linux/security/selinux/ss/services.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *           James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *      Support for enhanced MLS infrastructure.
  11 *      Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *      Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct convert_context_args {
  72        struct selinux_state *state;
  73        struct policydb *oldp;
  74        struct policydb *newp;
  75};
  76
  77struct selinux_policy_convert_data {
  78        struct convert_context_args args;
  79        struct sidtab_convert_params sidtab_params;
  80};
  81
  82/* Forward declaration. */
  83static int context_struct_to_string(struct policydb *policydb,
  84                                    struct context *context,
  85                                    char **scontext,
  86                                    u32 *scontext_len);
  87
  88static int sidtab_entry_to_string(struct policydb *policydb,
  89                                  struct sidtab *sidtab,
  90                                  struct sidtab_entry *entry,
  91                                  char **scontext,
  92                                  u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95                                      struct context *scontext,
  96                                      struct context *tcontext,
  97                                      u16 tclass,
  98                                      struct av_decision *avd,
  99                                      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102                               struct security_class_mapping *map,
 103                               struct selinux_map *out_map)
 104{
 105        u16 i, j;
 106        unsigned k;
 107        bool print_unknown_handle = false;
 108
 109        /* Find number of classes in the input mapping */
 110        if (!map)
 111                return -EINVAL;
 112        i = 0;
 113        while (map[i].name)
 114                i++;
 115
 116        /* Allocate space for the class records, plus one for class zero */
 117        out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118        if (!out_map->mapping)
 119                return -ENOMEM;
 120
 121        /* Store the raw class and permission values */
 122        j = 0;
 123        while (map[j].name) {
 124                struct security_class_mapping *p_in = map + (j++);
 125                struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127                /* An empty class string skips ahead */
 128                if (!strcmp(p_in->name, "")) {
 129                        p_out->num_perms = 0;
 130                        continue;
 131                }
 132
 133                p_out->value = string_to_security_class(pol, p_in->name);
 134                if (!p_out->value) {
 135                        pr_info("SELinux:  Class %s not defined in policy.\n",
 136                               p_in->name);
 137                        if (pol->reject_unknown)
 138                                goto err;
 139                        p_out->num_perms = 0;
 140                        print_unknown_handle = true;
 141                        continue;
 142                }
 143
 144                k = 0;
 145                while (p_in->perms[k]) {
 146                        /* An empty permission string skips ahead */
 147                        if (!*p_in->perms[k]) {
 148                                k++;
 149                                continue;
 150                        }
 151                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152                                                            p_in->perms[k]);
 153                        if (!p_out->perms[k]) {
 154                                pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 155                                       p_in->perms[k], p_in->name);
 156                                if (pol->reject_unknown)
 157                                        goto err;
 158                                print_unknown_handle = true;
 159                        }
 160
 161                        k++;
 162                }
 163                p_out->num_perms = k;
 164        }
 165
 166        if (print_unknown_handle)
 167                pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168                       pol->allow_unknown ? "allowed" : "denied");
 169
 170        out_map->size = i;
 171        return 0;
 172err:
 173        kfree(out_map->mapping);
 174        out_map->mapping = NULL;
 175        return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184        if (tclass < map->size)
 185                return map->mapping[tclass].value;
 186
 187        return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195        u16 i;
 196
 197        for (i = 1; i < map->size; i++) {
 198                if (map->mapping[i].value == pol_value)
 199                        return i;
 200        }
 201
 202        return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206                         u16 tclass, struct av_decision *avd,
 207                         int allow_unknown)
 208{
 209        if (tclass < map->size) {
 210                struct selinux_mapping *mapping = &map->mapping[tclass];
 211                unsigned int i, n = mapping->num_perms;
 212                u32 result;
 213
 214                for (i = 0, result = 0; i < n; i++) {
 215                        if (avd->allowed & mapping->perms[i])
 216                                result |= 1<<i;
 217                        if (allow_unknown && !mapping->perms[i])
 218                                result |= 1<<i;
 219                }
 220                avd->allowed = result;
 221
 222                for (i = 0, result = 0; i < n; i++)
 223                        if (avd->auditallow & mapping->perms[i])
 224                                result |= 1<<i;
 225                avd->auditallow = result;
 226
 227                for (i = 0, result = 0; i < n; i++) {
 228                        if (avd->auditdeny & mapping->perms[i])
 229                                result |= 1<<i;
 230                        if (!allow_unknown && !mapping->perms[i])
 231                                result |= 1<<i;
 232                }
 233                /*
 234                 * In case the kernel has a bug and requests a permission
 235                 * between num_perms and the maximum permission number, we
 236                 * should audit that denial
 237                 */
 238                for (; i < (sizeof(u32)*8); i++)
 239                        result |= 1<<i;
 240                avd->auditdeny = result;
 241        }
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246        int mls_enabled;
 247        struct selinux_policy *policy;
 248
 249        if (!selinux_initialized(state))
 250                return 0;
 251
 252        rcu_read_lock();
 253        policy = rcu_dereference(state->policy);
 254        mls_enabled = policy->policydb.mls_enabled;
 255        rcu_read_unlock();
 256        return mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct policydb *policydb,
 271                                struct context *scontext,
 272                                struct context *tcontext,
 273                                struct context *xcontext,
 274                                struct constraint_expr *cexpr)
 275{
 276        u32 val1, val2;
 277        struct context *c;
 278        struct role_datum *r1, *r2;
 279        struct mls_level *l1, *l2;
 280        struct constraint_expr *e;
 281        int s[CEXPR_MAXDEPTH];
 282        int sp = -1;
 283
 284        for (e = cexpr; e; e = e->next) {
 285                switch (e->expr_type) {
 286                case CEXPR_NOT:
 287                        BUG_ON(sp < 0);
 288                        s[sp] = !s[sp];
 289                        break;
 290                case CEXPR_AND:
 291                        BUG_ON(sp < 1);
 292                        sp--;
 293                        s[sp] &= s[sp + 1];
 294                        break;
 295                case CEXPR_OR:
 296                        BUG_ON(sp < 1);
 297                        sp--;
 298                        s[sp] |= s[sp + 1];
 299                        break;
 300                case CEXPR_ATTR:
 301                        if (sp == (CEXPR_MAXDEPTH - 1))
 302                                return 0;
 303                        switch (e->attr) {
 304                        case CEXPR_USER:
 305                                val1 = scontext->user;
 306                                val2 = tcontext->user;
 307                                break;
 308                        case CEXPR_TYPE:
 309                                val1 = scontext->type;
 310                                val2 = tcontext->type;
 311                                break;
 312                        case CEXPR_ROLE:
 313                                val1 = scontext->role;
 314                                val2 = tcontext->role;
 315                                r1 = policydb->role_val_to_struct[val1 - 1];
 316                                r2 = policydb->role_val_to_struct[val2 - 1];
 317                                switch (e->op) {
 318                                case CEXPR_DOM:
 319                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 320                                                                  val2 - 1);
 321                                        continue;
 322                                case CEXPR_DOMBY:
 323                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 324                                                                  val1 - 1);
 325                                        continue;
 326                                case CEXPR_INCOMP:
 327                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328                                                                    val2 - 1) &&
 329                                                   !ebitmap_get_bit(&r2->dominates,
 330                                                                    val1 - 1));
 331                                        continue;
 332                                default:
 333                                        break;
 334                                }
 335                                break;
 336                        case CEXPR_L1L2:
 337                                l1 = &(scontext->range.level[0]);
 338                                l2 = &(tcontext->range.level[0]);
 339                                goto mls_ops;
 340                        case CEXPR_L1H2:
 341                                l1 = &(scontext->range.level[0]);
 342                                l2 = &(tcontext->range.level[1]);
 343                                goto mls_ops;
 344                        case CEXPR_H1L2:
 345                                l1 = &(scontext->range.level[1]);
 346                                l2 = &(tcontext->range.level[0]);
 347                                goto mls_ops;
 348                        case CEXPR_H1H2:
 349                                l1 = &(scontext->range.level[1]);
 350                                l2 = &(tcontext->range.level[1]);
 351                                goto mls_ops;
 352                        case CEXPR_L1H1:
 353                                l1 = &(scontext->range.level[0]);
 354                                l2 = &(scontext->range.level[1]);
 355                                goto mls_ops;
 356                        case CEXPR_L2H2:
 357                                l1 = &(tcontext->range.level[0]);
 358                                l2 = &(tcontext->range.level[1]);
 359                                goto mls_ops;
 360mls_ops:
 361                        switch (e->op) {
 362                        case CEXPR_EQ:
 363                                s[++sp] = mls_level_eq(l1, l2);
 364                                continue;
 365                        case CEXPR_NEQ:
 366                                s[++sp] = !mls_level_eq(l1, l2);
 367                                continue;
 368                        case CEXPR_DOM:
 369                                s[++sp] = mls_level_dom(l1, l2);
 370                                continue;
 371                        case CEXPR_DOMBY:
 372                                s[++sp] = mls_level_dom(l2, l1);
 373                                continue;
 374                        case CEXPR_INCOMP:
 375                                s[++sp] = mls_level_incomp(l2, l1);
 376                                continue;
 377                        default:
 378                                BUG();
 379                                return 0;
 380                        }
 381                        break;
 382                        default:
 383                                BUG();
 384                                return 0;
 385                        }
 386
 387                        switch (e->op) {
 388                        case CEXPR_EQ:
 389                                s[++sp] = (val1 == val2);
 390                                break;
 391                        case CEXPR_NEQ:
 392                                s[++sp] = (val1 != val2);
 393                                break;
 394                        default:
 395                                BUG();
 396                                return 0;
 397                        }
 398                        break;
 399                case CEXPR_NAMES:
 400                        if (sp == (CEXPR_MAXDEPTH-1))
 401                                return 0;
 402                        c = scontext;
 403                        if (e->attr & CEXPR_TARGET)
 404                                c = tcontext;
 405                        else if (e->attr & CEXPR_XTARGET) {
 406                                c = xcontext;
 407                                if (!c) {
 408                                        BUG();
 409                                        return 0;
 410                                }
 411                        }
 412                        if (e->attr & CEXPR_USER)
 413                                val1 = c->user;
 414                        else if (e->attr & CEXPR_ROLE)
 415                                val1 = c->role;
 416                        else if (e->attr & CEXPR_TYPE)
 417                                val1 = c->type;
 418                        else {
 419                                BUG();
 420                                return 0;
 421                        }
 422
 423                        switch (e->op) {
 424                        case CEXPR_EQ:
 425                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426                                break;
 427                        case CEXPR_NEQ:
 428                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429                                break;
 430                        default:
 431                                BUG();
 432                                return 0;
 433                        }
 434                        break;
 435                default:
 436                        BUG();
 437                        return 0;
 438                }
 439        }
 440
 441        BUG_ON(sp != 0);
 442        return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451        struct perm_datum *pdatum = d;
 452        char **permission_names = args;
 453
 454        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456        permission_names[pdatum->value - 1] = (char *)k;
 457
 458        return 0;
 459}
 460
 461static void security_dump_masked_av(struct policydb *policydb,
 462                                    struct context *scontext,
 463                                    struct context *tcontext,
 464                                    u16 tclass,
 465                                    u32 permissions,
 466                                    const char *reason)
 467{
 468        struct common_datum *common_dat;
 469        struct class_datum *tclass_dat;
 470        struct audit_buffer *ab;
 471        char *tclass_name;
 472        char *scontext_name = NULL;
 473        char *tcontext_name = NULL;
 474        char *permission_names[32];
 475        int index;
 476        u32 length;
 477        bool need_comma = false;
 478
 479        if (!permissions)
 480                return;
 481
 482        tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 483        tclass_dat = policydb->class_val_to_struct[tclass - 1];
 484        common_dat = tclass_dat->comdatum;
 485
 486        /* init permission_names */
 487        if (common_dat &&
 488            hashtab_map(&common_dat->permissions.table,
 489                        dump_masked_av_helper, permission_names) < 0)
 490                goto out;
 491
 492        if (hashtab_map(&tclass_dat->permissions.table,
 493                        dump_masked_av_helper, permission_names) < 0)
 494                goto out;
 495
 496        /* get scontext/tcontext in text form */
 497        if (context_struct_to_string(policydb, scontext,
 498                                     &scontext_name, &length) < 0)
 499                goto out;
 500
 501        if (context_struct_to_string(policydb, tcontext,
 502                                     &tcontext_name, &length) < 0)
 503                goto out;
 504
 505        /* audit a message */
 506        ab = audit_log_start(audit_context(),
 507                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508        if (!ab)
 509                goto out;
 510
 511        audit_log_format(ab, "op=security_compute_av reason=%s "
 512                         "scontext=%s tcontext=%s tclass=%s perms=",
 513                         reason, scontext_name, tcontext_name, tclass_name);
 514
 515        for (index = 0; index < 32; index++) {
 516                u32 mask = (1 << index);
 517
 518                if ((mask & permissions) == 0)
 519                        continue;
 520
 521                audit_log_format(ab, "%s%s",
 522                                 need_comma ? "," : "",
 523                                 permission_names[index]
 524                                 ? permission_names[index] : "????");
 525                need_comma = true;
 526        }
 527        audit_log_end(ab);
 528out:
 529        /* release scontext/tcontext */
 530        kfree(tcontext_name);
 531        kfree(scontext_name);
 532
 533        return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct policydb *policydb,
 541                                     struct context *scontext,
 542                                     struct context *tcontext,
 543                                     u16 tclass,
 544                                     struct av_decision *avd)
 545{
 546        struct context lo_scontext;
 547        struct context lo_tcontext, *tcontextp = tcontext;
 548        struct av_decision lo_avd;
 549        struct type_datum *source;
 550        struct type_datum *target;
 551        u32 masked = 0;
 552
 553        source = policydb->type_val_to_struct[scontext->type - 1];
 554        BUG_ON(!source);
 555
 556        if (!source->bounds)
 557                return;
 558
 559        target = policydb->type_val_to_struct[tcontext->type - 1];
 560        BUG_ON(!target);
 561
 562        memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564        memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565        lo_scontext.type = source->bounds;
 566
 567        if (target->bounds) {
 568                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569                lo_tcontext.type = target->bounds;
 570                tcontextp = &lo_tcontext;
 571        }
 572
 573        context_struct_compute_av(policydb, &lo_scontext,
 574                                  tcontextp,
 575                                  tclass,
 576                                  &lo_avd,
 577                                  NULL);
 578
 579        masked = ~lo_avd.allowed & avd->allowed;
 580
 581        if (likely(!masked))
 582                return;         /* no masked permission */
 583
 584        /* mask violated permissions */
 585        avd->allowed &= ~masked;
 586
 587        /* audit masked permissions */
 588        security_dump_masked_av(policydb, scontext, tcontext,
 589                                tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597                struct extended_perms *xperms,
 598                struct avtab_node *node)
 599{
 600        unsigned int i;
 601
 602        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603                /* if one or more driver has all permissions allowed */
 604                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607                /* if allowing permissions within a driver */
 608                security_xperm_set(xperms->drivers.p,
 609                                        node->datum.u.xperms->driver);
 610        }
 611
 612        xperms->len = 1;
 613}
 614
 615/*
 616 * Compute access vectors and extended permissions based on a context
 617 * structure pair for the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct policydb *policydb,
 620                                      struct context *scontext,
 621                                      struct context *tcontext,
 622                                      u16 tclass,
 623                                      struct av_decision *avd,
 624                                      struct extended_perms *xperms)
 625{
 626        struct constraint_node *constraint;
 627        struct role_allow *ra;
 628        struct avtab_key avkey;
 629        struct avtab_node *node;
 630        struct class_datum *tclass_datum;
 631        struct ebitmap *sattr, *tattr;
 632        struct ebitmap_node *snode, *tnode;
 633        unsigned int i, j;
 634
 635        avd->allowed = 0;
 636        avd->auditallow = 0;
 637        avd->auditdeny = 0xffffffff;
 638        if (xperms) {
 639                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 640                xperms->len = 0;
 641        }
 642
 643        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 644                if (printk_ratelimit())
 645                        pr_warn("SELinux:  Invalid class %hu\n", tclass);
 646                return;
 647        }
 648
 649        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651        /*
 652         * If a specific type enforcement rule was defined for
 653         * this permission check, then use it.
