3250                hash = skb_get_rx_queue(skb);
3251                if (hash >= qoffset)
3252                        hash -= qoffset;
3253                while (unlikely(hash >= qcount))
3254                        hash -= qcount;
3255                return hash + qoffset;
3256        }
3257
3258        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259}
3260
3261static void skb_warn_bad_offload(const struct sk_buff *skb)
3262{
3263        static const netdev_features_t null_features;
3264        struct net_device *dev = skb->dev;
3265        const char *name = "";
3266
3267        if (!net_ratelimit())
3268                return;
3269
3270        if (dev) {
3271                if (dev->dev.parent)
3272                        name = dev_driver_string(dev->dev.parent);
3273                else
3274                        name = netdev_name(dev);
3275        }
3276        skb_dump(KERN_WARNING, skb, false);
3277        WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278             name, dev ? &dev->features : &null_features,
3279             skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280}
3281
3282/*
3283 * Invalidate hardware checksum when packet is to be mangled, and
3284 * complete checksum manually on outgoing path.
3285 */
3286int skb_checksum_help(struct sk_buff *skb)
3287{
3288        __wsum csum;
3289        int ret = 0, offset;
3290
3291        if (skb->ip_summed == CHECKSUM_COMPLETE)
3292                goto out_set_summed;
3293
3294        if (unlikely(skb_is_gso(skb))) {
3295                skb_warn_bad_offload(skb);
3296                return -EINVAL;
3297        }
3298
3299        /* Before computing a checksum, we should make sure no frag could
3300         * be modified by an external entity : checksum could be wrong.
3301         */
3302        if (skb_has_shared_frag(skb)) {
3303                ret = __skb_linearize(skb);
3304                if (ret)
3305                        goto out;
3306        }
3307
3308        offset = skb_checksum_start_offset(skb);
3309        BUG_ON(offset >= skb_headlen(skb));
3310        csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311
3312        offset += skb->csum_offset;
3313        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314
3315        ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316        if (ret)
3317                goto out;
3318
3319        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320out_set_summed:
3321        skb->ip_summed = CHECKSUM_NONE;
3322out:
3323        return ret;
3324}
3325EXPORT_SYMBOL(skb_checksum_help);
3326
3327int skb_crc32c_csum_help(struct sk_buff *skb)
3328{
3329        __le32 crc32c_csum;
3330        int ret = 0, offset, start;
3331
3332        if (skb->ip_summed != CHECKSUM_PARTIAL)
3333                goto out;
3334
3335        if (unlikely(skb_is_gso(skb)))
3336                goto out;
3337
3338        /* Before computing a checksum, we should make sure no frag could
3339         * be modified by an external entity : checksum could be wrong.
3340         */
3341        if (unlikely(skb_has_shared_frag(skb))) {
3342                ret = __skb_linearize(skb);
3343                if (ret)
3344                        goto out;
3345        }
3346        start = skb_checksum_start_offset(skb);
3347        offset = start + offsetof(struct sctphdr, checksum);
3348        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349                ret = -EINVAL;
3350                goto out;
3351        }
3352
3353        ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354        if (ret)
3355                goto out;
3356
3357        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358                                                  skb->len - start, ~(__u32)0,
3359                                                  crc32c_csum_stub));
3360        *(__le32 *)(skb->data + offset) = crc32c_csum;
3361        skb->ip_summed = CHECKSUM_NONE;
3362        skb->csum_not_inet = 0;
3363out:
3364        return ret;
3365}
3366
3367__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368{
3369        __be16 type = skb->protocol;
3370
3371        /* Tunnel gso handlers can set protocol to ethernet. */
3372        if (type == htons(ETH_P_TEB)) {
3373                struct ethhdr *eth;
3374
3375                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376                        return 0;
3377
3378                eth = (struct ethhdr *)skb->data;
3379                type = eth->h_proto;
3380        }
3381
3382        return __vlan_get_protocol(skb, type, depth);
3383}
3384
3385/**
3386 *      skb_mac_gso_segment - mac layer segmentation handler.
3387 *      @skb: buffer to segment
3388 *      @features: features for the output path (see dev->features)
3389 */
3390struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391                                    netdev_features_t features)
3392{
3393        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394        struct packet_offload *ptype;
3395        int vlan_depth = skb->mac_len;
3396        __be16 type = skb_network_protocol(skb, &vlan_depth);
3397
3398        if (unlikely(!type))
3399                return ERR_PTR(-EINVAL);
3400
3401        __skb_pull(skb, vlan_depth);
3402
3403        rcu_read_lock();
3404        list_for_each_entry_rcu(ptype, &offload_base, list) {
3405                if (ptype->type == type && ptype->callbacks.gso_segment) {
3406                        segs = ptype->callbacks.gso_segment(skb, features);
3407                        break;
3408                }
3409        }
3410        rcu_read_unlock();
3411
3412        __skb_push(skb, skb->data - skb_mac_header(skb));
3413
3414        return segs;
3415}
3416EXPORT_SYMBOL(skb_mac_gso_segment);
3417
3418
3419/* openvswitch calls this on rx path, so we need a different check.
3420 */
3421static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422{
3423        if (tx_path)
3424                return skb->ip_summed != CHECKSUM_PARTIAL &&
3425                       skb->ip_summed != CHECKSUM_UNNECESSARY;
3426
3427        return skb->ip_summed == CHECKSUM_NONE;
3428}
3429
3430/**
3431 *      __skb_gso_segment - Perform segmentation on skb.
3432 *      @skb: buffer to segment
3433 *      @features: features for the output path (see dev->features)
3434 *      @tx_path: whether it is called in TX path
3435 *
3436 *      This function segments the given skb and returns a list of segments.
3437 *
3438 *      It may return NULL if the skb requires no segmentation.  This is
3439 *      only possible when GSO is used for verifying header integrity.
3440 *
3441 *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442 */
3443struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444                                  netdev_features_t features, bool tx_path)
3445{
3446        struct sk_buff *segs;
3447
3448        if (unlikely(skb_needs_check(skb, tx_path))) {
3449                int err;
3450
3451                /* We're going to init ->check field in TCP or UDP header */
3452                err = skb_cow_head(skb, 0);
3453                if (err < 0)
3454                        return ERR_PTR(err);
3455        }
3456
3457        /* Only report GSO partial support if it will enable us to
3458         * support segmentation on this frame without needing additional
3459         * work.
3460         */
3461        if (features & NETIF_F_GSO_PARTIAL) {
3462                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463                struct net_device *dev = skb->dev;
3464
3465                partial_features |= dev->features & dev->gso_partial_features;
3466                if (!skb_gso_ok(skb, features | partial_features))
3467                        features &= ~NETIF_F_GSO_PARTIAL;
3468        }
3469
3470        BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472
3473        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474        SKB_GSO_CB(skb)->encap_level = 0;
3475
3476        skb_reset_mac_header(skb);
3477        skb_reset_mac_len(skb);
3478
3479        segs = skb_mac_gso_segment(skb, features);
3480
3481        if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482                skb_warn_bad_offload(skb);
3483
3484        return segs;
3485}
3486EXPORT_SYMBOL(__skb_gso_segment);
3487
3488/* Take action when hardware reception checksum errors are detected. */
3489#ifdef CONFIG_BUG
3490void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491{
3492        if (net_ratelimit()) {
3493                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494                skb_dump(KERN_ERR, skb, true);
3495                dump_stack();
3496        }
3497}
3498EXPORT_SYMBOL(netdev_rx_csum_fault);
3499#endif
3500
3501/* XXX: check that highmem exists at all on the given machine. */
3502static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503{
3504#ifdef CONFIG_HIGHMEM
3505        int i;
3506
3507        if (!(dev->features & NETIF_F_HIGHDMA)) {
3508                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510
3511                        if (PageHighMem(skb_frag_page(frag)))
3512                                return 1;
3513                }
3514        }
3515#endif
3516        return 0;
3517}
3518
3519/* If MPLS offload request, verify we are testing hardware MPLS features
3520 * instead of standard features for the netdev.
3521 */
3522#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524                                           netdev_features_t features,
3525                                           __be16 type)
3526{
3527        if (eth_p_mpls(type))
3528                features &= skb->dev->mpls_features;
3529
3530        return features;
3531}
3532#else
3533static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534                                           netdev_features_t features,
3535                                           __be16 type)
3536{
3537        return features;
3538}
3539#endif
3540
3541static netdev_features_t harmonize_features(struct sk_buff *skb,
3542        netdev_features_t features)
3543{
3544        __be16 type;
3545
3546        type = skb_network_protocol(skb, NULL);
3547        features = net_mpls_features(skb, features, type);
3548
3549        if (skb->ip_summed != CHECKSUM_NONE &&
3550            !can_checksum_protocol(features, type)) {
3551                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552        }
3553        if (illegal_highdma(skb->dev, skb))
3554                features &= ~NETIF_F_SG;
3555
3556        return features;
3557}
3558
3559netdev_features_t passthru_features_check(struct sk_buff *skb,
3560                                          struct net_device *dev,
3561                                          netdev_features_t features)
3562{
3563        return features;
3564}
3565EXPORT_SYMBOL(passthru_features_check);
3566
3567static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568                                             struct net_device *dev,
3569                                             netdev_features_t features)
3570{
3571        return vlan_features_check(skb, features);
3572}
3573
3574static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575                                            struct net_device *dev,
3576                                            netdev_features_t features)
3577{
3578        u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579
3580        if (gso_segs > dev->gso_max_segs)
3581                return features & ~NETIF_F_GSO_MASK;
3582
3583        if (!skb_shinfo(skb)->gso_type) {
3584                skb_warn_bad_offload(skb);
3585                return features & ~NETIF_F_GSO_MASK;
3586        }
3587
3588        /* Support for GSO partial features requires software
3589         * intervention before we can actually process the packets
3590         * so we need to strip support for any partial features now
3591         * and we can pull them back in after we have partially
3592         * segmented the frame.
3593         */
3594        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595                features &= ~dev->gso_partial_features;
3596
3597        /* Make sure to clear the IPv4 ID mangling feature if the
3598         * IPv4 header has the potential to be fragmented.
3599         */
3600        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601                struct iphdr *iph = skb->encapsulation ?
3602                                    inner_ip_hdr(skb) : ip_hdr(skb);
3603
3604                if (!(iph->frag_off & htons(IP_DF)))
3605                        features &= ~NETIF_F_TSO_MANGLEID;
3606        }
3607
3608        return features;
3609}
3610
3611netdev_features_t netif_skb_features(struct sk_buff *skb)
3612{
3613        struct net_device *dev = skb->dev;
3614        netdev_features_t features = dev->features;
3615
3616        if (skb_is_gso(skb))
3617                features = gso_features_check(skb, dev, features);
3618
3619        /* If encapsulation offload request, verify we are testing
3620         * hardware encapsulation features instead of standard
3621         * features for the netdev
3622         */
3623        if (skb->encapsulation)
3624                features &= dev->hw_enc_features;
3625
3626        if (skb_vlan_tagged(skb))
3627                features = netdev_intersect_features(features,
3628                                                     dev->vlan_features |
3629                                                     NETIF_F_HW_VLAN_CTAG_TX |
3630                                                     NETIF_F_HW_VLAN_STAG_TX);
3631
3632        if (dev->netdev_ops->ndo_features_check)
3633                features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634                                                                features);
3635        else
3636                features &= dflt_features_check(skb, dev, features);
3637
3638        return harmonize_features(skb, features);
3639}
3640EXPORT_SYMBOL(netif_skb_features);
3641
3642static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643                    struct netdev_queue *txq, bool more)
3644{
3645        unsigned int len;
3646        int rc;
3647
3648        if (dev_nit_active(dev))
3649                dev_queue_xmit_nit(skb, dev);
3650
3651        len = skb->len;
3652        PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653        trace_net_dev_start_xmit(skb, dev);
3654        rc = netdev_start_xmit(skb, dev, txq, more);
3655        trace_net_dev_xmit(skb, rc, dev, len);
3656
3657        return rc;
3658}
3659
3660struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661                                    struct netdev_queue *txq, int *ret)
3662{
3663        struct sk_buff *skb = first;
3664        int rc = NETDEV_TX_OK;
3665
3666        while (skb) {
3667                struct sk_buff *next = skb->next;
3668
3669                skb_mark_not_on_list(skb);
3670                rc = xmit_one(skb, dev, txq, next != NULL);
3671                if (unlikely(!dev_xmit_complete(rc))) {
3672                        skb->next = next;
3673                        goto out;
3674                }
3675
3676                skb = next;
3677                if (netif_tx_queue_stopped(txq) && skb) {
3678                        rc = NETDEV_TX_BUSY;
3679                        break;
3680                }
3681        }
3682
3683out:
3684        *ret = rc;
3685        return skb;
3686}
3687
3688static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689                                          netdev_features_t features)
3690{
3691        if (skb_vlan_tag_present(skb) &&
3692            !vlan_hw_offload_capable(features, skb->vlan_proto))
3693                skb = __vlan_hwaccel_push_inside(skb);
3694        return skb;
3695}
3696
3697int skb_csum_hwoffload_help(struct sk_buff *skb,
3698                            const netdev_features_t features)
3699{
3700        if (unlikely(skb_csum_is_sctp(skb)))
3701                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702                        skb_crc32c_csum_help(skb);
3703
3704        if (features & NETIF_F_HW_CSUM)
3705                return 0;
3706
3707        if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708                switch (skb->csum_offset) {
3709                case offsetof(struct tcphdr, check):
3710                case offsetof(struct udphdr, check):
3711                        return 0;
3712                }
3713        }
3714
3715        return skb_checksum_help(skb);
3716}
3717EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718
3719static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720{
3721        netdev_features_t features;
3722
3723        features = netif_skb_features(skb);
3724        skb = validate_xmit_vlan(skb, features);
3725        if (unlikely(!skb))
3726                goto out_null;
3727
3728        skb = sk_validate_xmit_skb(skb, dev);
3729        if (unlikely(!skb))
3730                goto out_null;
3731
3732        if (netif_needs_gso(skb, features)) {
3733                struct sk_buff *segs;
3734
3735                segs = skb_gso_segment(skb, features);
3736                if (IS_ERR(segs)) {
3737                        goto out_kfree_skb;
3738                } else if (segs) {
3739                        consume_skb(skb);
3740                        skb = segs;
3741                }
3742        } else {
3743                if (skb_needs_linearize(skb, features) &&
3744                    __skb_linearize(skb))
3745                        goto out_kfree_skb;
3746
3747                /* If packet is not checksummed and device does not
3748                 * support checksumming for this protocol, complete
3749                 * checksumming here.
3750                 */
3751                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752                        if (skb->encapsulation)
3753                                skb_set_inner_transport_header(skb,
3754                                                               skb_checksum_start_offset(skb));
3755                        else
3756                                skb_set_transport_header(skb,
3757                                                         skb_checksum_start_offset(skb));
3758                        if (skb_csum_hwoffload_help(skb, features))
3759                                goto out_kfree_skb;
3760                }
3761        }
3762
3763        skb = validate_xmit_xfrm(skb, features, again);
3764
3765        return skb;
3766
3767out_kfree_skb:
3768        kfree_skb(skb);
3769out_null:
3770        atomic_long_inc(&dev->tx_dropped);
3771        return NULL;
3772}
3773
3774struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775{
3776        struct sk_buff *next, *head = NULL, *tail;
3777
3778        for (; skb != NULL; skb = next) {
3779                next = skb->next;
3780                skb_mark_not_on_list(skb);
3781
3782                /* in case skb wont be segmented, point to itself */
3783                skb->prev = skb;
3784
3785                skb = validate_xmit_skb(skb, dev, again);
3786                if (!skb)
3787                        continue;
3788
3789                if (!head)
3790                        head = skb;
3791                else
3792                        tail->next = skb;
3793                /* If skb was segmented, skb->prev points to
3794                 * the last segment. If not, it still contains skb.
3795                 */
3796                tail = skb->prev;
3797        }
3798        return head;
3799}
3800EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801
3802static void qdisc_pkt_len_init(struct sk_buff *skb)
3803{
3804        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805
3806        qdisc_skb_cb(skb)->pkt_len = skb->len;
3807
3808        /* To get more precise estimation of bytes sent on wire,
3809         * we add to pkt_len the headers size of all segments
3810         */
3811        if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812                unsigned int hdr_len;
3813                u16 gso_segs = shinfo->gso_segs;
3814
3815                /* mac layer + network layer */
3816                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817
3818                /* + transport layer */
3819                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820                        const struct tcphdr *th;
3821                        struct tcphdr _tcphdr;
3822
3823                        th = skb_header_pointer(skb, skb_transport_offset(skb),
3824                                                sizeof(_tcphdr), &_tcphdr);
3825                        if (likely(th))
3826                                hdr_len += __tcp_hdrlen(th);
3827                } else {
3828                        struct udphdr _udphdr;
3829
3830                        if (skb_header_pointer(skb, skb_transport_offset(skb),
3831                                               sizeof(_udphdr), &_udphdr))
3832                                hdr_len += sizeof(struct udphdr);
3833                }
3834
3835                if (shinfo->gso_type & SKB_GSO_DODGY)
3836                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837                                                shinfo->gso_size);
3838
3839                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840        }
3841}
3842
3843static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844                                 struct net_device *dev,
3845                                 struct netdev_queue *txq)
3846{
3847        spinlock_t *root_lock = qdisc_lock(q);
3848        struct sk_buff *to_free = NULL;
3849        bool contended;
3850        int rc;
3851
3852        qdisc_calculate_pkt_len(skb, q);
3853
3854        if (q->flags & TCQ_F_NOLOCK) {
3855                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856                if (likely(!netif_xmit_frozen_or_stopped(txq)))
3857                        qdisc_run(q);
3858
3859                if (unlikely(to_free))
3860                        kfree_skb_list(to_free);
3861                return rc;
3862        }
3863
3864        /*
3865         * Heuristic to force contended enqueues to serialize on a
3866         * separate lock before trying to get qdisc main lock.
3867         * This permits qdisc->running owner to get the lock more
3868         * often and dequeue packets faster.
3869         */
3870        contended = qdisc_is_running(q);
3871        if (unlikely(contended))
3872                spin_lock(&q->busylock);
3873
3874        spin_lock(root_lock);
3875        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3876                __qdisc_drop(skb, &to_free);
3877                rc = NET_XMIT_DROP;
3878        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3879                   qdisc_run_begin(q)) {
3880                /*
3881                 * This is a work-conserving queue; there are no old skbs
3882                 * waiting to be sent out; and the qdisc is not running -
3883                 * xmit the skb directly.
3884                 */
3885
3886                qdisc_bstats_update(q, skb);
3887
3888                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3889                        if (unlikely(contended)) {
3890                                spin_unlock(&q->busylock);
3891                                contended = false;
3892                        }
3893                        __qdisc_run(q);
3894                }
3895
3896                qdisc_run_end(q);
3897                rc = NET_XMIT_SUCCESS;
3898        } else {
3899                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3900                if (qdisc_run_begin(q)) {
3901                        if (unlikely(contended)) {
3902                                spin_unlock(&q->busylock);
3903                                contended = false;
3904                        }
3905                        __qdisc_run(q);
3906                        qdisc_run_end(q);
3907                }
3908        }
3909        spin_unlock(root_lock);
3910        if (unlikely(to_free))
3911                kfree_skb_list(to_free);
3912        if (unlikely(contended))
3913                spin_unlock(&q->busylock);
3914        return rc;
3915}
3916
3917#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3918static void skb_update_prio(struct sk_buff *skb)
3919{
3920        const struct netprio_map *map;
3921        const struct sock *sk;
3922        unsigned int prioidx;
3923
3924        if (skb->priority)
3925                return;
3926        map = rcu_dereference_bh(skb->dev->priomap);
3927        if (!map)
3928                return;
3929        sk = skb_to_full_sk(skb);
3930        if (!sk)
3931                return;
3932
3933        prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3934
3935        if (prioidx < map->priomap_len)
3936                skb->priority = map->priomap[prioidx];
3937}
3938#else
3939#define skb_update_prio(skb)
3940#endif
3941
3942/**
3943 *      dev_loopback_xmit - loop back @skb
3944 *      @net: network namespace this loopback is happening in
3945 *      @sk:  sk needed to be a netfilter okfn
3946 *      @skb: buffer to transmit
3947 */
3948int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3949{
3950        skb_reset_mac_header(skb);
3951        __skb_pull(skb, skb_network_offset(skb));
3952        skb->pkt_type = PACKET_LOOPBACK;
3953        skb->ip_summed = CHECKSUM_UNNECESSARY;
3954        WARN_ON(!skb_dst(skb));
3955        skb_dst_force(skb);
3956        netif_rx_ni(skb);
3957        return 0;
3958}
3959EXPORT_SYMBOL(dev_loopback_xmit);
3960
3961#ifdef CONFIG_NET_EGRESS
3962static struct sk_buff *
3963sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3964{
3965        struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3966        struct tcf_result cl_res;
3967
3968        if (!miniq)
3969                return skb;
3970
3971        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3972        qdisc_skb_cb(skb)->mru = 0;
3973        qdisc_skb_cb(skb)->post_ct = false;
3974        mini_qdisc_bstats_cpu_update(miniq, skb);
3975
3976        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3977        case TC_ACT_OK:
3978        case TC_ACT_RECLASSIFY:
3979                skb->tc_index = TC_H_MIN(cl_res.classid);
3980                break;
3981        case TC_ACT_SHOT:
3982                mini_qdisc_qstats_cpu_drop(miniq);
3983                *ret = NET_XMIT_DROP;
3984                kfree_skb(skb);
3985                return NULL;
3986        case TC_ACT_STOLEN:
3987        case TC_ACT_QUEUED:
3988        case TC_ACT_TRAP:
3989                *ret = NET_XMIT_SUCCESS;
3990                consume_skb(skb);
3991                return NULL;
3992        case TC_ACT_REDIRECT:
3993                /* No need to push/pop skb's mac_header here on egress! */
3994                skb_do_redirect(skb);
3995                *ret = NET_XMIT_SUCCESS;
3996                return NULL;
3997        default:
3998                break;
3999        }
4000
4001        return skb;
4002}
4003#endif /* CONFIG_NET_EGRESS */
4004
4005#ifdef CONFIG_XPS
4006static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4007                               struct xps_dev_maps *dev_maps, unsigned int tci)
4008{
4009        int tc = netdev_get_prio_tc_map(dev, skb->priority);
4010        struct xps_map *map;
4011        int queue_index = -1;
4012
4013        if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4014                return queue_index;
4015
4016        tci *= dev_maps->num_tc;
4017        tci += tc;
4018
4019        map = rcu_dereference(dev_maps->attr_map[tci]);
4020        if (map) {
4021                if (map->len == 1)
4022                        queue_index = map->queues[0];
4023                else
4024                        queue_index = map->queues[reciprocal_scale(
4025                                                skb_get_hash(skb), map->len)];
4026                if (unlikely(queue_index >= dev->real_num_tx_queues))
4027                        queue_index = -1;
4028        }
4029        return queue_index;
4030}
4031#endif
4032
4033static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4034                         struct sk_buff *skb)
4035{
4036#ifdef CONFIG_XPS
4037        struct xps_dev_maps *dev_maps;
4038        struct sock *sk = skb->sk;
4039        int queue_index = -1;
4040
4041        if (!static_key_false(&xps_needed))
4042                return -1;
4043
4044        rcu_read_lock();
4045        if (!static_key_false(&xps_rxqs_needed))
4046                goto get_cpus_map;
4047
4048        dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4049        if (dev_maps) {
4050                int tci = sk_rx_queue_get(sk);
4051
4052                if (tci >= 0)
4053                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054                                                          tci);
4055        }
4056
4057get_cpus_map:
4058        if (queue_index < 0) {
4059                dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4060                if (dev_maps) {
4061                        unsigned int tci = skb->sender_cpu - 1;
4062
4063                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4064                                                          tci);
4065                }
4066        }
4067        rcu_read_unlock();
4068
4069        return queue_index;
4070#else
4071        return -1;
4072#endif
4073}
4074
4075u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4076                     struct net_device *sb_dev)
4077{
4078        return 0;
4079}
4080EXPORT_SYMBOL(dev_pick_tx_zero);
4081
4082u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4083                       struct net_device *sb_dev)
4084{
4085        return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4086}
4087EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4088
4089u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4090                     struct net_device *sb_dev)
4091{
4092        struct sock *sk = skb->sk;
4093        int queue_index = sk_tx_queue_get(sk);
4094
4095        sb_dev = sb_dev ? : dev;
4096
4097        if (queue_index < 0 || skb->ooo_okay ||
4098            queue_index >= dev->real_num_tx_queues) {
4099                int new_index = get_xps_queue(dev, sb_dev, skb);
4100
4101                if (new_index < 0)
4102                        new_index = skb_tx_hash(dev, sb_dev, skb);
4103
4104                if (queue_index != new_index && sk &&
4105                    sk_fullsock(sk) &&
4106                    rcu_access_pointer(sk->sk_dst_cache))
4107                        sk_tx_queue_set(sk, new_index);
4108
4109                queue_index = new_index;
4110        }
4111
4112        return queue_index;
4113}
4114EXPORT_SYMBOL(netdev_pick_tx);
4115
4116struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4117                                         struct sk_buff *skb,
4118                                         struct net_device *sb_dev)
4119{
4120        int queue_index = 0;
4121
4122#ifdef CONFIG_XPS
4123        u32 sender_cpu = skb->sender_cpu - 1;
4124
4125        if (sender_cpu >= (u32)NR_CPUS)
4126                skb->sender_cpu = raw_smp_processor_id() + 1;
4127#endif
4128
4129        if (dev->real_num_tx_queues != 1) {
4130                const struct net_device_ops *ops = dev->netdev_ops;
4131
4132                if (ops->ndo_select_queue)
4133                        queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4134                else
4135                        queue_index = netdev_pick_tx(dev, skb, sb_dev);
4136
4137                queue_index = netdev_cap_txqueue(dev, queue_index);
4138        }
4139
4140        skb_set_queue_mapping(skb, queue_index);
4141        return netdev_get_tx_queue(dev, queue_index);
4142}
4143
4144/**
4145 *      __dev_queue_xmit - transmit a buffer
4146 *      @skb: buffer to transmit
4147 *      @sb_dev: suboordinate device used for L2 forwarding offload
4148 *
4149 *      Queue a buffer for transmission to a network device. The caller must
4150 *      have set the device and priority and built the buffer before calling
4151 *      this function. The function can be called from an interrupt.
4152 *
4153 *      A negative errno code is returned on a failure. A success does not
4154 *      guarantee the frame will be transmitted as it may be dropped due
4155 *      to congestion or traffic shaping.
4156 *
4157 * -----------------------------------------------------------------------------------
4158 *      I notice this method can also return errors from the queue disciplines,
4159 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4160 *      be positive.
4161 *
4162 *      Regardless of the return value, the skb is consumed, so it is currently
4163 *      difficult to retry a send to this method.  (You can bump the ref count
4164 *      before sending to hold a reference for retry if you are careful.)
4165 *
4166 *      When calling this method, interrupts MUST be enabled.  This is because
4167 *      the BH enable code must have IRQs enabled so that it will not deadlock.
4168 *          --BLG
4169 */
4170static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4171{
4172        struct net_device *dev = skb->dev;
4173        struct netdev_queue *txq;
4174        struct Qdisc *q;
4175        int rc = -ENOMEM;
4176        bool again = false;
4177
4178        skb_reset_mac_header(skb);
4179
4180        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4181                __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4182
4183        /* Disable soft irqs for various locks below. Also
4184         * stops preemption for RCU.
4185         */
4186        rcu_read_lock_bh();
4187
4188        skb_update_prio(skb);
4189
4190        qdisc_pkt_len_init(skb);
4191#ifdef CONFIG_NET_CLS_ACT
4192        skb->tc_at_ingress = 0;
4193# ifdef CONFIG_NET_EGRESS
4194        if (static_branch_unlikely(&egress_needed_key)) {
4195                skb = sch_handle_egress(skb, &rc, dev);
4196                if (!skb)
4197                        goto out;
4198        }
4199# endif
4200#endif
4201        /* If device/qdisc don't need skb->dst, release it right now while
4202         * its hot in this cpu cache.
4203         */
4204        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4205                skb_dst_drop(skb);
4206        else
4207                skb_dst_force(skb);
4208
4209        txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210        q = rcu_dereference_bh(txq->qdisc);
4211
4212        trace_net_dev_queue(skb);
4213        if (q->enqueue) {
4214                rc = __dev_xmit_skb(skb, q, dev, txq);
4215                goto out;
4216        }
4217
4218        /* The device has no queue. Common case for software devices:
4219         * loopback, all the sorts of tunnels...
4220
4221         * Really, it is unlikely that netif_tx_lock protection is necessary
4222         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4223         * counters.)
4224         * However, it is possible, that they rely on protection
4225         * made by us here.
4226
4227         * Check this and shot the lock. It is not prone from deadlocks.
4228         *Either shot noqueue qdisc, it is even simpler 8)
4229         */
4230        if (dev->flags & IFF_UP) {
4231                int cpu = smp_processor_id(); /* ok because BHs are off */
4232
4233                if (txq->xmit_lock_owner != cpu) {
4234                        if (dev_xmit_recursion())
4235                                goto recursion_alert;
4236
4237                        skb = validate_xmit_skb(skb, dev, &again);
4238                        if (!skb)
4239                                goto out;
4240
4241                        PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4242                        HARD_TX_LOCK(dev, txq, cpu);
4243
4244                        if (!netif_xmit_stopped(txq)) {
4245                                dev_xmit_recursion_inc();
4246                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247                                dev_xmit_recursion_dec();
4248                                if (dev_xmit_complete(rc)) {
4249                                        HARD_TX_UNLOCK(dev, txq);
4250                                        goto out;
4251                                }
4252                        }
4253                        HARD_TX_UNLOCK(dev, txq);
4254                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255                                             dev->name);
4256                } else {
4257                        /* Recursion is detected! It is possible,
4258                         * unfortunately
4259                         */
4260recursion_alert:
4261                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262                                             dev->name);
4263                }
4264        }
4265
4266        rc = -ENETDOWN;
4267        rcu_read_unlock_bh();
4268
4269        atomic_long_inc(&dev->tx_dropped);
4270        kfree_skb_list(skb);
4271        return rc;
4272out:
4273        rcu_read_unlock_bh();
4274        return rc;
4275}
4276
4277int dev_queue_xmit(struct sk_buff *skb)
4278{
4279        return __dev_queue_xmit(skb, NULL);
4280}
4281EXPORT_SYMBOL(dev_queue_xmit);
4282
4283int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4284{
4285        return __dev_queue_xmit(skb, sb_dev);
4286}
4287EXPORT_SYMBOL(dev_queue_xmit_accel);
4288
4289int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4290{
4291        struct net_device *dev = skb->dev;
4292        struct sk_buff *orig_skb = skb;
4293        struct netdev_queue *txq;
4294        int ret = NETDEV_TX_BUSY;
4295        bool again = false;
4296
4297        if (unlikely(!netif_running(dev) ||
4298                     !netif_carrier_ok(dev)))
4299                goto drop;
4300
4301        skb = validate_xmit_skb_list(skb, dev, &again);
4302        if (skb != orig_skb)
4303                goto drop;
4304
4305        skb_set_queue_mapping(skb, queue_id);
4306        txq = skb_get_tx_queue(dev, skb);
4307        PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4308
4309        local_bh_disable();
4310
4311        dev_xmit_recursion_inc();
4312        HARD_TX_LOCK(dev, txq, smp_processor_id());
4313        if (!netif_xmit_frozen_or_drv_stopped(txq))
4314                ret = netdev_start_xmit(skb, dev, txq, false);
4315        HARD_TX_UNLOCK(dev, txq);
4316        dev_xmit_recursion_dec();
4317
4318        local_bh_enable();
4319        return ret;
4320drop:
4321        atomic_long_inc(&dev->tx_dropped);
4322        kfree_skb_list(skb);
4323        return NET_XMIT_DROP;
4324}
4325EXPORT_SYMBOL(__dev_direct_xmit);
4326
4327/*************************************************************************
4328 *                      Receiver routines
4329 *************************************************************************/
4330
4331int netdev_max_backlog __read_mostly = 1000;
4332EXPORT_SYMBOL(netdev_max_backlog);
4333
4334int netdev_tstamp_prequeue __read_mostly = 1;
4335int netdev_budget __read_mostly = 300;
4336/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4337unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4338int weight_p __read_mostly = 64;           /* old backlog weight */
4339int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4340int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4341int dev_rx_weight __read_mostly = 64;
4342int dev_tx_weight __read_mostly = 64;
4343/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4344int gro_normal_batch __read_mostly = 8;
4345
4346/* Called with irq disabled */
4347static inline void ____napi_schedule(struct softnet_data *sd,
4348                                     struct napi_struct *napi)
4349{
4350        struct task_struct *thread;
4351
4352        if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4353                /* Paired with smp_mb__before_atomic() in
4354                 * napi_enable()/dev_set_threaded().
