linux/tools/perf/util/cs-etm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright(C) 2015-2018 Linaro Limited.
   4 *
   5 * Author: Tor Jeremiassen <tor@ti.com>
   6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
   7 */
   8
   9#include <linux/bitops.h>
  10#include <linux/coresight-pmu.h>
  11#include <linux/err.h>
  12#include <linux/kernel.h>
  13#include <linux/log2.h>
  14#include <linux/types.h>
  15#include <linux/zalloc.h>
  16
  17#include <opencsd/ocsd_if_types.h>
  18#include <stdlib.h>
  19
  20#include "auxtrace.h"
  21#include "color.h"
  22#include "cs-etm.h"
  23#include "cs-etm-decoder/cs-etm-decoder.h"
  24#include "debug.h"
  25#include "dso.h"
  26#include "evlist.h"
  27#include "intlist.h"
  28#include "machine.h"
  29#include "map.h"
  30#include "perf.h"
  31#include "session.h"
  32#include "map_symbol.h"
  33#include "branch.h"
  34#include "symbol.h"
  35#include "tool.h"
  36#include "thread.h"
  37#include "thread-stack.h"
  38#include <tools/libc_compat.h>
  39#include "util/synthetic-events.h"
  40
  41#define MAX_TIMESTAMP (~0ULL)
  42
  43struct cs_etm_auxtrace {
  44        struct auxtrace auxtrace;
  45        struct auxtrace_queues queues;
  46        struct auxtrace_heap heap;
  47        struct itrace_synth_opts synth_opts;
  48        struct perf_session *session;
  49        struct machine *machine;
  50        struct thread *unknown_thread;
  51
  52        u8 timeless_decoding;
  53        u8 snapshot_mode;
  54        u8 data_queued;
  55        u8 sample_branches;
  56        u8 sample_instructions;
  57
  58        int num_cpu;
  59        u32 auxtrace_type;
  60        u64 branches_sample_type;
  61        u64 branches_id;
  62        u64 instructions_sample_type;
  63        u64 instructions_sample_period;
  64        u64 instructions_id;
  65        u64 **metadata;
  66        u64 kernel_start;
  67        unsigned int pmu_type;
  68};
  69
  70struct cs_etm_traceid_queue {
  71        u8 trace_chan_id;
  72        pid_t pid, tid;
  73        u64 period_instructions;
  74        size_t last_branch_pos;
  75        union perf_event *event_buf;
  76        struct thread *thread;
  77        struct branch_stack *last_branch;
  78        struct branch_stack *last_branch_rb;
  79        struct cs_etm_packet *prev_packet;
  80        struct cs_etm_packet *packet;
  81        struct cs_etm_packet_queue packet_queue;
  82};
  83
  84struct cs_etm_queue {
  85        struct cs_etm_auxtrace *etm;
  86        struct cs_etm_decoder *decoder;
  87        struct auxtrace_buffer *buffer;
  88        unsigned int queue_nr;
  89        u8 pending_timestamp;
  90        u64 offset;
  91        const unsigned char *buf;
  92        size_t buf_len, buf_used;
  93        /* Conversion between traceID and index in traceid_queues array */
  94        struct intlist *traceid_queues_list;
  95        struct cs_etm_traceid_queue **traceid_queues;
  96};
  97
  98/* RB tree for quick conversion between traceID and metadata pointers */
  99static struct intlist *traceid_list;
 100
 101static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
 102static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
 103static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
 104                                           pid_t tid);
 105static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
 106static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
 107
 108/* PTMs ETMIDR [11:8] set to b0011 */
 109#define ETMIDR_PTM_VERSION 0x00000300
 110
 111/*
 112 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
 113 * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
 114 * encode the etm queue number as the upper 16 bit and the channel as
 115 * the lower 16 bit.
 116 */
 117#define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
 118                      (queue_nr << 16 | trace_chan_id)
 119#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
 120#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
 121
 122static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
 123{
 124        etmidr &= ETMIDR_PTM_VERSION;
 125
 126        if (etmidr == ETMIDR_PTM_VERSION)
 127                return CS_ETM_PROTO_PTM;
 128
 129        return CS_ETM_PROTO_ETMV3;
 130}
 131
 132static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
 133{
 134        struct int_node *inode;
 135        u64 *metadata;
 136
 137        inode = intlist__find(traceid_list, trace_chan_id);
 138        if (!inode)
 139                return -EINVAL;
 140
 141        metadata = inode->priv;
 142        *magic = metadata[CS_ETM_MAGIC];
 143        return 0;
 144}
 145
 146int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
 147{
 148        struct int_node *inode;
 149        u64 *metadata;
 150
 151        inode = intlist__find(traceid_list, trace_chan_id);
 152        if (!inode)
 153                return -EINVAL;
 154
 155        metadata = inode->priv;
 156        *cpu = (int)metadata[CS_ETM_CPU];
 157        return 0;
 158}
 159
 160/*
 161 * The returned PID format is presented by two bits:
 162 *
 163 *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
 164 *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
 165 *
 166 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
 167 * are enabled at the same time when the session runs on an EL2 kernel.