 654         */
 655        avkey.target_class = tclass;
 656        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657        sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 659        ebitmap_for_each_positive_bit(sattr, snode, i) {
 660                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661                        avkey.source_type = i + 1;
 662                        avkey.target_type = j + 1;
 663                        for (node = avtab_search_node(&policydb->te_avtab,
 664                                                      &avkey);
 665                             node;
 666                             node = avtab_search_node_next(node, avkey.specified)) {
 667                                if (node->key.specified == AVTAB_ALLOWED)
 668                                        avd->allowed |= node->datum.u.data;
 669                                else if (node->key.specified == AVTAB_AUDITALLOW)
 670                                        avd->auditallow |= node->datum.u.data;
 671                                else if (node->key.specified == AVTAB_AUDITDENY)
 672                                        avd->auditdeny &= node->datum.u.data;
 673                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674                                        services_compute_xperms_drivers(xperms, node);
 675                        }
 676
 677                        /* Check conditional av table for additional permissions */
 678                        cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679                                        avd, xperms);
 680
 681                }
 682        }
 683
 684        /*
 685         * Remove any permissions prohibited by a constraint (this includes
 686         * the MLS policy).
 687         */
 688        constraint = tclass_datum->constraints;
 689        while (constraint) {
 690                if ((constraint->permissions & (avd->allowed)) &&
 691                    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692                                          constraint->expr)) {
 693                        avd->allowed &= ~(constraint->permissions);
 694                }
 695                constraint = constraint->next;
 696        }
 697
 698        /*
 699         * If checking process transition permission and the
 700         * role is changing, then check the (current_role, new_role)
 701         * pair.
 702         */
 703        if (tclass == policydb->process_class &&
 704            (avd->allowed & policydb->process_trans_perms) &&
 705            scontext->role != tcontext->role) {
 706                for (ra = policydb->role_allow; ra; ra = ra->next) {
 707                        if (scontext->role == ra->role &&
 708                            tcontext->role == ra->new_role)
 709                                break;
 710                }
 711                if (!ra)
 712                        avd->allowed &= ~policydb->process_trans_perms;
 713        }
 714
 715        /*
 716         * If the given source and target types have boundary
 717         * constraint, lazy checks have to mask any violated
 718         * permission and notice it to userspace via audit.
 719         */
 720        type_attribute_bounds_av(policydb, scontext, tcontext,
 721                                 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_state *state,
 725                                        struct selinux_policy *policy,
 726                                        struct sidtab_entry *oentry,
 727                                        struct sidtab_entry *nentry,
 728                                        struct sidtab_entry *tentry,
 729                                        u16 tclass)
 730{
 731        struct policydb *p = &policy->policydb;
 732        struct sidtab *sidtab = policy->sidtab;
 733        char *o = NULL, *n = NULL, *t = NULL;
 734        u32 olen, nlen, tlen;
 735
 736        if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 737                goto out;
 738        if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 739                goto out;
 740        if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 741                goto out;
 742        audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 743                  "op=security_validate_transition seresult=denied"
 744                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 745                  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 746out:
 747        kfree(o);
 748        kfree(n);
 749        kfree(t);
 750
 751        if (!enforcing_enabled(state))
 752                return 0;
 753        return -EPERM;
 754}
 755
 756static int security_compute_validatetrans(struct selinux_state *state,
 757                                          u32 oldsid, u32 newsid, u32 tasksid,
 758                                          u16 orig_tclass, bool user)
 759{
 760        struct selinux_policy *policy;
 761        struct policydb *policydb;
 762        struct sidtab *sidtab;
 763        struct sidtab_entry *oentry;
 764        struct sidtab_entry *nentry;
 765        struct sidtab_entry *tentry;
 766        struct class_datum *tclass_datum;
 767        struct constraint_node *constraint;
 768        u16 tclass;
 769        int rc = 0;
 770
 771
 772        if (!selinux_initialized(state))
 773                return 0;
 774
 775        rcu_read_lock();
 776
 777        policy = rcu_dereference(state->policy);
 778        policydb = &policy->policydb;
 779        sidtab = policy->sidtab;
 780
 781        if (!user)
 782                tclass = unmap_class(&policy->map, orig_tclass);
 783        else
 784                tclass = orig_tclass;
 785
 786        if (!tclass || tclass > policydb->p_classes.nprim) {
 787                rc = -EINVAL;
 788                goto out;
 789        }
 790        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 791
 792        oentry = sidtab_search_entry(sidtab, oldsid);
 793        if (!oentry) {
 794                pr_err("SELinux: %s:  unrecognized SID %d\n",
 795                        __func__, oldsid);
 796                rc = -EINVAL;
 797                goto out;
 798        }
 799
 800        nentry = sidtab_search_entry(sidtab, newsid);
 801        if (!nentry) {
 802                pr_err("SELinux: %s:  unrecognized SID %d\n",
 803                        __func__, newsid);
 804                rc = -EINVAL;
 805                goto out;
 806        }
 807
 808        tentry = sidtab_search_entry(sidtab, tasksid);
 809        if (!tentry) {
 810                pr_err("SELinux: %s:  unrecognized SID %d\n",
 811                        __func__, tasksid);
 812                rc = -EINVAL;
 813                goto out;
 814        }
 815
 816        constraint = tclass_datum->validatetrans;
 817        while (constraint) {
 818                if (!constraint_expr_eval(policydb, &oentry->context,
 819                                          &nentry->context, &tentry->context,
 820                                          constraint->expr)) {
 821                        if (user)
 822                                rc = -EPERM;
 823                        else
 824                                rc = security_validtrans_handle_fail(state,
 825                                                                policy,
 826                                                                oentry,
 827                                                                nentry,
 828                                                                tentry,
 829                                                                tclass);
 830                        goto out;
 831                }
 832                constraint = constraint->next;
 833        }
 834
 835out:
 836        rcu_read_unlock();
 837        return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841                                      u32 oldsid, u32 newsid, u32 tasksid,
 842                                      u16 tclass)
 843{
 844        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845                                              tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849                                 u32 oldsid, u32 newsid, u32 tasksid,
 850                                 u16 orig_tclass)
 851{
 852        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853                                              orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @oldsid : current security identifier
 863 * @newsid : destinated security identifier
 864 */
 865int security_bounded_transition(struct selinux_state *state,
 866                                u32 old_sid, u32 new_sid)
 867{
 868        struct selinux_policy *policy;
 869        struct policydb *policydb;
 870        struct sidtab *sidtab;
 871        struct sidtab_entry *old_entry, *new_entry;
 872        struct type_datum *type;
 873        int index;
 874        int rc;
 875
 876        if (!selinux_initialized(state))
 877                return 0;
 878
 879        rcu_read_lock();
 880        policy = rcu_dereference(state->policy);
 881        policydb = &policy->policydb;
 882        sidtab = policy->sidtab;
 883
 884        rc = -EINVAL;
 885        old_entry = sidtab_search_entry(sidtab, old_sid);
 886        if (!old_entry) {
 887                pr_err("SELinux: %s: unrecognized SID %u\n",
 888                       __func__, old_sid);
 889                goto out;
 890        }
 891
 892        rc = -EINVAL;
 893        new_entry = sidtab_search_entry(sidtab, new_sid);
 894        if (!new_entry) {
 895                pr_err("SELinux: %s: unrecognized SID %u\n",
 896                       __func__, new_sid);
 897                goto out;
 898        }
 899
 900        rc = 0;
 901        /* type/domain unchanged */
 902        if (old_entry->context.type == new_entry->context.type)
 903                goto out;
 904
 905        index = new_entry->context.type;
 906        while (true) {
 907                type = policydb->type_val_to_struct[index - 1];
 908                BUG_ON(!type);
 909
 910                /* not bounded anymore */
 911                rc = -EPERM;
 912                if (!type->bounds)
 913                        break;
 914
 915                /* @newsid is bounded by @oldsid */
 916                rc = 0;
 917                if (type->bounds == old_entry->context.type)
 918                        break;
 919
 920                index = type->bounds;
 921        }
 922
 923        if (rc) {
 924                char *old_name = NULL;
 925                char *new_name = NULL;
 926                u32 length;
 927
 928                if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 929                                            &old_name, &length) &&
 930                    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 931                                            &new_name, &length)) {
 932                        audit_log(audit_context(),
 933                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 934                                  "op=security_bounded_transition "
 935                                  "seresult=denied "
 936                                  "oldcontext=%s newcontext=%s",
 937                                  old_name, new_name);
 938                }
 939                kfree(new_name);
 940                kfree(old_name);
 941        }
 942out:
 943        rcu_read_unlock();
 944
 945        return rc;
 946}
 947
 948static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 949{
 950        avd->allowed = 0;
 951        avd->auditallow = 0;
 952        avd->auditdeny = 0xffffffff;
 953        if (policy)
 954                avd->seqno = policy->latest_granting;
 955        else
 956                avd->seqno = 0;
 957        avd->flags = 0;
 958}
 959
 960void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 961                                        struct avtab_node *node)
 962{
 963        unsigned int i;
 964
 965        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 966                if (xpermd->driver != node->datum.u.xperms->driver)
 967                        return;
 968        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 969                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 970                                        xpermd->driver))
 971                        return;
 972        } else {
 973                BUG();
 974        }
 975
 976        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 977                xpermd->used |= XPERMS_ALLOWED;
 978                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 979                        memset(xpermd->allowed->p, 0xff,
 980                                        sizeof(xpermd->allowed->p));
 981                }
 982                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 983                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 984                                xpermd->allowed->p[i] |=
 985                                        node->datum.u.xperms->perms.p[i];
 986                }
 987        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 988                xpermd->used |= XPERMS_AUDITALLOW;
 989                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 990                        memset(xpermd->auditallow->p, 0xff,
 991                                        sizeof(xpermd->auditallow->p));
 992                }
 993                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 994                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 995                                xpermd->auditallow->p[i] |=
 996                                        node->datum.u.xperms->perms.p[i];
 997                }
 998        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 999                xpermd->used |= XPERMS_DONTAUDIT;
1000                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1001                        memset(xpermd->dontaudit->p, 0xff,
1002                                        sizeof(xpermd->dontaudit->p));
1003                }
1004                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1005                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1006                                xpermd->dontaudit->p[i] |=
1007                                        node->datum.u.xperms->perms.p[i];
1008                }
1009        } else {
1010                BUG();
1011        }
1012}
1013
1014void security_compute_xperms_decision(struct selinux_state *state,
1015                                      u32 ssid,
1016                                      u32 tsid,
1017                                      u16 orig_tclass,
1018                                      u8 driver,
1019                                      struct extended_perms_decision *xpermd)
1020{
1021        struct selinux_policy *policy;
1022        struct policydb *policydb;
1023        struct sidtab *sidtab;
1024        u16 tclass;
1025        struct context *scontext, *tcontext;
1026        struct avtab_key avkey;
1027        struct avtab_node *node;
1028        struct ebitmap *sattr, *tattr;
1029        struct ebitmap_node *snode, *tnode;
1030        unsigned int i, j;
1031
1032        xpermd->driver = driver;
1033        xpermd->used = 0;
1034        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1035        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1036        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1037
1038        rcu_read_lock();
1039        if (!selinux_initialized(state))
1040                goto allow;
1041
1042        policy = rcu_dereference(state->policy);
1043        policydb = &policy->policydb;
1044        sidtab = policy->sidtab;
1045
1046        scontext = sidtab_search(sidtab, ssid);
1047        if (!scontext) {
1048                pr_err("SELinux: %s:  unrecognized SID %d\n",
1049                       __func__, ssid);
1050                goto out;
1051        }
1052
1053        tcontext = sidtab_search(sidtab, tsid);
1054        if (!tcontext) {
1055                pr_err("SELinux: %s:  unrecognized SID %d\n",
1056                       __func__, tsid);
1057                goto out;
1058        }
1059
1060        tclass = unmap_class(&policy->map, orig_tclass);
1061        if (unlikely(orig_tclass && !tclass)) {
1062                if (policydb->allow_unknown)
1063                        goto allow;
1064                goto out;
1065        }
1066
1067
1068        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1069                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1070                goto out;
1071        }
1072
1073        avkey.target_class = tclass;
1074        avkey.specified = AVTAB_XPERMS;
1075        sattr = &policydb->type_attr_map_array[scontext->type - 1];
1076        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1077        ebitmap_for_each_positive_bit(sattr, snode, i) {
1078                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1079                        avkey.source_type = i + 1;
1080                        avkey.target_type = j + 1;
1081                        for (node = avtab_search_node(&policydb->te_avtab,
1082                                                      &avkey);
1083                             node;
1084                             node = avtab_search_node_next(node, avkey.specified))
1085                                services_compute_xperms_decision(xpermd, node);
1086
1087                        cond_compute_xperms(&policydb->te_cond_avtab,
1088                                                &avkey, xpermd);
1089                }
1090        }
1091out:
1092        rcu_read_unlock();
1093        return;
1094allow:
1095        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1096        goto out;
1097}
1098
1099/**
1100 * security_compute_av - Compute access vector decisions.