4355                 * Use READ_ONCE() to guarantee a complete
4356                 * read on napi->thread. Only call
4357                 * wake_up_process() when it's not NULL.
4358                 */
4359                thread = READ_ONCE(napi->thread);
4360                if (thread) {
4361                        /* Avoid doing set_bit() if the thread is in
4362                         * INTERRUPTIBLE state, cause napi_thread_wait()
4363                         * makes sure to proceed with napi polling
4364                         * if the thread is explicitly woken from here.
4365                         */
4366                        if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4367                                set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4368                        wake_up_process(thread);
4369                        return;
4370                }
4371        }
4372
4373        list_add_tail(&napi->poll_list, &sd->poll_list);
4374        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4375}
4376
4377#ifdef CONFIG_RPS
4378
4379/* One global table that all flow-based protocols share. */
4380struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4381EXPORT_SYMBOL(rps_sock_flow_table);
4382u32 rps_cpu_mask __read_mostly;
4383EXPORT_SYMBOL(rps_cpu_mask);
4384
4385struct static_key_false rps_needed __read_mostly;
4386EXPORT_SYMBOL(rps_needed);
4387struct static_key_false rfs_needed __read_mostly;
4388EXPORT_SYMBOL(rfs_needed);
4389
4390static struct rps_dev_flow *
4391set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4392            struct rps_dev_flow *rflow, u16 next_cpu)
4393{
4394        if (next_cpu < nr_cpu_ids) {
4395#ifdef CONFIG_RFS_ACCEL
4396                struct netdev_rx_queue *rxqueue;
4397                struct rps_dev_flow_table *flow_table;
4398                struct rps_dev_flow *old_rflow;
4399                u32 flow_id;
4400                u16 rxq_index;
4401                int rc;
4402
4403                /* Should we steer this flow to a different hardware queue? */
4404                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4405                    !(dev->features & NETIF_F_NTUPLE))
4406                        goto out;
4407                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4408                if (rxq_index == skb_get_rx_queue(skb))
4409                        goto out;
4410
4411                rxqueue = dev->_rx + rxq_index;
4412                flow_table = rcu_dereference(rxqueue->rps_flow_table);
4413                if (!flow_table)
4414                        goto out;
4415                flow_id = skb_get_hash(skb) & flow_table->mask;
4416                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4417                                                        rxq_index, flow_id);
4418                if (rc < 0)
4419                        goto out;
4420                old_rflow = rflow;
4421                rflow = &flow_table->flows[flow_id];
4422                rflow->filter = rc;
4423                if (old_rflow->filter == rflow->filter)
4424                        old_rflow->filter = RPS_NO_FILTER;
4425        out:
4426#endif
4427                rflow->last_qtail =
4428                        per_cpu(softnet_data, next_cpu).input_queue_head;
4429        }
4430
4431        rflow->cpu = next_cpu;
4432        return rflow;
4433}
4434
4435/*
4436 * get_rps_cpu is called from netif_receive_skb and returns the target
4437 * CPU from the RPS map of the receiving queue for a given skb.
4438 * rcu_read_lock must be held on entry.
4439 */
4440static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4441                       struct rps_dev_flow **rflowp)
4442{
4443        const struct rps_sock_flow_table *sock_flow_table;
4444        struct netdev_rx_queue *rxqueue = dev->_rx;
4445        struct rps_dev_flow_table *flow_table;
4446        struct rps_map *map;
4447        int cpu = -1;
4448        u32 tcpu;
4449        u32 hash;
4450
4451        if (skb_rx_queue_recorded(skb)) {
4452                u16 index = skb_get_rx_queue(skb);
4453
4454                if (unlikely(index >= dev->real_num_rx_queues)) {
4455                        WARN_ONCE(dev->real_num_rx_queues > 1,
4456                                  "%s received packet on queue %u, but number "
4457                                  "of RX queues is %u\n",
4458                                  dev->name, index, dev->real_num_rx_queues);
4459                        goto done;
4460                }
4461                rxqueue += index;
4462        }
4463
4464        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4465
4466        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4467        map = rcu_dereference(rxqueue->rps_map);
4468        if (!flow_table && !map)
4469                goto done;
4470
4471        skb_reset_network_header(skb);
4472        hash = skb_get_hash(skb);
4473        if (!hash)
4474                goto done;
4475
4476        sock_flow_table = rcu_dereference(rps_sock_flow_table);
4477        if (flow_table && sock_flow_table) {
4478                struct rps_dev_flow *rflow;
4479                u32 next_cpu;
4480                u32 ident;
4481
4482                /* First check into global flow table if there is a match */
4483                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4484                if ((ident ^ hash) & ~rps_cpu_mask)
4485                        goto try_rps;
4486
4487                next_cpu = ident & rps_cpu_mask;
4488
4489                /* OK, now we know there is a match,
4490                 * we can look at the local (per receive queue) flow table
4491                 */
4492                rflow = &flow_table->flows[hash & flow_table->mask];
4493                tcpu = rflow->cpu;
4494
4495                /*
4496                 * If the desired CPU (where last recvmsg was done) is
4497                 * different from current CPU (one in the rx-queue flow
4498                 * table entry), switch if one of the following holds:
4499                 *   - Current CPU is unset (>= nr_cpu_ids).
4500                 *   - Current CPU is offline.
4501                 *   - The current CPU's queue tail has advanced beyond the
4502                 *     last packet that was enqueued using this table entry.
4503                 *     This guarantees that all previous packets for the flow
4504                 *     have been dequeued, thus preserving in order delivery.
4505                 */
4506                if (unlikely(tcpu != next_cpu) &&
4507                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4508                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4509                      rflow->last_qtail)) >= 0)) {
4510                        tcpu = next_cpu;
4511                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4512                }
4513
4514                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4515                        *rflowp = rflow;
4516                        cpu = tcpu;
4517                        goto done;
4518                }
4519        }
4520
4521try_rps:
4522
4523        if (map) {
4524                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4525                if (cpu_online(tcpu)) {
4526                        cpu = tcpu;
4527                        goto done;
4528                }
4529        }
4530
4531done:
4532        return cpu;
4533}
4534
4535#ifdef CONFIG_RFS_ACCEL
4536
4537/**
4538 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4539 * @dev: Device on which the filter was set
4540 * @rxq_index: RX queue index
4541 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4542 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4543 *
4544 * Drivers that implement ndo_rx_flow_steer() should periodically call
4545 * this function for each installed filter and remove the filters for
4546 * which it returns %true.
4547 */
4548bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4549                         u32 flow_id, u16 filter_id)
4550{
4551        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4552        struct rps_dev_flow_table *flow_table;
4553        struct rps_dev_flow *rflow;
4554        bool expire = true;
4555        unsigned int cpu;
4556
4557        rcu_read_lock();
4558        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559        if (flow_table && flow_id <= flow_table->mask) {
4560                rflow = &flow_table->flows[flow_id];
4561                cpu = READ_ONCE(rflow->cpu);
4562                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4563                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4564                           rflow->last_qtail) <
4565                     (int)(10 * flow_table->mask)))
4566                        expire = false;
4567        }
4568        rcu_read_unlock();
4569        return expire;
4570}
4571EXPORT_SYMBOL(rps_may_expire_flow);
4572
4573#endif /* CONFIG_RFS_ACCEL */
4574
4575/* Called from hardirq (IPI) context */
4576static void rps_trigger_softirq(void *data)
4577{
4578        struct softnet_data *sd = data;
4579
4580        ____napi_schedule(sd, &sd->backlog);
4581        sd->received_rps++;
4582}
4583
4584#endif /* CONFIG_RPS */
4585
4586/*
4587 * Check if this softnet_data structure is another cpu one
4588 * If yes, queue it to our IPI list and return 1
4589 * If no, return 0
4590 */
4591static int rps_ipi_queued(struct softnet_data *sd)
4592{
4593#ifdef CONFIG_RPS
4594        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4595
4596        if (sd != mysd) {
4597                sd->rps_ipi_next = mysd->rps_ipi_list;
4598                mysd->rps_ipi_list = sd;
4599
4600                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4601                return 1;
4602        }
4603#endif /* CONFIG_RPS */
4604        return 0;
4605}
4606
4607#ifdef CONFIG_NET_FLOW_LIMIT
4608int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4609#endif
4610
4611static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4612{
4613#ifdef CONFIG_NET_FLOW_LIMIT
4614        struct sd_flow_limit *fl;
4615        struct softnet_data *sd;
4616        unsigned int old_flow, new_flow;
4617
4618        if (qlen < (netdev_max_backlog >> 1))
4619                return false;
4620
4621        sd = this_cpu_ptr(&softnet_data);
4622
4623        rcu_read_lock();
4624        fl = rcu_dereference(sd->flow_limit);
4625        if (fl) {
4626                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627                old_flow = fl->history[fl->history_head];
4628                fl->history[fl->history_head] = new_flow;
4629
4630                fl->history_head++;
4631                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4632
4633                if (likely(fl->buckets[old_flow]))
4634                        fl->buckets[old_flow]--;
4635
4636                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4637                        fl->count++;
4638                        rcu_read_unlock();
4639                        return true;
4640                }
4641        }
4642        rcu_read_unlock();
4643#endif
4644        return false;
4645}
4646
4647/*
4648 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649 * queue (may be a remote CPU queue).
4650 */
4651static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652                              unsigned int *qtail)
4653{
4654        struct softnet_data *sd;
4655        unsigned long flags;
4656        unsigned int qlen;
4657
4658        sd = &per_cpu(softnet_data, cpu);
4659
4660        local_irq_save(flags);
4661
4662        rps_lock(sd);
4663        if (!netif_running(skb->dev))
4664                goto drop;
4665        qlen = skb_queue_len(&sd->input_pkt_queue);
4666        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4667                if (qlen) {
4668enqueue:
4669                        __skb_queue_tail(&sd->input_pkt_queue, skb);
4670                        input_queue_tail_incr_save(sd, qtail);
4671                        rps_unlock(sd);
4672                        local_irq_restore(flags);
4673                        return NET_RX_SUCCESS;
4674                }
4675
4676                /* Schedule NAPI for backlog device
4677                 * We can use non atomic operation since we own the queue lock
4678                 */
4679                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4680                        if (!rps_ipi_queued(sd))
4681                                ____napi_schedule(sd, &sd->backlog);
4682                }
4683                goto enqueue;
4684        }
4685
4686drop:
4687        sd->dropped++;
4688        rps_unlock(sd);
4689
4690        local_irq_restore(flags);
4691
4692        atomic_long_inc(&skb->dev->rx_dropped);
4693        kfree_skb(skb);
4694        return NET_RX_DROP;
4695}
4696
4697static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4698{
4699        struct net_device *dev = skb->dev;
4700        struct netdev_rx_queue *rxqueue;
4701
4702        rxqueue = dev->_rx;
4703
4704        if (skb_rx_queue_recorded(skb)) {
4705                u16 index = skb_get_rx_queue(skb);
4706
4707                if (unlikely(index >= dev->real_num_rx_queues)) {
4708                        WARN_ONCE(dev->real_num_rx_queues > 1,
4709                                  "%s received packet on queue %u, but number "
4710                                  "of RX queues is %u\n",
4711                                  dev->name, index, dev->real_num_rx_queues);
4712
4713                        return rxqueue; /* Return first rxqueue */
4714                }
4715                rxqueue += index;
4716        }
4717        return rxqueue;
4718}
4719
4720static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4721                                     struct xdp_buff *xdp,
4722                                     struct bpf_prog *xdp_prog)
4723{
4724        void *orig_data, *orig_data_end, *hard_start;
4725        struct netdev_rx_queue *rxqueue;
4726        u32 metalen, act = XDP_DROP;
4727        bool orig_bcast, orig_host;
4728        u32 mac_len, frame_sz;
4729        __be16 orig_eth_type;
4730        struct ethhdr *eth;
4731        int off;
4732
4733        /* Reinjected packets coming from act_mirred or similar should
4734         * not get XDP generic processing.
4735         */
4736        if (skb_is_redirected(skb))
4737                return XDP_PASS;
4738
4739        /* XDP packets must be linear and must have sufficient headroom
4740         * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4741         * native XDP provides, thus we need to do it here as well.
4742         */
4743        if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4744            skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4745                int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4746                int troom = skb->tail + skb->data_len - skb->end;
4747
4748                /* In case we have to go down the path and also linearize,
4749                 * then lets do the pskb_expand_head() work just once here.
4750                 */
4751                if (pskb_expand_head(skb,
4752                                     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4753                                     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4754                        goto do_drop;
4755                if (skb_linearize(skb))
4756                        goto do_drop;
4757        }
4758
4759        /* The XDP program wants to see the packet starting at the MAC
4760         * header.
4761         */
4762        mac_len = skb->data - skb_mac_header(skb);
4763        hard_start = skb->data - skb_headroom(skb);
4764
4765        /* SKB "head" area always have tailroom for skb_shared_info */
4766        frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4767        frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4768
4769        rxqueue = netif_get_rxqueue(skb);
4770        xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4771        xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4772                         skb_headlen(skb) + mac_len, true);
4773
4774        orig_data_end = xdp->data_end;
4775        orig_data = xdp->data;
4776        eth = (struct ethhdr *)xdp->data;
4777        orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4778        orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4779        orig_eth_type = eth->h_proto;
4780
4781        act = bpf_prog_run_xdp(xdp_prog, xdp);
4782
4783        /* check if bpf_xdp_adjust_head was used */
4784        off = xdp->data - orig_data;
4785        if (off) {
4786                if (off > 0)
4787                        __skb_pull(skb, off);
4788                else if (off < 0)
4789                        __skb_push(skb, -off);
4790
4791                skb->mac_header += off;
4792                skb_reset_network_header(skb);
4793        }
4794
4795        /* check if bpf_xdp_adjust_tail was used */
4796        off = xdp->data_end - orig_data_end;
4797        if (off != 0) {
4798                skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4799                skb->len += off; /* positive on grow, negative on shrink */
4800        }
4801
4802        /* check if XDP changed eth hdr such SKB needs update */
4803        eth = (struct ethhdr *)xdp->data;
4804        if ((orig_eth_type != eth->h_proto) ||
4805            (orig_host != ether_addr_equal_64bits(eth->h_dest,
4806                                                  skb->dev->dev_addr)) ||
4807            (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4808                __skb_push(skb, ETH_HLEN);
4809                skb->pkt_type = PACKET_HOST;
4810                skb->protocol = eth_type_trans(skb, skb->dev);
4811        }
4812
4813        switch (act) {
4814        case XDP_REDIRECT:
4815        case XDP_TX:
4816                __skb_push(skb, mac_len);
4817                break;
4818        case XDP_PASS:
4819                metalen = xdp->data - xdp->data_meta;
4820                if (metalen)
4821                        skb_metadata_set(skb, metalen);
4822                break;
4823        default:
4824                bpf_warn_invalid_xdp_action(act);
4825                fallthrough;
4826        case XDP_ABORTED:
4827                trace_xdp_exception(skb->dev, xdp_prog, act);
4828                fallthrough;
4829        case XDP_DROP:
4830        do_drop:
4831                kfree_skb(skb);
4832                break;
4833        }
4834
4835        return act;
4836}
4837
4838/* When doing generic XDP we have to bypass the qdisc layer and the
4839 * network taps in order to match in-driver-XDP behavior.
4840 */
4841void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4842{
4843        struct net_device *dev = skb->dev;
4844        struct netdev_queue *txq;
4845        bool free_skb = true;
4846        int cpu, rc;
4847
4848        txq = netdev_core_pick_tx(dev, skb, NULL);
4849        cpu = smp_processor_id();
4850        HARD_TX_LOCK(dev, txq, cpu);
4851        if (!netif_xmit_stopped(txq)) {
4852                rc = netdev_start_xmit(skb, dev, txq, 0);
4853                if (dev_xmit_complete(rc))
4854                        free_skb = false;
4855        }
4856        HARD_TX_UNLOCK(dev, txq);
4857        if (free_skb) {
4858                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4859                kfree_skb(skb);
4860        }
4861}
4862
4863static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4864
4865int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4866{
4867        if (xdp_prog) {
4868                struct xdp_buff xdp;
4869                u32 act;
4870                int err;
4871
4872                act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4873                if (act != XDP_PASS) {
4874                        switch (act) {
4875                        case XDP_REDIRECT:
4876                                err = xdp_do_generic_redirect(skb->dev, skb,
4877                                                              &xdp, xdp_prog);
4878                                if (err)
4879                                        goto out_redir;
4880                                break;
4881                        case XDP_TX:
4882                                generic_xdp_tx(skb, xdp_prog);
4883                                break;
4884                        }
4885                        return XDP_DROP;
4886                }
4887        }
4888        return XDP_PASS;
4889out_redir:
4890        kfree_skb(skb);
4891        return XDP_DROP;
4892}
4893EXPORT_SYMBOL_GPL(do_xdp_generic);
4894
4895static int netif_rx_internal(struct sk_buff *skb)
4896{
4897        int ret;
4898
4899        net_timestamp_check(netdev_tstamp_prequeue, skb);
4900
4901        trace_netif_rx(skb);
4902
4903#ifdef CONFIG_RPS
4904        if (static_branch_unlikely(&rps_needed)) {
4905                struct rps_dev_flow voidflow, *rflow = &voidflow;
4906                int cpu;
4907
4908                preempt_disable();
4909                rcu_read_lock();
4910
4911                cpu = get_rps_cpu(skb->dev, skb, &rflow);
4912                if (cpu < 0)
4913                        cpu = smp_processor_id();
4914
4915                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4916
4917                rcu_read_unlock();
4918                preempt_enable();
4919        } else
4920#endif
4921        {
4922                unsigned int qtail;
4923
4924                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4925                put_cpu();
4926        }
4927        return ret;
4928}
4929
4930/**
4931 *      netif_rx        -       post buffer to the network code
4932 *      @skb: buffer to post
4933 *
4934 *      This function receives a packet from a device driver and queues it for
4935 *      the upper (protocol) levels to process.  It always succeeds. The buffer
4936 *      may be dropped during processing for congestion control or by the
4937 *      protocol layers.
4938 *
4939 *      return values:
4940 *      NET_RX_SUCCESS  (no congestion)
4941 *      NET_RX_DROP     (packet was dropped)
4942 *
4943 */
4944
4945int netif_rx(struct sk_buff *skb)
4946{
4947        int ret;
4948
4949        trace_netif_rx_entry(skb);
4950
4951        ret = netif_rx_internal(skb);
4952        trace_netif_rx_exit(ret);
4953
4954        return ret;
4955}
4956EXPORT_SYMBOL(netif_rx);
4957
4958int netif_rx_ni(struct sk_buff *skb)
4959{
4960        int err;
4961
4962        trace_netif_rx_ni_entry(skb);
4963
4964        preempt_disable();
4965        err = netif_rx_internal(skb);
4966        if (local_softirq_pending())
4967                do_softirq();
4968        preempt_enable();
4969        trace_netif_rx_ni_exit(err);
4970
4971        return err;
4972}
4973EXPORT_SYMBOL(netif_rx_ni);
4974
4975int netif_rx_any_context(struct sk_buff *skb)
4976{
4977        /*
4978         * If invoked from contexts which do not invoke bottom half
4979         * processing either at return from interrupt or when softrqs are
4980         * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4981         * directly.
4982         */
4983        if (in_interrupt())
4984                return netif_rx(skb);
4985        else
4986                return netif_rx_ni(skb);
4987}
4988EXPORT_SYMBOL(netif_rx_any_context);
4989
4990static __latent_entropy void net_tx_action(struct softirq_action *h)
4991{
4992        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4993
4994        if (sd->completion_queue) {
4995                struct sk_buff *clist;
4996
4997                local_irq_disable();
4998                clist = sd->completion_queue;
4999                sd->completion_queue = NULL;
5000                local_irq_enable();
5001
5002                while (clist) {
5003                        struct sk_buff *skb = clist;
5004
5005                        clist = clist->next;
5006
5007                        WARN_ON(refcount_read(&skb->users));
5008                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5009                                trace_consume_skb(skb);
5010                        else
5011                                trace_kfree_skb(skb, net_tx_action);
5012
5013                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5014                                __kfree_skb(skb);
5015                        else
5016                                __kfree_skb_defer(skb);
5017                }
5018        }
5019
5020        if (sd->output_queue) {
5021                struct Qdisc *head;
5022
5023                local_irq_disable();
5024                head = sd->output_queue;
5025                sd->output_queue = NULL;
5026                sd->output_queue_tailp = &sd->output_queue;
5027                local_irq_enable();
5028
5029                rcu_read_lock();
5030
5031                while (head) {
5032                        struct Qdisc *q = head;
5033                        spinlock_t *root_lock = NULL;
5034
5035                        head = head->next_sched;
5036
5037                        /* We need to make sure head->next_sched is read
5038                         * before clearing __QDISC_STATE_SCHED
5039                         */
5040                        smp_mb__before_atomic();
5041
5042                        if (!(q->flags & TCQ_F_NOLOCK)) {
5043                                root_lock = qdisc_lock(q);
5044                                spin_lock(root_lock);
5045                        } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5046                                                     &q->state))) {
5047                                /* There is a synchronize_net() between
5048                                 * STATE_DEACTIVATED flag being set and
5049                                 * qdisc_reset()/some_qdisc_is_busy() in
5050                                 * dev_deactivate(), so we can safely bail out
5051                                 * early here to avoid data race between
5052                                 * qdisc_deactivate() and some_qdisc_is_busy()
5053                                 * for lockless qdisc.
5054                                 */
5055                                clear_bit(__QDISC_STATE_SCHED, &q->state);
5056                                continue;
5057                        }
5058
5059                        clear_bit(__QDISC_STATE_SCHED, &q->state);
5060                        qdisc_run(q);
5061                        if (root_lock)
5062                                spin_unlock(root_lock);
5063                }
5064
5065                rcu_read_unlock();
5066        }
5067
5068        xfrm_dev_backlog(sd);
5069}
5070
5071#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5072/* This hook is defined here for ATM LANE */
5073int (*br_fdb_test_addr_hook)(struct net_device *dev,
5074                             unsigned char *addr) __read_mostly;
5075EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5076#endif
5077
5078static inline struct sk_buff *
5079sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5080                   struct net_device *orig_dev, bool *another)
5081{
5082#ifdef CONFIG_NET_CLS_ACT
5083        struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5084        struct tcf_result cl_res;
5085
5086        /* If there's at least one ingress present somewhere (so
5087         * we get here via enabled static key), remaining devices
5088         * that are not configured with an ingress qdisc will bail
5089         * out here.
5090         */
5091        if (!miniq)
5092                return skb;
5093
5094        if (*pt_prev) {
5095                *ret = deliver_skb(skb, *pt_prev, orig_dev);
5096                *pt_prev = NULL;
5097        }
5098
5099        qdisc_skb_cb(skb)->pkt_len = skb->len;
5100        qdisc_skb_cb(skb)->mru = 0;
5101        qdisc_skb_cb(skb)->post_ct = false;
5102        skb->tc_at_ingress = 1;
5103        mini_qdisc_bstats_cpu_update(miniq, skb);
5104
5105        switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5106                                     &cl_res, false)) {
5107        case TC_ACT_OK:
5108        case TC_ACT_RECLASSIFY:
5109                skb->tc_index = TC_H_MIN(cl_res.classid);
5110                break;
5111        case TC_ACT_SHOT:
5112                mini_qdisc_qstats_cpu_drop(miniq);
5113                kfree_skb(skb);
5114                return NULL;
5115        case TC_ACT_STOLEN:
5116        case TC_ACT_QUEUED:
5117        case TC_ACT_TRAP:
5118                consume_skb(skb);
5119                return NULL;
5120        case TC_ACT_REDIRECT:
5121                /* skb_mac_header check was done by cls/act_bpf, so
5122                 * we can safely push the L2 header back before
5123                 * redirecting to another netdev
5124                 */
5125                __skb_push(skb, skb->mac_len);
5126                if (skb_do_redirect(skb) == -EAGAIN) {
5127                        __skb_pull(skb, skb->mac_len);
5128                        *another = true;
5129                        break;
5130                }
5131                return NULL;
5132        case TC_ACT_CONSUMED:
5133                return NULL;
5134        default:
5135                break;
5136        }
5137#endif /* CONFIG_NET_CLS_ACT */
5138        return skb;
5139}
5140
5141/**
5142 *      netdev_is_rx_handler_busy - check if receive handler is registered
5143 *      @dev: device to check
5144 *
5145 *      Check if a receive handler is already registered for a given device.
5146 *      Return true if there one.
5147 *
5148 *      The caller must hold the rtnl_mutex.
5149 */
5150bool netdev_is_rx_handler_busy(struct net_device *dev)
5151{
5152        ASSERT_RTNL();
5153        return dev && rtnl_dereference(dev->rx_handler);
5154}
5155EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5156
5157/**
5158 *      netdev_rx_handler_register - register receive handler
5159 *      @dev: device to register a handler for
5160 *      @rx_handler: receive handler to register
5161 *      @rx_handler_data: data pointer that is used by rx handler
5162 *
5163 *      Register a receive handler for a device. This handler will then be
5164 *      called from __netif_receive_skb. A negative errno code is returned
5165 *      on a failure.
5166 *
5167 *      The caller must hold the rtnl_mutex.
5168 *
5169 *      For a general description of rx_handler, see enum rx_handler_result.
5170 */
5171int netdev_rx_handler_register(struct net_device *dev,
5172                               rx_handler_func_t *rx_handler,
5173                               void *rx_handler_data)
5174{
5175        if (netdev_is_rx_handler_busy(dev))
5176                return -EBUSY;
5177
5178        if (dev->priv_flags & IFF_NO_RX_HANDLER)
5179                return -EINVAL;
5180
5181        /* Note: rx_handler_data must be set before rx_handler */
5182        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5183        rcu_assign_pointer(dev->rx_handler, rx_handler);
5184
5185        return 0;
5186}
5187EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5188
5189/**
5190 *      netdev_rx_handler_unregister - unregister receive handler
5191 *      @dev: device to unregister a handler from
5192 *
5193 *      Unregister a receive handler from a device.
5194 *
5195 *      The caller must hold the rtnl_mutex.
5196 */
5197void netdev_rx_handler_unregister(struct net_device *dev)
5198{
5199
5200        ASSERT_RTNL();
5201        RCU_INIT_POINTER(dev->rx_handler, NULL);
5202        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5203         * section has a guarantee to see a non NULL rx_handler_data
5204         * as well.
5205         */
5206        synchronize_net();
5207        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5208}
5209EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5210
5211/*
5212 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5213 * the special handling of PFMEMALLOC skbs.
5214 */
5215static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5216{
5217        switch (skb->protocol) {
5218        case htons(ETH_P_ARP):
5219        case htons(ETH_P_IP):
5220        case htons(ETH_P_IPV6):
5221        case htons(ETH_P_8021Q):
5222        case htons(ETH_P_8021AD):
5223                return true;
5224        default:
5225                return false;
5226        }
5227}
5228
5229static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5230                             int *ret, struct net_device *orig_dev)
5231{
5232        if (nf_hook_ingress_active(skb)) {
5233                int ingress_retval;
5234
5235                if (*pt_prev) {
5236                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
5237                        *pt_prev = NULL;
5238                }
5239
5240                rcu_read_lock();
5241                ingress_retval = nf_hook_ingress(skb);
5242                rcu_read_unlock();
5243                return ingress_retval;
5244        }
5245        return 0;
5246}
5247
5248static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5249                                    struct packet_type **ppt_prev)
5250{
5251        struct packet_type *ptype, *pt_prev;
5252        rx_handler_func_t *rx_handler;
5253        struct sk_buff *skb = *pskb;
5254        struct net_device *orig_dev;
5255        bool deliver_exact = false;
5256        int ret = NET_RX_DROP;
5257        __be16 type;
5258
5259        net_timestamp_check(!netdev_tstamp_prequeue, skb);
5260
5261        trace_netif_receive_skb(skb);
5262
5263        orig_dev = skb->dev;
5264
5265        skb_reset_network_header(skb);
5266        if (!skb_transport_header_was_set(skb))
5267                skb_reset_transport_header(skb);
5268        skb_reset_mac_len(skb);
5269
5270        pt_prev = NULL;
5271
5272another_round:
5273        skb->skb_iif = skb->dev->ifindex;
5274
5275        __this_cpu_inc(softnet_data.processed);
5276
5277        if (static_branch_unlikely(&generic_xdp_needed_key)) {
5278                int ret2;
5279
5280                preempt_disable();
5281                ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5282                preempt_enable();
5283
5284                if (ret2 != XDP_PASS) {
5285                        ret = NET_RX_DROP;
5286                        goto out;
5287                }
5288                skb_reset_mac_len(skb);
5289        }
5290
5291        if (eth_type_vlan(skb->protocol)) {
5292                skb = skb_vlan_untag(skb);
5293                if (unlikely(!skb))
5294                        goto out;
5295        }
5296
5297        if (skb_skip_tc_classify(skb))
5298                goto skip_classify;
5299
5300        if (pfmemalloc)
5301                goto skip_taps;
5302
5303        list_for_each_entry_rcu(ptype, &ptype_all, list) {
5304                if (pt_prev)
5305                        ret = deliver_skb(skb, pt_prev, orig_dev);
5306                pt_prev = ptype;
5307        }
5308
5309        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5310                if (pt_prev)
5311                        ret = deliver_skb(skb, pt_prev, orig_dev);
5312                pt_prev = ptype;
5313        }
5314
5315skip_taps:
5316#ifdef CONFIG_NET_INGRESS
5317        if (static_branch_unlikely(&ingress_needed_key)) {
5318                bool another = false;
5319
5320                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5321                                         &another);
5322                if (another)
5323                        goto another_round;
5324                if (!skb)
5325                        goto out;
5326
5327                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5328                        goto out;
5329        }
5330#endif
5331        skb_reset_redirect(skb);
5332skip_classify:
5333        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5334                goto drop;
5335
5336        if (skb_vlan_tag_present(skb)) {
5337                if (pt_prev) {
5338                        ret = deliver_skb(skb, pt_prev, orig_dev);
5339                        pt_prev = NULL;
5340                }
5341                if (vlan_do_receive(&skb))
5342                        goto another_round;
5343                else if (unlikely(!skb))
5344                        goto out;
5345        }
5346
5347        rx_handler = rcu_dereference(skb->dev->rx_handler);
5348        if (rx_handler) {
5349                if (pt_prev) {
5350                        ret = deliver_skb(skb, pt_prev, orig_dev);
5351                        pt_prev = NULL;
5352                }
5353                switch (rx_handler(&skb)) {
5354                case RX_HANDLER_CONSUMED:
5355                        ret = NET_RX_SUCCESS;
5356                        goto out;
5357                case RX_HANDLER_ANOTHER:
5358                        goto another_round;
5359                case RX_HANDLER_EXACT:
5360                        deliver_exact = true;
5361                        break;
5362                case RX_HANDLER_PASS:
5363                        break;
5364                default:
5365                        BUG();
5366                }
5367        }
5368
5369        if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5370check_vlan_id:
5371                if (skb_vlan_tag_get_id(skb)) {
5372                        /* Vlan id is non 0 and vlan_do_receive() above couldn't
5373                         * find vlan device.