 168 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
 169 * recorded in the trace data, the tool will selectively use
 170 * CONTEXTIDR_EL2 as PID.
 171 */
 172int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
 173{
 174        struct int_node *inode;
 175        u64 *metadata, val;
 176
 177        inode = intlist__find(traceid_list, trace_chan_id);
 178        if (!inode)
 179                return -EINVAL;
 180
 181        metadata = inode->priv;
 182
 183        if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
 184                val = metadata[CS_ETM_ETMCR];
 185                /* CONTEXTIDR is traced */
 186                if (val & BIT(ETM_OPT_CTXTID))
 187                        *pid_fmt = BIT(ETM_OPT_CTXTID);
 188        } else {
 189                val = metadata[CS_ETMV4_TRCCONFIGR];
 190                /* CONTEXTIDR_EL2 is traced */
 191                if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
 192                        *pid_fmt = BIT(ETM_OPT_CTXTID2);
 193                /* CONTEXTIDR_EL1 is traced */
 194                else if (val & BIT(ETM4_CFG_BIT_CTXTID))
 195                        *pid_fmt = BIT(ETM_OPT_CTXTID);
 196        }
 197
 198        return 0;
 199}
 200
 201void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
 202                                              u8 trace_chan_id)
 203{
 204        /*
 205         * When a timestamp packet is encountered the backend code
 206         * is stopped so that the front end has time to process packets
 207         * that were accumulated in the traceID queue.  Since there can
 208         * be more than one channel per cs_etm_queue, we need to specify
 209         * what traceID queue needs servicing.
 210         */
 211        etmq->pending_timestamp = trace_chan_id;
 212}
 213
 214static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
 215                                      u8 *trace_chan_id)
 216{
 217        struct cs_etm_packet_queue *packet_queue;
 218
 219        if (!etmq->pending_timestamp)
 220                return 0;
 221
 222        if (trace_chan_id)
 223                *trace_chan_id = etmq->pending_timestamp;
 224
 225        packet_queue = cs_etm__etmq_get_packet_queue(etmq,
 226                                                     etmq->pending_timestamp);
 227        if (!packet_queue)
 228                return 0;
 229
 230        /* Acknowledge pending status */
 231        etmq->pending_timestamp = 0;
 232
 233        /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
 234        return packet_queue->timestamp;
 235}
 236
 237static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
 238{
 239        int i;
 240
 241        queue->head = 0;
 242        queue->tail = 0;
 243        queue->packet_count = 0;
 244        for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
 245                queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
 246                queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
 247                queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
 248                queue->packet_buffer[i].instr_count = 0;
 249                queue->packet_buffer[i].last_instr_taken_branch = false;
 250                queue->packet_buffer[i].last_instr_size = 0;
 251                queue->packet_buffer[i].last_instr_type = 0;
 252                queue->packet_buffer[i].last_instr_subtype = 0;
 253                queue->packet_buffer[i].last_instr_cond = 0;
 254                queue->packet_buffer[i].flags = 0;
 255                queue->packet_buffer[i].exception_number = UINT32_MAX;
 256                queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
 257                queue->packet_buffer[i].cpu = INT_MIN;
 258        }
 259}
 260
 261static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
 262{
 263        int idx;
 264        struct int_node *inode;
 265        struct cs_etm_traceid_queue *tidq;
 266        struct intlist *traceid_queues_list = etmq->traceid_queues_list;
 267
 268        intlist__for_each_entry(inode, traceid_queues_list) {
 269                idx = (int)(intptr_t)inode->priv;
 270                tidq = etmq->traceid_queues[idx];
 271                cs_etm__clear_packet_queue(&tidq->packet_queue);
 272        }
 273}
 274
 275static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
 276                                      struct cs_etm_traceid_queue *tidq,
 277                                      u8 trace_chan_id)
 278{
 279        int rc = -ENOMEM;
 280        struct auxtrace_queue *queue;
 281        struct cs_etm_auxtrace *etm = etmq->etm;
 282
 283        cs_etm__clear_packet_queue(&tidq->packet_queue);
 284
 285        queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
 286        tidq->tid = queue->tid;
 287        tidq->pid = -1;
 288        tidq->trace_chan_id = trace_chan_id;
 289
 290        tidq->packet = zalloc(sizeof(struct cs_etm_packet));
 291        if (!tidq->packet)
 292                goto out;
 293
 294        tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
 295        if (!tidq->prev_packet)
 296                goto out_free;
 297
 298        if (etm->synth_opts.last_branch) {
 299                size_t sz = sizeof(struct branch_stack);
 300
 301                sz += etm->synth_opts.last_branch_sz *
 302                      sizeof(struct branch_entry);
 303                tidq->last_branch = zalloc(sz);
 304                if (!tidq->last_branch)
 305                        goto out_free;
 306                tidq->last_branch_rb = zalloc(sz);
 307                if (!tidq->last_branch_rb)
 308                        goto out_free;
 309        }
 310
 311        tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 312        if (!tidq->event_buf)
 313                goto out_free;
 314
 315        return 0;
 316
 317out_free:
 318        zfree(&tidq->last_branch_rb);
 319        zfree(&tidq->last_branch);
 320        zfree(&tidq->prev_packet);
 321        zfree(&tidq->packet);
 322out:
 323        return rc;
 324}
 325
 326static struct cs_etm_traceid_queue
 327*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
 328{
 329        int idx;
 330        struct int_node *inode;
 331        struct intlist *traceid_queues_list;
 332        struct cs_etm_traceid_queue *tidq, **traceid_queues;
 333        struct cs_etm_auxtrace *etm = etmq->etm;
 334
 335        if (etm->timeless_decoding)
 336                trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
 337
 338        traceid_queues_list = etmq->traceid_queues_list;
 339
 340        /*
 341         * Check if the traceid_queue exist for this traceID by looking
 342         * in the queue list.