1101 * @ssid: source security identifier
1102 * @tsid: target security identifier
1103 * @tclass: target security class
1104 * @avd: access vector decisions
1105 * @xperms: extended permissions
1106 *
1107 * Compute a set of access vector decisions based on the
1108 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1109 */
1110void security_compute_av(struct selinux_state *state,
1111                         u32 ssid,
1112                         u32 tsid,
1113                         u16 orig_tclass,
1114                         struct av_decision *avd,
1115                         struct extended_perms *xperms)
1116{
1117        struct selinux_policy *policy;
1118        struct policydb *policydb;
1119        struct sidtab *sidtab;
1120        u16 tclass;
1121        struct context *scontext = NULL, *tcontext = NULL;
1122
1123        rcu_read_lock();
1124        policy = rcu_dereference(state->policy);
1125        avd_init(policy, avd);
1126        xperms->len = 0;
1127        if (!selinux_initialized(state))
1128                goto allow;
1129
1130        policydb = &policy->policydb;
1131        sidtab = policy->sidtab;
1132
1133        scontext = sidtab_search(sidtab, ssid);
1134        if (!scontext) {
1135                pr_err("SELinux: %s:  unrecognized SID %d\n",
1136                       __func__, ssid);
1137                goto out;
1138        }
1139
1140        /* permissive domain? */
1141        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1142                avd->flags |= AVD_FLAGS_PERMISSIVE;
1143
1144        tcontext = sidtab_search(sidtab, tsid);
1145        if (!tcontext) {
1146                pr_err("SELinux: %s:  unrecognized SID %d\n",
1147                       __func__, tsid);
1148                goto out;
1149        }
1150
1151        tclass = unmap_class(&policy->map, orig_tclass);
1152        if (unlikely(orig_tclass && !tclass)) {
1153                if (policydb->allow_unknown)
1154                        goto allow;
1155                goto out;
1156        }
1157        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1158                                  xperms);
1159        map_decision(&policy->map, orig_tclass, avd,
1160                     policydb->allow_unknown);
1161out:
1162        rcu_read_unlock();
1163        return;
1164allow:
1165        avd->allowed = 0xffffffff;
1166        goto out;
1167}
1168
1169void security_compute_av_user(struct selinux_state *state,
1170                              u32 ssid,
1171                              u32 tsid,
1172                              u16 tclass,
1173                              struct av_decision *avd)
1174{
1175        struct selinux_policy *policy;
1176        struct policydb *policydb;
1177        struct sidtab *sidtab;
1178        struct context *scontext = NULL, *tcontext = NULL;
1179
1180        rcu_read_lock();
1181        policy = rcu_dereference(state->policy);
1182        avd_init(policy, avd);
1183        if (!selinux_initialized(state))
1184                goto allow;
1185
1186        policydb = &policy->policydb;
1187        sidtab = policy->sidtab;
1188
1189        scontext = sidtab_search(sidtab, ssid);
1190        if (!scontext) {
1191                pr_err("SELinux: %s:  unrecognized SID %d\n",
1192                       __func__, ssid);
1193                goto out;
1194        }
1195
1196        /* permissive domain? */
1197        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1198                avd->flags |= AVD_FLAGS_PERMISSIVE;
1199
1200        tcontext = sidtab_search(sidtab, tsid);
1201        if (!tcontext) {
1202                pr_err("SELinux: %s:  unrecognized SID %d\n",
1203                       __func__, tsid);
1204                goto out;
1205        }
1206
1207        if (unlikely(!tclass)) {
1208                if (policydb->allow_unknown)
1209                        goto allow;
1210                goto out;
1211        }
1212
1213        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1214                                  NULL);
1215 out:
1216        rcu_read_unlock();
1217        return;
1218allow:
1219        avd->allowed = 0xffffffff;
1220        goto out;
1221}
1222
1223/*
1224 * Write the security context string representation of
1225 * the context structure `context' into a dynamically
1226 * allocated string of the correct size.  Set `*scontext'
1227 * to point to this string and set `*scontext_len' to
1228 * the length of the string.
1229 */
1230static int context_struct_to_string(struct policydb *p,
1231                                    struct context *context,
1232                                    char **scontext, u32 *scontext_len)
1233{
1234        char *scontextp;
1235
1236        if (scontext)
1237                *scontext = NULL;
1238        *scontext_len = 0;
1239
1240        if (context->len) {
1241                *scontext_len = context->len;
1242                if (scontext) {
1243                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1244                        if (!(*scontext))
1245                                return -ENOMEM;
1246                }
1247                return 0;
1248        }
1249
1250        /* Compute the size of the context. */
1251        *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1252        *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1253        *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1254        *scontext_len += mls_compute_context_len(p, context);
1255
1256        if (!scontext)
1257                return 0;
1258
1259        /* Allocate space for the context; caller must free this space. */
1260        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1261        if (!scontextp)
1262                return -ENOMEM;
1263        *scontext = scontextp;
1264
1265        /*
1266         * Copy the user name, role name and type name into the context.
1267         */
1268        scontextp += sprintf(scontextp, "%s:%s:%s",
1269                sym_name(p, SYM_USERS, context->user - 1),
1270                sym_name(p, SYM_ROLES, context->role - 1),
1271                sym_name(p, SYM_TYPES, context->type - 1));
1272
1273        mls_sid_to_context(p, context, &scontextp);
1274
1275        *scontextp = 0;
1276
1277        return 0;
1278}
1279
1280static int sidtab_entry_to_string(struct policydb *p,
1281                                  struct sidtab *sidtab,
1282                                  struct sidtab_entry *entry,
1283                                  char **scontext, u32 *scontext_len)
1284{
1285        int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1286
1287        if (rc != -ENOENT)
1288                return rc;
1289
1290        rc = context_struct_to_string(p, &entry->context, scontext,
1291                                      scontext_len);
1292        if (!rc && scontext)
1293                sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1294        return rc;
1295}
1296
1297#include "initial_sid_to_string.h"
1298
1299int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1300{
1301        struct selinux_policy *policy;
1302        int rc;
1303
1304        if (!selinux_initialized(state)) {
1305                pr_err("SELinux: %s:  called before initial load_policy\n",
1306                       __func__);
1307                return -EINVAL;
1308        }
1309
1310        rcu_read_lock();
1311        policy = rcu_dereference(state->policy);
1312        rc = sidtab_hash_stats(policy->sidtab, page);
1313        rcu_read_unlock();
1314
1315        return rc;
1316}
1317
1318const char *security_get_initial_sid_context(u32 sid)
1319{
1320        if (unlikely(sid > SECINITSID_NUM))
1321                return NULL;
1322        return initial_sid_to_string[sid];
1323}
1324
1325static int security_sid_to_context_core(struct selinux_state *state,
1326                                        u32 sid, char **scontext,
1327                                        u32 *scontext_len, int force,
1328                                        int only_invalid)
1329{
1330        struct selinux_policy *policy;
1331        struct policydb *policydb;
1332        struct sidtab *sidtab;
1333        struct sidtab_entry *entry;
1334        int rc = 0;
1335
1336        if (scontext)
1337                *scontext = NULL;
1338        *scontext_len  = 0;
1339
1340        if (!selinux_initialized(state)) {
1341                if (sid <= SECINITSID_NUM) {
1342                        char *scontextp;
1343                        const char *s = initial_sid_to_string[sid];
1344
1345                        if (!s)
1346                                return -EINVAL;
1347                        *scontext_len = strlen(s) + 1;
1348                        if (!scontext)
1349                                return 0;
1350                        scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1351                        if (!scontextp)
1352                                return -ENOMEM;
1353                        *scontext = scontextp;
1354                        return 0;
1355                }
1356                pr_err("SELinux: %s:  called before initial "
1357                       "load_policy on unknown SID %d\n", __func__, sid);
1358                return -EINVAL;
1359        }
1360        rcu_read_lock();
1361        policy = rcu_dereference(state->policy);
1362        policydb = &policy->policydb;
1363        sidtab = policy->sidtab;
1364
1365        if (force)
1366                entry = sidtab_search_entry_force(sidtab, sid);
1367        else
1368                entry = sidtab_search_entry(sidtab, sid);
1369        if (!entry) {
1370                pr_err("SELinux: %s:  unrecognized SID %d\n",
1371                        __func__, sid);
1372                rc = -EINVAL;
1373                goto out_unlock;
1374        }
1375        if (only_invalid && !entry->context.len)
1376                goto out_unlock;
1377
1378        rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1379                                    scontext_len);
1380
1381out_unlock:
1382        rcu_read_unlock();
1383        return rc;
1384
1385}
1386
1387/**
1388 * security_sid_to_context - Obtain a context for a given SID.
1389 * @sid: security identifier, SID
1390 * @scontext: security context
1391 * @scontext_len: length in bytes
1392 *
1393 * Write the string representation of the context associated with @sid
1394 * into a dynamically allocated string of the correct size.  Set @scontext
1395 * to point to this string and set @scontext_len to the length of the string.
1396 */
1397int security_sid_to_context(struct selinux_state *state,
1398                            u32 sid, char **scontext, u32 *scontext_len)
1399{
1400        return security_sid_to_context_core(state, sid, scontext,
1401                                            scontext_len, 0, 0);
1402}
1403
1404int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1405                                  char **scontext, u32 *scontext_len)
1406{
1407        return security_sid_to_context_core(state, sid, scontext,
1408                                            scontext_len, 1, 0);
1409}
1410
1411/**
1412 * security_sid_to_context_inval - Obtain a context for a given SID if it
1413 *                                 is invalid.
1414 * @sid: security identifier, SID
1415 * @scontext: security context
1416 * @scontext_len: length in bytes
1417 *
1418 * Write the string representation of the context associated with @sid
1419 * into a dynamically allocated string of the correct size, but only if the
1420 * context is invalid in the current policy.  Set @scontext to point to
1421 * this string (or NULL if the context is valid) and set @scontext_len to
1422 * the length of the string (or 0 if the context is valid).
1423 */
1424int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1425                                  char **scontext, u32 *scontext_len)
1426{
1427        return security_sid_to_context_core(state, sid, scontext,
1428                                            scontext_len, 1, 1);
1429}
1430
1431/*
1432 * Caveat:  Mutates scontext.
1433 */
1434static int string_to_context_struct(struct policydb *pol,
1435                                    struct sidtab *sidtabp,
1436                                    char *scontext,
1437                                    struct context *ctx,
1438                                    u32 def_sid)
1439{
1440        struct role_datum *role;
1441        struct type_datum *typdatum;
1442        struct user_datum *usrdatum;
1443        char *scontextp, *p, oldc;
1444        int rc = 0;
1445
1446        context_init(ctx);
1447
1448        /* Parse the security context. */
1449
1450        rc = -EINVAL;
1451        scontextp = (char *) scontext;
1452
1453        /* Extract the user. */
1454        p = scontextp;
1455        while (*p && *p != ':')
1456                p++;
1457
1458        if (*p == 0)
1459                goto out;
1460
1461        *p++ = 0;
1462
1463        usrdatum = symtab_search(&pol->p_users, scontextp);
1464        if (!usrdatum)
1465                goto out;
1466
1467        ctx->user = usrdatum->value;
1468
1469        /* Extract role. */
1470        scontextp = p;
1471        while (*p && *p != ':')
1472                p++;
1473
1474        if (*p == 0)
1475                goto out;
1476
1477        *p++ = 0;
1478
1479        role = symtab_search(&pol->p_roles, scontextp);
1480        if (!role)
1481                goto out;
1482        ctx->role = role->value;
1483
1484        /* Extract type. */
1485        scontextp = p;
1486        while (*p && *p != ':')
1487                p++;
1488        oldc = *p;
1489        *p++ = 0;
1490
1491        typdatum = symtab_search(&pol->p_types, scontextp);
1492        if (!typdatum || typdatum->attribute)
1493                goto out;
1494
1495        ctx->type = typdatum->value;
1496
1497        rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1498        if (rc)
1499                goto out;
1500
1501        /* Check the validity of the new context. */
1502        rc = -EINVAL;
1503        if (!policydb_context_isvalid(pol, ctx))
1504                goto out;
1505        rc = 0;
1506out:
1507        if (rc)
1508                context_destroy(ctx);
1509        return rc;
1510}
1511
1512static int security_context_to_sid_core(struct selinux_state *state,
1513                                        const char *scontext, u32 scontext_len,
1514                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1515                                        int force)
1516{
1517        struct selinux_policy *policy;
1518        struct policydb *policydb;
1519        struct sidtab *sidtab;
1520        char *scontext2, *str = NULL;
1521        struct context context;
1522        int rc = 0;
1523
1524        /* An empty security context is never valid. */
1525        if (!scontext_len)
1526                return -EINVAL;
1527
1528        /* Copy the string to allow changes and ensure a NUL terminator */
1529        scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1530        if (!scontext2)
1531                return -ENOMEM;
1532
1533        if (!selinux_initialized(state)) {
1534                int i;
1535
1536                for (i = 1; i < SECINITSID_NUM; i++) {
1537                        const char *s = initial_sid_to_string[i];
1538
1539                        if (s && !strcmp(s, scontext2)) {
1540                                *sid = i;
1541                                goto out;
1542                        }
1543                }
1544                *sid = SECINITSID_KERNEL;
1545                goto out;
1546        }
1547        *sid = SECSID_NULL;
1548
1549        if (force) {
1550                /* Save another copy for storing in uninterpreted form */
1551                rc = -ENOMEM;
1552                str = kstrdup(scontext2, gfp_flags);
1553                if (!str)
1554                        goto out;
1555        }
1556retry:
1557        rcu_read_lock();
1558        policy = rcu_dereference(state->policy);
1559        policydb = &policy->policydb;
1560        sidtab = policy->sidtab;
1561        rc = string_to_context_struct(policydb, sidtab, scontext2,
1562                                      &context, def_sid);
1563        if (rc == -EINVAL && force) {
1564                context.str = str;
1565                context.len = strlen(str) + 1;
1566                str = NULL;
1567        } else if (rc)
1568                goto out_unlock;
1569        rc = sidtab_context_to_sid(sidtab, &context, sid);
1570        if (rc == -ESTALE) {
1571                rcu_read_unlock();
1572                if (context.str) {
1573                        str = context.str;
1574                        context.str = NULL;
1575                }
1576                context_destroy(&context);
1577                goto retry;
1578        }
1579        context_destroy(&context);
1580out_unlock:
1581        rcu_read_unlock();
1582out:
1583        kfree(scontext2);
1584        kfree(str);
1585        return rc;
1586}
1587
1588/**
1589 * security_context_to_sid - Obtain a SID for a given security context.
1590 * @scontext: security context
1591 * @scontext_len: length in bytes
1592 * @sid: security identifier, SID
1593 * @gfp: context for the allocation
1594 *
1595 * Obtains a SID associated with the security context that
1596 * has the string representation specified by @scontext.
1597 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1598 * memory is available, or 0 on success.