5374                         */
5375                        skb->pkt_type = PACKET_OTHERHOST;
5376                } else if (eth_type_vlan(skb->protocol)) {
5377                        /* Outer header is 802.1P with vlan 0, inner header is
5378                         * 802.1Q or 802.1AD and vlan_do_receive() above could
5379                         * not find vlan dev for vlan id 0.
5380                         */
5381                        __vlan_hwaccel_clear_tag(skb);
5382                        skb = skb_vlan_untag(skb);
5383                        if (unlikely(!skb))
5384                                goto out;
5385                        if (vlan_do_receive(&skb))
5386                                /* After stripping off 802.1P header with vlan 0
5387                                 * vlan dev is found for inner header.
5388                                 */
5389                                goto another_round;
5390                        else if (unlikely(!skb))
5391                                goto out;
5392                        else
5393                                /* We have stripped outer 802.1P vlan 0 header.
5394                                 * But could not find vlan dev.
5395                                 * check again for vlan id to set OTHERHOST.
5396                                 */
5397                                goto check_vlan_id;
5398                }
5399                /* Note: we might in the future use prio bits
5400                 * and set skb->priority like in vlan_do_receive()
5401                 * For the time being, just ignore Priority Code Point
5402                 */
5403                __vlan_hwaccel_clear_tag(skb);
5404        }
5405
5406        type = skb->protocol;
5407
5408        /* deliver only exact match when indicated */
5409        if (likely(!deliver_exact)) {
5410                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5411                                       &ptype_base[ntohs(type) &
5412                                                   PTYPE_HASH_MASK]);
5413        }
5414
5415        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416                               &orig_dev->ptype_specific);
5417
5418        if (unlikely(skb->dev != orig_dev)) {
5419                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5420                                       &skb->dev->ptype_specific);
5421        }
5422
5423        if (pt_prev) {
5424                if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5425                        goto drop;
5426                *ppt_prev = pt_prev;
5427        } else {
5428drop:
5429                if (!deliver_exact)
5430                        atomic_long_inc(&skb->dev->rx_dropped);
5431                else
5432                        atomic_long_inc(&skb->dev->rx_nohandler);
5433                kfree_skb(skb);
5434                /* Jamal, now you will not able to escape explaining
5435                 * me how you were going to use this. :-)
5436                 */
5437                ret = NET_RX_DROP;
5438        }
5439
5440out:
5441        /* The invariant here is that if *ppt_prev is not NULL
5442         * then skb should also be non-NULL.
5443         *
5444         * Apparently *ppt_prev assignment above holds this invariant due to
5445         * skb dereferencing near it.
5446         */
5447        *pskb = skb;
5448        return ret;
5449}
5450
5451static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5452{
5453        struct net_device *orig_dev = skb->dev;
5454        struct packet_type *pt_prev = NULL;
5455        int ret;
5456
5457        ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5458        if (pt_prev)
5459                ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5460                                         skb->dev, pt_prev, orig_dev);
5461        return ret;
5462}
5463
5464/**
5465 *      netif_receive_skb_core - special purpose version of netif_receive_skb
5466 *      @skb: buffer to process
5467 *
5468 *      More direct receive version of netif_receive_skb().  It should
5469 *      only be used by callers that have a need to skip RPS and Generic XDP.
5470 *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5471 *
5472 *      This function may only be called from softirq context and interrupts
5473 *      should be enabled.
5474 *
5475 *      Return values (usually ignored):
5476 *      NET_RX_SUCCESS: no congestion
5477 *      NET_RX_DROP: packet was dropped
5478 */
5479int netif_receive_skb_core(struct sk_buff *skb)
5480{
5481        int ret;
5482
5483        rcu_read_lock();
5484        ret = __netif_receive_skb_one_core(skb, false);
5485        rcu_read_unlock();
5486
5487        return ret;
5488}
5489EXPORT_SYMBOL(netif_receive_skb_core);
5490
5491static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5492                                                  struct packet_type *pt_prev,
5493                                                  struct net_device *orig_dev)
5494{
5495        struct sk_buff *skb, *next;
5496
5497        if (!pt_prev)
5498                return;
5499        if (list_empty(head))
5500                return;
5501        if (pt_prev->list_func != NULL)
5502                INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5503                                   ip_list_rcv, head, pt_prev, orig_dev);
5504        else
5505                list_for_each_entry_safe(skb, next, head, list) {
5506                        skb_list_del_init(skb);
5507                        pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5508                }
5509}
5510
5511static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5512{
5513        /* Fast-path assumptions:
5514         * - There is no RX handler.
5515         * - Only one packet_type matches.
5516         * If either of these fails, we will end up doing some per-packet
5517         * processing in-line, then handling the 'last ptype' for the whole
5518         * sublist.  This can't cause out-of-order delivery to any single ptype,
5519         * because the 'last ptype' must be constant across the sublist, and all
5520         * other ptypes are handled per-packet.
5521         */
5522        /* Current (common) ptype of sublist */
5523        struct packet_type *pt_curr = NULL;
5524        /* Current (common) orig_dev of sublist */
5525        struct net_device *od_curr = NULL;
5526        struct list_head sublist;
5527        struct sk_buff *skb, *next;
5528
5529        INIT_LIST_HEAD(&sublist);
5530        list_for_each_entry_safe(skb, next, head, list) {
5531                struct net_device *orig_dev = skb->dev;
5532                struct packet_type *pt_prev = NULL;
5533
5534                skb_list_del_init(skb);
5535                __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5536                if (!pt_prev)
5537                        continue;
5538                if (pt_curr != pt_prev || od_curr != orig_dev) {
5539                        /* dispatch old sublist */
5540                        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5541                        /* start new sublist */
5542                        INIT_LIST_HEAD(&sublist);
5543                        pt_curr = pt_prev;
5544                        od_curr = orig_dev;
5545                }
5546                list_add_tail(&skb->list, &sublist);
5547        }
5548
5549        /* dispatch final sublist */
5550        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5551}
5552
5553static int __netif_receive_skb(struct sk_buff *skb)
5554{
5555        int ret;
5556
5557        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5558                unsigned int noreclaim_flag;
5559
5560                /*
5561                 * PFMEMALLOC skbs are special, they should
5562                 * - be delivered to SOCK_MEMALLOC sockets only
5563                 * - stay away from userspace
5564                 * - have bounded memory usage
5565                 *
5566                 * Use PF_MEMALLOC as this saves us from propagating the allocation
5567                 * context down to all allocation sites.
5568                 */
5569                noreclaim_flag = memalloc_noreclaim_save();
5570                ret = __netif_receive_skb_one_core(skb, true);
5571                memalloc_noreclaim_restore(noreclaim_flag);
5572        } else
5573                ret = __netif_receive_skb_one_core(skb, false);
5574
5575        return ret;
5576}
5577
5578static void __netif_receive_skb_list(struct list_head *head)
5579{
5580        unsigned long noreclaim_flag = 0;
5581        struct sk_buff *skb, *next;
5582        bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5583
5584        list_for_each_entry_safe(skb, next, head, list) {
5585                if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5586                        struct list_head sublist;
5587
5588                        /* Handle the previous sublist */
5589                        list_cut_before(&sublist, head, &skb->list);
5590                        if (!list_empty(&sublist))
5591                                __netif_receive_skb_list_core(&sublist, pfmemalloc);
5592                        pfmemalloc = !pfmemalloc;
5593                        /* See comments in __netif_receive_skb */
5594                        if (pfmemalloc)
5595                                noreclaim_flag = memalloc_noreclaim_save();
5596                        else
5597                                memalloc_noreclaim_restore(noreclaim_flag);
5598                }
5599        }
5600        /* Handle the remaining sublist */
5601        if (!list_empty(head))
5602                __netif_receive_skb_list_core(head, pfmemalloc);
5603        /* Restore pflags */
5604        if (pfmemalloc)
5605                memalloc_noreclaim_restore(noreclaim_flag);
5606}
5607
5608static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5609{
5610        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5611        struct bpf_prog *new = xdp->prog;
5612        int ret = 0;
5613
5614        if (new) {
5615                u32 i;
5616
5617                mutex_lock(&new->aux->used_maps_mutex);
5618
5619                /* generic XDP does not work with DEVMAPs that can
5620                 * have a bpf_prog installed on an entry
5621                 */
5622                for (i = 0; i < new->aux->used_map_cnt; i++) {
5623                        if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5624                            cpu_map_prog_allowed(new->aux->used_maps[i])) {
5625                                mutex_unlock(&new->aux->used_maps_mutex);
5626                                return -EINVAL;
5627                        }
5628                }
5629
5630                mutex_unlock(&new->aux->used_maps_mutex);
5631        }
5632
5633        switch (xdp->command) {
5634        case XDP_SETUP_PROG:
5635                rcu_assign_pointer(dev->xdp_prog, new);
5636                if (old)
5637                        bpf_prog_put(old);
5638
5639                if (old && !new) {
5640                        static_branch_dec(&generic_xdp_needed_key);
5641                } else if (new && !old) {
5642                        static_branch_inc(&generic_xdp_needed_key);
5643                        dev_disable_lro(dev);
5644                        dev_disable_gro_hw(dev);
5645                }
5646                break;
5647
5648        default:
5649                ret = -EINVAL;
5650                break;
5651        }
5652
5653        return ret;
5654}
5655
5656static int netif_receive_skb_internal(struct sk_buff *skb)
5657{
5658        int ret;
5659
5660        net_timestamp_check(netdev_tstamp_prequeue, skb);
5661
5662        if (skb_defer_rx_timestamp(skb))
5663                return NET_RX_SUCCESS;
5664
5665        rcu_read_lock();
5666#ifdef CONFIG_RPS
5667        if (static_branch_unlikely(&rps_needed)) {
5668                struct rps_dev_flow voidflow, *rflow = &voidflow;
5669                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5670
5671                if (cpu >= 0) {
5672                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673                        rcu_read_unlock();
5674                        return ret;
5675                }
5676        }
5677#endif
5678        ret = __netif_receive_skb(skb);
5679        rcu_read_unlock();
5680        return ret;
5681}
5682
5683static void netif_receive_skb_list_internal(struct list_head *head)
5684{
5685        struct sk_buff *skb, *next;
5686        struct list_head sublist;
5687
5688        INIT_LIST_HEAD(&sublist);
5689        list_for_each_entry_safe(skb, next, head, list) {
5690                net_timestamp_check(netdev_tstamp_prequeue, skb);
5691                skb_list_del_init(skb);
5692                if (!skb_defer_rx_timestamp(skb))
5693                        list_add_tail(&skb->list, &sublist);
5694        }
5695        list_splice_init(&sublist, head);
5696
5697        rcu_read_lock();
5698#ifdef CONFIG_RPS
5699        if (static_branch_unlikely(&rps_needed)) {
5700                list_for_each_entry_safe(skb, next, head, list) {
5701                        struct rps_dev_flow voidflow, *rflow = &voidflow;
5702                        int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5703
5704                        if (cpu >= 0) {
5705                                /* Will be handled, remove from list */
5706                                skb_list_del_init(skb);
5707                                enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5708                        }
5709                }
5710        }
5711#endif
5712        __netif_receive_skb_list(head);
5713        rcu_read_unlock();
5714}
5715
5716/**
5717 *      netif_receive_skb - process receive buffer from network
5718 *      @skb: buffer to process
5719 *
5720 *      netif_receive_skb() is the main receive data processing function.
5721 *      It always succeeds. The buffer may be dropped during processing
5722 *      for congestion control or by the protocol layers.
5723 *
5724 *      This function may only be called from softirq context and interrupts
5725 *      should be enabled.
5726 *
5727 *      Return values (usually ignored):
5728 *      NET_RX_SUCCESS: no congestion
5729 *      NET_RX_DROP: packet was dropped
5730 */
5731int netif_receive_skb(struct sk_buff *skb)
5732{
5733        int ret;
5734
5735        trace_netif_receive_skb_entry(skb);
5736
5737        ret = netif_receive_skb_internal(skb);
5738        trace_netif_receive_skb_exit(ret);
5739
5740        return ret;
5741}
5742EXPORT_SYMBOL(netif_receive_skb);
5743
5744/**
5745 *      netif_receive_skb_list - process many receive buffers from network
5746 *      @head: list of skbs to process.
5747 *
5748 *      Since return value of netif_receive_skb() is normally ignored, and
5749 *      wouldn't be meaningful for a list, this function returns void.
5750 *
5751 *      This function may only be called from softirq context and interrupts
5752 *      should be enabled.
5753 */
5754void netif_receive_skb_list(struct list_head *head)
5755{
5756        struct sk_buff *skb;
5757
5758        if (list_empty(head))
5759                return;
5760        if (trace_netif_receive_skb_list_entry_enabled()) {
5761                list_for_each_entry(skb, head, list)
5762                        trace_netif_receive_skb_list_entry(skb);
5763        }
5764        netif_receive_skb_list_internal(head);
5765        trace_netif_receive_skb_list_exit(0);
5766}
5767EXPORT_SYMBOL(netif_receive_skb_list);
5768
5769static DEFINE_PER_CPU(struct work_struct, flush_works);
5770
5771/* Network device is going away, flush any packets still pending */
5772static void flush_backlog(struct work_struct *work)
5773{
5774        struct sk_buff *skb, *tmp;
5775        struct softnet_data *sd;
5776
5777        local_bh_disable();
5778        sd = this_cpu_ptr(&softnet_data);
5779
5780        local_irq_disable();
5781        rps_lock(sd);
5782        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784                        __skb_unlink(skb, &sd->input_pkt_queue);
5785                        dev_kfree_skb_irq(skb);
5786                        input_queue_head_incr(sd);
5787                }
5788        }
5789        rps_unlock(sd);
5790        local_irq_enable();
5791
5792        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794                        __skb_unlink(skb, &sd->process_queue);
5795                        kfree_skb(skb);
5796                        input_queue_head_incr(sd);
5797                }
5798        }
5799        local_bh_enable();
5800}
5801
5802static bool flush_required(int cpu)
5803{
5804#if IS_ENABLED(CONFIG_RPS)
5805        struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806        bool do_flush;
5807
5808        local_irq_disable();
5809        rps_lock(sd);
5810
5811        /* as insertion into process_queue happens with the rps lock held,
5812         * process_queue access may race only with dequeue
5813         */
5814        do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5815                   !skb_queue_empty_lockless(&sd->process_queue);
5816        rps_unlock(sd);
5817        local_irq_enable();
5818
5819        return do_flush;
5820#endif
5821        /* without RPS we can't safely check input_pkt_queue: during a
5822         * concurrent remote skb_queue_splice() we can detect as empty both
5823         * input_pkt_queue and process_queue even if the latter could end-up
5824         * containing a lot of packets.
5825         */
5826        return true;
5827}
5828
5829static void flush_all_backlogs(void)
5830{
5831        static cpumask_t flush_cpus;
5832        unsigned int cpu;
5833
5834        /* since we are under rtnl lock protection we can use static data
5835         * for the cpumask and avoid allocating on stack the possibly
5836         * large mask
5837         */
5838        ASSERT_RTNL();
5839
5840        get_online_cpus();
5841
5842        cpumask_clear(&flush_cpus);
5843        for_each_online_cpu(cpu) {
5844                if (flush_required(cpu)) {
5845                        queue_work_on(cpu, system_highpri_wq,
5846                                      per_cpu_ptr(&flush_works, cpu));
5847                        cpumask_set_cpu(cpu, &flush_cpus);
5848                }
5849        }
5850
5851        /* we can have in flight packet[s] on the cpus we are not flushing,
5852         * synchronize_net() in unregister_netdevice_many() will take care of
5853         * them
5854         */
5855        for_each_cpu(cpu, &flush_cpus)
5856                flush_work(per_cpu_ptr(&flush_works, cpu));
5857
5858        put_online_cpus();
5859}
5860
5861/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5862static void gro_normal_list(struct napi_struct *napi)
5863{
5864        if (!napi->rx_count)
5865                return;
5866        netif_receive_skb_list_internal(&napi->rx_list);
5867        INIT_LIST_HEAD(&napi->rx_list);
5868        napi->rx_count = 0;
5869}
5870
5871/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5872 * pass the whole batch up to the stack.
5873 */
5874static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5875{
5876        list_add_tail(&skb->list, &napi->rx_list);
5877        napi->rx_count += segs;
5878        if (napi->rx_count >= gro_normal_batch)
5879                gro_normal_list(napi);
5880}
5881
5882static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5883{
5884        struct packet_offload *ptype;
5885        __be16 type = skb->protocol;
5886        struct list_head *head = &offload_base;
5887        int err = -ENOENT;
5888
5889        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5890
5891        if (NAPI_GRO_CB(skb)->count == 1) {
5892                skb_shinfo(skb)->gso_size = 0;
5893                goto out;
5894        }
5895
5896        rcu_read_lock();
5897        list_for_each_entry_rcu(ptype, head, list) {
5898                if (ptype->type != type || !ptype->callbacks.gro_complete)
5899                        continue;
5900
5901                err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5902                                         ipv6_gro_complete, inet_gro_complete,
5903                                         skb, 0);
5904                break;
5905        }
5906        rcu_read_unlock();
5907
5908        if (err) {
5909                WARN_ON(&ptype->list == head);
5910                kfree_skb(skb);
5911                return NET_RX_SUCCESS;
5912        }
5913
5914out:
5915        gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5916        return NET_RX_SUCCESS;
5917}
5918
5919static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5920                                   bool flush_old)
5921{
5922        struct list_head *head = &napi->gro_hash[index].list;
5923        struct sk_buff *skb, *p;
5924
5925        list_for_each_entry_safe_reverse(skb, p, head, list) {
5926                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5927                        return;
5928                skb_list_del_init(skb);
5929                napi_gro_complete(napi, skb);
5930                napi->gro_hash[index].count--;
5931        }
5932
5933        if (!napi->gro_hash[index].count)
5934                __clear_bit(index, &napi->gro_bitmask);
5935}
5936
5937/* napi->gro_hash[].list contains packets ordered by age.
5938 * youngest packets at the head of it.
5939 * Complete skbs in reverse order to reduce latencies.
5940 */
5941void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5942{
5943        unsigned long bitmask = napi->gro_bitmask;
5944        unsigned int i, base = ~0U;
5945
5946        while ((i = ffs(bitmask)) != 0) {
5947                bitmask >>= i;
5948                base += i;
5949                __napi_gro_flush_chain(napi, base, flush_old);
5950        }
5951}
5952EXPORT_SYMBOL(napi_gro_flush);
5953
5954static void gro_list_prepare(const struct list_head *head,
5955                             const struct sk_buff *skb)
5956{
5957        unsigned int maclen = skb->dev->hard_header_len;
5958        u32 hash = skb_get_hash_raw(skb);
5959        struct sk_buff *p;
5960
5961        list_for_each_entry(p, head, list) {
5962                unsigned long diffs;
5963
5964                NAPI_GRO_CB(p)->flush = 0;
5965
5966                if (hash != skb_get_hash_raw(p)) {
5967                        NAPI_GRO_CB(p)->same_flow = 0;
5968                        continue;
5969                }
5970
5971                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5972                diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5973                if (skb_vlan_tag_present(p))
5974                        diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5975                diffs |= skb_metadata_dst_cmp(p, skb);
5976                diffs |= skb_metadata_differs(p, skb);
5977                if (maclen == ETH_HLEN)
5978                        diffs |= compare_ether_header(skb_mac_header(p),
5979                                                      skb_mac_header(skb));
5980                else if (!diffs)
5981                        diffs = memcmp(skb_mac_header(p),
5982                                       skb_mac_header(skb),
5983                                       maclen);
5984                NAPI_GRO_CB(p)->same_flow = !diffs;
5985        }
5986}
5987
5988static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5989{
5990        const struct skb_shared_info *pinfo = skb_shinfo(skb);
5991        const skb_frag_t *frag0 = &pinfo->frags[0];
5992
5993        NAPI_GRO_CB(skb)->data_offset = 0;
5994        NAPI_GRO_CB(skb)->frag0 = NULL;
5995        NAPI_GRO_CB(skb)->frag0_len = 0;
5996
5997        if (!skb_headlen(skb) && pinfo->nr_frags &&
5998            !PageHighMem(skb_frag_page(frag0)) &&
5999            (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6000                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6001                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6002                                                    skb_frag_size(frag0),
6003                                                    skb->end - skb->tail);
6004        }
6005}
6006
6007static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6008{
6009        struct skb_shared_info *pinfo = skb_shinfo(skb);
6010
6011        BUG_ON(skb->end - skb->tail < grow);
6012
6013        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6014
6015        skb->data_len -= grow;
6016        skb->tail += grow;
6017
6018        skb_frag_off_add(&pinfo->frags[0], grow);
6019        skb_frag_size_sub(&pinfo->frags[0], grow);
6020
6021        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6022                skb_frag_unref(skb, 0);
6023                memmove(pinfo->frags, pinfo->frags + 1,
6024                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6025        }
6026}
6027
6028static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6029{
6030        struct sk_buff *oldest;
6031
6032        oldest = list_last_entry(head, struct sk_buff, list);
6033
6034        /* We are called with head length >= MAX_GRO_SKBS, so this is
6035         * impossible.
6036         */
6037        if (WARN_ON_ONCE(!oldest))
6038                return;
6039
6040        /* Do not adjust napi->gro_hash[].count, caller is adding a new
6041         * SKB to the chain.
6042         */
6043        skb_list_del_init(oldest);
6044        napi_gro_complete(napi, oldest);
6045}
6046
6047static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6048{
6049        u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6050        struct gro_list *gro_list = &napi->gro_hash[bucket];
6051        struct list_head *head = &offload_base;
6052        struct packet_offload *ptype;
6053        __be16 type = skb->protocol;
6054        struct sk_buff *pp = NULL;
6055        enum gro_result ret;
6056        int same_flow;
6057        int grow;
6058
6059        if (netif_elide_gro(skb->dev))
6060                goto normal;
6061
6062        gro_list_prepare(&gro_list->list, skb);
6063
6064        rcu_read_lock();
6065        list_for_each_entry_rcu(ptype, head, list) {
6066                if (ptype->type != type || !ptype->callbacks.gro_receive)
6067                        continue;
6068
6069                skb_set_network_header(skb, skb_gro_offset(skb));
6070                skb_reset_mac_len(skb);
6071                NAPI_GRO_CB(skb)->same_flow = 0;
6072                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6073                NAPI_GRO_CB(skb)->free = 0;
6074                NAPI_GRO_CB(skb)->encap_mark = 0;
6075                NAPI_GRO_CB(skb)->recursion_counter = 0;
6076                NAPI_GRO_CB(skb)->is_fou = 0;
6077                NAPI_GRO_CB(skb)->is_atomic = 1;
6078                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6079
6080                /* Setup for GRO checksum validation */
6081                switch (skb->ip_summed) {
6082                case CHECKSUM_COMPLETE:
6083                        NAPI_GRO_CB(skb)->csum = skb->csum;
6084                        NAPI_GRO_CB(skb)->csum_valid = 1;
6085                        NAPI_GRO_CB(skb)->csum_cnt = 0;
6086                        break;
6087                case CHECKSUM_UNNECESSARY:
6088                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6089                        NAPI_GRO_CB(skb)->csum_valid = 0;
6090                        break;
6091                default:
6092                        NAPI_GRO_CB(skb)->csum_cnt = 0;
6093                        NAPI_GRO_CB(skb)->csum_valid = 0;
6094                }
6095
6096                pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6097                                        ipv6_gro_receive, inet_gro_receive,
6098                                        &gro_list->list, skb);
6099                break;
6100        }
6101        rcu_read_unlock();
6102
6103        if (&ptype->list == head)
6104                goto normal;
6105
6106        if (PTR_ERR(pp) == -EINPROGRESS) {
6107                ret = GRO_CONSUMED;
6108                goto ok;
6109        }
6110
6111        same_flow = NAPI_GRO_CB(skb)->same_flow;
6112        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6113
6114        if (pp) {
6115                skb_list_del_init(pp);
6116                napi_gro_complete(napi, pp);
6117                gro_list->count--;
6118        }
6119
6120        if (same_flow)
6121                goto ok;
6122
6123        if (NAPI_GRO_CB(skb)->flush)
6124                goto normal;
6125
6126        if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6127                gro_flush_oldest(napi, &gro_list->list);
6128        else
6129                gro_list->count++;
6130
6131        NAPI_GRO_CB(skb)->count = 1;
6132        NAPI_GRO_CB(skb)->age = jiffies;
6133        NAPI_GRO_CB(skb)->last = skb;
6134        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6135        list_add(&skb->list, &gro_list->list);
6136        ret = GRO_HELD;
6137
6138pull:
6139        grow = skb_gro_offset(skb) - skb_headlen(skb);
6140        if (grow > 0)
6141                gro_pull_from_frag0(skb, grow);
6142ok:
6143        if (gro_list->count) {
6144                if (!test_bit(bucket, &napi->gro_bitmask))
6145                        __set_bit(bucket, &napi->gro_bitmask);
6146        } else if (test_bit(bucket, &napi->gro_bitmask)) {
6147                __clear_bit(bucket, &napi->gro_bitmask);
6148        }
6149
6150        return ret;
6151
6152normal:
6153        ret = GRO_NORMAL;
6154        goto pull;
6155}
6156
6157struct packet_offload *gro_find_receive_by_type(__be16 type)
6158{
6159        struct list_head *offload_head = &offload_base;
6160        struct packet_offload *ptype;
6161
6162        list_for_each_entry_rcu(ptype, offload_head, list) {
6163                if (ptype->type != type || !ptype->callbacks.gro_receive)
6164                        continue;
6165                return ptype;
6166        }
6167        return NULL;
6168}
6169EXPORT_SYMBOL(gro_find_receive_by_type);
6170
6171struct packet_offload *gro_find_complete_by_type(__be16 type)
6172{
6173        struct list_head *offload_head = &offload_base;
6174        struct packet_offload *ptype;
6175
6176        list_for_each_entry_rcu(ptype, offload_head, list) {
6177                if (ptype->type != type || !ptype->callbacks.gro_complete)
6178                        continue;
6179                return ptype;
6180        }
6181        return NULL;
6182}
6183EXPORT_SYMBOL(gro_find_complete_by_type);
6184
6185static gro_result_t napi_skb_finish(struct napi_struct *napi,
6186                                    struct sk_buff *skb,
6187                                    gro_result_t ret)
6188{
6189        switch (ret) {
6190        case GRO_NORMAL:
6191                gro_normal_one(napi, skb, 1);
6192                break;
6193
6194        case GRO_MERGED_FREE:
6195                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6196                        napi_skb_free_stolen_head(skb);
6197                else
6198                        __kfree_skb_defer(skb);
6199                break;
6200
6201        case GRO_HELD:
6202        case GRO_MERGED:
6203        case GRO_CONSUMED:
6204                break;
6205        }
6206
6207        return ret;
6208}
6209
6210gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6211{
6212        gro_result_t ret;
6213
6214        skb_mark_napi_id(skb, napi);
6215        trace_napi_gro_receive_entry(skb);
6216
6217        skb_gro_reset_offset(skb, 0);
6218
6219        ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6220        trace_napi_gro_receive_exit(ret);
6221
6222        return ret;
6223}
6224EXPORT_SYMBOL(napi_gro_receive);
6225
6226static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6227{
6228        if (unlikely(skb->pfmemalloc)) {
6229                consume_skb(skb);
6230                return;
6231        }
6232        __skb_pull(skb, skb_headlen(skb));
6233        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6234        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6235        __vlan_hwaccel_clear_tag(skb);
6236        skb->dev = napi->dev;
6237        skb->skb_iif = 0;
6238
6239        /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6240        skb->pkt_type = PACKET_HOST;
6241
6242        skb->encapsulation = 0;
6243        skb_shinfo(skb)->gso_type = 0;
6244        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6245        skb_ext_reset(skb);
6246
6247        napi->skb = skb;
6248}
6249
6250struct sk_buff *napi_get_frags(struct napi_struct *napi)
6251{
6252        struct sk_buff *skb = napi->skb;
6253
6254        if (!skb) {
6255                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6256                if (skb) {
6257                        napi->skb = skb;
6258                        skb_mark_napi_id(skb, napi);
6259                }
6260        }
6261        return skb;
6262}
6263EXPORT_SYMBOL(napi_get_frags);
6264
6265static gro_result_t napi_frags_finish(struct napi_struct *napi,
6266                                      struct sk_buff *skb,
6267                                      gro_result_t ret)
6268{
6269        switch (ret) {
6270        case GRO_NORMAL:
6271        case GRO_HELD:
6272                __skb_push(skb, ETH_HLEN);
6273                skb->protocol = eth_type_trans(skb, skb->dev);
6274                if (ret == GRO_NORMAL)
6275                        gro_normal_one(napi, skb, 1);
6276                break;
6277
6278        case GRO_MERGED_FREE:
6279                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6280                        napi_skb_free_stolen_head(skb);
6281                else
6282                        napi_reuse_skb(napi, skb);
6283                break;
6284
6285        case GRO_MERGED:
6286        case GRO_CONSUMED:
6287                break;
6288        }
6289
6290        return ret;
6291}
6292
6293/* Upper GRO stack assumes network header starts at gro_offset=0
6294 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6295 * We copy ethernet header into skb->data to have a common layout.
6296 */
6297static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6298{
6299        struct sk_buff *skb = napi->skb;
6300        const struct ethhdr *eth;
6301        unsigned int hlen = sizeof(*eth);
6302
6303        napi->skb = NULL;
6304
6305        skb_reset_mac_header(skb);
6306        skb_gro_reset_offset(skb, hlen);
6307
6308        if (unlikely(skb_gro_header_hard(skb, hlen))) {
6309                eth = skb_gro_header_slow(skb, hlen, 0);
6310                if (unlikely(!eth)) {
6311                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6312                                             __func__, napi->dev->name);
6313                        napi_reuse_skb(napi, skb);
6314                        return NULL;
6315                }
6316        } else {
6317                eth = (const struct ethhdr *)skb->data;
6318                gro_pull_from_frag0(skb, hlen);
6319                NAPI_GRO_CB(skb)->frag0 += hlen;
6320                NAPI_GRO_CB(skb)->frag0_len -= hlen;
6321        }
6322        __skb_pull(skb, hlen);
6323
6324        /*
6325         * This works because the only protocols we care about don't require
6326         * special handling.