 343         */
 344        inode = intlist__find(traceid_queues_list, trace_chan_id);
 345        if (inode) {
 346                idx = (int)(intptr_t)inode->priv;
 347                return etmq->traceid_queues[idx];
 348        }
 349
 350        /* We couldn't find a traceid_queue for this traceID, allocate one */
 351        tidq = malloc(sizeof(*tidq));
 352        if (!tidq)
 353                return NULL;
 354
 355        memset(tidq, 0, sizeof(*tidq));
 356
 357        /* Get a valid index for the new traceid_queue */
 358        idx = intlist__nr_entries(traceid_queues_list);
 359        /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
 360        inode = intlist__findnew(traceid_queues_list, trace_chan_id);
 361        if (!inode)
 362                goto out_free;
 363
 364        /* Associate this traceID with this index */
 365        inode->priv = (void *)(intptr_t)idx;
 366
 367        if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
 368                goto out_free;
 369
 370        /* Grow the traceid_queues array by one unit */
 371        traceid_queues = etmq->traceid_queues;
 372        traceid_queues = reallocarray(traceid_queues,
 373                                      idx + 1,
 374                                      sizeof(*traceid_queues));
 375
 376        /*
 377         * On failure reallocarray() returns NULL and the original block of
 378         * memory is left untouched.
 379         */
 380        if (!traceid_queues)
 381                goto out_free;
 382
 383        traceid_queues[idx] = tidq;
 384        etmq->traceid_queues = traceid_queues;
 385
 386        return etmq->traceid_queues[idx];
 387
 388out_free:
 389        /*
 390         * Function intlist__remove() removes the inode from the list
 391         * and delete the memory associated to it.
 392         */
 393        intlist__remove(traceid_queues_list, inode);
 394        free(tidq);
 395
 396        return NULL;
 397}
 398
 399struct cs_etm_packet_queue
 400*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
 401{
 402        struct cs_etm_traceid_queue *tidq;
 403
 404        tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
 405        if (tidq)
 406                return &tidq->packet_queue;
 407
 408        return NULL;
 409}
 410
 411static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
 412                                struct cs_etm_traceid_queue *tidq)
 413{
 414        struct cs_etm_packet *tmp;
 415
 416        if (etm->sample_branches || etm->synth_opts.last_branch ||
 417            etm->sample_instructions) {
 418                /*
 419                 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
 420                 * the next incoming packet.
 421                 */
 422                tmp = tidq->packet;
 423                tidq->packet = tidq->prev_packet;
 424                tidq->prev_packet = tmp;
 425        }
 426}
 427
 428static void cs_etm__packet_dump(const char *pkt_string)
 429{
 430        const char *color = PERF_COLOR_BLUE;
 431        int len = strlen(pkt_string);
 432
 433        if (len && (pkt_string[len-1] == '\n'))
 434                color_fprintf(stdout, color, "  %s", pkt_string);
 435        else
 436                color_fprintf(stdout, color, "  %s\n", pkt_string);
 437
 438        fflush(stdout);
 439}
 440
 441static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
 442                                          struct cs_etm_auxtrace *etm, int idx,
 443                                          u32 etmidr)
 444{
 445        u64 **metadata = etm->metadata;
 446
 447        t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
 448        t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
 449        t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
 450}
 451
 452static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
 453                                          struct cs_etm_auxtrace *etm, int idx)
 454{
 455        u64 **metadata = etm->metadata;
 456
 457        t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
 458        t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
 459        t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
 460        t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
 461        t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
 462        t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
 463        t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
 464}
 465
 466static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
 467                                     struct cs_etm_auxtrace *etm)
 468{
 469        int i;
 470        u32 etmidr;
 471        u64 architecture;
 472
 473        for (i = 0; i < etm->num_cpu; i++) {
 474                architecture = etm->metadata[i][CS_ETM_MAGIC];
 475
 476                switch (architecture) {
 477                case __perf_cs_etmv3_magic:
 478                        etmidr = etm->metadata[i][CS_ETM_ETMIDR];
 479                        cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
 480                        break;
 481                case __perf_cs_etmv4_magic:
 482                        cs_etm__set_trace_param_etmv4(t_params, etm, i);
 483                        break;
 484                default:
 485                        return -EINVAL;
 486                }
 487        }
 488
 489        return 0;
 490}
 491
 492static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
 493                                       struct cs_etm_queue *etmq,
 494                                       enum cs_etm_decoder_operation mode)
 495{
 496        int ret = -EINVAL;
 497
 498        if (!(mode < CS_ETM_OPERATION_MAX))
 499                goto out;
 500
 501        d_params->packet_printer = cs_etm__packet_dump;
 502        d_params->operation = mode;
 503        d_params->data = etmq;
 504        d_params->formatted = true;
 505        d_params->fsyncs = false;
 506        d_params->hsyncs = false;
 507        d_params->frame_aligned = true;
 508
 509        ret = 0;
 510out:
 511        return ret;
 512}
 513
 514static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
 515                               struct auxtrace_buffer *buffer)
 516{
 517        int ret;
 518        const char *color = PERF_COLOR_BLUE;
 519        struct cs_etm_decoder_params d_params;
 520        struct cs_etm_trace_params *t_params;
 521        struct cs_etm_decoder *decoder;
 522        size_t buffer_used = 0;
 523
 524        fprintf(stdout, "\n");
 525        color_fprintf(stdout, color,
 526                     ". ... CoreSight ETM Trace data: size %zu bytes\n",
 527                     buffer->size);
 528
 529        /* Use metadata to fill in trace parameters for trace decoder */
 530        t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
 531
 532        if (!t_params)
 533                return;
 534
 535        if (cs_etm__init_trace_params(t_params, etm))
 536                goto out_free;
 537
 538        /* Set decoder parameters to simply print the trace packets */
 539        if (cs_etm__init_decoder_params(&d_params, NULL,
 540                                        CS_ETM_OPERATION_PRINT))
 541                goto out_free;
 542
 543        decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
 544
 545        if (!decoder)
 546                goto out_free;
 547        do {
 548                size_t consumed;
 549
 550                ret = cs_etm_decoder__process_data_block(
 551                                decoder, buffer->offset,
 552                                &((u8 *)buffer->data)[buffer_used],
 553                                buffer->size - buffer_used, &consumed);
 554                if (ret)
 555                        break;
 556
 557                buffer_used += consumed;
 558        } while (buffer_used < buffer->size);
 559
 560        cs_etm_decoder__free(decoder);
 561
 562out_free:
 563        zfree(&t_params);
 564}
 565
 566static int cs_etm__flush_events(struct perf_session *session,
 567                                struct perf_tool *tool)
 568{
 569        int ret;
 570        struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
 571                                                   struct cs_etm_auxtrace,
 572                                                   auxtrace);
 573        if (dump_trace)
 574                return 0;
 575
 576        if (!tool->ordered_events)
 577                return -EINVAL;
 578
 579        ret = cs_etm__update_queues(etm);
 580
 581        if (ret < 0)
 582                return ret;
 583
 584        if (etm->timeless_decoding)
 585                return cs_etm__process_timeless_queues(etm, -1);
 586
 587        return cs_etm__process_queues(etm);
 588}
 589
 590static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
 591{
 592        int idx;
 593        uintptr_t priv;
 594        struct int_node *inode, *tmp;
 595        struct cs_etm_traceid_queue *tidq;
 596        struct intlist *traceid_queues_list = etmq->traceid_queues_list;
 597
 598        intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
 599                priv = (uintptr_t)inode->priv;
 600                idx = priv;
 601
 602                /* Free this traceid_queue from the array */
 603                tidq = etmq->traceid_queues[idx];
 604                thread__zput(tidq->thread);
 605                zfree(&tidq->event_buf);
 606                zfree(&tidq->last_branch);
 607                zfree(&tidq->last_branch_rb);
 608                zfree(&tidq->prev_packet);
 609                zfree(&tidq->packet);
 610                zfree(&tidq);
 611
 612                /*
 613                 * Function intlist__remove() removes the inode from the list
 614                 * and delete the memory associated to it.