1599 */
1600int security_context_to_sid(struct selinux_state *state,
1601                            const char *scontext, u32 scontext_len, u32 *sid,
1602                            gfp_t gfp)
1603{
1604        return security_context_to_sid_core(state, scontext, scontext_len,
1605                                            sid, SECSID_NULL, gfp, 0);
1606}
1607
1608int security_context_str_to_sid(struct selinux_state *state,
1609                                const char *scontext, u32 *sid, gfp_t gfp)
1610{
1611        return security_context_to_sid(state, scontext, strlen(scontext),
1612                                       sid, gfp);
1613}
1614
1615/**
1616 * security_context_to_sid_default - Obtain a SID for a given security context,
1617 * falling back to specified default if needed.
1618 *
1619 * @scontext: security context
1620 * @scontext_len: length in bytes
1621 * @sid: security identifier, SID
1622 * @def_sid: default SID to assign on error
1623 *
1624 * Obtains a SID associated with the security context that
1625 * has the string representation specified by @scontext.
1626 * The default SID is passed to the MLS layer to be used to allow
1627 * kernel labeling of the MLS field if the MLS field is not present
1628 * (for upgrading to MLS without full relabel).
1629 * Implicitly forces adding of the context even if it cannot be mapped yet.
1630 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1631 * memory is available, or 0 on success.
1632 */
1633int security_context_to_sid_default(struct selinux_state *state,
1634                                    const char *scontext, u32 scontext_len,
1635                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1636{
1637        return security_context_to_sid_core(state, scontext, scontext_len,
1638                                            sid, def_sid, gfp_flags, 1);
1639}
1640
1641int security_context_to_sid_force(struct selinux_state *state,
1642                                  const char *scontext, u32 scontext_len,
1643                                  u32 *sid)
1644{
1645        return security_context_to_sid_core(state, scontext, scontext_len,
1646                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1647}
1648
1649static int compute_sid_handle_invalid_context(
1650        struct selinux_state *state,
1651        struct selinux_policy *policy,
1652        struct sidtab_entry *sentry,
1653        struct sidtab_entry *tentry,
1654        u16 tclass,
1655        struct context *newcontext)
1656{
1657        struct policydb *policydb = &policy->policydb;
1658        struct sidtab *sidtab = policy->sidtab;
1659        char *s = NULL, *t = NULL, *n = NULL;
1660        u32 slen, tlen, nlen;
1661        struct audit_buffer *ab;
1662
1663        if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1664                goto out;
1665        if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1666                goto out;
1667        if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1668                goto out;
1669        ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1670        audit_log_format(ab,
1671                         "op=security_compute_sid invalid_context=");
1672        /* no need to record the NUL with untrusted strings */
1673        audit_log_n_untrustedstring(ab, n, nlen - 1);
1674        audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1675                         s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1676        audit_log_end(ab);
1677out:
1678        kfree(s);
1679        kfree(t);
1680        kfree(n);
1681        if (!enforcing_enabled(state))
1682                return 0;
1683        return -EACCES;
1684}
1685
1686static void filename_compute_type(struct policydb *policydb,
1687                                  struct context *newcontext,
1688                                  u32 stype, u32 ttype, u16 tclass,
1689                                  const char *objname)
1690{
1691        struct filename_trans_key ft;
1692        struct filename_trans_datum *datum;
1693
1694        /*
1695         * Most filename trans rules are going to live in specific directories
1696         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1697         * if the ttype does not contain any rules.
1698         */
1699        if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1700                return;
1701
1702        ft.ttype = ttype;
1703        ft.tclass = tclass;
1704        ft.name = objname;
1705
1706        datum = policydb_filenametr_search(policydb, &ft);
1707        while (datum) {
1708                if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1709                        newcontext->type = datum->otype;
1710                        return;
1711                }
1712                datum = datum->next;
1713        }
1714}
1715
1716static int security_compute_sid(struct selinux_state *state,
1717                                u32 ssid,
1718                                u32 tsid,
1719                                u16 orig_tclass,
1720                                u32 specified,
1721                                const char *objname,
1722                                u32 *out_sid,
1723                                bool kern)
1724{
1725        struct selinux_policy *policy;
1726        struct policydb *policydb;
1727        struct sidtab *sidtab;
1728        struct class_datum *cladatum;
1729        struct context *scontext, *tcontext, newcontext;
1730        struct sidtab_entry *sentry, *tentry;
1731        struct avtab_key avkey;
1732        struct avtab_datum *avdatum;
1733        struct avtab_node *node;
1734        u16 tclass;
1735        int rc = 0;
1736        bool sock;
1737
1738        if (!selinux_initialized(state)) {
1739                switch (orig_tclass) {
1740                case SECCLASS_PROCESS: /* kernel value */
1741                        *out_sid = ssid;
1742                        break;
1743                default:
1744                        *out_sid = tsid;
1745                        break;
1746                }
1747                goto out;
1748        }
1749
1750retry:
1751        cladatum = NULL;
1752        context_init(&newcontext);
1753
1754        rcu_read_lock();
1755
1756        policy = rcu_dereference(state->policy);
1757
1758        if (kern) {
1759                tclass = unmap_class(&policy->map, orig_tclass);
1760                sock = security_is_socket_class(orig_tclass);
1761        } else {
1762                tclass = orig_tclass;
1763                sock = security_is_socket_class(map_class(&policy->map,
1764                                                          tclass));
1765        }
1766
1767        policydb = &policy->policydb;
1768        sidtab = policy->sidtab;
1769
1770        sentry = sidtab_search_entry(sidtab, ssid);
1771        if (!sentry) {
1772                pr_err("SELinux: %s:  unrecognized SID %d\n",
1773                       __func__, ssid);
1774                rc = -EINVAL;
1775                goto out_unlock;
1776        }
1777        tentry = sidtab_search_entry(sidtab, tsid);
1778        if (!tentry) {
1779                pr_err("SELinux: %s:  unrecognized SID %d\n",
1780                       __func__, tsid);
1781                rc = -EINVAL;
1782                goto out_unlock;
1783        }
1784
1785        scontext = &sentry->context;
1786        tcontext = &tentry->context;
1787
1788        if (tclass && tclass <= policydb->p_classes.nprim)
1789                cladatum = policydb->class_val_to_struct[tclass - 1];
1790
1791        /* Set the user identity. */
1792        switch (specified) {
1793        case AVTAB_TRANSITION:
1794        case AVTAB_CHANGE:
1795                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1796                        newcontext.user = tcontext->user;
1797                } else {
1798                        /* notice this gets both DEFAULT_SOURCE and unset */
1799                        /* Use the process user identity. */
1800                        newcontext.user = scontext->user;
1801                }
1802                break;
1803        case AVTAB_MEMBER:
1804                /* Use the related object owner. */
1805                newcontext.user = tcontext->user;
1806                break;
1807        }
1808
1809        /* Set the role to default values. */
1810        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1811                newcontext.role = scontext->role;
1812        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1813                newcontext.role = tcontext->role;
1814        } else {
1815                if ((tclass == policydb->process_class) || sock)
1816                        newcontext.role = scontext->role;
1817                else
1818                        newcontext.role = OBJECT_R_VAL;
1819        }
1820
1821        /* Set the type to default values. */
1822        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1823                newcontext.type = scontext->type;
1824        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1825                newcontext.type = tcontext->type;
1826        } else {
1827                if ((tclass == policydb->process_class) || sock) {
1828                        /* Use the type of process. */
1829                        newcontext.type = scontext->type;
1830                } else {
1831                        /* Use the type of the related object. */
1832                        newcontext.type = tcontext->type;
1833                }
1834        }
1835
1836        /* Look for a type transition/member/change rule. */
1837        avkey.source_type = scontext->type;
1838        avkey.target_type = tcontext->type;
1839        avkey.target_class = tclass;
1840        avkey.specified = specified;
1841        avdatum = avtab_search(&policydb->te_avtab, &avkey);
1842
1843        /* If no permanent rule, also check for enabled conditional rules */
1844        if (!avdatum) {
1845                node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1846                for (; node; node = avtab_search_node_next(node, specified)) {
1847                        if (node->key.specified & AVTAB_ENABLED) {
1848                                avdatum = &node->datum;
1849                                break;
1850                        }
1851                }
1852        }
1853
1854        if (avdatum) {
1855                /* Use the type from the type transition/member/change rule. */
1856                newcontext.type = avdatum->u.data;
1857        }
1858
1859        /* if we have a objname this is a file trans check so check those rules */
1860        if (objname)
1861                filename_compute_type(policydb, &newcontext, scontext->type,
1862                                      tcontext->type, tclass, objname);
1863
1864        /* Check for class-specific changes. */
1865        if (specified & AVTAB_TRANSITION) {
1866                /* Look for a role transition rule. */
1867                struct role_trans_datum *rtd;
1868                struct role_trans_key rtk = {
1869                        .role = scontext->role,
1870                        .type = tcontext->type,
1871                        .tclass = tclass,
1872                };
1873
1874                rtd = policydb_roletr_search(policydb, &rtk);
1875                if (rtd)
1876                        newcontext.role = rtd->new_role;
1877        }
1878
1879        /* Set the MLS attributes.
1880           This is done last because it may allocate memory. */
1881        rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1882                             &newcontext, sock);
1883        if (rc)
1884                goto out_unlock;
1885
1886        /* Check the validity of the context. */
1887        if (!policydb_context_isvalid(policydb, &newcontext)) {
1888                rc = compute_sid_handle_invalid_context(state, policy, sentry,
1889                                                        tentry, tclass,
1890                                                        &newcontext);
1891                if (rc)
1892                        goto out_unlock;
1893        }
1894        /* Obtain the sid for the context. */
1895        rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1896        if (rc == -ESTALE) {
1897                rcu_read_unlock();
1898                context_destroy(&newcontext);
1899                goto retry;
1900        }
1901out_unlock:
1902        rcu_read_unlock();
1903        context_destroy(&newcontext);
1904out:
1905        return rc;
1906}
1907
1908/**
1909 * security_transition_sid - Compute the SID for a new subject/object.
1910 * @ssid: source security identifier
1911 * @tsid: target security identifier
1912 * @tclass: target security class
1913 * @out_sid: security identifier for new subject/object
1914 *
1915 * Compute a SID to use for labeling a new subject or object in the
1916 * class @tclass based on a SID pair (@ssid, @tsid).
1917 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1918 * if insufficient memory is available, or %0 if the new SID was
1919 * computed successfully.
1920 */
1921int security_transition_sid(struct selinux_state *state,
1922                            u32 ssid, u32 tsid, u16 tclass,
1923                            const struct qstr *qstr, u32 *out_sid)
1924{
1925        return security_compute_sid(state, ssid, tsid, tclass,
1926                                    AVTAB_TRANSITION,
1927                                    qstr ? qstr->name : NULL, out_sid, true);
1928}
1929
1930int security_transition_sid_user(struct selinux_state *state,
1931                                 u32 ssid, u32 tsid, u16 tclass,
1932                                 const char *objname, u32 *out_sid)
1933{
1934        return security_compute_sid(state, ssid, tsid, tclass,
1935                                    AVTAB_TRANSITION,
1936                                    objname, out_sid, false);
1937}
1938
1939/**
1940 * security_member_sid - Compute the SID for member selection.
1941 * @ssid: source security identifier
1942 * @tsid: target security identifier
1943 * @tclass: target security class
1944 * @out_sid: security identifier for selected member
1945 *
1946 * Compute a SID to use when selecting a member of a polyinstantiated
1947 * object of class @tclass based on a SID pair (@ssid, @tsid).
1948 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1949 * if insufficient memory is available, or %0 if the SID was
1950 * computed successfully.
1951 */
1952int security_member_sid(struct selinux_state *state,
1953                        u32 ssid,
1954                        u32 tsid,
1955                        u16 tclass,
1956                        u32 *out_sid)
1957{
1958        return security_compute_sid(state, ssid, tsid, tclass,
1959                                    AVTAB_MEMBER, NULL,
1960                                    out_sid, false);
1961}
1962
1963/**
1964 * security_change_sid - Compute the SID for object relabeling.
1965 * @ssid: source security identifier
1966 * @tsid: target security identifier
1967 * @tclass: target security class
1968 * @out_sid: security identifier for selected member
1969 *
1970 * Compute a SID to use for relabeling an object of class @tclass
1971 * based on a SID pair (@ssid, @tsid).
1972 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1973 * if insufficient memory is available, or %0 if the SID was
1974 * computed successfully.
1975 */
1976int security_change_sid(struct selinux_state *state,
1977                        u32 ssid,
1978                        u32 tsid,
1979                        u16 tclass,
1980                        u32 *out_sid)
1981{
1982        return security_compute_sid(state,
1983                                    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1984                                    out_sid, false);
1985}
1986
1987static inline int convert_context_handle_invalid_context(
1988        struct selinux_state *state,
1989        struct policydb *policydb,
1990        struct context *context)
1991{
1992        char *s;
1993        u32 len;
1994
1995        if (enforcing_enabled(state))
1996                return -EINVAL;
1997
1998        if (!context_struct_to_string(policydb, context, &s, &len)) {
1999                pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2000                        s);
2001                kfree(s);
2002        }
2003        return 0;
2004}
2005
2006/*
2007 * Convert the values in the security context
2008 * structure `oldc' from the values specified
2009 * in the policy `p->oldp' to the values specified
2010 * in the policy `p->newp', storing the new context
2011 * in `newc'.  Verify that the context is valid
2012 * under the new policy.
2013 */
2014static int convert_context(struct context *oldc, struct context *newc, void *p)
2015{
2016        struct convert_context_args *args;
2017        struct ocontext *oc;
2018        struct role_datum *role;
2019        struct type_datum *typdatum;
2020        struct user_datum *usrdatum;
2021        char *s;
2022        u32 len;
2023        int rc;
2024
2025        args = p;
2026
2027        if (oldc->str) {
2028                s = kstrdup(oldc->str, GFP_KERNEL);
2029                if (!s)
2030                        return -ENOMEM;
2031
2032                rc = string_to_context_struct(args->newp, NULL, s,
2033                                              newc, SECSID_NULL);
2034                if (rc == -EINVAL) {
2035                        /*
2036                         * Retain string representation for later mapping.
2037                         *
2038                         * IMPORTANT: We need to copy the contents of oldc->str
2039                         * back into s again because string_to_context_struct()
2040                         * may have garbled it.