6327         * We'll fix it up properly in napi_frags_finish()
6328         */
6329        skb->protocol = eth->h_proto;
6330
6331        return skb;
6332}
6333
6334gro_result_t napi_gro_frags(struct napi_struct *napi)
6335{
6336        gro_result_t ret;
6337        struct sk_buff *skb = napi_frags_skb(napi);
6338
6339        trace_napi_gro_frags_entry(skb);
6340
6341        ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6342        trace_napi_gro_frags_exit(ret);
6343
6344        return ret;
6345}
6346EXPORT_SYMBOL(napi_gro_frags);
6347
6348/* Compute the checksum from gro_offset and return the folded value
6349 * after adding in any pseudo checksum.
6350 */
6351__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6352{
6353        __wsum wsum;
6354        __sum16 sum;
6355
6356        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6357
6358        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6359        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6360        /* See comments in __skb_checksum_complete(). */
6361        if (likely(!sum)) {
6362                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6363                    !skb->csum_complete_sw)
6364                        netdev_rx_csum_fault(skb->dev, skb);
6365        }
6366
6367        NAPI_GRO_CB(skb)->csum = wsum;
6368        NAPI_GRO_CB(skb)->csum_valid = 1;
6369
6370        return sum;
6371}
6372EXPORT_SYMBOL(__skb_gro_checksum_complete);
6373
6374static void net_rps_send_ipi(struct softnet_data *remsd)
6375{
6376#ifdef CONFIG_RPS
6377        while (remsd) {
6378                struct softnet_data *next = remsd->rps_ipi_next;
6379
6380                if (cpu_online(remsd->cpu))
6381                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
6382                remsd = next;
6383        }
6384#endif
6385}
6386
6387/*
6388 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6389 * Note: called with local irq disabled, but exits with local irq enabled.
6390 */
6391static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6392{
6393#ifdef CONFIG_RPS
6394        struct softnet_data *remsd = sd->rps_ipi_list;
6395
6396        if (remsd) {
6397                sd->rps_ipi_list = NULL;
6398
6399                local_irq_enable();
6400
6401                /* Send pending IPI's to kick RPS processing on remote cpus. */
6402                net_rps_send_ipi(remsd);
6403        } else
6404#endif
6405                local_irq_enable();
6406}
6407
6408static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6409{
6410#ifdef CONFIG_RPS
6411        return sd->rps_ipi_list != NULL;
6412#else
6413        return false;
6414#endif
6415}
6416
6417static int process_backlog(struct napi_struct *napi, int quota)
6418{
6419        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6420        bool again = true;
6421        int work = 0;
6422
6423        /* Check if we have pending ipi, its better to send them now,
6424         * not waiting net_rx_action() end.
6425         */
6426        if (sd_has_rps_ipi_waiting(sd)) {
6427                local_irq_disable();
6428                net_rps_action_and_irq_enable(sd);
6429        }
6430
6431        napi->weight = dev_rx_weight;
6432        while (again) {
6433                struct sk_buff *skb;
6434
6435                while ((skb = __skb_dequeue(&sd->process_queue))) {
6436                        rcu_read_lock();
6437                        __netif_receive_skb(skb);
6438                        rcu_read_unlock();
6439                        input_queue_head_incr(sd);
6440                        if (++work >= quota)
6441                                return work;
6442
6443                }
6444
6445                local_irq_disable();
6446                rps_lock(sd);
6447                if (skb_queue_empty(&sd->input_pkt_queue)) {
6448                        /*
6449                         * Inline a custom version of __napi_complete().
6450                         * only current cpu owns and manipulates this napi,
6451                         * and NAPI_STATE_SCHED is the only possible flag set
6452                         * on backlog.
6453                         * We can use a plain write instead of clear_bit(),
6454                         * and we dont need an smp_mb() memory barrier.
6455                         */
6456                        napi->state = 0;
6457                        again = false;
6458                } else {
6459                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
6460                                                   &sd->process_queue);
6461                }
6462                rps_unlock(sd);
6463                local_irq_enable();
6464        }
6465
6466        return work;
6467}
6468
6469/**
6470 * __napi_schedule - schedule for receive
6471 * @n: entry to schedule
6472 *
6473 * The entry's receive function will be scheduled to run.
6474 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6475 */
6476void __napi_schedule(struct napi_struct *n)
6477{
6478        unsigned long flags;
6479
6480        local_irq_save(flags);
6481        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6482        local_irq_restore(flags);
6483}
6484EXPORT_SYMBOL(__napi_schedule);
6485
6486/**
6487 *      napi_schedule_prep - check if napi can be scheduled
6488 *      @n: napi context
6489 *
6490 * Test if NAPI routine is already running, and if not mark
6491 * it as running.  This is used as a condition variable to
6492 * insure only one NAPI poll instance runs.  We also make
6493 * sure there is no pending NAPI disable.
6494 */
6495bool napi_schedule_prep(struct napi_struct *n)
6496{
6497        unsigned long val, new;
6498
6499        do {
6500                val = READ_ONCE(n->state);
6501                if (unlikely(val & NAPIF_STATE_DISABLE))
6502                        return false;
6503                new = val | NAPIF_STATE_SCHED;
6504
6505                /* Sets STATE_MISSED bit if STATE_SCHED was already set
6506                 * This was suggested by Alexander Duyck, as compiler
6507                 * emits better code than :
6508                 * if (val & NAPIF_STATE_SCHED)
6509                 *     new |= NAPIF_STATE_MISSED;
6510                 */
6511                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6512                                                   NAPIF_STATE_MISSED;
6513        } while (cmpxchg(&n->state, val, new) != val);
6514
6515        return !(val & NAPIF_STATE_SCHED);
6516}
6517EXPORT_SYMBOL(napi_schedule_prep);
6518
6519/**
6520 * __napi_schedule_irqoff - schedule for receive
6521 * @n: entry to schedule
6522 *
6523 * Variant of __napi_schedule() assuming hard irqs are masked
6524 */
6525void __napi_schedule_irqoff(struct napi_struct *n)
6526{
6527        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6528}
6529EXPORT_SYMBOL(__napi_schedule_irqoff);
6530
6531bool napi_complete_done(struct napi_struct *n, int work_done)
6532{
6533        unsigned long flags, val, new, timeout = 0;
6534        bool ret = true;
6535
6536        /*
6537         * 1) Don't let napi dequeue from the cpu poll list
6538         *    just in case its running on a different cpu.
6539         * 2) If we are busy polling, do nothing here, we have
6540         *    the guarantee we will be called later.
6541         */
6542        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6543                                 NAPIF_STATE_IN_BUSY_POLL)))
6544                return false;
6545
6546        if (work_done) {
6547                if (n->gro_bitmask)
6548                        timeout = READ_ONCE(n->dev->gro_flush_timeout);
6549                n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6550        }
6551        if (n->defer_hard_irqs_count > 0) {
6552                n->defer_hard_irqs_count--;
6553                timeout = READ_ONCE(n->dev->gro_flush_timeout);
6554                if (timeout)
6555                        ret = false;
6556        }
6557        if (n->gro_bitmask) {
6558                /* When the NAPI instance uses a timeout and keeps postponing
6559                 * it, we need to bound somehow the time packets are kept in
6560                 * the GRO layer
6561                 */
6562                napi_gro_flush(n, !!timeout);
6563        }
6564
6565        gro_normal_list(n);
6566
6567        if (unlikely(!list_empty(&n->poll_list))) {
6568                /* If n->poll_list is not empty, we need to mask irqs */
6569                local_irq_save(flags);
6570                list_del_init(&n->poll_list);
6571                local_irq_restore(flags);
6572        }
6573
6574        do {
6575                val = READ_ONCE(n->state);
6576
6577                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6578
6579                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6580                              NAPIF_STATE_SCHED_THREADED |
6581                              NAPIF_STATE_PREFER_BUSY_POLL);
6582
6583                /* If STATE_MISSED was set, leave STATE_SCHED set,
6584                 * because we will call napi->poll() one more time.
6585                 * This C code was suggested by Alexander Duyck to help gcc.
6586                 */
6587                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6588                                                    NAPIF_STATE_SCHED;
6589        } while (cmpxchg(&n->state, val, new) != val);
6590
6591        if (unlikely(val & NAPIF_STATE_MISSED)) {
6592                __napi_schedule(n);
6593                return false;
6594        }
6595
6596        if (timeout)
6597                hrtimer_start(&n->timer, ns_to_ktime(timeout),
6598                              HRTIMER_MODE_REL_PINNED);
6599        return ret;
6600}
6601EXPORT_SYMBOL(napi_complete_done);
6602
6603/* must be called under rcu_read_lock(), as we dont take a reference */
6604static struct napi_struct *napi_by_id(unsigned int napi_id)
6605{
6606        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6607        struct napi_struct *napi;
6608
6609        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6610                if (napi->napi_id == napi_id)
6611                        return napi;
6612
6613        return NULL;
6614}
6615
6616#if defined(CONFIG_NET_RX_BUSY_POLL)
6617
6618static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6619{
6620        if (!skip_schedule) {
6621                gro_normal_list(napi);
6622                __napi_schedule(napi);
6623                return;
6624        }
6625
6626        if (napi->gro_bitmask) {
6627                /* flush too old packets
6628                 * If HZ < 1000, flush all packets.
6629                 */
6630                napi_gro_flush(napi, HZ >= 1000);
6631        }
6632
6633        gro_normal_list(napi);
6634        clear_bit(NAPI_STATE_SCHED, &napi->state);
6635}
6636
6637static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6638                           u16 budget)
6639{
6640        bool skip_schedule = false;
6641        unsigned long timeout;
6642        int rc;
6643
6644        /* Busy polling means there is a high chance device driver hard irq
6645         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6646         * set in napi_schedule_prep().
6647         * Since we are about to call napi->poll() once more, we can safely
6648         * clear NAPI_STATE_MISSED.
6649         *
6650         * Note: x86 could use a single "lock and ..." instruction
6651         * to perform these two clear_bit()
6652         */
6653        clear_bit(NAPI_STATE_MISSED, &napi->state);
6654        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6655
6656        local_bh_disable();
6657
6658        if (prefer_busy_poll) {
6659                napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6660                timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6661                if (napi->defer_hard_irqs_count && timeout) {
6662                        hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6663                        skip_schedule = true;
6664                }
6665        }
6666
6667        /* All we really want here is to re-enable device interrupts.
6668         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6669         */
6670        rc = napi->poll(napi, budget);
6671        /* We can't gro_normal_list() here, because napi->poll() might have
6672         * rearmed the napi (napi_complete_done()) in which case it could
6673         * already be running on another CPU.
6674         */
6675        trace_napi_poll(napi, rc, budget);
6676        netpoll_poll_unlock(have_poll_lock);
6677        if (rc == budget)
6678                __busy_poll_stop(napi, skip_schedule);
6679        local_bh_enable();
6680}
6681
6682void napi_busy_loop(unsigned int napi_id,
6683                    bool (*loop_end)(void *, unsigned long),
6684                    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6685{
6686        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6687        int (*napi_poll)(struct napi_struct *napi, int budget);
6688        void *have_poll_lock = NULL;
6689        struct napi_struct *napi;
6690
6691restart:
6692        napi_poll = NULL;
6693
6694        rcu_read_lock();
6695
6696        napi = napi_by_id(napi_id);
6697        if (!napi)
6698                goto out;
6699
6700        preempt_disable();
6701        for (;;) {
6702                int work = 0;
6703
6704                local_bh_disable();
6705                if (!napi_poll) {
6706                        unsigned long val = READ_ONCE(napi->state);
6707
6708                        /* If multiple threads are competing for this napi,
6709                         * we avoid dirtying napi->state as much as we can.
6710                         */
6711                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6712                                   NAPIF_STATE_IN_BUSY_POLL)) {
6713                                if (prefer_busy_poll)
6714                                        set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6715                                goto count;
6716                        }
6717                        if (cmpxchg(&napi->state, val,
6718                                    val | NAPIF_STATE_IN_BUSY_POLL |
6719                                          NAPIF_STATE_SCHED) != val) {
6720                                if (prefer_busy_poll)
6721                                        set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6722                                goto count;
6723                        }
6724                        have_poll_lock = netpoll_poll_lock(napi);
6725                        napi_poll = napi->poll;
6726                }
6727                work = napi_poll(napi, budget);
6728                trace_napi_poll(napi, work, budget);
6729                gro_normal_list(napi);
6730count:
6731                if (work > 0)
6732                        __NET_ADD_STATS(dev_net(napi->dev),
6733                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
6734                local_bh_enable();
6735
6736                if (!loop_end || loop_end(loop_end_arg, start_time))
6737                        break;
6738
6739                if (unlikely(need_resched())) {
6740                        if (napi_poll)
6741                                busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6742                        preempt_enable();
6743                        rcu_read_unlock();
6744                        cond_resched();
6745                        if (loop_end(loop_end_arg, start_time))
6746                                return;
6747                        goto restart;
6748                }
6749                cpu_relax();
6750        }
6751        if (napi_poll)
6752                busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6753        preempt_enable();
6754out:
6755        rcu_read_unlock();
6756}
6757EXPORT_SYMBOL(napi_busy_loop);
6758
6759#endif /* CONFIG_NET_RX_BUSY_POLL */
6760
6761static void napi_hash_add(struct napi_struct *napi)
6762{
6763        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6764                return;
6765
6766        spin_lock(&napi_hash_lock);
6767
6768        /* 0..NR_CPUS range is reserved for sender_cpu use */
6769        do {
6770                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6771                        napi_gen_id = MIN_NAPI_ID;
6772        } while (napi_by_id(napi_gen_id));
6773        napi->napi_id = napi_gen_id;
6774
6775        hlist_add_head_rcu(&napi->napi_hash_node,
6776                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6777
6778        spin_unlock(&napi_hash_lock);
6779}
6780
6781/* Warning : caller is responsible to make sure rcu grace period
6782 * is respected before freeing memory containing @napi
6783 */
6784static void napi_hash_del(struct napi_struct *napi)
6785{
6786        spin_lock(&napi_hash_lock);
6787
6788        hlist_del_init_rcu(&napi->napi_hash_node);
6789
6790        spin_unlock(&napi_hash_lock);
6791}
6792
6793static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6794{
6795        struct napi_struct *napi;
6796
6797        napi = container_of(timer, struct napi_struct, timer);
6798
6799        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6800         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6801         */
6802        if (!napi_disable_pending(napi) &&
6803            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6804                clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6805                __napi_schedule_irqoff(napi);
6806        }
6807
6808        return HRTIMER_NORESTART;
6809}
6810
6811static void init_gro_hash(struct napi_struct *napi)
6812{
6813        int i;
6814
6815        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6816                INIT_LIST_HEAD(&napi->gro_hash[i].list);
6817                napi->gro_hash[i].count = 0;
6818        }
6819        napi->gro_bitmask = 0;
6820}
6821
6822int dev_set_threaded(struct net_device *dev, bool threaded)
6823{
6824        struct napi_struct *napi;
6825        int err = 0;
6826
6827        if (dev->threaded == threaded)
6828                return 0;
6829
6830        if (threaded) {
6831                list_for_each_entry(napi, &dev->napi_list, dev_list) {
6832                        if (!napi->thread) {
6833                                err = napi_kthread_create(napi);
6834                                if (err) {
6835                                        threaded = false;
6836                                        break;
6837                                }
6838                        }
6839                }
6840        }
6841
6842        dev->threaded = threaded;
6843
6844        /* Make sure kthread is created before THREADED bit
6845         * is set.
6846         */
6847        smp_mb__before_atomic();
6848
6849        /* Setting/unsetting threaded mode on a napi might not immediately
6850         * take effect, if the current napi instance is actively being
6851         * polled. In this case, the switch between threaded mode and
6852         * softirq mode will happen in the next round of napi_schedule().
6853         * This should not cause hiccups/stalls to the live traffic.
6854         */
6855        list_for_each_entry(napi, &dev->napi_list, dev_list) {
6856                if (threaded)
6857                        set_bit(NAPI_STATE_THREADED, &napi->state);
6858                else
6859                        clear_bit(NAPI_STATE_THREADED, &napi->state);
6860        }
6861
6862        return err;
6863}
6864EXPORT_SYMBOL(dev_set_threaded);
6865
6866void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6867                    int (*poll)(struct napi_struct *, int), int weight)
6868{
6869        if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6870                return;
6871
6872        INIT_LIST_HEAD(&napi->poll_list);
6873        INIT_HLIST_NODE(&napi->napi_hash_node);
6874        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6875        napi->timer.function = napi_watchdog;
6876        init_gro_hash(napi);
6877        napi->skb = NULL;
6878        INIT_LIST_HEAD(&napi->rx_list);
6879        napi->rx_count = 0;
6880        napi->poll = poll;
6881        if (weight > NAPI_POLL_WEIGHT)
6882                netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6883                                weight);
6884        napi->weight = weight;
6885        napi->dev = dev;
6886#ifdef CONFIG_NETPOLL
6887        napi->poll_owner = -1;
6888#endif
6889        set_bit(NAPI_STATE_SCHED, &napi->state);
6890        set_bit(NAPI_STATE_NPSVC, &napi->state);
6891        list_add_rcu(&napi->dev_list, &dev->napi_list);
6892        napi_hash_add(napi);
6893        /* Create kthread for this napi if dev->threaded is set.
6894         * Clear dev->threaded if kthread creation failed so that
6895         * threaded mode will not be enabled in napi_enable().
6896         */
6897        if (dev->threaded && napi_kthread_create(napi))
6898                dev->threaded = 0;
6899}
6900EXPORT_SYMBOL(netif_napi_add);
6901
6902void napi_disable(struct napi_struct *n)
6903{
6904        might_sleep();
6905        set_bit(NAPI_STATE_DISABLE, &n->state);
6906
6907        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6908                msleep(1);
6909        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6910                msleep(1);
6911
6912        hrtimer_cancel(&n->timer);
6913
6914        clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6915        clear_bit(NAPI_STATE_DISABLE, &n->state);
6916        clear_bit(NAPI_STATE_THREADED, &n->state);
6917}
6918EXPORT_SYMBOL(napi_disable);
6919
6920/**
6921 *      napi_enable - enable NAPI scheduling
6922 *      @n: NAPI context
6923 *
6924 * Resume NAPI from being scheduled on this context.
6925 * Must be paired with napi_disable.
6926 */
6927void napi_enable(struct napi_struct *n)
6928{
6929        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6930        smp_mb__before_atomic();
6931        clear_bit(NAPI_STATE_SCHED, &n->state);
6932        clear_bit(NAPI_STATE_NPSVC, &n->state);
6933        if (n->dev->threaded && n->thread)
6934                set_bit(NAPI_STATE_THREADED, &n->state);
6935}
6936EXPORT_SYMBOL(napi_enable);
6937
6938static void flush_gro_hash(struct napi_struct *napi)
6939{
6940        int i;
6941
6942        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6943                struct sk_buff *skb, *n;
6944
6945                list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6946                        kfree_skb(skb);
6947                napi->gro_hash[i].count = 0;
6948        }
6949}
6950
6951/* Must be called in process context */
6952void __netif_napi_del(struct napi_struct *napi)
6953{
6954        if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6955                return;
6956
6957        napi_hash_del(napi);
6958        list_del_rcu(&napi->dev_list);
6959        napi_free_frags(napi);
6960
6961        flush_gro_hash(napi);
6962        napi->gro_bitmask = 0;
6963
6964        if (napi->thread) {
6965                kthread_stop(napi->thread);
6966                napi->thread = NULL;
6967        }
6968}
6969EXPORT_SYMBOL(__netif_napi_del);
6970
6971static int __napi_poll(struct napi_struct *n, bool *repoll)
6972{
6973        int work, weight;
6974
6975        weight = n->weight;
6976
6977        /* This NAPI_STATE_SCHED test is for avoiding a race
6978         * with netpoll's poll_napi().  Only the entity which
6979         * obtains the lock and sees NAPI_STATE_SCHED set will
6980         * actually make the ->poll() call.  Therefore we avoid
6981         * accidentally calling ->poll() when NAPI is not scheduled.
6982         */
6983        work = 0;
6984        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6985                work = n->poll(n, weight);
6986                trace_napi_poll(n, work, weight);
6987        }
6988
6989        if (unlikely(work > weight))
6990                pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6991                            n->poll, work, weight);
6992
6993        if (likely(work < weight))
6994                return work;
6995
6996        /* Drivers must not modify the NAPI state if they
6997         * consume the entire weight.  In such cases this code
6998         * still "owns" the NAPI instance and therefore can
6999         * move the instance around on the list at-will.
7000         */
7001        if (unlikely(napi_disable_pending(n))) {
7002                napi_complete(n);
7003                return work;
7004        }
7005
7006        /* The NAPI context has more processing work, but busy-polling
7007         * is preferred. Exit early.
7008         */
7009        if (napi_prefer_busy_poll(n)) {
7010                if (napi_complete_done(n, work)) {
7011                        /* If timeout is not set, we need to make sure
7012                         * that the NAPI is re-scheduled.
7013                         */
7014                        napi_schedule(n);
7015                }
7016                return work;
7017        }
7018
7019        if (n->gro_bitmask) {
7020                /* flush too old packets
7021                 * If HZ < 1000, flush all packets.
7022                 */
7023                napi_gro_flush(n, HZ >= 1000);
7024        }
7025
7026        gro_normal_list(n);
7027
7028        /* Some drivers may have called napi_schedule
7029         * prior to exhausting their budget.
7030         */
7031        if (unlikely(!list_empty(&n->poll_list))) {
7032                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7033                             n->dev ? n->dev->name : "backlog");
7034                return work;
7035        }
7036
7037        *repoll = true;
7038
7039        return work;
7040}
7041
7042static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7043{
7044        bool do_repoll = false;
7045        void *have;
7046        int work;
7047
7048        list_del_init(&n->poll_list);
7049
7050        have = netpoll_poll_lock(n);
7051
7052        work = __napi_poll(n, &do_repoll);
7053
7054        if (do_repoll)
7055                list_add_tail(&n->poll_list, repoll);
7056
7057        netpoll_poll_unlock(have);
7058
7059        return work;
7060}
7061
7062static int napi_thread_wait(struct napi_struct *napi)
7063{
7064        bool woken = false;
7065
7066        set_current_state(TASK_INTERRUPTIBLE);
7067
7068        while (!kthread_should_stop()) {
7069                /* Testing SCHED_THREADED bit here to make sure the current
7070                 * kthread owns this napi and could poll on this napi.
7071                 * Testing SCHED bit is not enough because SCHED bit might be
7072                 * set by some other busy poll thread or by napi_disable().
7073                 */
7074                if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7075                        WARN_ON(!list_empty(&napi->poll_list));
7076                        __set_current_state(TASK_RUNNING);
7077                        return 0;
7078                }
7079
7080                schedule();
7081                /* woken being true indicates this thread owns this napi. */
7082                woken = true;
7083                set_current_state(TASK_INTERRUPTIBLE);
7084        }
7085        __set_current_state(TASK_RUNNING);
7086
7087        return -1;
7088}
7089
7090static int napi_threaded_poll(void *data)
7091{
7092        struct napi_struct *napi = data;
7093        void *have;
7094
7095        while (!napi_thread_wait(napi)) {
7096                for (;;) {
7097                        bool repoll = false;
7098
7099                        local_bh_disable();
7100
7101                        have = netpoll_poll_lock(napi);
7102                        __napi_poll(napi, &repoll);
7103                        netpoll_poll_unlock(have);
7104
7105                        local_bh_enable();
7106
7107                        if (!repoll)
7108                                break;
7109
7110                        cond_resched();
7111                }
7112        }
7113        return 0;
7114}
7115
7116static __latent_entropy void net_rx_action(struct softirq_action *h)
7117{
7118        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7119        unsigned long time_limit = jiffies +
7120                usecs_to_jiffies(netdev_budget_usecs);
7121        int budget = netdev_budget;
7122        LIST_HEAD(list);
7123        LIST_HEAD(repoll);
7124
7125        local_irq_disable();
7126        list_splice_init(&sd->poll_list, &list);
7127        local_irq_enable();
7128
7129        for (;;) {
7130                struct napi_struct *n;
7131
7132                if (list_empty(&list)) {
7133                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7134                                return;
7135                        break;
7136                }
7137
7138                n = list_first_entry(&list, struct napi_struct, poll_list);
7139                budget -= napi_poll(n, &repoll);
7140
7141                /* If softirq window is exhausted then punt.
7142                 * Allow this to run for 2 jiffies since which will allow
7143                 * an average latency of 1.5/HZ.
7144                 */
7145                if (unlikely(budget <= 0 ||
7146                             time_after_eq(jiffies, time_limit))) {
7147                        sd->time_squeeze++;
7148                        break;
7149                }
7150        }
7151
7152        local_irq_disable();
7153
7154        list_splice_tail_init(&sd->poll_list, &list);
7155        list_splice_tail(&repoll, &list);
7156        list_splice(&list, &sd->poll_list);
7157        if (!list_empty(&sd->poll_list))
7158                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7159
7160        net_rps_action_and_irq_enable(sd);
7161}
7162
7163struct netdev_adjacent {
7164        struct net_device *dev;
7165
7166        /* upper master flag, there can only be one master device per list */
7167        bool master;
7168
7169        /* lookup ignore flag */
7170        bool ignore;
7171
7172        /* counter for the number of times this device was added to us */
7173        u16 ref_nr;
7174
7175        /* private field for the users */
7176        void *private;
7177
7178        struct list_head list;
7179        struct rcu_head rcu;
7180};
7181
7182static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7183                                                 struct list_head *adj_list)
7184{
7185        struct netdev_adjacent *adj;
7186
7187        list_for_each_entry(adj, adj_list, list) {
7188                if (adj->dev == adj_dev)
7189                        return adj;
7190        }
7191        return NULL;
7192}
7193
7194static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7195                                    struct netdev_nested_priv *priv)
7196{
7197        struct net_device *dev = (struct net_device *)priv->data;
7198
7199        return upper_dev == dev;
7200}
7201
7202/**
7203 * netdev_has_upper_dev - Check if device is linked to an upper device
7204 * @dev: device
7205 * @upper_dev: upper device to check
7206 *
7207 * Find out if a device is linked to specified upper device and return true
7208 * in case it is. Note that this checks only immediate upper device,
7209 * not through a complete stack of devices. The caller must hold the RTNL lock.
7210 */
7211bool netdev_has_upper_dev(struct net_device *dev,
7212                          struct net_device *upper_dev)
7213{
7214        struct netdev_nested_priv priv = {
7215                .data = (void *)upper_dev,
7216        };
7217
7218        ASSERT_RTNL();
7219
7220        return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7221                                             &priv);
7222}
7223EXPORT_SYMBOL(netdev_has_upper_dev);
7224
7225/**
7226 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7227 * @dev: device
7228 * @upper_dev: upper device to check
7229 *
7230 * Find out if a device is linked to specified upper device and return true
7231 * in case it is. Note that this checks the entire upper device chain.
7232 * The caller must hold rcu lock.
7233 */
7234
7235bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7236                                  struct net_device *upper_dev)
7237{
7238        struct netdev_nested_priv priv = {
7239                .data = (void *)upper_dev,
7240        };
7241
7242        return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7243                                               &priv);
7244}
7245EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7246
7247/**
7248 * netdev_has_any_upper_dev - Check if device is linked to some device
7249 * @dev: device
7250 *
7251 * Find out if a device is linked to an upper device and return true in case
7252 * it is. The caller must hold the RTNL lock.
7253 */
7254bool netdev_has_any_upper_dev(struct net_device *dev)
7255{
7256        ASSERT_RTNL();
7257
7258        return !list_empty(&dev->adj_list.upper);
7259}
7260EXPORT_SYMBOL(netdev_has_any_upper_dev);
7261
7262/**
7263 * netdev_master_upper_dev_get - Get master upper device
7264 * @dev: device
7265 *
7266 * Find a master upper device and return pointer to it or NULL in case
7267 * it's not there. The caller must hold the RTNL lock.
7268 */
7269struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7270{
7271        struct netdev_adjacent *upper;
7272
7273        ASSERT_RTNL();
7274
7275        if (list_empty(&dev->adj_list.upper))
7276                return NULL;
7277
7278        upper = list_first_entry(&dev->adj_list.upper,
7279                                 struct netdev_adjacent, list);
7280        if (likely(upper->master))
7281                return upper->dev;
7282        return NULL;
7283}
7284EXPORT_SYMBOL(netdev_master_upper_dev_get);
7285
7286static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7287{
7288        struct netdev_adjacent *upper;
7289
7290        ASSERT_RTNL();
7291
7292        if (list_empty(&dev->adj_list.upper))
7293                return NULL;
7294
7295        upper = list_first_entry(&dev->adj_list.upper,
7296                                 struct netdev_adjacent, list);
7297        if (likely(upper->master) && !upper->ignore)
7298                return upper->dev;
7299        return NULL;
7300}
7301
7302/**
7303 * netdev_has_any_lower_dev - Check if device is linked to some device
7304 * @dev: device
7305 *
7306 * Find out if a device is linked to a lower device and return true in case
7307 * it is. The caller must hold the RTNL lock.
7308 */
7309static bool netdev_has_any_lower_dev(struct net_device *dev)
7310{
7311        ASSERT_RTNL();
7312
7313        return !list_empty(&dev->adj_list.lower);
7314}
7315
7316void *netdev_adjacent_get_private(struct list_head *adj_list)
7317{
7318        struct netdev_adjacent *adj;
7319
7320        adj = list_entry(adj_list, struct netdev_adjacent, list);
7321
7322        return adj->private;
7323}
7324EXPORT_SYMBOL(netdev_adjacent_get_private);
7325
7326/**
7327 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7328 * @dev: device
7329 * @iter: list_head ** of the current position
7330 *
7331 * Gets the next device from the dev's upper list, starting from iter
7332 * position. The caller must hold RCU read lock.