 615                 */
 616                intlist__remove(traceid_queues_list, inode);
 617        }
 618
 619        /* Then the RB tree itself */
 620        intlist__delete(traceid_queues_list);
 621        etmq->traceid_queues_list = NULL;
 622
 623        /* finally free the traceid_queues array */
 624        zfree(&etmq->traceid_queues);
 625}
 626
 627static void cs_etm__free_queue(void *priv)
 628{
 629        struct cs_etm_queue *etmq = priv;
 630
 631        if (!etmq)
 632                return;
 633
 634        cs_etm_decoder__free(etmq->decoder);
 635        cs_etm__free_traceid_queues(etmq);
 636        free(etmq);
 637}
 638
 639static void cs_etm__free_events(struct perf_session *session)
 640{
 641        unsigned int i;
 642        struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 643                                                   struct cs_etm_auxtrace,
 644                                                   auxtrace);
 645        struct auxtrace_queues *queues = &aux->queues;
 646
 647        for (i = 0; i < queues->nr_queues; i++) {
 648                cs_etm__free_queue(queues->queue_array[i].priv);
 649                queues->queue_array[i].priv = NULL;
 650        }
 651
 652        auxtrace_queues__free(queues);
 653}
 654
 655static void cs_etm__free(struct perf_session *session)
 656{
 657        int i;
 658        struct int_node *inode, *tmp;
 659        struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 660                                                   struct cs_etm_auxtrace,
 661                                                   auxtrace);
 662        cs_etm__free_events(session);
 663        session->auxtrace = NULL;
 664
 665        /* First remove all traceID/metadata nodes for the RB tree */
 666        intlist__for_each_entry_safe(inode, tmp, traceid_list)
 667                intlist__remove(traceid_list, inode);
 668        /* Then the RB tree itself */
 669        intlist__delete(traceid_list);
 670
 671        for (i = 0; i < aux->num_cpu; i++)
 672                zfree(&aux->metadata[i]);
 673
 674        thread__zput(aux->unknown_thread);
 675        zfree(&aux->metadata);
 676        zfree(&aux);
 677}
 678
 679static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
 680                                      struct evsel *evsel)
 681{
 682        struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 683                                                   struct cs_etm_auxtrace,
 684                                                   auxtrace);
 685
 686        return evsel->core.attr.type == aux->pmu_type;
 687}
 688
 689static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
 690{
 691        struct machine *machine;
 692
 693        machine = etmq->etm->machine;
 694
 695        if (address >= etmq->etm->kernel_start) {
 696                if (machine__is_host(machine))
 697                        return PERF_RECORD_MISC_KERNEL;
 698                else
 699                        return PERF_RECORD_MISC_GUEST_KERNEL;
 700        } else {
 701                if (machine__is_host(machine))
 702                        return PERF_RECORD_MISC_USER;
 703                else if (perf_guest)
 704                        return PERF_RECORD_MISC_GUEST_USER;
 705                else
 706                        return PERF_RECORD_MISC_HYPERVISOR;
 707        }
 708}
 709
 710static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
 711                              u64 address, size_t size, u8 *buffer)
 712{
 713        u8  cpumode;
 714        u64 offset;
 715        int len;
 716        struct thread *thread;
 717        struct machine *machine;
 718        struct addr_location al;
 719        struct cs_etm_traceid_queue *tidq;
 720
 721        if (!etmq)
 722                return 0;
 723
 724        machine = etmq->etm->machine;
 725        cpumode = cs_etm__cpu_mode(etmq, address);
 726        tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
 727        if (!tidq)
 728                return 0;
 729
 730        thread = tidq->thread;
 731        if (!thread) {
 732                if (cpumode != PERF_RECORD_MISC_KERNEL)
 733                        return 0;
 734                thread = etmq->etm->unknown_thread;
 735        }
 736
 737        if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
 738                return 0;
 739
 740        if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 741            dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
 742                return 0;
 743
 744        offset = al.map->map_ip(al.map, address);
 745
 746        map__load(al.map);
 747
 748        len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
 749
 750        if (len <= 0)
 751                return 0;
 752
 753        return len;
 754}
 755
 756static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
 757{
 758        struct cs_etm_decoder_params d_params;
 759        struct cs_etm_trace_params  *t_params = NULL;
 760        struct cs_etm_queue *etmq;
 761
 762        etmq = zalloc(sizeof(*etmq));
 763        if (!etmq)
 764                return NULL;
 765
 766        etmq->traceid_queues_list = intlist__new(NULL);
 767        if (!etmq->traceid_queues_list)
 768                goto out_free;
 769
 770        /* Use metadata to fill in trace parameters for trace decoder */
 771        t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
 772
 773        if (!t_params)
 774                goto out_free;
 775
 776        if (cs_etm__init_trace_params(t_params, etm))
 777                goto out_free;
 778
 779        /* Set decoder parameters to decode trace packets */
 780        if (cs_etm__init_decoder_params(&d_params, etmq,
 781                                        CS_ETM_OPERATION_DECODE))
 782                goto out_free;
 783
 784        etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
 785
 786        if (!etmq->decoder)
 787                goto out_free;
 788
 789        /*
 790         * Register a function to handle all memory accesses required by
 791         * the trace decoder library.
 792         */
 793        if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
 794                                              0x0L, ((u64) -1L),
 795                                              cs_etm__mem_access))
 796                goto out_free_decoder;
 797
 798        zfree(&t_params);
 799        return etmq;
 800
 801out_free_decoder:
 802        cs_etm_decoder__free(etmq->decoder);
 803out_free:
 804        intlist__delete(etmq->traceid_queues_list);
 805        free(etmq);
 806
 807        return NULL;
 808}
 809
 810static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
 811                               struct auxtrace_queue *queue,
 812                               unsigned int queue_nr)
 813{
 814        int ret = 0;
 815        unsigned int cs_queue_nr;
 816        u8 trace_chan_id;
 817        u64 timestamp;
 818        struct cs_etm_queue *etmq = queue->priv;
 819
 820        if (list_empty(&queue->head) || etmq)
 821                goto out;
 822
 823        etmq = cs_etm__alloc_queue(etm);
 824
 825        if (!etmq) {
 826                ret = -ENOMEM;
 827                goto out;
 828        }
 829
 830        queue->priv = etmq;
 831        etmq->etm = etm;
 832        etmq->queue_nr = queue_nr;
 833        etmq->offset = 0;
 834
 835        if (etm->timeless_decoding)
 836                goto out;
 837
 838        /*
 839         * We are under a CPU-wide trace scenario.  As such we need to know
 840         * when the code that generated the traces started to execute so that
 841         * it can be correlated with execution on other CPUs.  So we get a
 842         * handle on the beginning of traces and decode until we find a
 843         * timestamp.  The timestamp is then added to the auxtrace min heap
 844         * in order to know what nibble (of all the etmqs) to decode first.