2041                         */
2042                        memcpy(s, oldc->str, oldc->len);
2043                        context_init(newc);
2044                        newc->str = s;
2045                        newc->len = oldc->len;
2046                        return 0;
2047                }
2048                kfree(s);
2049                if (rc) {
2050                        /* Other error condition, e.g. ENOMEM. */
2051                        pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2052                               oldc->str, -rc);
2053                        return rc;
2054                }
2055                pr_info("SELinux:  Context %s became valid (mapped).\n",
2056                        oldc->str);
2057                return 0;
2058        }
2059
2060        context_init(newc);
2061
2062        /* Convert the user. */
2063        rc = -EINVAL;
2064        usrdatum = symtab_search(&args->newp->p_users,
2065                                 sym_name(args->oldp,
2066                                          SYM_USERS, oldc->user - 1));
2067        if (!usrdatum)
2068                goto bad;
2069        newc->user = usrdatum->value;
2070
2071        /* Convert the role. */
2072        rc = -EINVAL;
2073        role = symtab_search(&args->newp->p_roles,
2074                             sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2075        if (!role)
2076                goto bad;
2077        newc->role = role->value;
2078
2079        /* Convert the type. */
2080        rc = -EINVAL;
2081        typdatum = symtab_search(&args->newp->p_types,
2082                                 sym_name(args->oldp,
2083                                          SYM_TYPES, oldc->type - 1));
2084        if (!typdatum)
2085                goto bad;
2086        newc->type = typdatum->value;
2087
2088        /* Convert the MLS fields if dealing with MLS policies */
2089        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2090                rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2091                if (rc)
2092                        goto bad;
2093        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2094                /*
2095                 * Switching between non-MLS and MLS policy:
2096                 * ensure that the MLS fields of the context for all
2097                 * existing entries in the sidtab are filled in with a
2098                 * suitable default value, likely taken from one of the
2099                 * initial SIDs.
2100                 */
2101                oc = args->newp->ocontexts[OCON_ISID];
2102                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2103                        oc = oc->next;
2104                rc = -EINVAL;
2105                if (!oc) {
2106                        pr_err("SELinux:  unable to look up"
2107                                " the initial SIDs list\n");
2108                        goto bad;
2109                }
2110                rc = mls_range_set(newc, &oc->context[0].range);
2111                if (rc)
2112                        goto bad;
2113        }
2114
2115        /* Check the validity of the new context. */
2116        if (!policydb_context_isvalid(args->newp, newc)) {
2117                rc = convert_context_handle_invalid_context(args->state,
2118                                                        args->oldp,
2119                                                        oldc);
2120                if (rc)
2121                        goto bad;
2122        }
2123
2124        return 0;
2125bad:
2126        /* Map old representation to string and save it. */
2127        rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2128        if (rc)
2129                return rc;
2130        context_destroy(newc);
2131        newc->str = s;
2132        newc->len = len;
2133        pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2134                newc->str);
2135        return 0;
2136}
2137
2138static void security_load_policycaps(struct selinux_state *state,
2139                                struct selinux_policy *policy)
2140{
2141        struct policydb *p;
2142        unsigned int i;
2143        struct ebitmap_node *node;
2144
2145        p = &policy->policydb;
2146
2147        for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2148                WRITE_ONCE(state->policycap[i],
2149                        ebitmap_get_bit(&p->policycaps, i));
2150
2151        for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152                pr_info("SELinux:  policy capability %s=%d\n",
2153                        selinux_policycap_names[i],
2154                        ebitmap_get_bit(&p->policycaps, i));
2155
2156        ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157                if (i >= ARRAY_SIZE(selinux_policycap_names))
2158                        pr_info("SELinux:  unknown policy capability %u\n",
2159                                i);
2160        }
2161}
2162
2163static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164                                struct selinux_policy *newpolicy);
2165
2166static void selinux_policy_free(struct selinux_policy *policy)
2167{
2168        if (!policy)
2169                return;
2170
2171        sidtab_destroy(policy->sidtab);
2172        kfree(policy->map.mapping);
2173        policydb_destroy(&policy->policydb);
2174        kfree(policy->sidtab);
2175        kfree(policy);
2176}
2177
2178static void selinux_policy_cond_free(struct selinux_policy *policy)
2179{
2180        cond_policydb_destroy_dup(&policy->policydb);
2181        kfree(policy);
2182}
2183
2184void selinux_policy_cancel(struct selinux_state *state,
2185                           struct selinux_load_state *load_state)
2186{
2187        struct selinux_policy *oldpolicy;
2188
2189        oldpolicy = rcu_dereference_protected(state->policy,
2190                                        lockdep_is_held(&state->policy_mutex));
2191
2192        sidtab_cancel_convert(oldpolicy->sidtab);
2193        selinux_policy_free(load_state->policy);
2194        kfree(load_state->convert_data);
2195}
2196
2197static void selinux_notify_policy_change(struct selinux_state *state,
2198                                        u32 seqno)
2199{
2200        /* Flush external caches and notify userspace of policy load */
2201        avc_ss_reset(state->avc, seqno);
2202        selnl_notify_policyload(seqno);
2203        selinux_status_update_policyload(state, seqno);
2204        selinux_netlbl_cache_invalidate();
2205        selinux_xfrm_notify_policyload();
2206        selinux_ima_measure_state_locked(state);
2207}
2208
2209void selinux_policy_commit(struct selinux_state *state,
2210                           struct selinux_load_state *load_state)
2211{
2212        struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2213        unsigned long flags;
2214        u32 seqno;
2215
2216        oldpolicy = rcu_dereference_protected(state->policy,
2217                                        lockdep_is_held(&state->policy_mutex));
2218
2219        /* If switching between different policy types, log MLS status */
2220        if (oldpolicy) {
2221                if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2222                        pr_info("SELinux: Disabling MLS support...\n");
2223                else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2224                        pr_info("SELinux: Enabling MLS support...\n");
2225        }
2226
2227        /* Set latest granting seqno for new policy. */
2228        if (oldpolicy)
2229                newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2230        else
2231                newpolicy->latest_granting = 1;
2232        seqno = newpolicy->latest_granting;
2233
2234        /* Install the new policy. */
2235        if (oldpolicy) {
2236                sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2237                rcu_assign_pointer(state->policy, newpolicy);
2238                sidtab_freeze_end(oldpolicy->sidtab, &flags);
2239        } else {
2240                rcu_assign_pointer(state->policy, newpolicy);
2241        }
2242
2243        /* Load the policycaps from the new policy */
2244        security_load_policycaps(state, newpolicy);
2245
2246        if (!selinux_initialized(state)) {
2247                /*
2248                 * After first policy load, the security server is
2249                 * marked as initialized and ready to handle requests and
2250                 * any objects created prior to policy load are then labeled.
2251                 */
2252                selinux_mark_initialized(state);
2253                selinux_complete_init();
2254        }
2255
2256        /* Free the old policy */
2257        synchronize_rcu();
2258        selinux_policy_free(oldpolicy);
2259        kfree(load_state->convert_data);
2260
2261        /* Notify others of the policy change */
2262        selinux_notify_policy_change(state, seqno);
2263}
2264
2265/**
2266 * security_load_policy - Load a security policy configuration.
2267 * @data: binary policy data
2268 * @len: length of data in bytes
2269 *
2270 * Load a new set of security policy configuration data,
2271 * validate it and convert the SID table as necessary.
2272 * This function will flush the access vector cache after
2273 * loading the new policy.
2274 */
2275int security_load_policy(struct selinux_state *state, void *data, size_t len,
2276                         struct selinux_load_state *load_state)
2277{
2278        struct selinux_policy *newpolicy, *oldpolicy;
2279        struct selinux_policy_convert_data *convert_data;
2280        int rc = 0;
2281        struct policy_file file = { data, len }, *fp = &file;
2282
2283        newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2284        if (!newpolicy)
2285                return -ENOMEM;
2286
2287        newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2288        if (!newpolicy->sidtab) {
2289                rc = -ENOMEM;
2290                goto err_policy;
2291        }
2292
2293        rc = policydb_read(&newpolicy->policydb, fp);
2294        if (rc)
2295                goto err_sidtab;
2296
2297        newpolicy->policydb.len = len;
2298        rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2299                                &newpolicy->map);
2300        if (rc)
2301                goto err_policydb;
2302
2303        rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2304        if (rc) {
2305                pr_err("SELinux:  unable to load the initial SIDs\n");
2306                goto err_mapping;
2307        }
2308
2309        if (!selinux_initialized(state)) {
2310                /* First policy load, so no need to preserve state from old policy */
2311                load_state->policy = newpolicy;
2312                load_state->convert_data = NULL;
2313                return 0;
2314        }
2315
2316        oldpolicy = rcu_dereference_protected(state->policy,
2317                                        lockdep_is_held(&state->policy_mutex));
2318
2319        /* Preserve active boolean values from the old policy */
2320        rc = security_preserve_bools(oldpolicy, newpolicy);
2321        if (rc) {
2322                pr_err("SELinux:  unable to preserve booleans\n");
2323                goto err_free_isids;
2324        }
2325
2326        convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2327        if (!convert_data) {
2328                rc = -ENOMEM;
2329                goto err_free_isids;
2330        }
2331
2332        /*
2333         * Convert the internal representations of contexts
2334         * in the new SID table.
2335         */
2336        convert_data->args.state = state;
2337        convert_data->args.oldp = &oldpolicy->policydb;
2338        convert_data->args.newp = &newpolicy->policydb;
2339
2340        convert_data->sidtab_params.func = convert_context;
2341        convert_data->sidtab_params.args = &convert_data->args;
2342        convert_data->sidtab_params.target = newpolicy->sidtab;
2343
2344        rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2345        if (rc) {
2346                pr_err("SELinux:  unable to convert the internal"
2347                        " representation of contexts in the new SID"
2348                        " table\n");
2349                goto err_free_convert_data;
2350        }
2351
2352        load_state->policy = newpolicy;
2353        load_state->convert_data = convert_data;
2354        return 0;
2355
2356err_free_convert_data:
2357        kfree(convert_data);
2358err_free_isids:
2359        sidtab_destroy(newpolicy->sidtab);
2360err_mapping:
2361        kfree(newpolicy->map.mapping);
2362err_policydb:
2363        policydb_destroy(&newpolicy->policydb);
2364err_sidtab:
2365        kfree(newpolicy->sidtab);
2366err_policy:
2367        kfree(newpolicy);
2368
2369        return rc;
2370}
2371
2372/**
2373 * security_port_sid - Obtain the SID for a port.
2374 * @protocol: protocol number
2375 * @port: port number
2376 * @out_sid: security identifier
2377 */
2378int security_port_sid(struct selinux_state *state,
2379                      u8 protocol, u16 port, u32 *out_sid)
2380{
2381        struct selinux_policy *policy;
2382        struct policydb *policydb;
2383        struct sidtab *sidtab;
2384        struct ocontext *c;
2385        int rc;
2386
2387        if (!selinux_initialized(state)) {
2388                *out_sid = SECINITSID_PORT;
2389                return 0;
2390        }
2391
2392retry:
2393        rc = 0;
2394        rcu_read_lock();
2395        policy = rcu_dereference(state->policy);
2396        policydb = &policy->policydb;
2397        sidtab = policy->sidtab;
2398
2399        c = policydb->ocontexts[OCON_PORT];
2400        while (c) {
2401                if (c->u.port.protocol == protocol &&
2402                    c->u.port.low_port <= port &&
2403                    c->u.port.high_port >= port)
2404                        break;
2405                c = c->next;
2406        }
2407
2408        if (c) {
2409                if (!c->sid[0]) {
2410                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2411                                                   &c->sid[0]);
2412                        if (rc == -ESTALE) {
2413                                rcu_read_unlock();
2414                                goto retry;
2415                        }
2416                        if (rc)
2417                                goto out;
2418                }
2419                *out_sid = c->sid[0];
2420        } else {
2421                *out_sid = SECINITSID_PORT;
2422        }
2423
2424out:
2425        rcu_read_unlock();
2426        return rc;
2427}
2428
2429/**
2430 * security_pkey_sid - Obtain the SID for a pkey.
2431 * @subnet_prefix: Subnet Prefix
2432 * @pkey_num: pkey number
2433 * @out_sid: security identifier
2434 */
2435int security_ib_pkey_sid(struct selinux_state *state,
2436                         u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2437{
2438        struct selinux_policy *policy;
2439        struct policydb *policydb;
2440        struct sidtab *sidtab;
2441        struct ocontext *c;
2442        int rc;
2443
2444        if (!selinux_initialized(state)) {
2445                *out_sid = SECINITSID_UNLABELED;
2446                return 0;
2447        }
2448
2449retry:
2450        rc = 0;
2451        rcu_read_lock();
2452        policy = rcu_dereference(state->policy);
2453        policydb = &policy->policydb;
2454        sidtab = policy->sidtab;
2455
2456        c = policydb->ocontexts[OCON_IBPKEY];
2457        while (c) {
2458                if (c->u.ibpkey.low_pkey <= pkey_num &&
2459                    c->u.ibpkey.high_pkey >= pkey_num &&
2460                    c->u.ibpkey.subnet_prefix == subnet_prefix)
2461                        break;
2462
2463                c = c->next;
2464        }
2465
2466        if (c) {
2467                if (!c->sid[0]) {
2468                        rc = sidtab_context_to_sid(sidtab,
2469                                                   &c->context[0],
2470                                                   &c->sid[0]);
2471                        if (rc == -ESTALE) {
2472                                rcu_read_unlock();
2473                                goto retry;
2474                        }
2475                        if (rc)
2476                                goto out;
2477                }
2478                *out_sid = c->sid[0];
2479        } else
2480                *out_sid = SECINITSID_UNLABELED;
2481
2482out:
2483        rcu_read_unlock();
2484        return rc;
2485}
2486
2487/**
2488 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2489 * @dev_name: device name
2490 * @port: port number
2491 * @out_sid: security identifier
2492 */
2493int security_ib_endport_sid(struct selinux_state *state,
2494                            const char *dev_name, u8 port_num, u32 *out_sid)
2495{
2496        struct selinux_policy *policy;
2497        struct policydb *policydb;
2498        struct sidtab *sidtab;
2499        struct ocontext *c;
2500        int rc;
2501
2502        if (!selinux_initialized(state)) {
2503                *out_sid = SECINITSID_UNLABELED;
2504                return 0;
2505        }
2506
2507retry:
2508        rc = 0;
2509        rcu_read_lock();
2510        policy = rcu_dereference(state->policy);
2511        policydb = &policy->policydb;
2512        sidtab = policy->sidtab;
2513
2514        c = policydb->ocontexts[OCON_IBENDPORT];
2515        while (c) {
2516                if (c->u.ibendport.port == port_num &&
2517                    !strncmp(c->u.ibendport.dev_name,
2518                             dev_name,
2519                             IB_DEVICE_NAME_MAX))
2520                        break;
2521
2522                c = c->next;
2523        }
2524
2525        if (c) {
2526                if (!c->sid[0]) {
2527                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2528                                                   &c->sid[0]);
2529                        if (rc == -ESTALE) {
2530                                rcu_read_unlock();
2531                                goto retry;
2532                        }
2533                        if (rc)
2534                                goto out;
2535                }
2536                *out_sid = c->sid[0];
2537        } else
2538                *out_sid = SECINITSID_UNLABELED;
2539
2540out:
2541        rcu_read_unlock();
2542        return rc;
2543}
2544
2545/**
2546 * security_netif_sid - Obtain the SID for a network interface.