7333 */
7334struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7335                                                 struct list_head **iter)
7336{
7337        struct netdev_adjacent *upper;
7338
7339        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7340
7341        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7342
7343        if (&upper->list == &dev->adj_list.upper)
7344                return NULL;
7345
7346        *iter = &upper->list;
7347
7348        return upper->dev;
7349}
7350EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7351
7352static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7353                                                  struct list_head **iter,
7354                                                  bool *ignore)
7355{
7356        struct netdev_adjacent *upper;
7357
7358        upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7359
7360        if (&upper->list == &dev->adj_list.upper)
7361                return NULL;
7362
7363        *iter = &upper->list;
7364        *ignore = upper->ignore;
7365
7366        return upper->dev;
7367}
7368
7369static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7370                                                    struct list_head **iter)
7371{
7372        struct netdev_adjacent *upper;
7373
7374        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7375
7376        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377
7378        if (&upper->list == &dev->adj_list.upper)
7379                return NULL;
7380
7381        *iter = &upper->list;
7382
7383        return upper->dev;
7384}
7385
7386static int __netdev_walk_all_upper_dev(struct net_device *dev,
7387                                       int (*fn)(struct net_device *dev,
7388                                         struct netdev_nested_priv *priv),
7389                                       struct netdev_nested_priv *priv)
7390{
7391        struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7392        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7393        int ret, cur = 0;
7394        bool ignore;
7395
7396        now = dev;
7397        iter = &dev->adj_list.upper;
7398
7399        while (1) {
7400                if (now != dev) {
7401                        ret = fn(now, priv);
7402                        if (ret)
7403                                return ret;
7404                }
7405
7406                next = NULL;
7407                while (1) {
7408                        udev = __netdev_next_upper_dev(now, &iter, &ignore);
7409                        if (!udev)
7410                                break;
7411                        if (ignore)
7412                                continue;
7413
7414                        next = udev;
7415                        niter = &udev->adj_list.upper;
7416                        dev_stack[cur] = now;
7417                        iter_stack[cur++] = iter;
7418                        break;
7419                }
7420
7421                if (!next) {
7422                        if (!cur)
7423                                return 0;
7424                        next = dev_stack[--cur];
7425                        niter = iter_stack[cur];
7426                }
7427
7428                now = next;
7429                iter = niter;
7430        }
7431
7432        return 0;
7433}
7434
7435int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7436                                  int (*fn)(struct net_device *dev,
7437                                            struct netdev_nested_priv *priv),
7438                                  struct netdev_nested_priv *priv)
7439{
7440        struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7441        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7442        int ret, cur = 0;
7443
7444        now = dev;
7445        iter = &dev->adj_list.upper;
7446
7447        while (1) {
7448                if (now != dev) {
7449                        ret = fn(now, priv);
7450                        if (ret)
7451                                return ret;
7452                }
7453
7454                next = NULL;
7455                while (1) {
7456                        udev = netdev_next_upper_dev_rcu(now, &iter);
7457                        if (!udev)
7458                                break;
7459
7460                        next = udev;
7461                        niter = &udev->adj_list.upper;
7462                        dev_stack[cur] = now;
7463                        iter_stack[cur++] = iter;
7464                        break;
7465                }
7466
7467                if (!next) {
7468                        if (!cur)
7469                                return 0;
7470                        next = dev_stack[--cur];
7471                        niter = iter_stack[cur];
7472                }
7473
7474                now = next;
7475                iter = niter;
7476        }
7477
7478        return 0;
7479}
7480EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7481
7482static bool __netdev_has_upper_dev(struct net_device *dev,
7483                                   struct net_device *upper_dev)
7484{
7485        struct netdev_nested_priv priv = {
7486                .flags = 0,
7487                .data = (void *)upper_dev,
7488        };
7489
7490        ASSERT_RTNL();
7491
7492        return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7493                                           &priv);
7494}
7495
7496/**
7497 * netdev_lower_get_next_private - Get the next ->private from the
7498 *                                 lower neighbour list
7499 * @dev: device
7500 * @iter: list_head ** of the current position
7501 *
7502 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7503 * list, starting from iter position. The caller must hold either hold the
7504 * RTNL lock or its own locking that guarantees that the neighbour lower
7505 * list will remain unchanged.
7506 */
7507void *netdev_lower_get_next_private(struct net_device *dev,
7508                                    struct list_head **iter)
7509{
7510        struct netdev_adjacent *lower;
7511
7512        lower = list_entry(*iter, struct netdev_adjacent, list);
7513
7514        if (&lower->list == &dev->adj_list.lower)
7515                return NULL;
7516
7517        *iter = lower->list.next;
7518
7519        return lower->private;
7520}
7521EXPORT_SYMBOL(netdev_lower_get_next_private);
7522
7523/**
7524 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7525 *                                     lower neighbour list, RCU
7526 *                                     variant
7527 * @dev: device
7528 * @iter: list_head ** of the current position
7529 *
7530 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7531 * list, starting from iter position. The caller must hold RCU read lock.
7532 */
7533void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7534                                        struct list_head **iter)
7535{
7536        struct netdev_adjacent *lower;
7537
7538        WARN_ON_ONCE(!rcu_read_lock_held());
7539
7540        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7541
7542        if (&lower->list == &dev->adj_list.lower)
7543                return NULL;
7544
7545        *iter = &lower->list;
7546
7547        return lower->private;
7548}
7549EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7550
7551/**
7552 * netdev_lower_get_next - Get the next device from the lower neighbour
7553 *                         list
7554 * @dev: device
7555 * @iter: list_head ** of the current position
7556 *
7557 * Gets the next netdev_adjacent from the dev's lower neighbour
7558 * list, starting from iter position. The caller must hold RTNL lock or
7559 * its own locking that guarantees that the neighbour lower
7560 * list will remain unchanged.
7561 */
7562void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7563{
7564        struct netdev_adjacent *lower;
7565
7566        lower = list_entry(*iter, struct netdev_adjacent, list);
7567
7568        if (&lower->list == &dev->adj_list.lower)
7569                return NULL;
7570
7571        *iter = lower->list.next;
7572
7573        return lower->dev;
7574}
7575EXPORT_SYMBOL(netdev_lower_get_next);
7576
7577static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7578                                                struct list_head **iter)
7579{
7580        struct netdev_adjacent *lower;
7581
7582        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7583
7584        if (&lower->list == &dev->adj_list.lower)
7585                return NULL;
7586
7587        *iter = &lower->list;
7588
7589        return lower->dev;
7590}
7591
7592static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7593                                                  struct list_head **iter,
7594                                                  bool *ignore)
7595{
7596        struct netdev_adjacent *lower;
7597
7598        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7599
7600        if (&lower->list == &dev->adj_list.lower)
7601                return NULL;
7602
7603        *iter = &lower->list;
7604        *ignore = lower->ignore;
7605
7606        return lower->dev;
7607}
7608
7609int netdev_walk_all_lower_dev(struct net_device *dev,
7610                              int (*fn)(struct net_device *dev,
7611                                        struct netdev_nested_priv *priv),
7612                              struct netdev_nested_priv *priv)
7613{
7614        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7615        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7616        int ret, cur = 0;
7617
7618        now = dev;
7619        iter = &dev->adj_list.lower;
7620
7621        while (1) {
7622                if (now != dev) {
7623                        ret = fn(now, priv);
7624                        if (ret)
7625                                return ret;
7626                }
7627
7628                next = NULL;
7629                while (1) {
7630                        ldev = netdev_next_lower_dev(now, &iter);
7631                        if (!ldev)
7632                                break;
7633
7634                        next = ldev;
7635                        niter = &ldev->adj_list.lower;
7636                        dev_stack[cur] = now;
7637                        iter_stack[cur++] = iter;
7638                        break;
7639                }
7640
7641                if (!next) {
7642                        if (!cur)
7643                                return 0;
7644                        next = dev_stack[--cur];
7645                        niter = iter_stack[cur];
7646                }
7647
7648                now = next;
7649                iter = niter;
7650        }
7651
7652        return 0;
7653}
7654EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7655
7656static int __netdev_walk_all_lower_dev(struct net_device *dev,
7657                                       int (*fn)(struct net_device *dev,
7658                                         struct netdev_nested_priv *priv),
7659                                       struct netdev_nested_priv *priv)
7660{
7661        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7662        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7663        int ret, cur = 0;
7664        bool ignore;
7665
7666        now = dev;
7667        iter = &dev->adj_list.lower;
7668
7669        while (1) {
7670                if (now != dev) {
7671                        ret = fn(now, priv);
7672                        if (ret)
7673                                return ret;
7674                }
7675
7676                next = NULL;
7677                while (1) {
7678                        ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7679                        if (!ldev)
7680                                break;
7681                        if (ignore)
7682                                continue;
7683
7684                        next = ldev;
7685                        niter = &ldev->adj_list.lower;
7686                        dev_stack[cur] = now;
7687                        iter_stack[cur++] = iter;
7688                        break;
7689                }
7690
7691                if (!next) {
7692                        if (!cur)
7693                                return 0;
7694                        next = dev_stack[--cur];
7695                        niter = iter_stack[cur];
7696                }
7697
7698                now = next;
7699                iter = niter;
7700        }
7701
7702        return 0;
7703}
7704
7705struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7706                                             struct list_head **iter)
7707{
7708        struct netdev_adjacent *lower;
7709
7710        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7711        if (&lower->list == &dev->adj_list.lower)
7712                return NULL;
7713
7714        *iter = &lower->list;
7715
7716        return lower->dev;
7717}
7718EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7719
7720static u8 __netdev_upper_depth(struct net_device *dev)
7721{
7722        struct net_device *udev;
7723        struct list_head *iter;
7724        u8 max_depth = 0;
7725        bool ignore;
7726
7727        for (iter = &dev->adj_list.upper,
7728             udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7729             udev;
7730             udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7731                if (ignore)
7732                        continue;
7733                if (max_depth < udev->upper_level)
7734                        max_depth = udev->upper_level;
7735        }
7736
7737        return max_depth;
7738}
7739
7740static u8 __netdev_lower_depth(struct net_device *dev)
7741{
7742        struct net_device *ldev;
7743        struct list_head *iter;
7744        u8 max_depth = 0;
7745        bool ignore;
7746
7747        for (iter = &dev->adj_list.lower,
7748             ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7749             ldev;
7750             ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7751                if (ignore)
7752                        continue;
7753                if (max_depth < ldev->lower_level)
7754                        max_depth = ldev->lower_level;
7755        }
7756
7757        return max_depth;
7758}
7759
7760static int __netdev_update_upper_level(struct net_device *dev,
7761                                       struct netdev_nested_priv *__unused)
7762{
7763        dev->upper_level = __netdev_upper_depth(dev) + 1;
7764        return 0;
7765}
7766
7767static int __netdev_update_lower_level(struct net_device *dev,
7768                                       struct netdev_nested_priv *priv)
7769{
7770        dev->lower_level = __netdev_lower_depth(dev) + 1;
7771
7772#ifdef CONFIG_LOCKDEP
7773        if (!priv)
7774                return 0;
7775
7776        if (priv->flags & NESTED_SYNC_IMM)
7777                dev->nested_level = dev->lower_level - 1;
7778        if (priv->flags & NESTED_SYNC_TODO)
7779                net_unlink_todo(dev);
7780#endif
7781        return 0;
7782}
7783
7784int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7785                                  int (*fn)(struct net_device *dev,
7786                                            struct netdev_nested_priv *priv),
7787                                  struct netdev_nested_priv *priv)
7788{
7789        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7790        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7791        int ret, cur = 0;
7792
7793        now = dev;
7794        iter = &dev->adj_list.lower;
7795
7796        while (1) {
7797                if (now != dev) {
7798                        ret = fn(now, priv);
7799                        if (ret)
7800                                return ret;
7801                }
7802
7803                next = NULL;
7804                while (1) {
7805                        ldev = netdev_next_lower_dev_rcu(now, &iter);
7806                        if (!ldev)
7807                                break;
7808
7809                        next = ldev;
7810                        niter = &ldev->adj_list.lower;
7811                        dev_stack[cur] = now;
7812                        iter_stack[cur++] = iter;
7813                        break;
7814                }
7815
7816                if (!next) {
7817                        if (!cur)
7818                                return 0;
7819                        next = dev_stack[--cur];
7820                        niter = iter_stack[cur];
7821                }
7822
7823                now = next;
7824                iter = niter;
7825        }
7826
7827        return 0;
7828}
7829EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7830
7831/**
7832 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7833 *                                     lower neighbour list, RCU
7834 *                                     variant
7835 * @dev: device
7836 *
7837 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7838 * list. The caller must hold RCU read lock.
7839 */
7840void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7841{
7842        struct netdev_adjacent *lower;
7843
7844        lower = list_first_or_null_rcu(&dev->adj_list.lower,
7845                        struct netdev_adjacent, list);
7846        if (lower)
7847                return lower->private;
7848        return NULL;
7849}
7850EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7851
7852/**
7853 * netdev_master_upper_dev_get_rcu - Get master upper device
7854 * @dev: device
7855 *
7856 * Find a master upper device and return pointer to it or NULL in case
7857 * it's not there. The caller must hold the RCU read lock.
7858 */
7859struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7860{
7861        struct netdev_adjacent *upper;
7862
7863        upper = list_first_or_null_rcu(&dev->adj_list.upper,
7864                                       struct netdev_adjacent, list);
7865        if (upper && likely(upper->master))
7866                return upper->dev;
7867        return NULL;
7868}
7869EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7870
7871static int netdev_adjacent_sysfs_add(struct net_device *dev,
7872                              struct net_device *adj_dev,
7873                              struct list_head *dev_list)
7874{
7875        char linkname[IFNAMSIZ+7];
7876
7877        sprintf(linkname, dev_list == &dev->adj_list.upper ?
7878                "upper_%s" : "lower_%s", adj_dev->name);
7879        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7880                                 linkname);
7881}
7882static void netdev_adjacent_sysfs_del(struct net_device *dev,
7883                               char *name,
7884                               struct list_head *dev_list)
7885{
7886        char linkname[IFNAMSIZ+7];
7887
7888        sprintf(linkname, dev_list == &dev->adj_list.upper ?
7889                "upper_%s" : "lower_%s", name);
7890        sysfs_remove_link(&(dev->dev.kobj), linkname);
7891}
7892
7893static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7894                                                 struct net_device *adj_dev,
7895                                                 struct list_head *dev_list)
7896{
7897        return (dev_list == &dev->adj_list.upper ||
7898                dev_list == &dev->adj_list.lower) &&
7899                net_eq(dev_net(dev), dev_net(adj_dev));
7900}
7901
7902static int __netdev_adjacent_dev_insert(struct net_device *dev,
7903                                        struct net_device *adj_dev,
7904                                        struct list_head *dev_list,
7905                                        void *private, bool master)
7906{
7907        struct netdev_adjacent *adj;
7908        int ret;
7909
7910        adj = __netdev_find_adj(adj_dev, dev_list);
7911
7912        if (adj) {
7913                adj->ref_nr += 1;
7914                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7915                         dev->name, adj_dev->name, adj->ref_nr);
7916
7917                return 0;
7918        }
7919
7920        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7921        if (!adj)
7922                return -ENOMEM;
7923
7924        adj->dev = adj_dev;
7925        adj->master = master;
7926        adj->ref_nr = 1;
7927        adj->private = private;
7928        adj->ignore = false;
7929        dev_hold(adj_dev);
7930
7931        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7932                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7933
7934        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7935                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7936                if (ret)
7937                        goto free_adj;
7938        }
7939
7940        /* Ensure that master link is always the first item in list. */
7941        if (master) {
7942                ret = sysfs_create_link(&(dev->dev.kobj),
7943                                        &(adj_dev->dev.kobj), "master");
7944                if (ret)
7945                        goto remove_symlinks;
7946
7947                list_add_rcu(&adj->list, dev_list);
7948        } else {
7949                list_add_tail_rcu(&adj->list, dev_list);
7950        }
7951
7952        return 0;
7953
7954remove_symlinks:
7955        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7956                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7957free_adj:
7958        kfree(adj);
7959        dev_put(adj_dev);
7960
7961        return ret;
7962}
7963
7964static void __netdev_adjacent_dev_remove(struct net_device *dev,
7965                                         struct net_device *adj_dev,
7966                                         u16 ref_nr,
7967                                         struct list_head *dev_list)
7968{
7969        struct netdev_adjacent *adj;
7970
7971        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7972                 dev->name, adj_dev->name, ref_nr);
7973
7974        adj = __netdev_find_adj(adj_dev, dev_list);
7975
7976        if (!adj) {
7977                pr_err("Adjacency does not exist for device %s from %s\n",
7978                       dev->name, adj_dev->name);
7979                WARN_ON(1);
7980                return;
7981        }
7982
7983        if (adj->ref_nr > ref_nr) {
7984                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7985                         dev->name, adj_dev->name, ref_nr,
7986                         adj->ref_nr - ref_nr);
7987                adj->ref_nr -= ref_nr;
7988                return;
7989        }
7990
7991        if (adj->master)
7992                sysfs_remove_link(&(dev->dev.kobj), "master");
7993
7994        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7995                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7996
7997        list_del_rcu(&adj->list);
7998        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7999                 adj_dev->name, dev->name, adj_dev->name);
8000        dev_put(adj_dev);
8001        kfree_rcu(adj, rcu);
8002}
8003
8004static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8005                                            struct net_device *upper_dev,
8006                                            struct list_head *up_list,
8007                                            struct list_head *down_list,
8008                                            void *private, bool master)
8009{
8010        int ret;
8011
8012        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8013                                           private, master);
8014        if (ret)
8015                return ret;
8016
8017        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8018                                           private, false);
8019        if (ret) {
8020                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8021                return ret;
8022        }
8023
8024        return 0;
8025}
8026
8027static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8028                                               struct net_device *upper_dev,
8029                                               u16 ref_nr,
8030                                               struct list_head *up_list,
8031                                               struct list_head *down_list)
8032{
8033        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8034        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8035}
8036
8037static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8038                                                struct net_device *upper_dev,
8039                                                void *private, bool master)
8040{
8041        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8042                                                &dev->adj_list.upper,
8043                                                &upper_dev->adj_list.lower,
8044                                                private, master);
8045}
8046
8047static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8048                                                   struct net_device *upper_dev)
8049{
8050        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8051                                           &dev->adj_list.upper,
8052                                           &upper_dev->adj_list.lower);
8053}
8054
8055static int __netdev_upper_dev_link(struct net_device *dev,
8056                                   struct net_device *upper_dev, bool master,
8057                                   void *upper_priv, void *upper_info,
8058                                   struct netdev_nested_priv *priv,
8059                                   struct netlink_ext_ack *extack)
8060{
8061        struct netdev_notifier_changeupper_info changeupper_info = {
8062                .info = {
8063                        .dev = dev,
8064                        .extack = extack,
8065                },
8066                .upper_dev = upper_dev,
8067                .master = master,
8068                .linking = true,
8069                .upper_info = upper_info,
8070        };
8071        struct net_device *master_dev;
8072        int ret = 0;
8073
8074        ASSERT_RTNL();
8075
8076        if (dev == upper_dev)
8077                return -EBUSY;
8078
8079        /* To prevent loops, check if dev is not upper device to upper_dev. */
8080        if (__netdev_has_upper_dev(upper_dev, dev))
8081                return -EBUSY;
8082
8083        if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8084                return -EMLINK;
8085
8086        if (!master) {
8087                if (__netdev_has_upper_dev(dev, upper_dev))
8088                        return -EEXIST;
8089        } else {
8090                master_dev = __netdev_master_upper_dev_get(dev);
8091                if (master_dev)
8092                        return master_dev == upper_dev ? -EEXIST : -EBUSY;
8093        }
8094
8095        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8096                                            &changeupper_info.info);
8097        ret = notifier_to_errno(ret);
8098        if (ret)
8099                return ret;
8100
8101        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8102                                                   master);
8103        if (ret)
8104                return ret;
8105
8106        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8107                                            &changeupper_info.info);
8108        ret = notifier_to_errno(ret);
8109        if (ret)
8110                goto rollback;
8111
8112        __netdev_update_upper_level(dev, NULL);
8113        __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8114
8115        __netdev_update_lower_level(upper_dev, priv);
8116        __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8117                                    priv);
8118
8119        return 0;
8120
8121rollback:
8122        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8123
8124        return ret;
8125}
8126
8127/**
8128 * netdev_upper_dev_link - Add a link to the upper device
8129 * @dev: device
8130 * @upper_dev: new upper device
8131 * @extack: netlink extended ack
8132 *
8133 * Adds a link to device which is upper to this one. The caller must hold
8134 * the RTNL lock. On a failure a negative errno code is returned.
8135 * On success the reference counts are adjusted and the function
8136 * returns zero.
8137 */
8138int netdev_upper_dev_link(struct net_device *dev,
8139                          struct net_device *upper_dev,
8140                          struct netlink_ext_ack *extack)
8141{
8142        struct netdev_nested_priv priv = {
8143                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8144                .data = NULL,
8145        };
8146
8147        return __netdev_upper_dev_link(dev, upper_dev, false,
8148                                       NULL, NULL, &priv, extack);
8149}
8150EXPORT_SYMBOL(netdev_upper_dev_link);
8151
8152/**
8153 * netdev_master_upper_dev_link - Add a master link to the upper device
8154 * @dev: device
8155 * @upper_dev: new upper device
8156 * @upper_priv: upper device private
8157 * @upper_info: upper info to be passed down via notifier
8158 * @extack: netlink extended ack
8159 *
8160 * Adds a link to device which is upper to this one. In this case, only
8161 * one master upper device can be linked, although other non-master devices
8162 * might be linked as well. The caller must hold the RTNL lock.
8163 * On a failure a negative errno code is returned. On success the reference
8164 * counts are adjusted and the function returns zero.
8165 */
8166int netdev_master_upper_dev_link(struct net_device *dev,
8167                                 struct net_device *upper_dev,
8168                                 void *upper_priv, void *upper_info,
8169                                 struct netlink_ext_ack *extack)
8170{
8171        struct netdev_nested_priv priv = {
8172                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8173                .data = NULL,
8174        };
8175
8176        return __netdev_upper_dev_link(dev, upper_dev, true,
8177                                       upper_priv, upper_info, &priv, extack);
8178}
8179EXPORT_SYMBOL(netdev_master_upper_dev_link);
8180
8181static void __netdev_upper_dev_unlink(struct net_device *dev,
8182                                      struct net_device *upper_dev,
8183                                      struct netdev_nested_priv *priv)
8184{
8185        struct netdev_notifier_changeupper_info changeupper_info = {
8186                .info = {
8187                        .dev = dev,
8188                },
8189                .upper_dev = upper_dev,
8190                .linking = false,
8191        };
8192
8193        ASSERT_RTNL();
8194
8195        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8196
8197        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8198                                      &changeupper_info.info);
8199
8200        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8201
8202        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8203                                      &changeupper_info.info);
8204
8205        __netdev_update_upper_level(dev, NULL);
8206        __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8207
8208        __netdev_update_lower_level(upper_dev, priv);
8209        __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8210                                    priv);
8211}
8212
8213/**
8214 * netdev_upper_dev_unlink - Removes a link to upper device
8215 * @dev: device
8216 * @upper_dev: new upper device
8217 *
8218 * Removes a link to device which is upper to this one. The caller must hold
8219 * the RTNL lock.
8220 */
8221void netdev_upper_dev_unlink(struct net_device *dev,
8222                             struct net_device *upper_dev)
8223{
8224        struct netdev_nested_priv priv = {
8225                .flags = NESTED_SYNC_TODO,
8226                .data = NULL,
8227        };
8228
8229        __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8230}
8231EXPORT_SYMBOL(netdev_upper_dev_unlink);
8232
8233static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8234                                      struct net_device *lower_dev,
8235                                      bool val)
8236{
8237        struct netdev_adjacent *adj;
8238
8239        adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8240        if (adj)
8241                adj->ignore = val;
8242
8243        adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8244        if (adj)
8245                adj->ignore = val;
8246}
8247
8248static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8249                                        struct net_device *lower_dev)
8250{
8251        __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8252}
8253
8254static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8255                                       struct net_device *lower_dev)
8256{
8257        __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8258}
8259
8260int netdev_adjacent_change_prepare(struct net_device *old_dev,
8261                                   struct net_device *new_dev,
8262                                   struct net_device *dev,
8263                                   struct netlink_ext_ack *extack)
8264{
8265        struct netdev_nested_priv priv = {
8266                .flags = 0,
8267                .data = NULL,
8268        };
8269        int err;
8270
8271        if (!new_dev)
8272                return 0;
8273
8274        if (old_dev && new_dev != old_dev)
8275                netdev_adjacent_dev_disable(dev, old_dev);
8276        err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8277                                      extack);
8278        if (err) {
8279                if (old_dev && new_dev != old_dev)
8280                        netdev_adjacent_dev_enable(dev, old_dev);
8281                return err;
8282        }
8283
8284        return 0;
8285}
8286EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8287
8288void netdev_adjacent_change_commit(struct net_device *old_dev,
8289                                   struct net_device *new_dev,
8290                                   struct net_device *dev)
8291{
8292        struct netdev_nested_priv priv = {
8293                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8294                .data = NULL,
8295        };
8296
8297        if (!new_dev || !old_dev)
8298                return;
8299
8300        if (new_dev == old_dev)
8301                return;
8302
8303        netdev_adjacent_dev_enable(dev, old_dev);
8304        __netdev_upper_dev_unlink(old_dev, dev, &priv);
8305}
8306EXPORT_SYMBOL(netdev_adjacent_change_commit);
8307
8308void netdev_adjacent_change_abort(struct net_device *old_dev,
8309                                  struct net_device *new_dev,
8310                                  struct net_device *dev)
8311{
8312        struct netdev_nested_priv priv = {
8313                .flags = 0,
8314                .data = NULL,
8315        };
8316
8317        if (!new_dev)
8318                return;
8319
8320        if (old_dev && new_dev != old_dev)
8321                netdev_adjacent_dev_enable(dev, old_dev);
8322
8323        __netdev_upper_dev_unlink(new_dev, dev, &priv);
8324}
8325EXPORT_SYMBOL(netdev_adjacent_change_abort);
8326
8327/**
8328 * netdev_bonding_info_change - Dispatch event about slave change
8329 * @dev: device
8330 * @bonding_info: info to dispatch
8331 *
8332 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8333 * The caller must hold the RTNL lock.
8334 */
8335void netdev_bonding_info_change(struct net_device *dev,
8336                                struct netdev_bonding_info *bonding_info)
8337{
8338        struct netdev_notifier_bonding_info info = {
8339                .info.dev = dev,
8340        };
8341
8342        memcpy(&info.bonding_info, bonding_info,
8343               sizeof(struct netdev_bonding_info));
8344        call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8345                                      &info.info);
8346}
8347EXPORT_SYMBOL(netdev_bonding_info_change);
8348
8349/**
8350 * netdev_get_xmit_slave - Get the xmit slave of master device
8351 * @dev: device
8352 * @skb: The packet
8353 * @all_slaves: assume all the slaves are active
8354 *
8355 * The reference counters are not incremented so the caller must be
8356 * careful with locks. The caller must hold RCU lock.
8357 * %NULL is returned if no slave is found.
8358 */
8359
8360struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8361                                         struct sk_buff *skb,
8362                                         bool all_slaves)
8363{
8364        const struct net_device_ops *ops = dev->netdev_ops;
8365
8366        if (!ops->ndo_get_xmit_slave)
8367                return NULL;
8368        return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8369}
8370EXPORT_SYMBOL(netdev_get_xmit_slave);
8371
8372static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8373                                                  struct sock *sk)
8374{
8375        const struct net_device_ops *ops = dev->netdev_ops;
8376
8377        if (!ops->ndo_sk_get_lower_dev)
8378                return NULL;
8379        return ops->ndo_sk_get_lower_dev(dev, sk);
8380}
8381
8382/**
8383 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8384 * @dev: device
8385 * @sk: the socket
8386 *
8387 * %NULL is returned if no lower device is found.
8388 */
8389
8390struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8391                                            struct sock *sk)
8392{
8393        struct net_device *lower;
8394
8395        lower = netdev_sk_get_lower_dev(dev, sk);
8396        while (lower) {
8397                dev = lower;
8398                lower = netdev_sk_get_lower_dev(dev, sk);
8399        }
8400
8401        return dev;
8402}
8403EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8404
8405static void netdev_adjacent_add_links(struct net_device *dev)
8406{
8407        struct netdev_adjacent *iter;
8408
8409        struct net *net = dev_net(dev);
8410
8411        list_for_each_entry(iter, &dev->adj_list.upper, list) {
8412                if (!net_eq(net, dev_net(iter->dev)))
8413                        continue;
8414                netdev_adjacent_sysfs_add(iter->dev, dev,
8415                                          &iter->dev->adj_list.lower);
8416                netdev_adjacent_sysfs_add(dev, iter->dev,
8417                                          &dev->adj_list.upper);
8418        }
8419
8420        list_for_each_entry(iter, &dev->adj_list.lower, list) {
8421                if (!net_eq(net, dev_net(iter->dev)))
8422                        continue;
8423                netdev_adjacent_sysfs_add(iter->dev, dev,
8424                                          &iter->dev->adj_list.upper);
8425                netdev_adjacent_sysfs_add(dev, iter->dev,
8426                                          &dev->adj_list.lower);
8427        }
8428}
8429
8430static void netdev_adjacent_del_links(struct net_device *dev)
8431{
8432        struct netdev_adjacent *iter;
8433
8434        struct net *net = dev_net(dev);
8435
8436        list_for_each_entry(iter, &dev->adj_list.upper, list) {
8437                if (!net_eq(net, dev_net(iter->dev)))
8438                        continue;
8439                netdev_adjacent_sysfs_del(iter->dev, dev->name,
8440                                          &iter->dev->adj_list.lower);
8441                netdev_adjacent_sysfs_del(dev, iter->dev->name,
8442                                          &dev->adj_list.upper);
8443        }
8444
8445        list_for_each_entry(iter, &dev->adj_list.lower, list) {
8446                if (!net_eq(net, dev_net(iter->dev)))
8447                        continue;
8448                netdev_adjacent_sysfs_del(iter->dev, dev->name,
8449                                          &iter->dev->adj_list.upper);
8450                netdev_adjacent_sysfs_del(dev, iter->dev->name,
8451                                          &dev->adj_list.lower);
8452        }
8453}
8454
8455void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8456{
8457        struct netdev_adjacent *iter;
8458
8459        struct net *net = dev_net(dev);
8460
8461        list_for_each_entry(iter, &dev->adj_list.upper, list) {
8462                if (!net_eq(net, dev_net(iter->dev)))
8463                        continue;
8464                netdev_adjacent_sysfs_del(iter->dev, oldname,
8465                                          &iter->dev->adj_list.lower);
8466                netdev_adjacent_sysfs_add(iter->dev, dev,
8467                                          &iter->dev->adj_list.lower);
8468        }
8469
8470        list_for_each_entry(iter, &dev->adj_list.lower, list) {
8471                if (!net_eq(net, dev_net(iter->dev)))
8472                        continue;
8473                netdev_adjacent_sysfs_del(iter->dev, oldname,
8474                                          &iter->dev->adj_list.upper);
8475                netdev_adjacent_sysfs_add(iter->dev, dev,
8476                                          &iter->dev->adj_list.upper);
8477        }
8478}
8479
8480void *netdev_lower_dev_get_private(struct net_device *dev,
8481                                   struct net_device *lower_dev)
8482{
8483        struct netdev_adjacent *lower;
8484
8485        if (!lower_dev)
8486                return NULL;
8487        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8488        if (!lower)
8489                return NULL;
8490
8491        return lower->private;
8492}
8493EXPORT_SYMBOL(netdev_lower_dev_get_private);
8494
8495
8496/**
8497 * netdev_lower_state_changed - Dispatch event about lower device state change
8498 * @lower_dev: device
8499 * @lower_state_info: state to dispatch
8500 *
8501 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8502 * The caller must hold the RTNL lock.
8503 */
8504void netdev_lower_state_changed(struct net_device *lower_dev,
8505                                void *lower_state_info)
8506{
8507        struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8508                .info.dev = lower_dev,
8509        };
8510
8511        ASSERT_RTNL();
8512        changelowerstate_info.lower_state_info = lower_state_info;
8513        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8514                                      &changelowerstate_info.info);
8515}
8516EXPORT_SYMBOL(netdev_lower_state_changed);
8517
8518static void dev_change_rx_flags(struct net_device *dev, int flags)
8519{
8520        const struct net_device_ops *ops = dev->netdev_ops;
8521
8522        if (ops->ndo_change_rx_flags)
8523                ops->ndo_change_rx_flags(dev, flags);
8524}
8525
8526static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8527{
8528        unsigned int old_flags = dev->flags;
8529        kuid_t uid;
8530        kgid_t gid;
8531
8532        ASSERT_RTNL();
8533
8534        dev->flags |= IFF_PROMISC;
8535        dev->promiscuity += inc;
8536        if (dev->promiscuity == 0) {
8537                /*
8538                 * Avoid overflow.
8539                 * If inc causes overflow, untouch promisc and return error.