 845         */
 846        while (1) {
 847                /*
 848                 * Fetch an aux_buffer from this etmq.  Bail if no more
 849                 * blocks or an error has been encountered.
 850                 */
 851                ret = cs_etm__get_data_block(etmq);
 852                if (ret <= 0)
 853                        goto out;
 854
 855                /*
 856                 * Run decoder on the trace block.  The decoder will stop when
 857                 * encountering a timestamp, a full packet queue or the end of
 858                 * trace for that block.
 859                 */
 860                ret = cs_etm__decode_data_block(etmq);
 861                if (ret)
 862                        goto out;
 863
 864                /*
 865                 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
 866                 * the timestamp calculation for us.
 867                 */
 868                timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
 869
 870                /* We found a timestamp, no need to continue. */
 871                if (timestamp)
 872                        break;
 873
 874                /*
 875                 * We didn't find a timestamp so empty all the traceid packet
 876                 * queues before looking for another timestamp packet, either
 877                 * in the current data block or a new one.  Packets that were
 878                 * just decoded are useless since no timestamp has been
 879                 * associated with them.  As such simply discard them.
 880                 */
 881                cs_etm__clear_all_packet_queues(etmq);
 882        }
 883
 884        /*
 885         * We have a timestamp.  Add it to the min heap to reflect when
 886         * instructions conveyed by the range packets of this traceID queue
 887         * started to execute.  Once the same has been done for all the traceID
 888         * queues of each etmq, redenring and decoding can start in
 889         * chronological order.
 890         *
 891         * Note that packets decoded above are still in the traceID's packet
 892         * queue and will be processed in cs_etm__process_queues().
 893         */
 894        cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
 895        ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
 896out:
 897        return ret;
 898}
 899
 900static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
 901{
 902        unsigned int i;
 903        int ret;
 904
 905        if (!etm->kernel_start)
 906                etm->kernel_start = machine__kernel_start(etm->machine);
 907
 908        for (i = 0; i < etm->queues.nr_queues; i++) {
 909                ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
 910                if (ret)
 911                        return ret;
 912        }
 913
 914        return 0;
 915}
 916
 917static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
 918{
 919        if (etm->queues.new_data) {
 920                etm->queues.new_data = false;
 921                return cs_etm__setup_queues(etm);
 922        }
 923
 924        return 0;
 925}
 926
 927static inline
 928void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
 929                                 struct cs_etm_traceid_queue *tidq)
 930{
 931        struct branch_stack *bs_src = tidq->last_branch_rb;
 932        struct branch_stack *bs_dst = tidq->last_branch;
 933        size_t nr = 0;
 934
 935        /*
 936         * Set the number of records before early exit: ->nr is used to
 937         * determine how many branches to copy from ->entries.
 938         */
 939        bs_dst->nr = bs_src->nr;
 940
 941        /*
 942         * Early exit when there is nothing to copy.
 943         */
 944        if (!bs_src->nr)
 945                return;
 946
 947        /*
 948         * As bs_src->entries is a circular buffer, we need to copy from it in
 949         * two steps.  First, copy the branches from the most recently inserted
 950         * branch ->last_branch_pos until the end of bs_src->entries buffer.
 951         */
 952        nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
 953        memcpy(&bs_dst->entries[0],
 954               &bs_src->entries[tidq->last_branch_pos],
 955               sizeof(struct branch_entry) * nr);
 956
 957        /*
 958         * If we wrapped around at least once, the branches from the beginning
 959         * of the bs_src->entries buffer and until the ->last_branch_pos element
 960         * are older valid branches: copy them over.  The total number of
 961         * branches copied over will be equal to the number of branches asked by
 962         * the user in last_branch_sz.
 963         */
 964        if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
 965                memcpy(&bs_dst->entries[nr],
 966                       &bs_src->entries[0],
 967                       sizeof(struct branch_entry) * tidq->last_branch_pos);
 968        }
 969}
 970
 971static inline
 972void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
 973{
 974        tidq->last_branch_pos = 0;
 975        tidq->last_branch_rb->nr = 0;
 976}
 977
 978static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
 979                                         u8 trace_chan_id, u64 addr)
 980{
 981        u8 instrBytes[2];
 982
 983        cs_etm__mem_access(etmq, trace_chan_id, addr,
 984                           ARRAY_SIZE(instrBytes), instrBytes);
 985        /*
 986         * T32 instruction size is indicated by bits[15:11] of the first
 987         * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
 988         * denote a 32-bit instruction.