2547 * @name: interface name
2548 * @if_sid: interface SID
2549 */
2550int security_netif_sid(struct selinux_state *state,
2551                       char *name, u32 *if_sid)
2552{
2553        struct selinux_policy *policy;
2554        struct policydb *policydb;
2555        struct sidtab *sidtab;
2556        int rc;
2557        struct ocontext *c;
2558
2559        if (!selinux_initialized(state)) {
2560                *if_sid = SECINITSID_NETIF;
2561                return 0;
2562        }
2563
2564retry:
2565        rc = 0;
2566        rcu_read_lock();
2567        policy = rcu_dereference(state->policy);
2568        policydb = &policy->policydb;
2569        sidtab = policy->sidtab;
2570
2571        c = policydb->ocontexts[OCON_NETIF];
2572        while (c) {
2573                if (strcmp(name, c->u.name) == 0)
2574                        break;
2575                c = c->next;
2576        }
2577
2578        if (c) {
2579                if (!c->sid[0] || !c->sid[1]) {
2580                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2581                                                   &c->sid[0]);
2582                        if (rc == -ESTALE) {
2583                                rcu_read_unlock();
2584                                goto retry;
2585                        }
2586                        if (rc)
2587                                goto out;
2588                        rc = sidtab_context_to_sid(sidtab, &c->context[1],
2589                                                   &c->sid[1]);
2590                        if (rc == -ESTALE) {
2591                                rcu_read_unlock();
2592                                goto retry;
2593                        }
2594                        if (rc)
2595                                goto out;
2596                }
2597                *if_sid = c->sid[0];
2598        } else
2599                *if_sid = SECINITSID_NETIF;
2600
2601out:
2602        rcu_read_unlock();
2603        return rc;
2604}
2605
2606static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2607{
2608        int i, fail = 0;
2609
2610        for (i = 0; i < 4; i++)
2611                if (addr[i] != (input[i] & mask[i])) {
2612                        fail = 1;
2613                        break;
2614                }
2615
2616        return !fail;
2617}
2618
2619/**
2620 * security_node_sid - Obtain the SID for a node (host).
2621 * @domain: communication domain aka address family
2622 * @addrp: address
2623 * @addrlen: address length in bytes
2624 * @out_sid: security identifier
2625 */
2626int security_node_sid(struct selinux_state *state,
2627                      u16 domain,
2628                      void *addrp,
2629                      u32 addrlen,
2630                      u32 *out_sid)
2631{
2632        struct selinux_policy *policy;
2633        struct policydb *policydb;
2634        struct sidtab *sidtab;
2635        int rc;
2636        struct ocontext *c;
2637
2638        if (!selinux_initialized(state)) {
2639                *out_sid = SECINITSID_NODE;
2640                return 0;
2641        }
2642
2643retry:
2644        rcu_read_lock();
2645        policy = rcu_dereference(state->policy);
2646        policydb = &policy->policydb;
2647        sidtab = policy->sidtab;
2648
2649        switch (domain) {
2650        case AF_INET: {
2651                u32 addr;
2652
2653                rc = -EINVAL;
2654                if (addrlen != sizeof(u32))
2655                        goto out;
2656
2657                addr = *((u32 *)addrp);
2658
2659                c = policydb->ocontexts[OCON_NODE];
2660                while (c) {
2661                        if (c->u.node.addr == (addr & c->u.node.mask))
2662                                break;
2663                        c = c->next;
2664                }
2665                break;
2666        }
2667
2668        case AF_INET6:
2669                rc = -EINVAL;
2670                if (addrlen != sizeof(u64) * 2)
2671                        goto out;
2672                c = policydb->ocontexts[OCON_NODE6];
2673                while (c) {
2674                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2675                                                c->u.node6.mask))
2676                                break;
2677                        c = c->next;
2678                }
2679                break;
2680
2681        default:
2682                rc = 0;
2683                *out_sid = SECINITSID_NODE;
2684                goto out;
2685        }
2686
2687        if (c) {
2688                if (!c->sid[0]) {
2689                        rc = sidtab_context_to_sid(sidtab,
2690                                                   &c->context[0],
2691                                                   &c->sid[0]);
2692                        if (rc == -ESTALE) {
2693                                rcu_read_unlock();
2694                                goto retry;
2695                        }
2696                        if (rc)
2697                                goto out;
2698                }
2699                *out_sid = c->sid[0];
2700        } else {
2701                *out_sid = SECINITSID_NODE;
2702        }
2703
2704        rc = 0;
2705out:
2706        rcu_read_unlock();
2707        return rc;
2708}
2709
2710#define SIDS_NEL 25
2711
2712/**
2713 * security_get_user_sids - Obtain reachable SIDs for a user.
2714 * @fromsid: starting SID
2715 * @username: username
2716 * @sids: array of reachable SIDs for user
2717 * @nel: number of elements in @sids
2718 *
2719 * Generate the set of SIDs for legal security contexts
2720 * for a given user that can be reached by @fromsid.
2721 * Set *@sids to point to a dynamically allocated
2722 * array containing the set of SIDs.  Set *@nel to the
2723 * number of elements in the array.
2724 */
2725
2726int security_get_user_sids(struct selinux_state *state,
2727                           u32 fromsid,
2728                           char *username,
2729                           u32 **sids,
2730                           u32 *nel)
2731{
2732        struct selinux_policy *policy;
2733        struct policydb *policydb;
2734        struct sidtab *sidtab;
2735        struct context *fromcon, usercon;
2736        u32 *mysids = NULL, *mysids2, sid;
2737        u32 i, j, mynel, maxnel = SIDS_NEL;
2738        struct user_datum *user;
2739        struct role_datum *role;
2740        struct ebitmap_node *rnode, *tnode;
2741        int rc;
2742
2743        *sids = NULL;
2744        *nel = 0;
2745
2746        if (!selinux_initialized(state))
2747                return 0;
2748
2749        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2750        if (!mysids)
2751                return -ENOMEM;
2752
2753retry:
2754        mynel = 0;
2755        rcu_read_lock();
2756        policy = rcu_dereference(state->policy);
2757        policydb = &policy->policydb;
2758        sidtab = policy->sidtab;
2759
2760        context_init(&usercon);
2761
2762        rc = -EINVAL;
2763        fromcon = sidtab_search(sidtab, fromsid);
2764        if (!fromcon)
2765                goto out_unlock;
2766
2767        rc = -EINVAL;
2768        user = symtab_search(&policydb->p_users, username);
2769        if (!user)
2770                goto out_unlock;
2771
2772        usercon.user = user->value;
2773
2774        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2775                role = policydb->role_val_to_struct[i];
2776                usercon.role = i + 1;
2777                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2778                        usercon.type = j + 1;
2779
2780                        if (mls_setup_user_range(policydb, fromcon, user,
2781                                                 &usercon))
2782                                continue;
2783
2784                        rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2785                        if (rc == -ESTALE) {
2786                                rcu_read_unlock();
2787                                goto retry;
2788                        }
2789                        if (rc)
2790                                goto out_unlock;
2791                        if (mynel < maxnel) {
2792                                mysids[mynel++] = sid;
2793                        } else {
2794                                rc = -ENOMEM;
2795                                maxnel += SIDS_NEL;
2796                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2797                                if (!mysids2)
2798                                        goto out_unlock;
2799                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2800                                kfree(mysids);
2801                                mysids = mysids2;
2802                                mysids[mynel++] = sid;
2803                        }
2804                }
2805        }
2806        rc = 0;
2807out_unlock:
2808        rcu_read_unlock();
2809        if (rc || !mynel) {
2810                kfree(mysids);
2811                return rc;
2812        }
2813
2814        rc = -ENOMEM;
2815        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2816        if (!mysids2) {
2817                kfree(mysids);
2818                return rc;
2819        }
2820        for (i = 0, j = 0; i < mynel; i++) {
2821                struct av_decision dummy_avd;
2822                rc = avc_has_perm_noaudit(state,
2823                                          fromsid, mysids[i],
2824                                          SECCLASS_PROCESS, /* kernel value */
2825                                          PROCESS__TRANSITION, AVC_STRICT,
2826                                          &dummy_avd);
2827                if (!rc)
2828                        mysids2[j++] = mysids[i];
2829                cond_resched();
2830        }
2831        kfree(mysids);
2832        *sids = mysids2;
2833        *nel = j;
2834        return 0;
2835}
2836
2837/**
2838 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2839 * @fstype: filesystem type
2840 * @path: path from root of mount
2841 * @sclass: file security class
2842 * @sid: SID for path
2843 *
2844 * Obtain a SID to use for a file in a filesystem that
2845 * cannot support xattr or use a fixed labeling behavior like
2846 * transition SIDs or task SIDs.
2847 *
2848 * WARNING: This function may return -ESTALE, indicating that the caller
2849 * must retry the operation after re-acquiring the policy pointer!
2850 */
2851static inline int __security_genfs_sid(struct selinux_policy *policy,
2852                                       const char *fstype,
2853                                       char *path,
2854                                       u16 orig_sclass,
2855                                       u32 *sid)
2856{
2857        struct policydb *policydb = &policy->policydb;
2858        struct sidtab *sidtab = policy->sidtab;
2859        int len;
2860        u16 sclass;
2861        struct genfs *genfs;
2862        struct ocontext *c;
2863        int rc, cmp = 0;
2864
2865        while (path[0] == '/' && path[1] == '/')
2866                path++;
2867
2868        sclass = unmap_class(&policy->map, orig_sclass);
2869        *sid = SECINITSID_UNLABELED;
2870
2871        for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2872                cmp = strcmp(fstype, genfs->fstype);
2873                if (cmp <= 0)
2874                        break;
2875        }
2876
2877        rc = -ENOENT;
2878        if (!genfs || cmp)
2879                goto out;
2880
2881        for (c = genfs->head; c; c = c->next) {
2882                len = strlen(c->u.name);
2883                if ((!c->v.sclass || sclass == c->v.sclass) &&
2884                    (strncmp(c->u.name, path, len) == 0))
2885                        break;
2886        }
2887
2888        rc = -ENOENT;
2889        if (!c)
2890                goto out;
2891
2892        if (!c->sid[0]) {
2893                rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2894                if (rc)
2895                        goto out;
2896        }
2897
2898        *sid = c->sid[0];
2899        rc = 0;
2900out:
2901        return rc;
2902}
2903
2904/**
2905 * security_genfs_sid - Obtain a SID for a file in a filesystem
2906 * @fstype: filesystem type
2907 * @path: path from root of mount
2908 * @sclass: file security class
2909 * @sid: SID for path
2910 *
2911 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2912 * it afterward.
2913 */
2914int security_genfs_sid(struct selinux_state *state,
2915                       const char *fstype,
2916                       char *path,
2917                       u16 orig_sclass,
2918                       u32 *sid)
2919{
2920        struct selinux_policy *policy;
2921        int retval;
2922
2923        if (!selinux_initialized(state)) {
2924                *sid = SECINITSID_UNLABELED;
2925                return 0;
2926        }
2927
2928        do {
2929                rcu_read_lock();
2930                policy = rcu_dereference(state->policy);
2931                retval = __security_genfs_sid(policy, fstype, path,
2932                                              orig_sclass, sid);
2933                rcu_read_unlock();
2934        } while (retval == -ESTALE);
2935        return retval;
2936}
2937
2938int selinux_policy_genfs_sid(struct selinux_policy *policy,
2939                        const char *fstype,
2940                        char *path,
2941                        u16 orig_sclass,
2942                        u32 *sid)
2943{
2944        /* no lock required, policy is not yet accessible by other threads */
2945        return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2946}
2947
2948/**
2949 * security_fs_use - Determine how to handle labeling for a filesystem.
2950 * @sb: superblock in question
2951 */
2952int security_fs_use(struct selinux_state *state, struct super_block *sb)
2953{
2954        struct selinux_policy *policy;
2955        struct policydb *policydb;
2956        struct sidtab *sidtab;
2957        int rc;
2958        struct ocontext *c;
2959        struct superblock_security_struct *sbsec = selinux_superblock(sb);
2960        const char *fstype = sb->s_type->name;
2961
2962        if (!selinux_initialized(state)) {
2963                sbsec->behavior = SECURITY_FS_USE_NONE;
2964                sbsec->sid = SECINITSID_UNLABELED;
2965                return 0;
2966        }
2967
2968retry:
2969        rc = 0;
2970        rcu_read_lock();
2971        policy = rcu_dereference(state->policy);
2972        policydb = &policy->policydb;
2973        sidtab = policy->sidtab;
2974
2975        c = policydb->ocontexts[OCON_FSUSE];
2976        while (c) {
2977                if (strcmp(fstype, c->u.name) == 0)
2978                        break;
2979                c = c->next;
2980        }
2981
2982        if (c) {
2983                sbsec->behavior = c->v.behavior;
2984                if (!c->sid[0]) {
2985                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2986                                                   &c->sid[0]);
2987                        if (rc == -ESTALE) {
2988                                rcu_read_unlock();
2989                                goto retry;
2990                        }
2991                        if (rc)
2992                                goto out;
2993                }
2994                sbsec->sid = c->sid[0];
2995        } else {
2996                rc = __security_genfs_sid(policy, fstype, "/",
2997                                        SECCLASS_DIR, &sbsec->sid);
2998                if (rc == -ESTALE) {
2999                        rcu_read_unlock();
3000                        goto retry;
3001                }
3002                if (rc) {
3003                        sbsec->behavior = SECURITY_FS_USE_NONE;
3004                        rc = 0;
3005                } else {
3006                        sbsec->behavior = SECURITY_FS_USE_GENFS;
3007                }
3008        }
3009
3010out:
3011        rcu_read_unlock();
3012        return rc;
3013}
3014
3015int security_get_bools(struct selinux_policy *policy,
3016                       u32 *len, char ***names, int **values)
3017{
3018        struct policydb *policydb;
3019        u32 i;
3020        int rc;
3021
3022        policydb = &policy->policydb;
3023
3024        *names = NULL;
3025        *values = NULL;
3026
3027        rc = 0;
3028        *len = policydb->p_bools.nprim;
3029        if (!*len)
3030                goto out;
3031
3032        rc = -ENOMEM;
3033        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3034        if (!*names)
3035                goto err;
3036
3037        rc = -ENOMEM;
3038        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3039        if (!*values)
3040                goto err;
3041
3042        for (i = 0; i < *len; i++) {
3043                (*values)[i] = policydb->bool_val_to_struct[i]->state;
3044
3045                rc = -ENOMEM;
3046                (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3047                                      GFP_ATOMIC);
3048                if (!(*names)[i])
3049                        goto err;
3050        }
3051        rc = 0;
3052out:
3053        return rc;
3054err:
3055        if (*names) {
3056                for (i = 0; i < *len; i++)
3057                        kfree((*names)[i]);
3058                kfree(*names);
3059        }
3060        kfree(*values);
3061        *len = 0;
3062        *names = NULL;
3063        *values = NULL;
3064        goto out;
3065}
3066
3067
3068int security_set_bools(struct selinux_state *state, u32 len, int *values)
3069{
3070        struct selinux_policy *newpolicy, *oldpolicy;
3071        int rc;
3072        u32 i, seqno = 0;
3073
3074        if (!selinux_initialized(state))
3075                return -EINVAL;
3076
3077        oldpolicy = rcu_dereference_protected(state->policy,
3078                                        lockdep_is_held(&state->policy_mutex));
3079
3080        /* Consistency check on number of booleans, should never fail */
3081        if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3082                return -EINVAL;
3083
3084        newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3085        if (!newpolicy)
3086                return -ENOMEM;
3087
3088        /*
3089         * Deep copy only the parts of the policydb that might be
3090         * modified as a result of changing booleans.