8540                 */
8541                if (inc < 0)
8542                        dev->flags &= ~IFF_PROMISC;
8543                else {
8544                        dev->promiscuity -= inc;
8545                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8546                                dev->name);
8547                        return -EOVERFLOW;
8548                }
8549        }
8550        if (dev->flags != old_flags) {
8551                pr_info("device %s %s promiscuous mode\n",
8552                        dev->name,
8553                        dev->flags & IFF_PROMISC ? "entered" : "left");
8554                if (audit_enabled) {
8555                        current_uid_gid(&uid, &gid);
8556                        audit_log(audit_context(), GFP_ATOMIC,
8557                                  AUDIT_ANOM_PROMISCUOUS,
8558                                  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8559                                  dev->name, (dev->flags & IFF_PROMISC),
8560                                  (old_flags & IFF_PROMISC),
8561                                  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8562                                  from_kuid(&init_user_ns, uid),
8563                                  from_kgid(&init_user_ns, gid),
8564                                  audit_get_sessionid(current));
8565                }
8566
8567                dev_change_rx_flags(dev, IFF_PROMISC);
8568        }
8569        if (notify)
8570                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8571        return 0;
8572}
8573
8574/**
8575 *      dev_set_promiscuity     - update promiscuity count on a device
8576 *      @dev: device
8577 *      @inc: modifier
8578 *
8579 *      Add or remove promiscuity from a device. While the count in the device
8580 *      remains above zero the interface remains promiscuous. Once it hits zero
8581 *      the device reverts back to normal filtering operation. A negative inc
8582 *      value is used to drop promiscuity on the device.
8583 *      Return 0 if successful or a negative errno code on error.
8584 */
8585int dev_set_promiscuity(struct net_device *dev, int inc)
8586{
8587        unsigned int old_flags = dev->flags;
8588        int err;
8589
8590        err = __dev_set_promiscuity(dev, inc, true);
8591        if (err < 0)
8592                return err;
8593        if (dev->flags != old_flags)
8594                dev_set_rx_mode(dev);
8595        return err;
8596}
8597EXPORT_SYMBOL(dev_set_promiscuity);
8598
8599static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8600{
8601        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8602
8603        ASSERT_RTNL();
8604
8605        dev->flags |= IFF_ALLMULTI;
8606        dev->allmulti += inc;
8607        if (dev->allmulti == 0) {
8608                /*
8609                 * Avoid overflow.
8610                 * If inc causes overflow, untouch allmulti and return error.
8611                 */
8612                if (inc < 0)
8613                        dev->flags &= ~IFF_ALLMULTI;
8614                else {
8615                        dev->allmulti -= inc;
8616                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8617                                dev->name);
8618                        return -EOVERFLOW;
8619                }
8620        }
8621        if (dev->flags ^ old_flags) {
8622                dev_change_rx_flags(dev, IFF_ALLMULTI);
8623                dev_set_rx_mode(dev);
8624                if (notify)
8625                        __dev_notify_flags(dev, old_flags,
8626                                           dev->gflags ^ old_gflags);
8627        }
8628        return 0;
8629}
8630
8631/**
8632 *      dev_set_allmulti        - update allmulti count on a device
8633 *      @dev: device
8634 *      @inc: modifier
8635 *
8636 *      Add or remove reception of all multicast frames to a device. While the
8637 *      count in the device remains above zero the interface remains listening
8638 *      to all interfaces. Once it hits zero the device reverts back to normal
8639 *      filtering operation. A negative @inc value is used to drop the counter
8640 *      when releasing a resource needing all multicasts.
8641 *      Return 0 if successful or a negative errno code on error.
8642 */
8643
8644int dev_set_allmulti(struct net_device *dev, int inc)
8645{
8646        return __dev_set_allmulti(dev, inc, true);
8647}
8648EXPORT_SYMBOL(dev_set_allmulti);
8649
8650/*
8651 *      Upload unicast and multicast address lists to device and
8652 *      configure RX filtering. When the device doesn't support unicast
8653 *      filtering it is put in promiscuous mode while unicast addresses
8654 *      are present.
8655 */
8656void __dev_set_rx_mode(struct net_device *dev)
8657{
8658        const struct net_device_ops *ops = dev->netdev_ops;
8659
8660        /* dev_open will call this function so the list will stay sane. */
8661        if (!(dev->flags&IFF_UP))
8662                return;
8663
8664        if (!netif_device_present(dev))
8665                return;
8666
8667        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8668                /* Unicast addresses changes may only happen under the rtnl,
8669                 * therefore calling __dev_set_promiscuity here is safe.
8670                 */
8671                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8672                        __dev_set_promiscuity(dev, 1, false);
8673                        dev->uc_promisc = true;
8674                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8675                        __dev_set_promiscuity(dev, -1, false);
8676                        dev->uc_promisc = false;
8677                }
8678        }
8679
8680        if (ops->ndo_set_rx_mode)
8681                ops->ndo_set_rx_mode(dev);
8682}
8683
8684void dev_set_rx_mode(struct net_device *dev)
8685{
8686        netif_addr_lock_bh(dev);
8687        __dev_set_rx_mode(dev);
8688        netif_addr_unlock_bh(dev);
8689}
8690
8691/**
8692 *      dev_get_flags - get flags reported to userspace
8693 *      @dev: device
8694 *
8695 *      Get the combination of flag bits exported through APIs to userspace.
8696 */
8697unsigned int dev_get_flags(const struct net_device *dev)
8698{
8699        unsigned int flags;
8700
8701        flags = (dev->flags & ~(IFF_PROMISC |
8702                                IFF_ALLMULTI |
8703                                IFF_RUNNING |
8704                                IFF_LOWER_UP |
8705                                IFF_DORMANT)) |
8706                (dev->gflags & (IFF_PROMISC |
8707                                IFF_ALLMULTI));
8708
8709        if (netif_running(dev)) {
8710                if (netif_oper_up(dev))
8711                        flags |= IFF_RUNNING;
8712                if (netif_carrier_ok(dev))
8713                        flags |= IFF_LOWER_UP;
8714                if (netif_dormant(dev))
8715                        flags |= IFF_DORMANT;
8716        }
8717
8718        return flags;
8719}
8720EXPORT_SYMBOL(dev_get_flags);
8721
8722int __dev_change_flags(struct net_device *dev, unsigned int flags,
8723                       struct netlink_ext_ack *extack)
8724{
8725        unsigned int old_flags = dev->flags;
8726        int ret;
8727
8728        ASSERT_RTNL();
8729
8730        /*
8731         *      Set the flags on our device.
8732         */
8733
8734        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8735                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8736                               IFF_AUTOMEDIA)) |
8737                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8738                                    IFF_ALLMULTI));
8739
8740        /*
8741         *      Load in the correct multicast list now the flags have changed.
8742         */
8743
8744        if ((old_flags ^ flags) & IFF_MULTICAST)
8745                dev_change_rx_flags(dev, IFF_MULTICAST);
8746
8747        dev_set_rx_mode(dev);
8748
8749        /*
8750         *      Have we downed the interface. We handle IFF_UP ourselves
8751         *      according to user attempts to set it, rather than blindly
8752         *      setting it.
8753         */
8754
8755        ret = 0;
8756        if ((old_flags ^ flags) & IFF_UP) {
8757                if (old_flags & IFF_UP)
8758                        __dev_close(dev);
8759                else
8760                        ret = __dev_open(dev, extack);
8761        }
8762
8763        if ((flags ^ dev->gflags) & IFF_PROMISC) {
8764                int inc = (flags & IFF_PROMISC) ? 1 : -1;
8765                unsigned int old_flags = dev->flags;
8766
8767                dev->gflags ^= IFF_PROMISC;
8768
8769                if (__dev_set_promiscuity(dev, inc, false) >= 0)
8770                        if (dev->flags != old_flags)
8771                                dev_set_rx_mode(dev);
8772        }
8773
8774        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8775         * is important. Some (broken) drivers set IFF_PROMISC, when
8776         * IFF_ALLMULTI is requested not asking us and not reporting.
8777         */
8778        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8779                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8780
8781                dev->gflags ^= IFF_ALLMULTI;
8782                __dev_set_allmulti(dev, inc, false);
8783        }
8784
8785        return ret;
8786}
8787
8788void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8789                        unsigned int gchanges)
8790{
8791        unsigned int changes = dev->flags ^ old_flags;
8792
8793        if (gchanges)
8794                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8795
8796        if (changes & IFF_UP) {
8797                if (dev->flags & IFF_UP)
8798                        call_netdevice_notifiers(NETDEV_UP, dev);
8799                else
8800                        call_netdevice_notifiers(NETDEV_DOWN, dev);
8801        }
8802
8803        if (dev->flags & IFF_UP &&
8804            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8805                struct netdev_notifier_change_info change_info = {
8806                        .info = {
8807                                .dev = dev,
8808                        },
8809                        .flags_changed = changes,
8810                };
8811
8812                call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8813        }
8814}
8815
8816/**
8817 *      dev_change_flags - change device settings
8818 *      @dev: device
8819 *      @flags: device state flags
8820 *      @extack: netlink extended ack
8821 *
8822 *      Change settings on device based state flags. The flags are
8823 *      in the userspace exported format.
8824 */
8825int dev_change_flags(struct net_device *dev, unsigned int flags,
8826                     struct netlink_ext_ack *extack)
8827{
8828        int ret;
8829        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8830
8831        ret = __dev_change_flags(dev, flags, extack);
8832        if (ret < 0)
8833                return ret;
8834
8835        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8836        __dev_notify_flags(dev, old_flags, changes);
8837        return ret;
8838}
8839EXPORT_SYMBOL(dev_change_flags);
8840
8841int __dev_set_mtu(struct net_device *dev, int new_mtu)
8842{
8843        const struct net_device_ops *ops = dev->netdev_ops;
8844
8845        if (ops->ndo_change_mtu)
8846                return ops->ndo_change_mtu(dev, new_mtu);
8847
8848        /* Pairs with all the lockless reads of dev->mtu in the stack */
8849        WRITE_ONCE(dev->mtu, new_mtu);
8850        return 0;
8851}
8852EXPORT_SYMBOL(__dev_set_mtu);
8853
8854int dev_validate_mtu(struct net_device *dev, int new_mtu,
8855                     struct netlink_ext_ack *extack)
8856{
8857        /* MTU must be positive, and in range */
8858        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8859                NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8860                return -EINVAL;
8861        }
8862
8863        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8864                NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8865                return -EINVAL;
8866        }
8867        return 0;
8868}
8869
8870/**
8871 *      dev_set_mtu_ext - Change maximum transfer unit
8872 *      @dev: device
8873 *      @new_mtu: new transfer unit
8874 *      @extack: netlink extended ack
8875 *
8876 *      Change the maximum transfer size of the network device.
8877 */
8878int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8879                    struct netlink_ext_ack *extack)
8880{
8881        int err, orig_mtu;
8882
8883        if (new_mtu == dev->mtu)
8884                return 0;
8885
8886        err = dev_validate_mtu(dev, new_mtu, extack);
8887        if (err)
8888                return err;
8889
8890        if (!netif_device_present(dev))
8891                return -ENODEV;
8892
8893        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8894        err = notifier_to_errno(err);
8895        if (err)
8896                return err;
8897
8898        orig_mtu = dev->mtu;
8899        err = __dev_set_mtu(dev, new_mtu);
8900
8901        if (!err) {
8902                err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8903                                                   orig_mtu);
8904                err = notifier_to_errno(err);
8905                if (err) {
8906                        /* setting mtu back and notifying everyone again,
8907                         * so that they have a chance to revert changes.
8908                         */
8909                        __dev_set_mtu(dev, orig_mtu);
8910                        call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8911                                                     new_mtu);
8912                }
8913        }
8914        return err;
8915}
8916
8917int dev_set_mtu(struct net_device *dev, int new_mtu)
8918{
8919        struct netlink_ext_ack extack;
8920        int err;
8921
8922        memset(&extack, 0, sizeof(extack));
8923        err = dev_set_mtu_ext(dev, new_mtu, &extack);
8924        if (err && extack._msg)
8925                net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8926        return err;
8927}
8928EXPORT_SYMBOL(dev_set_mtu);
8929
8930/**
8931 *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8932 *      @dev: device
8933 *      @new_len: new tx queue length
8934 */
8935int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8936{
8937        unsigned int orig_len = dev->tx_queue_len;
8938        int res;
8939
8940        if (new_len != (unsigned int)new_len)
8941                return -ERANGE;
8942
8943        if (new_len != orig_len) {
8944                dev->tx_queue_len = new_len;
8945                res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8946                res = notifier_to_errno(res);
8947                if (res)
8948                        goto err_rollback;
8949                res = dev_qdisc_change_tx_queue_len(dev);
8950                if (res)
8951                        goto err_rollback;
8952        }
8953
8954        return 0;
8955
8956err_rollback:
8957        netdev_err(dev, "refused to change device tx_queue_len\n");
8958        dev->tx_queue_len = orig_len;
8959        return res;
8960}
8961
8962/**
8963 *      dev_set_group - Change group this device belongs to
8964 *      @dev: device
8965 *      @new_group: group this device should belong to
8966 */
8967void dev_set_group(struct net_device *dev, int new_group)
8968{
8969        dev->group = new_group;
8970}
8971EXPORT_SYMBOL(dev_set_group);
8972
8973/**
8974 *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8975 *      @dev: device
8976 *      @addr: new address
8977 *      @extack: netlink extended ack
8978 */
8979int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8980                              struct netlink_ext_ack *extack)
8981{
8982        struct netdev_notifier_pre_changeaddr_info info = {
8983                .info.dev = dev,
8984                .info.extack = extack,
8985                .dev_addr = addr,
8986        };
8987        int rc;
8988
8989        rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8990        return notifier_to_errno(rc);
8991}
8992EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8993
8994/**
8995 *      dev_set_mac_address - Change Media Access Control Address
8996 *      @dev: device
8997 *      @sa: new address
8998 *      @extack: netlink extended ack
8999 *
9000 *      Change the hardware (MAC) address of the device
9001 */
9002int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9003                        struct netlink_ext_ack *extack)
9004{
9005        const struct net_device_ops *ops = dev->netdev_ops;
9006        int err;
9007
9008        if (!ops->ndo_set_mac_address)
9009                return -EOPNOTSUPP;
9010        if (sa->sa_family != dev->type)
9011                return -EINVAL;
9012        if (!netif_device_present(dev))
9013                return -ENODEV;
9014        err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9015        if (err)
9016                return err;
9017        err = ops->ndo_set_mac_address(dev, sa);
9018        if (err)
9019                return err;
9020        dev->addr_assign_type = NET_ADDR_SET;
9021        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9022        add_device_randomness(dev->dev_addr, dev->addr_len);
9023        return 0;
9024}
9025EXPORT_SYMBOL(dev_set_mac_address);
9026
9027static DECLARE_RWSEM(dev_addr_sem);
9028
9029int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9030                             struct netlink_ext_ack *extack)
9031{
9032        int ret;
9033
9034        down_write(&dev_addr_sem);
9035        ret = dev_set_mac_address(dev, sa, extack);
9036        up_write(&dev_addr_sem);
9037        return ret;
9038}
9039EXPORT_SYMBOL(dev_set_mac_address_user);
9040
9041int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9042{
9043        size_t size = sizeof(sa->sa_data);
9044        struct net_device *dev;
9045        int ret = 0;
9046
9047        down_read(&dev_addr_sem);
9048        rcu_read_lock();
9049
9050        dev = dev_get_by_name_rcu(net, dev_name);
9051        if (!dev) {
9052                ret = -ENODEV;
9053                goto unlock;
9054        }
9055        if (!dev->addr_len)
9056                memset(sa->sa_data, 0, size);
9057        else
9058                memcpy(sa->sa_data, dev->dev_addr,
9059                       min_t(size_t, size, dev->addr_len));
9060        sa->sa_family = dev->type;
9061
9062unlock:
9063        rcu_read_unlock();
9064        up_read(&dev_addr_sem);
9065        return ret;
9066}
9067EXPORT_SYMBOL(dev_get_mac_address);
9068
9069/**
9070 *      dev_change_carrier - Change device carrier
9071 *      @dev: device
9072 *      @new_carrier: new value
9073 *
9074 *      Change device carrier
9075 */
9076int dev_change_carrier(struct net_device *dev, bool new_carrier)
9077{
9078        const struct net_device_ops *ops = dev->netdev_ops;
9079
9080        if (!ops->ndo_change_carrier)
9081                return -EOPNOTSUPP;
9082        if (!netif_device_present(dev))
9083                return -ENODEV;
9084        return ops->ndo_change_carrier(dev, new_carrier);
9085}
9086EXPORT_SYMBOL(dev_change_carrier);
9087
9088/**
9089 *      dev_get_phys_port_id - Get device physical port ID
9090 *      @dev: device
9091 *      @ppid: port ID
9092 *
9093 *      Get device physical port ID
9094 */
9095int dev_get_phys_port_id(struct net_device *dev,
9096                         struct netdev_phys_item_id *ppid)
9097{
9098        const struct net_device_ops *ops = dev->netdev_ops;
9099
9100        if (!ops->ndo_get_phys_port_id)
9101                return -EOPNOTSUPP;
9102        return ops->ndo_get_phys_port_id(dev, ppid);
9103}
9104EXPORT_SYMBOL(dev_get_phys_port_id);
9105
9106/**
9107 *      dev_get_phys_port_name - Get device physical port name
9108 *      @dev: device
9109 *      @name: port name
9110 *      @len: limit of bytes to copy to name
9111 *
9112 *      Get device physical port name
9113 */
9114int dev_get_phys_port_name(struct net_device *dev,
9115                           char *name, size_t len)
9116{
9117        const struct net_device_ops *ops = dev->netdev_ops;
9118        int err;
9119
9120        if (ops->ndo_get_phys_port_name) {
9121                err = ops->ndo_get_phys_port_name(dev, name, len);
9122                if (err != -EOPNOTSUPP)
9123                        return err;
9124        }
9125        return devlink_compat_phys_port_name_get(dev, name, len);
9126}
9127EXPORT_SYMBOL(dev_get_phys_port_name);
9128
9129/**
9130 *      dev_get_port_parent_id - Get the device's port parent identifier
9131 *      @dev: network device
9132 *      @ppid: pointer to a storage for the port's parent identifier
9133 *      @recurse: allow/disallow recursion to lower devices
9134 *
9135 *      Get the devices's port parent identifier
9136 */
9137int dev_get_port_parent_id(struct net_device *dev,
9138                           struct netdev_phys_item_id *ppid,
9139                           bool recurse)
9140{
9141        const struct net_device_ops *ops = dev->netdev_ops;
9142        struct netdev_phys_item_id first = { };
9143        struct net_device *lower_dev;
9144        struct list_head *iter;
9145        int err;
9146
9147        if (ops->ndo_get_port_parent_id) {
9148                err = ops->ndo_get_port_parent_id(dev, ppid);
9149                if (err != -EOPNOTSUPP)
9150                        return err;
9151        }
9152
9153        err = devlink_compat_switch_id_get(dev, ppid);
9154        if (!err || err != -EOPNOTSUPP)
9155                return err;
9156
9157        if (!recurse)
9158                return -EOPNOTSUPP;
9159
9160        netdev_for_each_lower_dev(dev, lower_dev, iter) {
9161                err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9162                if (err)
9163                        break;
9164                if (!first.id_len)
9165                        first = *ppid;
9166                else if (memcmp(&first, ppid, sizeof(*ppid)))
9167                        return -EOPNOTSUPP;
9168        }
9169
9170        return err;
9171}
9172EXPORT_SYMBOL(dev_get_port_parent_id);
9173
9174/**
9175 *      netdev_port_same_parent_id - Indicate if two network devices have
9176 *      the same port parent identifier
9177 *      @a: first network device
9178 *      @b: second network device
9179 */
9180bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9181{
9182        struct netdev_phys_item_id a_id = { };
9183        struct netdev_phys_item_id b_id = { };
9184
9185        if (dev_get_port_parent_id(a, &a_id, true) ||
9186            dev_get_port_parent_id(b, &b_id, true))
9187                return false;
9188
9189        return netdev_phys_item_id_same(&a_id, &b_id);
9190}
9191EXPORT_SYMBOL(netdev_port_same_parent_id);
9192
9193/**
9194 *      dev_change_proto_down - update protocol port state information
9195 *      @dev: device
9196 *      @proto_down: new value
9197 *
9198 *      This info can be used by switch drivers to set the phys state of the
9199 *      port.
9200 */
9201int dev_change_proto_down(struct net_device *dev, bool proto_down)
9202{
9203        const struct net_device_ops *ops = dev->netdev_ops;
9204
9205        if (!ops->ndo_change_proto_down)
9206                return -EOPNOTSUPP;
9207        if (!netif_device_present(dev))
9208                return -ENODEV;
9209        return ops->ndo_change_proto_down(dev, proto_down);
9210}
9211EXPORT_SYMBOL(dev_change_proto_down);
9212
9213/**
9214 *      dev_change_proto_down_generic - generic implementation for
9215 *      ndo_change_proto_down that sets carrier according to
9216 *      proto_down.
9217 *
9218 *      @dev: device
9219 *      @proto_down: new value
9220 */
9221int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9222{
9223        if (proto_down)
9224                netif_carrier_off(dev);
9225        else
9226                netif_carrier_on(dev);
9227        dev->proto_down = proto_down;
9228        return 0;
9229}
9230EXPORT_SYMBOL(dev_change_proto_down_generic);
9231
9232/**
9233 *      dev_change_proto_down_reason - proto down reason
9234 *
9235 *      @dev: device
9236 *      @mask: proto down mask
9237 *      @value: proto down value
9238 */
9239void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9240                                  u32 value)
9241{
9242        int b;
9243
9244        if (!mask) {
9245                dev->proto_down_reason = value;
9246        } else {
9247                for_each_set_bit(b, &mask, 32) {
9248                        if (value & (1 << b))
9249                                dev->proto_down_reason |= BIT(b);
9250                        else
9251                                dev->proto_down_reason &= ~BIT(b);
9252                }
9253        }
9254}
9255EXPORT_SYMBOL(dev_change_proto_down_reason);
9256
9257struct bpf_xdp_link {
9258        struct bpf_link link;
9259        struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9260        int flags;
9261};
9262
9263static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9264{
9265        if (flags & XDP_FLAGS_HW_MODE)
9266                return XDP_MODE_HW;
9267        if (flags & XDP_FLAGS_DRV_MODE)
9268                return XDP_MODE_DRV;
9269        if (flags & XDP_FLAGS_SKB_MODE)
9270                return XDP_MODE_SKB;
9271        return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9272}
9273
9274static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9275{
9276        switch (mode) {
9277        case XDP_MODE_SKB:
9278                return generic_xdp_install;
9279        case XDP_MODE_DRV:
9280        case XDP_MODE_HW:
9281                return dev->netdev_ops->ndo_bpf;
9282        default:
9283                return NULL;
9284        }
9285}
9286
9287static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9288                                         enum bpf_xdp_mode mode)
9289{
9290        return dev->xdp_state[mode].link;
9291}
9292
9293static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9294                                     enum bpf_xdp_mode mode)
9295{
9296        struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9297
9298        if (link)
9299                return link->link.prog;
9300        return dev->xdp_state[mode].prog;
9301}
9302
9303static u8 dev_xdp_prog_count(struct net_device *dev)
9304{
9305        u8 count = 0;
9306        int i;
9307
9308        for (i = 0; i < __MAX_XDP_MODE; i++)
9309                if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9310                        count++;
9311        return count;
9312}
9313
9314u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9315{
9316        struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9317
9318        return prog ? prog->aux->id : 0;
9319}
9320
9321static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9322                             struct bpf_xdp_link *link)
9323{
9324        dev->xdp_state[mode].link = link;
9325        dev->xdp_state[mode].prog = NULL;
9326}
9327
9328static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9329                             struct bpf_prog *prog)
9330{
9331        dev->xdp_state[mode].link = NULL;
9332        dev->xdp_state[mode].prog = prog;
9333}
9334
9335static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9336                           bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9337                           u32 flags, struct bpf_prog *prog)
9338{
9339        struct netdev_bpf xdp;
9340        int err;
9341
9342        memset(&xdp, 0, sizeof(xdp));
9343        xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9344        xdp.extack = extack;
9345        xdp.flags = flags;
9346        xdp.prog = prog;
9347
9348        /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9349         * "moved" into driver), so they don't increment it on their own, but
9350         * they do decrement refcnt when program is detached or replaced.
9351         * Given net_device also owns link/prog, we need to bump refcnt here
9352         * to prevent drivers from underflowing it.
9353         */
9354        if (prog)
9355                bpf_prog_inc(prog);
9356        err = bpf_op(dev, &xdp);
9357        if (err) {
9358                if (prog)
9359                        bpf_prog_put(prog);
9360                return err;
9361        }
9362
9363        if (mode != XDP_MODE_HW)
9364                bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9365
9366        return 0;
9367}
9368
9369static void dev_xdp_uninstall(struct net_device *dev)
9370{
9371        struct bpf_xdp_link *link;
9372        struct bpf_prog *prog;
9373        enum bpf_xdp_mode mode;
9374        bpf_op_t bpf_op;
9375
9376        ASSERT_RTNL();
9377
9378        for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9379                prog = dev_xdp_prog(dev, mode);
9380                if (!prog)
9381                        continue;
9382
9383                bpf_op = dev_xdp_bpf_op(dev, mode);
9384                if (!bpf_op)
9385                        continue;
9386
9387                WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9388
9389                /* auto-detach link from net device */
9390                link = dev_xdp_link(dev, mode);
9391                if (link)
9392                        link->dev = NULL;
9393                else
9394                        bpf_prog_put(prog);
9395
9396                dev_xdp_set_link(dev, mode, NULL);
9397        }
9398}
9399
9400static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9401                          struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9402                          struct bpf_prog *old_prog, u32 flags)
9403{
9404        unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9405        struct bpf_prog *cur_prog;
9406        enum bpf_xdp_mode mode;
9407        bpf_op_t bpf_op;
9408        int err;
9409
9410        ASSERT_RTNL();
9411
9412        /* either link or prog attachment, never both */
9413        if (link && (new_prog || old_prog))
9414                return -EINVAL;
9415        /* link supports only XDP mode flags */
9416        if (link && (flags & ~XDP_FLAGS_MODES)) {
9417                NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9418                return -EINVAL;
9419        }
9420        /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9421        if (num_modes > 1) {
9422                NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9423                return -EINVAL;
9424        }
9425        /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9426        if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9427                NL_SET_ERR_MSG(extack,
9428                               "More than one program loaded, unset mode is ambiguous");
9429                return -EINVAL;
9430        }
9431        /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9432        if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9433                NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9434                return -EINVAL;
9435        }
9436
9437        mode = dev_xdp_mode(dev, flags);
9438        /* can't replace attached link */
9439        if (dev_xdp_link(dev, mode)) {
9440                NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9441                return -EBUSY;
9442        }
9443
9444        cur_prog = dev_xdp_prog(dev, mode);
9445        /* can't replace attached prog with link */
9446        if (link && cur_prog) {
9447                NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9448                return -EBUSY;
9449        }
9450        if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9451                NL_SET_ERR_MSG(extack, "Active program does not match expected");
9452                return -EEXIST;
9453        }
9454
9455        /* put effective new program into new_prog */
9456        if (link)
9457                new_prog = link->link.prog;
9458
9459        if (new_prog) {
9460                bool offload = mode == XDP_MODE_HW;
9461                enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9462                                               ? XDP_MODE_DRV : XDP_MODE_SKB;
9463
9464                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9465                        NL_SET_ERR_MSG(extack, "XDP program already attached");
9466                        return -EBUSY;
9467                }
9468                if (!offload && dev_xdp_prog(dev, other_mode)) {
9469                        NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9470                        return -EEXIST;
9471                }
9472                if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9473                        NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9474                        return -EINVAL;
9475                }
9476                if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9477                        NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9478                        return -EINVAL;
9479                }
9480                if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9481                        NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9482                        return -EINVAL;
9483                }
9484        }
9485
9486        /* don't call drivers if the effective program didn't change */
9487        if (new_prog != cur_prog) {
9488                bpf_op = dev_xdp_bpf_op(dev, mode);
9489                if (!bpf_op) {
9490                        NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9491                        return -EOPNOTSUPP;
9492                }
9493
9494                err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9495                if (err)
9496                        return err;
9497        }
9498
9499        if (link)
9500                dev_xdp_set_link(dev, mode, link);
9501        else
9502                dev_xdp_set_prog(dev, mode, new_prog);
9503        if (cur_prog)
9504                bpf_prog_put(cur_prog);
9505
9506        return 0;
9507}
9508
9509static int dev_xdp_attach_link(struct net_device *dev,
9510                               struct netlink_ext_ack *extack,
9511                               struct bpf_xdp_link *link)
9512{
9513        return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9514}
9515
9516static int dev_xdp_detach_link(struct net_device *dev,
9517                               struct netlink_ext_ack *extack,
9518                               struct bpf_xdp_link *link)
9519{
9520        enum bpf_xdp_mode mode;
9521        bpf_op_t bpf_op;
9522
9523        ASSERT_RTNL();
9524
9525        mode = dev_xdp_mode(dev, link->flags);
9526        if (dev_xdp_link(dev, mode) != link)
9527                return -EINVAL;
9528
9529        bpf_op = dev_xdp_bpf_op(dev, mode);
9530        WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9531        dev_xdp_set_link(dev, mode, NULL);
9532        return 0;
9533}
9534
9535static void bpf_xdp_link_release(struct bpf_link *link)
9536{
9537        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9538
9539        rtnl_lock();
9540
9541        /* if racing with net_device's tear down, xdp_link->dev might be
9542         * already NULL, in which case link was already auto-detached
9543         */
9544        if (xdp_link->dev) {
9545                WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9546                xdp_link->dev = NULL;
9547        }
9548
9549        rtnl_unlock();
9550}
9551
9552static int bpf_xdp_link_detach(struct bpf_link *link)
9553{
9554        bpf_xdp_link_release(link);
9555        return 0;
9556}
9557
9558static void bpf_xdp_link_dealloc(struct bpf_link *link)
9559{
9560        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9561
9562        kfree(xdp_link);
9563}
9564
9565static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9566                                     struct seq_file *seq)
9567{
9568        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9569        u32 ifindex = 0;
9570
9571        rtnl_lock();
9572        if (xdp_link->dev)
9573                ifindex = xdp_link->dev->ifindex;
9574        rtnl_unlock();
9575
9576        seq_printf(seq, "ifindex:\t%u\n", ifindex);
9577}
9578
9579static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9580                                       struct bpf_link_info *info)
9581{
9582        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9583        u32 ifindex = 0;
9584
9585        rtnl_lock();
9586        if (xdp_link->dev)
9587                ifindex = xdp_link->dev->ifindex;
9588        rtnl_unlock();
9589
9590        info->xdp.ifindex = ifindex;
9591        return 0;
9592}
9593
9594static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9595                               struct bpf_prog *old_prog)
9596{
9597        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9598        enum bpf_xdp_mode mode;
9599        bpf_op_t bpf_op;
9600        int err = 0;
9601
9602        rtnl_lock();
9603
9604        /* link might have been auto-released already, so fail */
9605        if (!xdp_link->dev) {
9606                err = -ENOLINK;
9607                goto out_unlock;
9608        }
9609
9610        if (old_prog && link->prog != old_prog) {
9611                err = -EPERM;
9612                goto out_unlock;
9613        }
9614        old_prog = link->prog;
9615        if (old_prog == new_prog) {
9616                /* no-op, don't disturb drivers */
9617                bpf_prog_put(new_prog);
9618                goto out_unlock;
9619        }
9620
9621        mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9622        bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9623        err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9624                              xdp_link->flags, new_prog);
9625        if (err)
9626                goto out_unlock;
9627
9628        old_prog = xchg(&link->prog, new_prog);
9629        bpf_prog_put(old_prog);
9630
9631out_unlock:
9632        rtnl_unlock();
9633        return err;
9634}
9635
9636static const struct bpf_link_ops bpf_xdp_link_lops = {
9637        .release = bpf_xdp_link_release,
9638        .dealloc = bpf_xdp_link_dealloc,
9639        .detach = bpf_xdp_link_detach,
9640        .show_fdinfo = bpf_xdp_link_show_fdinfo,
9641        .fill_link_info = bpf_xdp_link_fill_link_info,
9642        .update_prog = bpf_xdp_link_update,
9643};
9644
9645int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9646{
9647        struct net *net = current->nsproxy->net_ns;
9648        struct bpf_link_primer link_primer;
9649        struct bpf_xdp_link *link;
9650        struct net_device *dev;
9651        int err, fd;
9652
9653        dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9654        if (!dev)
9655                return -EINVAL;
9656
9657        link = kzalloc(sizeof(*link), GFP_USER);
9658        if (!link) {
9659                err = -ENOMEM;
9660                goto out_put_dev;
9661        }
9662
9663        bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9664        link->dev = dev;
9665        link->flags = attr->link_create.flags;
9666
9667        err = bpf_link_prime(&link->link, &link_primer);
9668        if (err) {
9669                kfree(link);
9670                goto out_put_dev;
9671        }
9672
9673        rtnl_lock();
9674        err = dev_xdp_attach_link(dev, NULL, link);
9675        rtnl_unlock();
9676
9677        if (err) {
9678                bpf_link_cleanup(&link_primer);
9679                goto out_put_dev;
9680        }
9681
9682        fd = bpf_link_settle(&link_primer);
9683        /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9684        dev_put(dev);
9685        return fd;
9686
9687out_put_dev:
9688        dev_put(dev);
9689        return err;
9690}
9691
9692/**
9693 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9694 *      @dev: device
9695 *      @extack: netlink extended ack
9696 *      @fd: new program fd or negative value to clear
9697 *      @expected_fd: old program fd that userspace expects to replace or clear
9698 *      @flags: xdp-related flags
9699 *
9700 *      Set or clear a bpf program for a device
9701 */
9702int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9703                      int fd, int expected_fd, u32 flags)
9704{
9705        enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9706        struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9707        int err;
9708
9709        ASSERT_RTNL();
9710
9711        if (fd >= 0) {
9712                new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9713                                                 mode != XDP_MODE_SKB);
9714                if (IS_ERR(new_prog))
9715                        return PTR_ERR(new_prog);
9716        }
9717
9718        if (expected_fd >= 0) {
9719                old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9720                                                 mode != XDP_MODE_SKB);
9721                if (IS_ERR(old_prog)) {
9722                        err = PTR_ERR(old_prog);
9723                        old_prog = NULL;
9724                        goto err_out;
9725                }
9726        }
9727
9728        err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9729
9730err_out:
9731        if (err && new_prog)
9732                bpf_prog_put(new_prog);
9733        if (old_prog)
9734                bpf_prog_put(old_prog);
9735        return err;
9736}
9737
9738/**
9739 *      dev_new_index   -       allocate an ifindex
9740 *      @net: the applicable net namespace
9741 *
9742 *      Returns a suitable unique value for a new device interface
9743 *      number.  The caller must hold the rtnl semaphore or the
9744 *      dev_base_lock to be sure it remains unique.