 989         */
 990        return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
 991}
 992
 993static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
 994{
 995        /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
 996        if (packet->sample_type == CS_ETM_DISCONTINUITY)
 997                return 0;
 998
 999        return packet->start_addr;
1000}
1001
1002static inline
1003u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1004{
1005        /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1006        if (packet->sample_type == CS_ETM_DISCONTINUITY)
1007                return 0;
1008
1009        return packet->end_addr - packet->last_instr_size;
1010}
1011
1012static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1013                                     u64 trace_chan_id,
1014                                     const struct cs_etm_packet *packet,
1015                                     u64 offset)
1016{
1017        if (packet->isa == CS_ETM_ISA_T32) {
1018                u64 addr = packet->start_addr;
1019
1020                while (offset) {
1021                        addr += cs_etm__t32_instr_size(etmq,
1022                                                       trace_chan_id, addr);
1023                        offset--;
1024                }
1025                return addr;
1026        }
1027
1028        /* Assume a 4 byte instruction size (A32/A64) */
1029        return packet->start_addr + offset * 4;
1030}
1031
1032static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1033                                          struct cs_etm_traceid_queue *tidq)
1034{
1035        struct branch_stack *bs = tidq->last_branch_rb;
1036        struct branch_entry *be;
1037
1038        /*
1039         * The branches are recorded in a circular buffer in reverse
1040         * chronological order: we start recording from the last element of the
1041         * buffer down.  After writing the first element of the stack, move the
1042         * insert position back to the end of the buffer.
1043         */
1044        if (!tidq->last_branch_pos)
1045                tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1046
1047        tidq->last_branch_pos -= 1;
1048
1049        be       = &bs->entries[tidq->last_branch_pos];
1050        be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1051        be->to   = cs_etm__first_executed_instr(tidq->packet);
1052        /* No support for mispredict */
1053        be->flags.mispred = 0;
1054        be->flags.predicted = 1;
1055
1056        /*
1057         * Increment bs->nr until reaching the number of last branches asked by
1058         * the user on the command line.
1059         */
1060        if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1061                bs->nr += 1;
1062}
1063
1064static int cs_etm__inject_event(union perf_event *event,
1065                               struct perf_sample *sample, u64 type)
1066{
1067        event->header.size = perf_event__sample_event_size(sample, type, 0);
1068        return perf_event__synthesize_sample(event, type, 0, sample);
1069}
1070
1071
1072static int
1073cs_etm__get_trace(struct cs_etm_queue *etmq)
1074{
1075        struct auxtrace_buffer *aux_buffer = etmq->buffer;
1076        struct auxtrace_buffer *old_buffer = aux_buffer;
1077        struct auxtrace_queue *queue;
1078
1079        queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1080
1081        aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1082
1083        /* If no more data, drop the previous auxtrace_buffer and return */
1084        if (!aux_buffer) {
1085                if (old_buffer)
1086                        auxtrace_buffer__drop_data(old_buffer);
1087                etmq->buf_len = 0;
1088                return 0;
1089        }
1090
1091        etmq->buffer = aux_buffer;
1092
1093        /* If the aux_buffer doesn't have data associated, try to load it */
1094        if (!aux_buffer->data) {
1095                /* get the file desc associated with the perf data file */
1096                int fd = perf_data__fd(etmq->etm->session->data);
1097
1098                aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1099                if (!aux_buffer->data)
1100                        return -ENOMEM;
1101        }
1102
1103        /* If valid, drop the previous buffer */
1104        if (old_buffer)
1105                auxtrace_buffer__drop_data(old_buffer);
1106
1107        etmq->buf_used = 0;
1108        etmq->buf_len = aux_buffer->size;
1109        etmq->buf = aux_buffer->data;
1110
1111        return etmq->buf_len;
1112}
1113
1114static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1115                                    struct cs_etm_traceid_queue *tidq)
1116{
1117        if ((!tidq->thread) && (tidq->tid != -1))
1118                tidq->thread = machine__find_thread(etm->machine, -1,
1119                                                    tidq->tid);
1120
1121        if (tidq->thread)
1122                tidq->pid = tidq->thread->pid_;
1123}
1124
1125int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1126                         pid_t tid, u8 trace_chan_id)
1127{
1128        int cpu, err = -EINVAL;
1129        struct cs_etm_auxtrace *etm = etmq->etm;
1130        struct cs_etm_traceid_queue *tidq;
1131
1132        tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1133        if (!tidq)
1134                return err;
1135
1136        if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1137                return err;
1138
1139        err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1140        if (err)
1141                return err;
1142
1143        tidq->tid = tid;
1144        thread__zput(tidq->thread);
1145
1146        cs_etm__set_pid_tid_cpu(etm, tidq);
1147        return 0;
1148}
1149
1150bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1151{
1152        return !!etmq->etm->timeless_decoding;
1153}
1154
1155static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1156                              u64 trace_chan_id,
1157                              const struct cs_etm_packet *packet,
1158                              struct perf_sample *sample)
1159{
1160        /*
1161         * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1162         * packet, so directly bail out with 'insn_len' = 0.