3091         */
3092        rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3093        if (rc) {
3094                kfree(newpolicy);
3095                return -ENOMEM;
3096        }
3097
3098        /* Update the boolean states in the copy */
3099        for (i = 0; i < len; i++) {
3100                int new_state = !!values[i];
3101                int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3102
3103                if (new_state != old_state) {
3104                        audit_log(audit_context(), GFP_ATOMIC,
3105                                AUDIT_MAC_CONFIG_CHANGE,
3106                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
3107                                sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3108                                new_state,
3109                                old_state,
3110                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
3111                                audit_get_sessionid(current));
3112                        newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3113                }
3114        }
3115
3116        /* Re-evaluate the conditional rules in the copy */
3117        evaluate_cond_nodes(&newpolicy->policydb);
3118
3119        /* Set latest granting seqno for new policy */
3120        newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3121        seqno = newpolicy->latest_granting;
3122
3123        /* Install the new policy */
3124        rcu_assign_pointer(state->policy, newpolicy);
3125
3126        /*
3127         * Free the conditional portions of the old policydb
3128         * that were copied for the new policy, and the oldpolicy
3129         * structure itself but not what it references.
3130         */
3131        synchronize_rcu();
3132        selinux_policy_cond_free(oldpolicy);
3133
3134        /* Notify others of the policy change */
3135        selinux_notify_policy_change(state, seqno);
3136        return 0;
3137}
3138
3139int security_get_bool_value(struct selinux_state *state,
3140                            u32 index)
3141{
3142        struct selinux_policy *policy;
3143        struct policydb *policydb;
3144        int rc;
3145        u32 len;
3146
3147        if (!selinux_initialized(state))
3148                return 0;
3149
3150        rcu_read_lock();
3151        policy = rcu_dereference(state->policy);
3152        policydb = &policy->policydb;
3153
3154        rc = -EFAULT;
3155        len = policydb->p_bools.nprim;
3156        if (index >= len)
3157                goto out;
3158
3159        rc = policydb->bool_val_to_struct[index]->state;
3160out:
3161        rcu_read_unlock();
3162        return rc;
3163}
3164
3165static int security_preserve_bools(struct selinux_policy *oldpolicy,
3166                                struct selinux_policy *newpolicy)
3167{
3168        int rc, *bvalues = NULL;
3169        char **bnames = NULL;
3170        struct cond_bool_datum *booldatum;
3171        u32 i, nbools = 0;
3172
3173        rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3174        if (rc)
3175                goto out;
3176        for (i = 0; i < nbools; i++) {
3177                booldatum = symtab_search(&newpolicy->policydb.p_bools,
3178                                        bnames[i]);
3179                if (booldatum)
3180                        booldatum->state = bvalues[i];
3181        }
3182        evaluate_cond_nodes(&newpolicy->policydb);
3183
3184out:
3185        if (bnames) {
3186                for (i = 0; i < nbools; i++)
3187                        kfree(bnames[i]);
3188        }
3189        kfree(bnames);
3190        kfree(bvalues);
3191        return rc;
3192}
3193
3194/*
3195 * security_sid_mls_copy() - computes a new sid based on the given
3196 * sid and the mls portion of mls_sid.
3197 */
3198int security_sid_mls_copy(struct selinux_state *state,
3199                          u32 sid, u32 mls_sid, u32 *new_sid)
3200{
3201        struct selinux_policy *policy;
3202        struct policydb *policydb;
3203        struct sidtab *sidtab;
3204        struct context *context1;
3205        struct context *context2;
3206        struct context newcon;
3207        char *s;
3208        u32 len;
3209        int rc;
3210
3211        if (!selinux_initialized(state)) {
3212                *new_sid = sid;
3213                return 0;
3214        }
3215
3216retry:
3217        rc = 0;
3218        context_init(&newcon);
3219
3220        rcu_read_lock();
3221        policy = rcu_dereference(state->policy);
3222        policydb = &policy->policydb;
3223        sidtab = policy->sidtab;
3224
3225        if (!policydb->mls_enabled) {
3226                *new_sid = sid;
3227                goto out_unlock;
3228        }
3229
3230        rc = -EINVAL;
3231        context1 = sidtab_search(sidtab, sid);
3232        if (!context1) {
3233                pr_err("SELinux: %s:  unrecognized SID %d\n",
3234                        __func__, sid);
3235                goto out_unlock;
3236        }
3237
3238        rc = -EINVAL;
3239        context2 = sidtab_search(sidtab, mls_sid);
3240        if (!context2) {
3241                pr_err("SELinux: %s:  unrecognized SID %d\n",
3242                        __func__, mls_sid);
3243                goto out_unlock;
3244        }
3245
3246        newcon.user = context1->user;
3247        newcon.role = context1->role;
3248        newcon.type = context1->type;
3249        rc = mls_context_cpy(&newcon, context2);
3250        if (rc)
3251                goto out_unlock;
3252
3253        /* Check the validity of the new context. */
3254        if (!policydb_context_isvalid(policydb, &newcon)) {
3255                rc = convert_context_handle_invalid_context(state, policydb,
3256                                                        &newcon);
3257                if (rc) {
3258                        if (!context_struct_to_string(policydb, &newcon, &s,
3259                                                      &len)) {
3260                                struct audit_buffer *ab;
3261
3262                                ab = audit_log_start(audit_context(),
3263                                                     GFP_ATOMIC,
3264                                                     AUDIT_SELINUX_ERR);
3265                                audit_log_format(ab,
3266                                                 "op=security_sid_mls_copy invalid_context=");
3267                                /* don't record NUL with untrusted strings */
3268                                audit_log_n_untrustedstring(ab, s, len - 1);
3269                                audit_log_end(ab);
3270                                kfree(s);
3271                        }
3272                        goto out_unlock;
3273                }
3274        }
3275        rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3276        if (rc == -ESTALE) {
3277                rcu_read_unlock();
3278                context_destroy(&newcon);
3279                goto retry;
3280        }
3281out_unlock:
3282        rcu_read_unlock();
3283        context_destroy(&newcon);
3284        return rc;
3285}
3286
3287/**
3288 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3289 * @nlbl_sid: NetLabel SID
3290 * @nlbl_type: NetLabel labeling protocol type
3291 * @xfrm_sid: XFRM SID
3292 *
3293 * Description:
3294 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3295 * resolved into a single SID it is returned via @peer_sid and the function
3296 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3297 * returns a negative value.  A table summarizing the behavior is below:
3298 *
3299 *                                 | function return |      @sid
3300 *   ------------------------------+-----------------+-----------------
3301 *   no peer labels                |        0        |    SECSID_NULL
3302 *   single peer label             |        0        |    <peer_label>
3303 *   multiple, consistent labels   |        0        |    <peer_label>
3304 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3305 *
3306 */
3307int security_net_peersid_resolve(struct selinux_state *state,
3308                                 u32 nlbl_sid, u32 nlbl_type,
3309                                 u32 xfrm_sid,
3310                                 u32 *peer_sid)
3311{
3312        struct selinux_policy *policy;
3313        struct policydb *policydb;
3314        struct sidtab *sidtab;
3315        int rc;
3316        struct context *nlbl_ctx;
3317        struct context *xfrm_ctx;
3318
3319        *peer_sid = SECSID_NULL;
3320
3321        /* handle the common (which also happens to be the set of easy) cases
3322         * right away, these two if statements catch everything involving a
3323         * single or absent peer SID/label */
3324        if (xfrm_sid == SECSID_NULL) {
3325                *peer_sid = nlbl_sid;
3326                return 0;
3327        }
3328        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3329         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3330         * is present */
3331        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3332                *peer_sid = xfrm_sid;
3333                return 0;
3334        }
3335
3336        if (!selinux_initialized(state))
3337                return 0;
3338
3339        rcu_read_lock();
3340        policy = rcu_dereference(state->policy);
3341        policydb = &policy->policydb;
3342        sidtab = policy->sidtab;
3343
3344        /*
3345         * We don't need to check initialized here since the only way both
3346         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3347         * security server was initialized and state->initialized was true.
3348         */
3349        if (!policydb->mls_enabled) {
3350                rc = 0;
3351                goto out;
3352        }
3353
3354        rc = -EINVAL;
3355        nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3356        if (!nlbl_ctx) {
3357                pr_err("SELinux: %s:  unrecognized SID %d\n",
3358                       __func__, nlbl_sid);
3359                goto out;
3360        }
3361        rc = -EINVAL;
3362        xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3363        if (!xfrm_ctx) {
3364                pr_err("SELinux: %s:  unrecognized SID %d\n",
3365                       __func__, xfrm_sid);
3366                goto out;
3367        }
3368        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3369        if (rc)
3370                goto out;
3371
3372        /* at present NetLabel SIDs/labels really only carry MLS
3373         * information so if the MLS portion of the NetLabel SID
3374         * matches the MLS portion of the labeled XFRM SID/label
3375         * then pass along the XFRM SID as it is the most
3376         * expressive */
3377        *peer_sid = xfrm_sid;
3378out:
3379        rcu_read_unlock();
3380        return rc;
3381}
3382
3383static int get_classes_callback(void *k, void *d, void *args)
3384{
3385        struct class_datum *datum = d;
3386        char *name = k, **classes = args;
3387        int value = datum->value - 1;
3388
3389        classes[value] = kstrdup(name, GFP_ATOMIC);
3390        if (!classes[value])
3391                return -ENOMEM;
3392
3393        return 0;
3394}
3395
3396int security_get_classes(struct selinux_policy *policy,
3397                         char ***classes, int *nclasses)
3398{
3399        struct policydb *policydb;
3400        int rc;
3401
3402        policydb = &policy->policydb;
3403
3404        rc = -ENOMEM;
3405        *nclasses = policydb->p_classes.nprim;
3406        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3407        if (!*classes)
3408                goto out;
3409
3410        rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3411                         *classes);
3412        if (rc) {
3413                int i;
3414                for (i = 0; i < *nclasses; i++)
3415                        kfree((*classes)[i]);
3416                kfree(*classes);
3417        }
3418
3419out:
3420        return rc;
3421}
3422
3423static int get_permissions_callback(void *k, void *d, void *args)
3424{
3425        struct perm_datum *datum = d;
3426        char *name = k, **perms = args;
3427        int value = datum->value - 1;
3428
3429        perms[value] = kstrdup(name, GFP_ATOMIC);
3430        if (!perms[value])
3431                return -ENOMEM;
3432
3433        return 0;
3434}
3435
3436int security_get_permissions(struct selinux_policy *policy,
3437                             char *class, char ***perms, int *nperms)
3438{
3439        struct policydb *policydb;
3440        int rc, i;
3441        struct class_datum *match;
3442
3443        policydb = &policy->policydb;
3444
3445        rc = -EINVAL;
3446        match = symtab_search(&policydb->p_classes, class);
3447        if (!match) {
3448                pr_err("SELinux: %s:  unrecognized class %s\n",
3449                        __func__, class);
3450                goto out;
3451        }
3452
3453        rc = -ENOMEM;
3454        *nperms = match->permissions.nprim;
3455        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3456        if (!*perms)
3457                goto out;
3458
3459        if (match->comdatum) {
3460                rc = hashtab_map(&match->comdatum->permissions.table,
3461                                 get_permissions_callback, *perms);
3462                if (rc)
3463                        goto err;
3464        }
3465
3466        rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3467                         *perms);
3468        if (rc)
3469                goto err;
3470
3471out:
3472        return rc;
3473
3474err:
3475        for (i = 0; i < *nperms; i++)
3476                kfree((*perms)[i]);
3477        kfree(*perms);
3478        return rc;
3479}
3480
3481int security_get_reject_unknown(struct selinux_state *state)
3482{
3483        struct selinux_policy *policy;
3484        int value;
3485
3486        if (!selinux_initialized(state))
3487                return 0;
3488
3489        rcu_read_lock();
3490        policy = rcu_dereference(state->policy);
3491        value = policy->policydb.reject_unknown;
3492        rcu_read_unlock();
3493        return value;
3494}
3495
3496int security_get_allow_unknown(struct selinux_state *state)
3497{
3498        struct selinux_policy *policy;
3499        int value;
3500
3501        if (!selinux_initialized(state))
3502                return 0;
3503
3504        rcu_read_lock();
3505        policy = rcu_dereference(state->policy);
3506        value = policy->policydb.allow_unknown;
3507        rcu_read_unlock();
3508        return value;
3509}
3510
3511/**
3512 * security_policycap_supported - Check for a specific policy capability
3513 * @req_cap: capability
3514 *
3515 * Description:
3516 * This function queries the currently loaded policy to see if it supports the
3517 * capability specified by @req_cap.  Returns true (1) if the capability is
3518 * supported, false (0) if it isn't supported.