9745 */
9746static int dev_new_index(struct net *net)
9747{
9748        int ifindex = net->ifindex;
9749
9750        for (;;) {
9751                if (++ifindex <= 0)
9752                        ifindex = 1;
9753                if (!__dev_get_by_index(net, ifindex))
9754                        return net->ifindex = ifindex;
9755        }
9756}
9757
9758/* Delayed registration/unregisteration */
9759static LIST_HEAD(net_todo_list);
9760DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9761
9762static void net_set_todo(struct net_device *dev)
9763{
9764        list_add_tail(&dev->todo_list, &net_todo_list);
9765        dev_net(dev)->dev_unreg_count++;
9766}
9767
9768static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9769        struct net_device *upper, netdev_features_t features)
9770{
9771        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9772        netdev_features_t feature;
9773        int feature_bit;
9774
9775        for_each_netdev_feature(upper_disables, feature_bit) {
9776                feature = __NETIF_F_BIT(feature_bit);
9777                if (!(upper->wanted_features & feature)
9778                    && (features & feature)) {
9779                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9780                                   &feature, upper->name);
9781                        features &= ~feature;
9782                }
9783        }
9784
9785        return features;
9786}
9787
9788static void netdev_sync_lower_features(struct net_device *upper,
9789        struct net_device *lower, netdev_features_t features)
9790{
9791        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9792        netdev_features_t feature;
9793        int feature_bit;
9794
9795        for_each_netdev_feature(upper_disables, feature_bit) {
9796                feature = __NETIF_F_BIT(feature_bit);
9797                if (!(features & feature) && (lower->features & feature)) {
9798                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9799                                   &feature, lower->name);
9800                        lower->wanted_features &= ~feature;
9801                        __netdev_update_features(lower);
9802
9803                        if (unlikely(lower->features & feature))
9804                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9805                                            &feature, lower->name);
9806                        else
9807                                netdev_features_change(lower);
9808                }
9809        }
9810}
9811
9812static netdev_features_t netdev_fix_features(struct net_device *dev,
9813        netdev_features_t features)
9814{
9815        /* Fix illegal checksum combinations */
9816        if ((features & NETIF_F_HW_CSUM) &&
9817            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9818                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9819                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9820        }
9821
9822        /* TSO requires that SG is present as well. */
9823        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9824                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9825                features &= ~NETIF_F_ALL_TSO;
9826        }
9827
9828        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9829                                        !(features & NETIF_F_IP_CSUM)) {
9830                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9831                features &= ~NETIF_F_TSO;
9832                features &= ~NETIF_F_TSO_ECN;
9833        }
9834
9835        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9836                                         !(features & NETIF_F_IPV6_CSUM)) {
9837                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9838                features &= ~NETIF_F_TSO6;
9839        }
9840
9841        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9842        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9843                features &= ~NETIF_F_TSO_MANGLEID;
9844
9845        /* TSO ECN requires that TSO is present as well. */
9846        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9847                features &= ~NETIF_F_TSO_ECN;
9848
9849        /* Software GSO depends on SG. */
9850        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9851                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9852                features &= ~NETIF_F_GSO;
9853        }
9854
9855        /* GSO partial features require GSO partial be set */
9856        if ((features & dev->gso_partial_features) &&
9857            !(features & NETIF_F_GSO_PARTIAL)) {
9858                netdev_dbg(dev,
9859                           "Dropping partially supported GSO features since no GSO partial.\n");
9860                features &= ~dev->gso_partial_features;
9861        }
9862
9863        if (!(features & NETIF_F_RXCSUM)) {
9864                /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9865                 * successfully merged by hardware must also have the
9866                 * checksum verified by hardware.  If the user does not
9867                 * want to enable RXCSUM, logically, we should disable GRO_HW.
9868                 */
9869                if (features & NETIF_F_GRO_HW) {
9870                        netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9871                        features &= ~NETIF_F_GRO_HW;
9872                }
9873        }
9874
9875        /* LRO/HW-GRO features cannot be combined with RX-FCS */
9876        if (features & NETIF_F_RXFCS) {
9877                if (features & NETIF_F_LRO) {
9878                        netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9879                        features &= ~NETIF_F_LRO;
9880                }
9881
9882                if (features & NETIF_F_GRO_HW) {
9883                        netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9884                        features &= ~NETIF_F_GRO_HW;
9885                }
9886        }
9887
9888        if (features & NETIF_F_HW_TLS_TX) {
9889                bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9890                        (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9891                bool hw_csum = features & NETIF_F_HW_CSUM;
9892
9893                if (!ip_csum && !hw_csum) {
9894                        netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9895                        features &= ~NETIF_F_HW_TLS_TX;
9896                }
9897        }
9898
9899        if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9900                netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9901                features &= ~NETIF_F_HW_TLS_RX;
9902        }
9903
9904        return features;
9905}
9906
9907int __netdev_update_features(struct net_device *dev)
9908{
9909        struct net_device *upper, *lower;
9910        netdev_features_t features;
9911        struct list_head *iter;
9912        int err = -1;
9913
9914        ASSERT_RTNL();
9915
9916        features = netdev_get_wanted_features(dev);
9917
9918        if (dev->netdev_ops->ndo_fix_features)
9919                features = dev->netdev_ops->ndo_fix_features(dev, features);
9920
9921        /* driver might be less strict about feature dependencies */
9922        features = netdev_fix_features(dev, features);
9923
9924        /* some features can't be enabled if they're off on an upper device */
9925        netdev_for_each_upper_dev_rcu(dev, upper, iter)
9926                features = netdev_sync_upper_features(dev, upper, features);
9927
9928        if (dev->features == features)
9929                goto sync_lower;
9930
9931        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9932                &dev->features, &features);
9933
9934        if (dev->netdev_ops->ndo_set_features)
9935                err = dev->netdev_ops->ndo_set_features(dev, features);
9936        else
9937                err = 0;
9938
9939        if (unlikely(err < 0)) {
9940                netdev_err(dev,
9941                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
9942                        err, &features, &dev->features);
9943                /* return non-0 since some features might have changed and
9944                 * it's better to fire a spurious notification than miss it
9945                 */
9946                return -1;
9947        }
9948
9949sync_lower:
9950        /* some features must be disabled on lower devices when disabled
9951         * on an upper device (think: bonding master or bridge)
9952         */
9953        netdev_for_each_lower_dev(dev, lower, iter)
9954                netdev_sync_lower_features(dev, lower, features);
9955
9956        if (!err) {
9957                netdev_features_t diff = features ^ dev->features;
9958
9959                if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9960                        /* udp_tunnel_{get,drop}_rx_info both need
9961                         * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9962                         * device, or they won't do anything.
9963                         * Thus we need to update dev->features
9964                         * *before* calling udp_tunnel_get_rx_info,
9965                         * but *after* calling udp_tunnel_drop_rx_info.
9966                         */
9967                        if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9968                                dev->features = features;
9969                                udp_tunnel_get_rx_info(dev);
9970                        } else {
9971                                udp_tunnel_drop_rx_info(dev);
9972                        }
9973                }
9974
9975                if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9976                        if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9977                                dev->features = features;
9978                                err |= vlan_get_rx_ctag_filter_info(dev);
9979                        } else {
9980                                vlan_drop_rx_ctag_filter_info(dev);
9981                        }
9982                }
9983
9984                if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9985                        if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9986                                dev->features = features;
9987                                err |= vlan_get_rx_stag_filter_info(dev);
9988                        } else {
9989                                vlan_drop_rx_stag_filter_info(dev);
9990                        }
9991                }
9992
9993                dev->features = features;
9994        }
9995
9996        return err < 0 ? 0 : 1;
9997}
9998
9999/**
10000 *      netdev_update_features - recalculate device features
10001 *      @dev: the device to check
10002 *
10003 *      Recalculate dev->features set and send notifications if it
10004 *      has changed. Should be called after driver or hardware dependent
10005 *      conditions might have changed that influence the features.
10006 */
10007void netdev_update_features(struct net_device *dev)
10008{
10009        if (__netdev_update_features(dev))
10010                netdev_features_change(dev);
10011}
10012EXPORT_SYMBOL(netdev_update_features);
10013
10014/**
10015 *      netdev_change_features - recalculate device features
10016 *      @dev: the device to check
10017 *
10018 *      Recalculate dev->features set and send notifications even
10019 *      if they have not changed. Should be called instead of
10020 *      netdev_update_features() if also dev->vlan_features might
10021 *      have changed to allow the changes to be propagated to stacked
10022 *      VLAN devices.
10023 */
10024void netdev_change_features(struct net_device *dev)
10025{
10026        __netdev_update_features(dev);
10027        netdev_features_change(dev);
10028}
10029EXPORT_SYMBOL(netdev_change_features);
10030
10031/**
10032 *      netif_stacked_transfer_operstate -      transfer operstate
10033 *      @rootdev: the root or lower level device to transfer state from
10034 *      @dev: the device to transfer operstate to
10035 *
10036 *      Transfer operational state from root to device. This is normally
10037 *      called when a stacking relationship exists between the root
10038 *      device and the device(a leaf device).
10039 */
10040void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10041                                        struct net_device *dev)
10042{
10043        if (rootdev->operstate == IF_OPER_DORMANT)
10044                netif_dormant_on(dev);
10045        else
10046                netif_dormant_off(dev);
10047
10048        if (rootdev->operstate == IF_OPER_TESTING)
10049                netif_testing_on(dev);
10050        else
10051                netif_testing_off(dev);
10052
10053        if (netif_carrier_ok(rootdev))
10054                netif_carrier_on(dev);
10055        else
10056                netif_carrier_off(dev);
10057}
10058EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10059
10060static int netif_alloc_rx_queues(struct net_device *dev)
10061{
10062        unsigned int i, count = dev->num_rx_queues;
10063        struct netdev_rx_queue *rx;
10064        size_t sz = count * sizeof(*rx);
10065        int err = 0;
10066
10067        BUG_ON(count < 1);
10068
10069        rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10070        if (!rx)
10071                return -ENOMEM;
10072
10073        dev->_rx = rx;
10074
10075        for (i = 0; i < count; i++) {
10076                rx[i].dev = dev;
10077
10078                /* XDP RX-queue setup */
10079                err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10080                if (err < 0)
10081                        goto err_rxq_info;
10082        }
10083        return 0;
10084
10085err_rxq_info:
10086        /* Rollback successful reg's and free other resources */
10087        while (i--)
10088                xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10089        kvfree(dev->_rx);
10090        dev->_rx = NULL;
10091        return err;
10092}
10093
10094static void netif_free_rx_queues(struct net_device *dev)
10095{
10096        unsigned int i, count = dev->num_rx_queues;
10097
10098        /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10099        if (!dev->_rx)
10100                return;
10101
10102        for (i = 0; i < count; i++)
10103                xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10104
10105        kvfree(dev->_rx);
10106}
10107
10108static void netdev_init_one_queue(struct net_device *dev,
10109                                  struct netdev_queue *queue, void *_unused)
10110{
10111        /* Initialize queue lock */
10112        spin_lock_init(&queue->_xmit_lock);
10113        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10114        queue->xmit_lock_owner = -1;
10115        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10116        queue->dev = dev;
10117#ifdef CONFIG_BQL
10118        dql_init(&queue->dql, HZ);
10119#endif
10120}
10121
10122static void netif_free_tx_queues(struct net_device *dev)
10123{
10124        kvfree(dev->_tx);
10125}
10126
10127static int netif_alloc_netdev_queues(struct net_device *dev)
10128{
10129        unsigned int count = dev->num_tx_queues;
10130        struct netdev_queue *tx;
10131        size_t sz = count * sizeof(*tx);
10132
10133        if (count < 1 || count > 0xffff)
10134                return -EINVAL;
10135
10136        tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10137        if (!tx)
10138                return -ENOMEM;
10139
10140        dev->_tx = tx;
10141
10142        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10143        spin_lock_init(&dev->tx_global_lock);
10144
10145        return 0;
10146}
10147
10148void netif_tx_stop_all_queues(struct net_device *dev)
10149{
10150        unsigned int i;
10151
10152        for (i = 0; i < dev->num_tx_queues; i++) {
10153                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10154
10155                netif_tx_stop_queue(txq);
10156        }
10157}
10158EXPORT_SYMBOL(netif_tx_stop_all_queues);
10159
10160/**
10161 *      register_netdevice      - register a network device
10162 *      @dev: device to register
10163 *
10164 *      Take a completed network device structure and add it to the kernel
10165 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10166 *      chain. 0 is returned on success. A negative errno code is returned
10167 *      on a failure to set up the device, or if the name is a duplicate.
10168 *
10169 *      Callers must hold the rtnl semaphore. You may want
10170 *      register_netdev() instead of this.
10171 *
10172 *      BUGS:
10173 *      The locking appears insufficient to guarantee two parallel registers
10174 *      will not get the same name.
10175 */
10176
10177int register_netdevice(struct net_device *dev)
10178{
10179        int ret;
10180        struct net *net = dev_net(dev);
10181
10182        BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10183                     NETDEV_FEATURE_COUNT);
10184        BUG_ON(dev_boot_phase);
10185        ASSERT_RTNL();
10186
10187        might_sleep();
10188
10189        /* When net_device's are persistent, this will be fatal. */
10190        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10191        BUG_ON(!net);
10192
10193        ret = ethtool_check_ops(dev->ethtool_ops);
10194        if (ret)
10195                return ret;
10196
10197        spin_lock_init(&dev->addr_list_lock);
10198        netdev_set_addr_lockdep_class(dev);
10199
10200        ret = dev_get_valid_name(net, dev, dev->name);
10201        if (ret < 0)
10202                goto out;
10203
10204        ret = -ENOMEM;
10205        dev->name_node = netdev_name_node_head_alloc(dev);
10206        if (!dev->name_node)
10207                goto out;
10208
10209        /* Init, if this function is available */
10210        if (dev->netdev_ops->ndo_init) {
10211                ret = dev->netdev_ops->ndo_init(dev);
10212                if (ret) {
10213                        if (ret > 0)
10214                                ret = -EIO;
10215                        goto err_free_name;
10216                }
10217        }
10218
10219        if (((dev->hw_features | dev->features) &
10220             NETIF_F_HW_VLAN_CTAG_FILTER) &&
10221            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10222             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10223                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10224                ret = -EINVAL;
10225                goto err_uninit;
10226        }
10227
10228        ret = -EBUSY;
10229        if (!dev->ifindex)
10230                dev->ifindex = dev_new_index(net);
10231        else if (__dev_get_by_index(net, dev->ifindex))
10232                goto err_uninit;
10233
10234        /* Transfer changeable features to wanted_features and enable
10235         * software offloads (GSO and GRO).
10236         */
10237        dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10238        dev->features |= NETIF_F_SOFT_FEATURES;
10239
10240        if (dev->udp_tunnel_nic_info) {
10241                dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10242                dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10243        }
10244
10245        dev->wanted_features = dev->features & dev->hw_features;
10246
10247        if (!(dev->flags & IFF_LOOPBACK))
10248                dev->hw_features |= NETIF_F_NOCACHE_COPY;
10249
10250        /* If IPv4 TCP segmentation offload is supported we should also
10251         * allow the device to enable segmenting the frame with the option
10252         * of ignoring a static IP ID value.  This doesn't enable the
10253         * feature itself but allows the user to enable it later.
10254         */
10255        if (dev->hw_features & NETIF_F_TSO)
10256                dev->hw_features |= NETIF_F_TSO_MANGLEID;
10257        if (dev->vlan_features & NETIF_F_TSO)
10258                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10259        if (dev->mpls_features & NETIF_F_TSO)
10260                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10261        if (dev->hw_enc_features & NETIF_F_TSO)
10262                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10263
10264        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10265         */
10266        dev->vlan_features |= NETIF_F_HIGHDMA;
10267
10268        /* Make NETIF_F_SG inheritable to tunnel devices.
10269         */
10270        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10271
10272        /* Make NETIF_F_SG inheritable to MPLS.
10273         */
10274        dev->mpls_features |= NETIF_F_SG;
10275
10276        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10277        ret = notifier_to_errno(ret);
10278        if (ret)
10279                goto err_uninit;
10280
10281        ret = netdev_register_kobject(dev);
10282        if (ret) {
10283                dev->reg_state = NETREG_UNREGISTERED;
10284                goto err_uninit;
10285        }
10286        dev->reg_state = NETREG_REGISTERED;
10287
10288        __netdev_update_features(dev);
10289
10290        /*
10291         *      Default initial state at registry is that the
10292         *      device is present.
10293         */
10294
10295        set_bit(__LINK_STATE_PRESENT, &dev->state);
10296
10297        linkwatch_init_dev(dev);
10298
10299        dev_init_scheduler(dev);
10300        dev_hold(dev);
10301        list_netdevice(dev);
10302        add_device_randomness(dev->dev_addr, dev->addr_len);
10303
10304        /* If the device has permanent device address, driver should
10305         * set dev_addr and also addr_assign_type should be set to
10306         * NET_ADDR_PERM (default value).
10307         */
10308        if (dev->addr_assign_type == NET_ADDR_PERM)
10309                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10310
10311        /* Notify protocols, that a new device appeared. */
10312        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10313        ret = notifier_to_errno(ret);
10314        if (ret) {
10315                /* Expect explicit free_netdev() on failure */
10316                dev->needs_free_netdev = false;
10317                unregister_netdevice_queue(dev, NULL);
10318                goto out;
10319        }
10320        /*
10321         *      Prevent userspace races by waiting until the network
10322         *      device is fully setup before sending notifications.
10323         */
10324        if (!dev->rtnl_link_ops ||
10325            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10326                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10327
10328out:
10329        return ret;
10330
10331err_uninit:
10332        if (dev->netdev_ops->ndo_uninit)
10333                dev->netdev_ops->ndo_uninit(dev);
10334        if (dev->priv_destructor)
10335                dev->priv_destructor(dev);
10336err_free_name:
10337        netdev_name_node_free(dev->name_node);
10338        goto out;
10339}
10340EXPORT_SYMBOL(register_netdevice);
10341
10342/**
10343 *      init_dummy_netdev       - init a dummy network device for NAPI
10344 *      @dev: device to init
10345 *
10346 *      This takes a network device structure and initialize the minimum
10347 *      amount of fields so it can be used to schedule NAPI polls without
10348 *      registering a full blown interface. This is to be used by drivers
10349 *      that need to tie several hardware interfaces to a single NAPI
10350 *      poll scheduler due to HW limitations.
10351 */
10352int init_dummy_netdev(struct net_device *dev)
10353{
10354        /* Clear everything. Note we don't initialize spinlocks
10355         * are they aren't supposed to be taken by any of the
10356         * NAPI code and this dummy netdev is supposed to be
10357         * only ever used for NAPI polls
10358         */
10359        memset(dev, 0, sizeof(struct net_device));
10360
10361        /* make sure we BUG if trying to hit standard
10362         * register/unregister code path
10363         */
10364        dev->reg_state = NETREG_DUMMY;
10365
10366        /* NAPI wants this */
10367        INIT_LIST_HEAD(&dev->napi_list);
10368
10369        /* a dummy interface is started by default */
10370        set_bit(__LINK_STATE_PRESENT, &dev->state);
10371        set_bit(__LINK_STATE_START, &dev->state);
10372
10373        /* napi_busy_loop stats accounting wants this */
10374        dev_net_set(dev, &init_net);
10375
10376        /* Note : We dont allocate pcpu_refcnt for dummy devices,
10377         * because users of this 'device' dont need to change
10378         * its refcount.
10379         */
10380
10381        return 0;
10382}
10383EXPORT_SYMBOL_GPL(init_dummy_netdev);
10384
10385
10386/**
10387 *      register_netdev - register a network device
10388 *      @dev: device to register
10389 *
10390 *      Take a completed network device structure and add it to the kernel
10391 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10392 *      chain. 0 is returned on success. A negative errno code is returned
10393 *      on a failure to set up the device, or if the name is a duplicate.
10394 *
10395 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10396 *      and expands the device name if you passed a format string to
10397 *      alloc_netdev.
10398 */
10399int register_netdev(struct net_device *dev)
10400{
10401        int err;
10402
10403        if (rtnl_lock_killable())
10404                return -EINTR;
10405        err = register_netdevice(dev);
10406        rtnl_unlock();
10407        return err;
10408}
10409EXPORT_SYMBOL(register_netdev);
10410
10411int netdev_refcnt_read(const struct net_device *dev)
10412{
10413#ifdef CONFIG_PCPU_DEV_REFCNT
10414        int i, refcnt = 0;
10415
10416        for_each_possible_cpu(i)
10417                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10418        return refcnt;
10419#else
10420        return refcount_read(&dev->dev_refcnt);
10421#endif
10422}
10423EXPORT_SYMBOL(netdev_refcnt_read);
10424
10425int netdev_unregister_timeout_secs __read_mostly = 10;
10426
10427#define WAIT_REFS_MIN_MSECS 1
10428#define WAIT_REFS_MAX_MSECS 250
10429/**
10430 * netdev_wait_allrefs - wait until all references are gone.
10431 * @dev: target net_device
10432 *
10433 * This is called when unregistering network devices.
10434 *
10435 * Any protocol or device that holds a reference should register
10436 * for netdevice notification, and cleanup and put back the
10437 * reference if they receive an UNREGISTER event.
10438 * We can get stuck here if buggy protocols don't correctly
10439 * call dev_put.
10440 */
10441static void netdev_wait_allrefs(struct net_device *dev)
10442{
10443        unsigned long rebroadcast_time, warning_time;
10444        int wait = 0, refcnt;
10445
10446        linkwatch_forget_dev(dev);
10447
10448        rebroadcast_time = warning_time = jiffies;
10449        refcnt = netdev_refcnt_read(dev);
10450
10451        while (refcnt != 1) {
10452                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10453                        rtnl_lock();
10454
10455                        /* Rebroadcast unregister notification */
10456                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10457
10458                        __rtnl_unlock();
10459                        rcu_barrier();
10460                        rtnl_lock();
10461
10462                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10463                                     &dev->state)) {
10464                                /* We must not have linkwatch events
10465                                 * pending on unregister. If this
10466                                 * happens, we simply run the queue
10467                                 * unscheduled, resulting in a noop
10468                                 * for this device.
10469                                 */
10470                                linkwatch_run_queue();
10471                        }
10472
10473                        __rtnl_unlock();
10474
10475                        rebroadcast_time = jiffies;
10476                }
10477
10478                if (!wait) {
10479                        rcu_barrier();
10480                        wait = WAIT_REFS_MIN_MSECS;
10481                } else {
10482                        msleep(wait);
10483                        wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10484                }
10485
10486                refcnt = netdev_refcnt_read(dev);
10487
10488                if (refcnt != 1 &&
10489                    time_after(jiffies, warning_time +
10490                               netdev_unregister_timeout_secs * HZ)) {
10491                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10492                                 dev->name, refcnt);
10493                        warning_time = jiffies;
10494                }
10495        }
10496}
10497
10498/* The sequence is:
10499 *
10500 *      rtnl_lock();
10501 *      ...
10502 *      register_netdevice(x1);
10503 *      register_netdevice(x2);
10504 *      ...
10505 *      unregister_netdevice(y1);
10506 *      unregister_netdevice(y2);
10507 *      ...
10508 *      rtnl_unlock();
10509 *      free_netdev(y1);
10510 *      free_netdev(y2);
10511 *
10512 * We are invoked by rtnl_unlock().
10513 * This allows us to deal with problems:
10514 * 1) We can delete sysfs objects which invoke hotplug
10515 *    without deadlocking with linkwatch via keventd.
10516 * 2) Since we run with the RTNL semaphore not held, we can sleep
10517 *    safely in order to wait for the netdev refcnt to drop to zero.
10518 *
10519 * We must not return until all unregister events added during
10520 * the interval the lock was held have been completed.
10521 */
10522void netdev_run_todo(void)
10523{
10524        struct list_head list;
10525#ifdef CONFIG_LOCKDEP
10526        struct list_head unlink_list;
10527
10528        list_replace_init(&net_unlink_list, &unlink_list);
10529
10530        while (!list_empty(&unlink_list)) {
10531                struct net_device *dev = list_first_entry(&unlink_list,
10532                                                          struct net_device,
10533                                                          unlink_list);
10534                list_del_init(&dev->unlink_list);
10535                dev->nested_level = dev->lower_level - 1;
10536        }
10537#endif
10538
10539        /* Snapshot list, allow later requests */
10540        list_replace_init(&net_todo_list, &list);
10541
10542        __rtnl_unlock();
10543
10544
10545        /* Wait for rcu callbacks to finish before next phase */
10546        if (!list_empty(&list))
10547                rcu_barrier();
10548
10549        while (!list_empty(&list)) {
10550                struct net_device *dev
10551                        = list_first_entry(&list, struct net_device, todo_list);
10552                list_del(&dev->todo_list);
10553
10554                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10555                        pr_err("network todo '%s' but state %d\n",
10556                               dev->name, dev->reg_state);
10557                        dump_stack();
10558                        continue;
10559                }
10560
10561                dev->reg_state = NETREG_UNREGISTERED;
10562
10563                netdev_wait_allrefs(dev);
10564
10565                /* paranoia */
10566                BUG_ON(netdev_refcnt_read(dev) != 1);
10567                BUG_ON(!list_empty(&dev->ptype_all));
10568                BUG_ON(!list_empty(&dev->ptype_specific));
10569                WARN_ON(rcu_access_pointer(dev->ip_ptr));
10570                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10571#if IS_ENABLED(CONFIG_DECNET)
10572                WARN_ON(dev->dn_ptr);
10573#endif
10574                if (dev->priv_destructor)
10575                        dev->priv_destructor(dev);
10576                if (dev->needs_free_netdev)
10577                        free_netdev(dev);
10578
10579                /* Report a network device has been unregistered */
10580                rtnl_lock();
10581                dev_net(dev)->dev_unreg_count--;
10582                __rtnl_unlock();
10583                wake_up(&netdev_unregistering_wq);
10584
10585                /* Free network device */
10586                kobject_put(&dev->dev.kobj);
10587        }
10588}
10589
10590/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10591 * all the same fields in the same order as net_device_stats, with only
10592 * the type differing, but rtnl_link_stats64 may have additional fields
10593 * at the end for newer counters.
10594 */
10595void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10596                             const struct net_device_stats *netdev_stats)
10597{
10598#if BITS_PER_LONG == 64
10599        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10600        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10601        /* zero out counters that only exist in rtnl_link_stats64 */
10602        memset((char *)stats64 + sizeof(*netdev_stats), 0,
10603               sizeof(*stats64) - sizeof(*netdev_stats));
10604#else
10605        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10606        const unsigned long *src = (const unsigned long *)netdev_stats;
10607        u64 *dst = (u64 *)stats64;
10608
10609        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10610        for (i = 0; i < n; i++)
10611                dst[i] = src[i];
10612        /* zero out counters that only exist in rtnl_link_stats64 */
10613        memset((char *)stats64 + n * sizeof(u64), 0,
10614               sizeof(*stats64) - n * sizeof(u64));
10615#endif
10616}
10617EXPORT_SYMBOL(netdev_stats_to_stats64);
10618
10619/**
10620 *      dev_get_stats   - get network device statistics
10621 *      @dev: device to get statistics from
10622 *      @storage: place to store stats
10623 *
10624 *      Get network statistics from device. Return @storage.
10625 *      The device driver may provide its own method by setting
10626 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10627 *      otherwise the internal statistics structure is used.
10628 */
10629struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10630                                        struct rtnl_link_stats64 *storage)
10631{
10632        const struct net_device_ops *ops = dev->netdev_ops;
10633
10634        if (ops->ndo_get_stats64) {
10635                memset(storage, 0, sizeof(*storage));
10636                ops->ndo_get_stats64(dev, storage);
10637        } else if (ops->ndo_get_stats) {
10638                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10639        } else {
10640                netdev_stats_to_stats64(storage, &dev->stats);
10641        }
10642        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10643        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10644        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10645        return storage;
10646}
10647EXPORT_SYMBOL(dev_get_stats);
10648
10649/**
10650 *      dev_fetch_sw_netstats - get per-cpu network device statistics
10651 *      @s: place to store stats
10652 *      @netstats: per-cpu network stats to read from
10653 *
10654 *      Read per-cpu network statistics and populate the related fields in @s.
10655 */
10656void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10657                           const struct pcpu_sw_netstats __percpu *netstats)
10658{
10659        int cpu;
10660
10661        for_each_possible_cpu(cpu) {
10662                const struct pcpu_sw_netstats *stats;
10663                struct pcpu_sw_netstats tmp;
10664                unsigned int start;
10665
10666                stats = per_cpu_ptr(netstats, cpu);
10667                do {
10668                        start = u64_stats_fetch_begin_irq(&stats->syncp);
10669                        tmp.rx_packets = stats->rx_packets;
10670                        tmp.rx_bytes   = stats->rx_bytes;
10671                        tmp.tx_packets = stats->tx_packets;
10672                        tmp.tx_bytes   = stats->tx_bytes;
10673                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10674
10675                s->rx_packets += tmp.rx_packets;
10676                s->rx_bytes   += tmp.rx_bytes;
10677                s->tx_packets += tmp.tx_packets;
10678                s->tx_bytes   += tmp.tx_bytes;
10679        }
10680}
10681EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10682
10683/**
10684 *      dev_get_tstats64 - ndo_get_stats64 implementation
10685 *      @dev: device to get statistics from
10686 *      @s: place to store stats
10687 *
10688 *      Populate @s from dev->stats and dev->tstats. Can be used as
10689 *      ndo_get_stats64() callback.
10690 */
10691void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10692{
10693        netdev_stats_to_stats64(s, &dev->stats);
10694        dev_fetch_sw_netstats(s, dev->tstats);
10695}
10696EXPORT_SYMBOL_GPL(dev_get_tstats64);
10697
10698struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10699{
10700        struct netdev_queue *queue = dev_ingress_queue(dev);
10701
10702#ifdef CONFIG_NET_CLS_ACT
10703        if (queue)
10704                return queue;
10705        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10706        if (!queue)
10707                return NULL;
10708        netdev_init_one_queue(dev, queue, NULL);
10709        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10710        queue->qdisc_sleeping = &noop_qdisc;
10711        rcu_assign_pointer(dev->ingress_queue, queue);
10712#endif
10713        return queue;
10714}
10715
10716static const struct ethtool_ops default_ethtool_ops;
10717
10718void netdev_set_default_ethtool_ops(struct net_device *dev,
10719                                    const struct ethtool_ops *ops)
10720{
10721        if (dev->ethtool_ops == &default_ethtool_ops)
10722                dev->ethtool_ops = ops;
10723}
10724EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10725
10726void netdev_freemem(struct net_device *dev)
10727{
10728        char *addr = (char *)dev - dev->padded;
10729
10730        kvfree(addr);
10731}
10732
10733/**
10734 * alloc_netdev_mqs - allocate network device
10735 * @sizeof_priv: size of private data to allocate space for
10736 * @name: device name format string
10737 * @name_assign_type: origin of device name
10738 * @setup: callback to initialize device
10739 * @txqs: the number of TX subqueues to allocate
10740 * @rxqs: the number of RX subqueues to allocate
10741 *
10742 * Allocates a struct net_device with private data area for driver use
10743 * and performs basic initialization.  Also allocates subqueue structs
10744 * for each queue on the device.
10745 */
10746struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10747                unsigned char name_assign_type,
10748                void (*setup)(struct net_device *),
10749                unsigned int txqs, unsigned int rxqs)
10750{
10751        struct net_device *dev;
10752        unsigned int alloc_size;
10753        struct net_device *p;
10754
10755        BUG_ON(strlen(name) >= sizeof(dev->name));
10756
10757        if (txqs < 1) {
10758                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10759                return NULL;
10760        }
10761
10762        if (rxqs < 1) {
10763                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10764                return NULL;
10765        }
10766
10767        alloc_size = sizeof(struct net_device);
10768        if (sizeof_priv) {
10769                /* ensure 32-byte alignment of private area */
10770                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10771                alloc_size += sizeof_priv;
10772        }
10773        /* ensure 32-byte alignment of whole construct */
10774        alloc_size += NETDEV_ALIGN - 1;
10775
10776        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10777        if (!p)
10778                return NULL;
10779
10780        dev = PTR_ALIGN(p, NETDEV_ALIGN);
10781        dev->padded = (char *)dev - (char *)p;
10782
10783#ifdef CONFIG_PCPU_DEV_REFCNT
10784        dev->pcpu_refcnt = alloc_percpu(int);
10785        if (!dev->pcpu_refcnt)
10786                goto free_dev;
10787        dev_hold(dev);
10788#else
10789        refcount_set(&dev->dev_refcnt, 1);
10790#endif
10791
10792        if (dev_addr_init(dev))
10793                goto free_pcpu;
10794
10795        dev_mc_init(dev);
10796        dev_uc_init(dev);
10797
10798        dev_net_set(dev, &init_net);
10799
10800        dev->gso_max_size = GSO_MAX_SIZE;
10801        dev->gso_max_segs = GSO_MAX_SEGS;
10802        dev->upper_level = 1;
10803        dev->lower_level = 1;
10804#ifdef CONFIG_LOCKDEP
10805        dev->nested_level = 0;
10806        INIT_LIST_HEAD(&dev->unlink_list);
10807#endif
10808
10809        INIT_LIST_HEAD(&dev->napi_list);
10810        INIT_LIST_HEAD(&dev->unreg_list);
10811        INIT_LIST_HEAD(&dev->close_list);
10812        INIT_LIST_HEAD(&dev->link_watch_list);
10813        INIT_LIST_HEAD(&dev->adj_list.upper);
10814        INIT_LIST_HEAD(&dev->adj_list.lower);
10815        INIT_LIST_HEAD(&dev->ptype_all);
10816        INIT_LIST_HEAD(&dev->ptype_specific);
10817        INIT_LIST_HEAD(&dev->net_notifier_list);
10818#ifdef CONFIG_NET_SCHED
10819        hash_init(dev->qdisc_hash);
10820#endif
10821        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10822        setup(dev);
10823
10824        if (!dev->tx_queue_len) {
10825                dev->priv_flags |= IFF_NO_QUEUE;
10826                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10827        }
10828
10829        dev->num_tx_queues = txqs;
10830        dev->real_num_tx_queues = txqs;
10831        if (netif_alloc_netdev_queues(dev))
10832                goto free_all;
10833
10834        dev->num_rx_queues = rxqs;
10835        dev->real_num_rx_queues = rxqs;
10836        if (netif_alloc_rx_queues(dev))
10837                goto free_all;
10838
10839        strcpy(dev->name, name);
10840        dev->name_assign_type = name_assign_type;
10841        dev->group = INIT_NETDEV_GROUP;
10842        if (!dev->ethtool_ops)
10843                dev->ethtool_ops = &default_ethtool_ops;
10844
10845        nf_hook_ingress_init(dev);
10846
10847        return dev;
10848
10849free_all:
10850        free_netdev(dev);
10851        return NULL;
10852
10853free_pcpu:
10854#ifdef CONFIG_PCPU_DEV_REFCNT
10855        free_percpu(dev->pcpu_refcnt);
10856free_dev:
10857#endif
10858        netdev_freemem(dev);
10859        return NULL;
10860}
10861EXPORT_SYMBOL(alloc_netdev_mqs);
10862
10863/**
10864 * free_netdev - free network device
10865 * @dev: device
10866 *
10867 * This function does the last stage of destroying an allocated device
10868 * interface. The reference to the device object is released. If this
10869 * is the last reference then it will be freed.Must be called in process
10870 * context.
10871 */
10872void free_netdev(struct net_device *dev)
10873{
10874        struct napi_struct *p, *n;
10875
10876        might_sleep();
10877
10878        /* When called immediately after register_netdevice() failed the unwind
10879         * handling may still be dismantling the device. Handle that case by
10880         * deferring the free.
10881         */
10882        if (dev->reg_state == NETREG_UNREGISTERING) {
10883                ASSERT_RTNL();
10884                dev->needs_free_netdev = true;
10885                return;
10886        }
10887
10888        netif_free_tx_queues(dev);
10889        netif_free_rx_queues(dev);
10890
10891        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10892
10893        /* Flush device addresses */
10894        dev_addr_flush(dev);
10895
10896        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10897                netif_napi_del(p);
10898
10899#ifdef CONFIG_PCPU_DEV_REFCNT
10900        free_percpu(dev->pcpu_refcnt);
10901        dev->pcpu_refcnt = NULL;
10902#endif
10903        free_percpu(dev->xdp_bulkq);
10904        dev->xdp_bulkq = NULL;
10905
10906        /*  Compatibility with error handling in drivers */
10907        if (dev->reg_state == NETREG_UNINITIALIZED) {
10908                netdev_freemem(dev);
10909                return;
10910        }
10911
10912        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10913        dev->reg_state = NETREG_RELEASED;
10914
10915        /* will free via device release */
10916        put_device(&dev->dev);
10917}
10918EXPORT_SYMBOL(free_netdev);
10919
10920/**
10921 *      synchronize_net -  Synchronize with packet receive processing
10922 *
10923 *      Wait for packets currently being received to be done.
10924 *      Does not block later packets from starting.
10925 */
10926void synchronize_net(void)
10927{
10928        might_sleep();
10929        if (rtnl_is_locked())
10930                synchronize_rcu_expedited();
10931        else
10932                synchronize_rcu();
10933}
10934EXPORT_SYMBOL(synchronize_net);
10935
10936/**
10937 *      unregister_netdevice_queue - remove device from the kernel
10938 *      @dev: device
10939 *      @head: list
10940 *
10941 *      This function shuts down a device interface and removes it
10942 *      from the kernel tables.
10943 *      If head not NULL, device is queued to be unregistered later.
10944 *
10945 *      Callers must hold the rtnl semaphore.  You may want
10946 *      unregister_netdev() instead of this.
10947 */
10948
10949void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10950{
10951        ASSERT_RTNL();
10952
10953        if (head) {
10954                list_move_tail(&dev->unreg_list, head);
10955        } else {
10956                LIST_HEAD(single);
10957
10958                list_add(&dev->unreg_list, &single);
10959                unregister_netdevice_many(&single);
10960        }
10961}
10962EXPORT_SYMBOL(unregister_netdevice_queue);
10963
10964/**
10965 *      unregister_netdevice_many - unregister many devices
10966 *      @head: list of devices
10967 *
10968 *  Note: As most callers use a stack allocated list_head,
10969 *  we force a list_del() to make sure stack wont be corrupted later.
10970 */
10971void unregister_netdevice_many(struct list_head *head)
10972{
10973        struct net_device *dev, *tmp;
10974        LIST_HEAD(close_head);
10975
10976        BUG_ON(dev_boot_phase);
10977        ASSERT_RTNL();
10978
10979        if (list_empty(head))
10980                return;
10981
10982        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10983                /* Some devices call without registering
10984                 * for initialization unwind. Remove those
10985                 * devices and proceed with the remaining.
10986                 */
10987                if (dev->reg_state == NETREG_UNINITIALIZED) {
10988                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10989                                 dev->name, dev);
10990
10991                        WARN_ON(1);
10992                        list_del(&dev->unreg_list);
10993                        continue;
10994                }
10995                dev->dismantle = true;
10996                BUG_ON(dev->reg_state != NETREG_REGISTERED);
10997        }
10998
10999        /* If device is running, close it first. */
11000        list_for_each_entry(dev, head, unreg_list)
11001                list_add_tail(&dev->close_list, &close_head);
11002        dev_close_many(&close_head, true);
11003
11004        list_for_each_entry(dev, head, unreg_list) {
11005                /* And unlink it from device chain. */
11006                unlist_netdevice(dev);
11007
11008                dev->reg_state = NETREG_UNREGISTERING;
11009        }
11010        flush_all_backlogs();
11011
11012        synchronize_net();
11013
11014        list_for_each_entry(dev, head, unreg_list) {
11015                struct sk_buff *skb = NULL;
11016
11017                /* Shutdown queueing discipline. */
11018                dev_shutdown(dev);
11019
11020                dev_xdp_uninstall(dev);
11021
11022                /* Notify protocols, that we are about to destroy
11023                 * this device. They should clean all the things.
11024                 */
11025                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11026
11027                if (!dev->rtnl_link_ops ||
11028                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11029                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11030                                                     GFP_KERNEL, NULL, 0);
11031
11032                /*
11033                 *      Flush the unicast and multicast chains
11034                 */
11035                dev_uc_flush(dev);
11036                dev_mc_flush(dev);
11037
11038                netdev_name_node_alt_flush(dev);
11039                netdev_name_node_free(dev->name_node);
11040
11041                if (dev->netdev_ops->ndo_uninit)
11042                        dev->netdev_ops->ndo_uninit(dev);
11043
11044                if (skb)
11045                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11046
11047                /* Notifier chain MUST detach us all upper devices. */
11048                WARN_ON(netdev_has_any_upper_dev(dev));
11049                WARN_ON(netdev_has_any_lower_dev(dev));
11050
11051                /* Remove entries from kobject tree */
11052                netdev_unregister_kobject(dev);
11053#ifdef CONFIG_XPS
11054                /* Remove XPS queueing entries */
11055                netif_reset_xps_queues_gt(dev, 0);
11056#endif
11057        }
11058
11059        synchronize_net();
11060
11061        list_for_each_entry(dev, head, unreg_list) {
11062                dev_put(dev);
11063                net_set_todo(dev);
11064        }
11065
11066        list_del(head);
11067}
11068EXPORT_SYMBOL(unregister_netdevice_many);
11069
11070/**
11071 *      unregister_netdev - remove device from the kernel
11072 *      @dev: device
11073 *
11074 *      This function shuts down a device interface and removes it
11075 *      from the kernel tables.
11076 *
11077 *      This is just a wrapper for unregister_netdevice that takes
11078 *      the rtnl semaphore.  In general you want to use this and not
11079 *      unregister_netdevice.
11080 */
11081void unregister_netdev(struct net_device *dev)
11082{
11083        rtnl_lock();
11084        unregister_netdevice(dev);
11085        rtnl_unlock();
11086}
11087EXPORT_SYMBOL(unregister_netdev);
11088
11089/**
11090 *      __dev_change_net_namespace - move device to different nethost namespace
11091 *      @dev: device
11092 *      @net: network namespace
11093 *      @pat: If not NULL name pattern to try if the current device name
11094 *            is already taken in the destination network namespace.
11095 *      @new_ifindex: If not zero, specifies device index in the target
11096 *                    namespace.
11097 *
11098 *      This function shuts down a device interface and moves it
11099 *      to a new network namespace. On success 0 is returned, on
11100 *      a failure a netagive errno code is returned.
11101 *
11102 *      Callers must hold the rtnl semaphore.
11103 */
11104
11105int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11106                               const char *pat, int new_ifindex)
11107{
11108        struct net *net_old = dev_net(dev);
11109        int err, new_nsid;
11110
11111        ASSERT_RTNL();
11112
11113        /* Don't allow namespace local devices to be moved. */
11114        err = -EINVAL;
11115        if (dev->features & NETIF_F_NETNS_LOCAL)
11116                goto out;
11117
11118        /* Ensure the device has been registrered */
11119        if (dev->reg_state != NETREG_REGISTERED)
11120                goto out;
11121
11122        /* Get out if there is nothing todo */
11123        err = 0;
11124        if (net_eq(net_old, net))
11125                goto out;
11126
11127        /* Pick the destination device name, and ensure
11128         * we can use it in the destination network namespace.
11129         */
11130        err = -EEXIST;
11131        if (__dev_get_by_name(net, dev->name)) {
11132                /* We get here if we can't use the current device name */
11133                if (!pat)
11134                        goto out;
11135                err = dev_get_valid_name(net, dev, pat);
11136                if (err < 0)
11137                        goto out;
11138        }
11139
11140        /* Check that new_ifindex isn't used yet. */
11141        err = -EBUSY;
11142        if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11143                goto out;
11144
11145        /*
11146         * And now a mini version of register_netdevice unregister_netdevice.
11147         */
11148
11149        /* If device is running close it first. */
11150        dev_close(dev);
11151
11152        /* And unlink it from device chain */
11153        unlist_netdevice(dev);
11154
11155        synchronize_net();
11156
11157        /* Shutdown queueing discipline. */
11158        dev_shutdown(dev);
11159
11160        /* Notify protocols, that we are about to destroy
11161         * this device. They should clean all the things.
11162         *
11163         * Note that dev->reg_state stays at NETREG_REGISTERED.
11164         * This is wanted because this way 8021q and macvlan know
11165         * the device is just moving and can keep their slaves up.
11166         */
11167        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11168        rcu_barrier();
11169
11170        new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11171        /* If there is an ifindex conflict assign a new one */
11172        if (!new_ifindex) {
11173                if (__dev_get_by_index(net, dev->ifindex))
11174                        new_ifindex = dev_new_index(net);
11175                else
11176                        new_ifindex = dev->ifindex;
11177        }
11178
11179        rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11180                            new_ifindex);
11181
11182        /*
11183         *      Flush the unicast and multicast chains
11184         */
11185        dev_uc_flush(dev);
11186        dev_mc_flush(dev);
11187
11188        /* Send a netdev-removed uevent to the old namespace */
11189        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11190        netdev_adjacent_del_links(dev);
11191
11192        /* Move per-net netdevice notifiers that are following the netdevice */
11193        move_netdevice_notifiers_dev_net(dev, net);
11194
11195        /* Actually switch the network namespace */
11196        dev_net_set(dev, net);
11197        dev->ifindex = new_ifindex;
11198
11199        /* Send a netdev-add uevent to the new namespace */
11200        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11201        netdev_adjacent_add_links(dev);
11202
11203        /* Fixup kobjects */
11204        err = device_rename(&dev->dev, dev->name);
11205        WARN_ON(err);
11206
11207        /* Adapt owner in case owning user namespace of target network
11208         * namespace is different from the original one.
11209         */
11210        err = netdev_change_owner(dev, net_old, net);
11211        WARN_ON(err);
11212
11213        /* Add the device back in the hashes */
11214        list_netdevice(dev);
11215
11216        /* Notify protocols, that a new device appeared. */
11217        call_netdevice_notifiers(NETDEV_REGISTER, dev);
11218
11219        /*
11220         *      Prevent userspace races by waiting until the network
11221         *      device is fully setup before sending notifications.
11222         */
11223        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11224
11225        synchronize_net();
11226        err = 0;
11227out:
11228        return err;
11229}
11230EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11231
11232static int dev_cpu_dead(unsigned int oldcpu)
11233{
11234        struct sk_buff **list_skb;
11235        struct sk_buff *skb;
11236        unsigned int cpu;
11237        struct softnet_data *sd, *oldsd, *remsd = NULL;
11238
11239        local_irq_disable();
11240        cpu = smp_processor_id();
11241        sd = &per_cpu(softnet_data, cpu);
11242        oldsd = &per_cpu(softnet_data, oldcpu);
11243
11244        /* Find end of our completion_queue. */
11245        list_skb = &sd->completion_queue;
11246        while (*list_skb)
11247                list_skb = &(*list_skb)->next;
11248        /* Append completion queue from offline CPU. */
11249        *list_skb = oldsd->completion_queue;
11250        oldsd->completion_queue = NULL;
11251
11252        /* Append output queue from offline CPU. */
11253        if (oldsd->output_queue) {
11254                *sd->output_queue_tailp = oldsd->output_queue;
11255                sd->output_queue_tailp = oldsd->output_queue_tailp;
11256                oldsd->output_queue = NULL;
11257                oldsd->output_queue_tailp = &oldsd->output_queue;
11258        }
11259        /* Append NAPI poll list from offline CPU, with one exception :
11260         * process_backlog() must be called by cpu owning percpu backlog.
11261         * We properly handle process_queue & input_pkt_queue later.
11262         */
11263        while (!list_empty(&oldsd->poll_list)) {
11264                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11265                                                            struct napi_struct,
11266                                                            poll_list);
11267
11268                list_del_init(&napi->poll_list);
11269                if (napi->poll == process_backlog)
11270                        napi->state = 0;
11271                else
11272                        ____napi_schedule(sd, napi);
11273        }
11274
11275        raise_softirq_irqoff(NET_TX_SOFTIRQ);
11276        local_irq_enable();
11277
11278#ifdef CONFIG_RPS
11279        remsd = oldsd->rps_ipi_list;
11280        oldsd->rps_ipi_list = NULL;
11281#endif
11282        /* send out pending IPI's on offline CPU */
11283        net_rps_send_ipi(remsd);
11284
11285        /* Process offline CPU's input_pkt_queue */
11286        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11287                netif_rx_ni(skb);
11288                input_queue_head_incr(oldsd);
11289        }
11290        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11291                netif_rx_ni(skb);
11292                input_queue_head_incr(oldsd);
11293        }
11294
11295        return 0;
11296}
11297
11298/**
11299 *      netdev_increment_features - increment feature set by one
11300 *      @all: current feature set
11301 *      @one: new feature set
11302 *      @mask: mask feature set
11303 *
11304 *      Computes a new feature set after adding a device with feature set
11305 *      @one to the master device with current feature set @all.  Will not
11306 *      enable anything that is off in @mask. Returns the new feature set.
11307 */
11308netdev_features_t netdev_increment_features(netdev_features_t all,
11309        netdev_features_t one, netdev_features_t mask)
11310{
11311        if (mask & NETIF_F_HW_CSUM)
11312                mask |= NETIF_F_CSUM_MASK;
11313        mask |= NETIF_F_VLAN_CHALLENGED;
11314
11315        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11316        all &= one | ~NETIF_F_ALL_FOR_ALL;
11317
11318        /* If one device supports hw checksumming, set for all. */
11319        if (all & NETIF_F_HW_CSUM)
11320                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11321
11322        return all;
11323}
11324EXPORT_SYMBOL(netdev_increment_features);
11325
11326static struct hlist_head * __net_init netdev_create_hash(void)
11327{
11328        int i;
11329        struct hlist_head *hash;
11330
11331        hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11332        if (hash != NULL)
11333                for (i = 0; i < NETDEV_HASHENTRIES; i++)
11334                        INIT_HLIST_HEAD(&hash[i]);
11335
11336        return hash;
11337}
11338
11339/* Initialize per network namespace state */
11340static int __net_init netdev_init(struct net *net)
11341{
11342        BUILD_BUG_ON(GRO_HASH_BUCKETS >
11343                     8 * sizeof_field(struct napi_struct, gro_bitmask));
11344
11345        if (net != &init_net)
11346                INIT_LIST_HEAD(&net->dev_base_head);
11347
11348        net->dev_name_head = netdev_create_hash();
11349        if (net->dev_name_head == NULL)
11350                goto err_name;
11351
11352        net->dev_index_head = netdev_create_hash();
11353        if (net->dev_index_head == NULL)
11354                goto err_idx;
11355
11356        RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11357
11358        return 0;
11359
11360err_idx:
11361        kfree(net->dev_name_head);
11362err_name:
11363        return -ENOMEM;
11364}
11365
11366/**
11367 *      netdev_drivername - network driver for the device
11368 *      @dev: network device
11369 *
11370 *      Determine network driver for device.
11371 */
11372const char *netdev_drivername(const struct net_device *dev)
11373{
11374        const struct device_driver *driver;
11375        const struct device *parent;
11376        const char *empty = "";
11377
11378        parent = dev->dev.parent;
11379        if (!parent)
11380                return empty;
11381
11382        driver = parent->driver;
11383        if (driver && driver->name)
11384                return driver->name;
11385        return empty;
11386}
11387
11388static void __netdev_printk(const char *level, const struct net_device *dev,
11389                            struct va_format *vaf)
11390{
11391        if (dev && dev->dev.parent) {
11392                dev_printk_emit(level[1] - '0',
11393                                dev->dev.parent,
11394                                "%s %s %s%s: %pV",
11395                                dev_driver_string(dev->dev.parent),
11396                                dev_name(dev->dev.parent),
11397                                netdev_name(dev), netdev_reg_state(dev),
11398                                vaf);
11399        } else if (dev) {
11400                printk("%s%s%s: %pV",
11401                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11402        } else {
11403                printk("%s(NULL net_device): %pV", level, vaf);
11404        }
11405}
11406
11407void netdev_printk(const char *level, const struct net_device *dev,
11408                   const char *format, ...)
11409{
11410        struct va_format vaf;
11411        va_list args;
11412
11413        va_start(args, format);
11414
11415        vaf.fmt = format;
11416        vaf.va = &args;
11417
11418        __netdev_printk(level, dev, &vaf);
11419
11420        va_end(args);
11421}
11422EXPORT_SYMBOL(netdev_printk);
11423
11424#define define_netdev_printk_level(func, level)                 \
11425void func(const struct net_device *dev, const char *fmt, ...)   \
11426{                                                               \
11427        struct va_format vaf;                                   \
11428        va_list args;                                           \
11429                                                                \
11430        va_start(args, fmt);                                    \
11431                                                                \
11432        vaf.fmt = fmt;                                          \
11433        vaf.va = &args;                                         \
11434                                                                \
11435        __netdev_printk(level, dev, &vaf);                      \
11436                                                                \
11437        va_end(args);                                           \
11438}                                                               \
11439EXPORT_SYMBOL(func);
11440
11441define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11442define_netdev_printk_level(netdev_alert, KERN_ALERT);
11443define_netdev_printk_level(netdev_crit, KERN_CRIT);
11444define_netdev_printk_level(netdev_err, KERN_ERR);
11445define_netdev_printk_level(netdev_warn, KERN_WARNING);
11446define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11447define_netdev_printk_level(netdev_info, KERN_INFO);
11448
11449static void __net_exit netdev_exit(struct net *net)
11450{
11451        kfree(net->dev_name_head);
11452        kfree(net->dev_index_head);
11453        if (net != &init_net)
11454                WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11455}
11456
11457static struct pernet_operations __net_initdata netdev_net_ops = {
11458        .init = netdev_init,
11459        .exit = netdev_exit,
11460};
11461
11462static void __net_exit default_device_exit(struct net *net)
11463{
11464        struct net_device *dev, *aux;
11465        /*
11466         * Push all migratable network devices back to the
11467         * initial network namespace
11468         */
11469        rtnl_lock();
11470        for_each_netdev_safe(net, dev, aux) {
11471                int err;
11472                char fb_name[IFNAMSIZ];
11473
11474                /* Ignore unmoveable devices (i.e. loopback) */
11475                if (dev->features & NETIF_F_NETNS_LOCAL)
11476                        continue;
11477
11478                /* Leave virtual devices for the generic cleanup */
11479                if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11480                        continue;
11481
11482                /* Push remaining network devices to init_net */
11483                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11484                if (__dev_get_by_name(&init_net, fb_name))
11485                        snprintf(fb_name, IFNAMSIZ, "dev%%d");
11486                err = dev_change_net_namespace(dev, &init_net, fb_name);
11487                if (err) {
11488                        pr_emerg("%s: failed to move %s to init_net: %d\n",
11489                                 __func__, dev->name, err);
11490                        BUG();
11491                }
11492        }
11493        rtnl_unlock();
11494}
11495
11496static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11497{
11498        /* Return with the rtnl_lock held when there are no network
11499         * devices unregistering in any network namespace in net_list.
11500         */
11501        struct net *net;
11502        bool unregistering;
11503        DEFINE_WAIT_FUNC(wait, woken_wake_function);
11504
11505        add_wait_queue(&netdev_unregistering_wq, &wait);
11506        for (;;) {
11507                unregistering = false;
11508                rtnl_lock();
11509                list_for_each_entry(net, net_list, exit_list) {
11510                        if (net->dev_unreg_count > 0) {
11511                                unregistering = true;
11512                                break;
11513                        }
11514                }
11515                if (!unregistering)
11516                        break;
11517                __rtnl_unlock();
11518
11519                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11520        }
11521        remove_wait_queue(&netdev_unregistering_wq, &wait);
11522}
11523
11524static void __net_exit default_device_exit_batch(struct list_head *net_list)
11525{
11526        /* At exit all network devices most be removed from a network
11527         * namespace.  Do this in the reverse order of registration.
11528         * Do this across as many network namespaces as possible to
11529         * improve batching efficiency.
11530         */
11531        struct net_device *dev;
11532        struct net *net;
11533        LIST_HEAD(dev_kill_list);
11534
11535        /* To prevent network device cleanup code from dereferencing
11536         * loopback devices or network devices that have been freed
11537         * wait here for all pending unregistrations to complete,
11538         * before unregistring the loopback device and allowing the
11539         * network namespace be freed.
11540         *
11541         * The netdev todo list containing all network devices
11542         * unregistrations that happen in default_device_exit_batch
11543         * will run in the rtnl_unlock() at the end of
11544         * default_device_exit_batch.
11545         */
11546        rtnl_lock_unregistering(net_list);
11547        list_for_each_entry(net, net_list, exit_list) {
11548                for_each_netdev_reverse(net, dev) {
11549                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11550                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11551                        else
11552                                unregister_netdevice_queue(dev, &dev_kill_list);
11553                }
11554        }
11555        unregister_netdevice_many(&dev_kill_list);
11556        rtnl_unlock();
11557}
11558
11559static struct pernet_operations __net_initdata default_device_ops = {
11560        .exit = default_device_exit,
11561        .exit_batch = default_device_exit_batch,
11562};
11563
11564/*
11565 *      Initialize the DEV module. At boot time this walks the device list and
11566 *      unhooks any devices that fail to initialise (normally hardware not
11567 *      present) and leaves us with a valid list of present and active devices.
11568 *
11569 */
11570
11571/*
11572 *       This is called single threaded during boot, so no need
11573 *       to take the rtnl semaphore.
11574 */
11575static int __init net_dev_init(void)
11576{
11577        int i, rc = -ENOMEM;
11578
11579        BUG_ON(!dev_boot_phase);
11580
11581        if (dev_proc_init())
11582                goto out;
11583
11584        if (netdev_kobject_init())
11585                goto out;
11586
11587        INIT_LIST_HEAD(&ptype_all);
11588        for (i = 0; i < PTYPE_HASH_SIZE; i++)
11589                INIT_LIST_HEAD(&ptype_base[i]);
11590
11591        INIT_LIST_HEAD(&offload_base);
11592
11593        if (register_pernet_subsys(&netdev_net_ops))
11594                goto out;
11595
11596        /*
11597         *      Initialise the packet receive queues.
11598         */
11599
11600        for_each_possible_cpu(i) {
11601                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11602                struct softnet_data *sd = &per_cpu(softnet_data, i);
11603
11604                INIT_WORK(flush, flush_backlog);
11605
11606                skb_queue_head_init(&sd->input_pkt_queue);
11607                skb_queue_head_init(&sd->process_queue);
11608#ifdef CONFIG_XFRM_OFFLOAD
11609                skb_queue_head_init(&sd->xfrm_backlog);
11610#endif
11611                INIT_LIST_HEAD(&sd->poll_list);
11612                sd->output_queue_tailp = &sd->output_queue;
11613#ifdef CONFIG_RPS
11614                INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11615                sd->cpu = i;
11616#endif
11617
11618                init_gro_hash(&sd->backlog);
11619                sd->backlog.poll = process_backlog;
11620                sd->backlog.weight = weight_p;
11621        }
11622
11623        dev_boot_phase = 0;
11624
11625        /* The loopback device is special if any other network devices
11626         * is present in a network namespace the loopback device must
11627         * be present. Since we now dynamically allocate and free the
11628         * loopback device ensure this invariant is maintained by
11629         * keeping the loopback device as the first device on the
11630         * list of network devices.  Ensuring the loopback devices
11631         * is the first device that appears and the last network device
11632         * that disappears.
11633         */
11634        if (register_pernet_device(&loopback_net_ops))
11635                goto out;
11636
11637        if (register_pernet_device(&default_device_ops))
11638                goto out;
11639
11640        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11641        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11642
11643        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11644                                       NULL, dev_cpu_dead);
11645        WARN_ON(rc < 0);
11646        rc = 0;
11647out:
11648        return rc;
11649}
11650
11651subsys_initcall(net_dev_init);
11652