3519 *
3520 */
3521int security_policycap_supported(struct selinux_state *state,
3522                                 unsigned int req_cap)
3523{
3524        struct selinux_policy *policy;
3525        int rc;
3526
3527        if (!selinux_initialized(state))
3528                return 0;
3529
3530        rcu_read_lock();
3531        policy = rcu_dereference(state->policy);
3532        rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3533        rcu_read_unlock();
3534
3535        return rc;
3536}
3537
3538struct selinux_audit_rule {
3539        u32 au_seqno;
3540        struct context au_ctxt;
3541};
3542
3543void selinux_audit_rule_free(void *vrule)
3544{
3545        struct selinux_audit_rule *rule = vrule;
3546
3547        if (rule) {
3548                context_destroy(&rule->au_ctxt);
3549                kfree(rule);
3550        }
3551}
3552
3553int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3554{
3555        struct selinux_state *state = &selinux_state;
3556        struct selinux_policy *policy;
3557        struct policydb *policydb;
3558        struct selinux_audit_rule *tmprule;
3559        struct role_datum *roledatum;
3560        struct type_datum *typedatum;
3561        struct user_datum *userdatum;
3562        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3563        int rc = 0;
3564
3565        *rule = NULL;
3566
3567        if (!selinux_initialized(state))
3568                return -EOPNOTSUPP;
3569
3570        switch (field) {
3571        case AUDIT_SUBJ_USER:
3572        case AUDIT_SUBJ_ROLE:
3573        case AUDIT_SUBJ_TYPE:
3574        case AUDIT_OBJ_USER:
3575        case AUDIT_OBJ_ROLE:
3576        case AUDIT_OBJ_TYPE:
3577                /* only 'equals' and 'not equals' fit user, role, and type */
3578                if (op != Audit_equal && op != Audit_not_equal)
3579                        return -EINVAL;
3580                break;
3581        case AUDIT_SUBJ_SEN:
3582        case AUDIT_SUBJ_CLR:
3583        case AUDIT_OBJ_LEV_LOW:
3584        case AUDIT_OBJ_LEV_HIGH:
3585                /* we do not allow a range, indicated by the presence of '-' */
3586                if (strchr(rulestr, '-'))
3587                        return -EINVAL;
3588                break;
3589        default:
3590                /* only the above fields are valid */
3591                return -EINVAL;
3592        }
3593
3594        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3595        if (!tmprule)
3596                return -ENOMEM;
3597
3598        context_init(&tmprule->au_ctxt);
3599
3600        rcu_read_lock();
3601        policy = rcu_dereference(state->policy);
3602        policydb = &policy->policydb;
3603
3604        tmprule->au_seqno = policy->latest_granting;
3605
3606        switch (field) {
3607        case AUDIT_SUBJ_USER:
3608        case AUDIT_OBJ_USER:
3609                rc = -EINVAL;
3610                userdatum = symtab_search(&policydb->p_users, rulestr);
3611                if (!userdatum)
3612                        goto out;
3613                tmprule->au_ctxt.user = userdatum->value;
3614                break;
3615        case AUDIT_SUBJ_ROLE:
3616        case AUDIT_OBJ_ROLE:
3617                rc = -EINVAL;
3618                roledatum = symtab_search(&policydb->p_roles, rulestr);
3619                if (!roledatum)
3620                        goto out;
3621                tmprule->au_ctxt.role = roledatum->value;
3622                break;
3623        case AUDIT_SUBJ_TYPE:
3624        case AUDIT_OBJ_TYPE:
3625                rc = -EINVAL;
3626                typedatum = symtab_search(&policydb->p_types, rulestr);
3627                if (!typedatum)
3628                        goto out;
3629                tmprule->au_ctxt.type = typedatum->value;
3630                break;
3631        case AUDIT_SUBJ_SEN:
3632        case AUDIT_SUBJ_CLR:
3633        case AUDIT_OBJ_LEV_LOW:
3634        case AUDIT_OBJ_LEV_HIGH:
3635                rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3636                                     GFP_ATOMIC);
3637                if (rc)
3638                        goto out;
3639                break;
3640        }
3641        rc = 0;
3642out:
3643        rcu_read_unlock();
3644
3645        if (rc) {
3646                selinux_audit_rule_free(tmprule);
3647                tmprule = NULL;
3648        }
3649
3650        *rule = tmprule;
3651
3652        return rc;
3653}
3654
3655/* Check to see if the rule contains any selinux fields */
3656int selinux_audit_rule_known(struct audit_krule *rule)
3657{
3658        int i;
3659
3660        for (i = 0; i < rule->field_count; i++) {
3661                struct audit_field *f = &rule->fields[i];
3662                switch (f->type) {
3663                case AUDIT_SUBJ_USER:
3664                case AUDIT_SUBJ_ROLE:
3665                case AUDIT_SUBJ_TYPE:
3666                case AUDIT_SUBJ_SEN:
3667                case AUDIT_SUBJ_CLR:
3668                case AUDIT_OBJ_USER:
3669                case AUDIT_OBJ_ROLE:
3670                case AUDIT_OBJ_TYPE:
3671                case AUDIT_OBJ_LEV_LOW:
3672                case AUDIT_OBJ_LEV_HIGH:
3673                        return 1;
3674                }
3675        }
3676
3677        return 0;
3678}
3679
3680int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3681{
3682        struct selinux_state *state = &selinux_state;
3683        struct selinux_policy *policy;
3684        struct context *ctxt;
3685        struct mls_level *level;
3686        struct selinux_audit_rule *rule = vrule;
3687        int match = 0;
3688
3689        if (unlikely(!rule)) {
3690                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3691                return -ENOENT;
3692        }
3693
3694        if (!selinux_initialized(state))
3695                return 0;
3696
3697        rcu_read_lock();
3698
3699        policy = rcu_dereference(state->policy);
3700
3701        if (rule->au_seqno < policy->latest_granting) {
3702                match = -ESTALE;
3703                goto out;
3704        }
3705
3706        ctxt = sidtab_search(policy->sidtab, sid);
3707        if (unlikely(!ctxt)) {
3708                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3709                          sid);
3710                match = -ENOENT;
3711                goto out;
3712        }
3713
3714        /* a field/op pair that is not caught here will simply fall through
3715           without a match */
3716        switch (field) {
3717        case AUDIT_SUBJ_USER:
3718        case AUDIT_OBJ_USER:
3719                switch (op) {
3720                case Audit_equal:
3721                        match = (ctxt->user == rule->au_ctxt.user);
3722                        break;
3723                case Audit_not_equal:
3724                        match = (ctxt->user != rule->au_ctxt.user);
3725                        break;
3726                }
3727                break;
3728        case AUDIT_SUBJ_ROLE:
3729        case AUDIT_OBJ_ROLE:
3730                switch (op) {
3731                case Audit_equal:
3732                        match = (ctxt->role == rule->au_ctxt.role);
3733                        break;
3734                case Audit_not_equal:
3735                        match = (ctxt->role != rule->au_ctxt.role);
3736                        break;
3737                }
3738                break;
3739        case AUDIT_SUBJ_TYPE:
3740        case AUDIT_OBJ_TYPE:
3741                switch (op) {
3742                case Audit_equal:
3743                        match = (ctxt->type == rule->au_ctxt.type);
3744                        break;
3745                case Audit_not_equal:
3746                        match = (ctxt->type != rule->au_ctxt.type);
3747                        break;
3748                }
3749                break;
3750        case AUDIT_SUBJ_SEN:
3751        case AUDIT_SUBJ_CLR:
3752        case AUDIT_OBJ_LEV_LOW:
3753        case AUDIT_OBJ_LEV_HIGH:
3754                level = ((field == AUDIT_SUBJ_SEN ||
3755                          field == AUDIT_OBJ_LEV_LOW) ?
3756                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3757                switch (op) {
3758                case Audit_equal:
3759                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3760                                             level);
3761                        break;
3762                case Audit_not_equal:
3763                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3764                                              level);
3765                        break;
3766                case Audit_lt:
3767                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3768                                               level) &&
3769                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3770                                               level));
3771                        break;
3772                case Audit_le:
3773                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3774                                              level);
3775                        break;
3776                case Audit_gt:
3777                        match = (mls_level_dom(level,
3778                                              &rule->au_ctxt.range.level[0]) &&
3779                                 !mls_level_eq(level,
3780                                               &rule->au_ctxt.range.level[0]));
3781                        break;
3782                case Audit_ge:
3783                        match = mls_level_dom(level,
3784                                              &rule->au_ctxt.range.level[0]);
3785                        break;
3786                }
3787        }
3788
3789out:
3790        rcu_read_unlock();
3791        return match;
3792}
3793
3794static int aurule_avc_callback(u32 event)
3795{
3796        if (event == AVC_CALLBACK_RESET)
3797                return audit_update_lsm_rules();
3798        return 0;
3799}
3800
3801static int __init aurule_init(void)
3802{
3803        int err;
3804
3805        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3806        if (err)
3807                panic("avc_add_callback() failed, error %d\n", err);
3808
3809        return err;
3810}
3811__initcall(aurule_init);
3812
3813#ifdef CONFIG_NETLABEL
3814/**
3815 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3816 * @secattr: the NetLabel packet security attributes
3817 * @sid: the SELinux SID
3818 *
3819 * Description:
3820 * Attempt to cache the context in @ctx, which was derived from the packet in
3821 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3822 * already been initialized.
3823 *
3824 */
3825static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3826                                      u32 sid)
3827{
3828        u32 *sid_cache;
3829
3830        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3831        if (sid_cache == NULL)
3832                return;
3833        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3834        if (secattr->cache == NULL) {
3835                kfree(sid_cache);
3836                return;
3837        }
3838
3839        *sid_cache = sid;
3840        secattr->cache->free = kfree;
3841        secattr->cache->data = sid_cache;
3842        secattr->flags |= NETLBL_SECATTR_CACHE;
3843}
3844
3845/**
3846 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3847 * @secattr: the NetLabel packet security attributes
3848 * @sid: the SELinux SID
3849 *
3850 * Description:
3851 * Convert the given NetLabel security attributes in @secattr into a
3852 * SELinux SID.  If the @secattr field does not contain a full SELinux
3853 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3854 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3855 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3856 * conversion for future lookups.  Returns zero on success, negative values on
3857 * failure.
3858 *
3859 */
3860int security_netlbl_secattr_to_sid(struct selinux_state *state,
3861                                   struct netlbl_lsm_secattr *secattr,
3862                                   u32 *sid)
3863{
3864        struct selinux_policy *policy;
3865        struct policydb *policydb;
3866        struct sidtab *sidtab;
3867        int rc;
3868        struct context *ctx;
3869        struct context ctx_new;
3870
3871        if (!selinux_initialized(state)) {
3872                *sid = SECSID_NULL;
3873                return 0;
3874        }
3875
3876retry:
3877        rc = 0;
3878        rcu_read_lock();
3879        policy = rcu_dereference(state->policy);
3880        policydb = &policy->policydb;
3881        sidtab = policy->sidtab;
3882
3883        if (secattr->flags & NETLBL_SECATTR_CACHE)
3884                *sid = *(u32 *)secattr->cache->data;
3885        else if (secattr->flags & NETLBL_SECATTR_SECID)
3886                *sid = secattr->attr.secid;
3887        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3888                rc = -EIDRM;
3889                ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3890                if (ctx == NULL)
3891                        goto out;
3892
3893                context_init(&ctx_new);
3894                ctx_new.user = ctx->user;
3895                ctx_new.role = ctx->role;
3896                ctx_new.type = ctx->type;
3897                mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3898                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3899                        rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3900                        if (rc)
3901                                goto out;
3902                }
3903                rc = -EIDRM;
3904                if (!mls_context_isvalid(policydb, &ctx_new)) {
3905                        ebitmap_destroy(&ctx_new.range.level[0].cat);
3906                        goto out;
3907                }
3908
3909                rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3910                ebitmap_destroy(&ctx_new.range.level[0].cat);
3911                if (rc == -ESTALE) {
3912                        rcu_read_unlock();
3913                        goto retry;
3914                }
3915                if (rc)
3916                        goto out;
3917
3918                security_netlbl_cache_add(secattr, *sid);
3919        } else
3920                *sid = SECSID_NULL;
3921
3922out:
3923        rcu_read_unlock();
3924        return rc;
3925}
3926
3927/**
3928 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3929 * @sid: the SELinux SID
3930 * @secattr: the NetLabel packet security attributes
3931 *
3932 * Description:
3933 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3934 * Returns zero on success, negative values on failure.
3935 *
3936 */
3937int security_netlbl_sid_to_secattr(struct selinux_state *state,
3938                                   u32 sid, struct netlbl_lsm_secattr *secattr)
3939{
3940        struct selinux_policy *policy;
3941        struct policydb *policydb;
3942        int rc;
3943        struct context *ctx;
3944
3945        if (!selinux_initialized(state))
3946                return 0;
3947
3948        rcu_read_lock();
3949        policy = rcu_dereference(state->policy);
3950        policydb = &policy->policydb;
3951
3952        rc = -ENOENT;
3953        ctx = sidtab_search(policy->sidtab, sid);
3954        if (ctx == NULL)
3955                goto out;
3956
3957        rc = -ENOMEM;
3958        secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3959                                  GFP_ATOMIC);
3960        if (secattr->domain == NULL)
3961                goto out;
3962
3963        secattr->attr.secid = sid;
3964        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3965        mls_export_netlbl_lvl(policydb, ctx, secattr);
3966        rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3967out:
3968        rcu_read_unlock();
3969        return rc;
3970}
3971#endif /* CONFIG_NETLABEL */
3972
3973/**
3974 * __security_read_policy - read the policy.
3975 * @policy: SELinux policy
3976 * @data: binary policy data
3977 * @len: length of data in bytes
3978 *
3979 */
3980static int __security_read_policy(struct selinux_policy *policy,
3981                                  void *data, size_t *len)
3982{
3983        int rc;
3984        struct policy_file fp;
3985
3986        fp.data = data;
3987        fp.len = *len;
3988
3989        rc = policydb_write(&policy->policydb, &fp);
3990        if (rc)
3991                return rc;
3992
3993        *len = (unsigned long)fp.data - (unsigned long)data;
3994        return 0;
3995}
3996
3997/**
3998 * security_read_policy - read the policy.
3999 * @state: selinux_state
4000 * @data: binary policy data
4001 * @len: length of data in bytes
4002 *
4003 */
4004int security_read_policy(struct selinux_state *state,
4005                         void **data, size_t *len)
4006{
4007        struct selinux_policy *policy;
4008
4009        policy = rcu_dereference_protected(
4010                        state->policy, lockdep_is_held(&state->policy_mutex));
4011        if (!policy)
4012                return -EINVAL;
4013
4014        *len = policy->policydb.len;
4015        *data = vmalloc_user(*len);
4016        if (!*data)
4017                return -ENOMEM;
4018
4019        return __security_read_policy(policy, *data, len);
4020}
4021
4022/**
4023 * security_read_state_kernel - read the policy.
4024 * @state: selinux_state
4025 * @data: binary policy data
4026 * @len: length of data in bytes
4027 *
4028 * Allocates kernel memory for reading SELinux policy.
4029 * This function is for internal use only and should not
4030 * be used for returning data to user space.
4031 *
4032 * This function must be called with policy_mutex held.
4033 */
4034int security_read_state_kernel(struct selinux_state *state,
4035                               void **data, size_t *len)
4036{
4037        struct selinux_policy *policy;
4038
4039        policy = rcu_dereference_protected(
4040                        state->policy, lockdep_is_held(&state->policy_mutex));
4041        if (!policy)
4042                return -EINVAL;
4043
4044        *len = policy->policydb.len;
4045        *data = vmalloc(*len);
4046        if (!*data)
4047                return -ENOMEM;
4048
4049        return __security_read_policy(policy, *data, len);
4050}
4051