1163         */
1164        if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1165                sample->insn_len = 0;
1166                return;
1167        }
1168
1169        /*
1170         * T32 instruction size might be 32-bit or 16-bit, decide by calling
1171         * cs_etm__t32_instr_size().
1172         */
1173        if (packet->isa == CS_ETM_ISA_T32)
1174                sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1175                                                          sample->ip);
1176        /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1177        else
1178                sample->insn_len = 4;
1179
1180        cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1181                           sample->insn_len, (void *)sample->insn);
1182}
1183
1184static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1185                                            struct cs_etm_traceid_queue *tidq,
1186                                            u64 addr, u64 period)
1187{
1188        int ret = 0;
1189        struct cs_etm_auxtrace *etm = etmq->etm;
1190        union perf_event *event = tidq->event_buf;
1191        struct perf_sample sample = {.ip = 0,};
1192
1193        event->sample.header.type = PERF_RECORD_SAMPLE;
1194        event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1195        event->sample.header.size = sizeof(struct perf_event_header);
1196
1197        sample.ip = addr;
1198        sample.pid = tidq->pid;
1199        sample.tid = tidq->tid;
1200        sample.id = etmq->etm->instructions_id;
1201        sample.stream_id = etmq->etm->instructions_id;
1202        sample.period = period;
1203        sample.cpu = tidq->packet->cpu;
1204        sample.flags = tidq->prev_packet->flags;
1205        sample.cpumode = event->sample.header.misc;
1206
1207        cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1208
1209        if (etm->synth_opts.last_branch)
1210                sample.branch_stack = tidq->last_branch;
1211
1212        if (etm->synth_opts.inject) {
1213                ret = cs_etm__inject_event(event, &sample,
1214                                           etm->instructions_sample_type);
1215                if (ret)
1216                        return ret;
1217        }
1218
1219        ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1220
1221        if (ret)
1222                pr_err(
1223                        "CS ETM Trace: failed to deliver instruction event, error %d\n",
1224                        ret);
1225
1226        return ret;
1227}
1228
1229/*
1230 * The cs etm packet encodes an instruction range between a branch target
1231 * and the next taken branch. Generate sample accordingly.
1232 */
1233static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1234                                       struct cs_etm_traceid_queue *tidq)
1235{
1236        int ret = 0;
1237        struct cs_etm_auxtrace *etm = etmq->etm;
1238        struct perf_sample sample = {.ip = 0,};
1239        union perf_event *event = tidq->event_buf;
1240        struct dummy_branch_stack {
1241                u64                     nr;
1242                u64                     hw_idx;
1243                struct branch_entry     entries;
1244        } dummy_bs;
1245        u64 ip;
1246
1247        ip = cs_etm__last_executed_instr(tidq->prev_packet);
1248
1249        event->sample.header.type = PERF_RECORD_SAMPLE;
1250        event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1251        event->sample.header.size = sizeof(struct perf_event_header);
1252
1253        sample.ip = ip;
1254        sample.pid = tidq->pid;
1255        sample.tid = tidq->tid;
1256        sample.addr = cs_etm__first_executed_instr(tidq->packet);
1257        sample.id = etmq->etm->branches_id;
1258        sample.stream_id = etmq->etm->branches_id;
1259        sample.period = 1;
1260        sample.cpu = tidq->packet->cpu;
1261        sample.flags = tidq->prev_packet->flags;
1262        sample.cpumode = event->sample.header.misc;
1263
1264        cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1265                          &sample);
1266
1267        /*
1268         * perf report cannot handle events without a branch stack
1269         */
1270        if (etm->synth_opts.last_branch) {
1271                dummy_bs = (struct dummy_branch_stack){
1272                        .nr = 1,
1273                        .hw_idx = -1ULL,
1274                        .entries = {
1275                                .from = sample.ip,
1276                                .to = sample.addr,
1277                        },
1278                };
1279                sample.branch_stack = (struct branch_stack *)&dummy_bs;
1280        }
1281
1282        if (etm->synth_opts.inject) {
1283                ret = cs_etm__inject_event(event, &sample,
1284                                           etm->branches_sample_type);
1285                if (ret)
1286                        return ret;
1287        }
1288
1289        ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1290
1291        if (ret)
1292                pr_err(
1293                "CS ETM Trace: failed to deliver instruction event, error %d\n",
1294                ret);
1295
1296        return ret;
1297}
1298
1299struct cs_etm_synth {
1300        struct perf_tool dummy_tool;
1301        struct perf_session *session;
1302};
1303
1304static int cs_etm__event_synth(struct perf_tool *tool,
1305                               union perf_event *event,
1306                               struct perf_sample *sample __maybe_unused,
1307                               struct machine *machine __maybe_unused)
1308{
1309        struct cs_etm_synth *cs_etm_synth =
1310                      container_of(tool, struct cs_etm_synth, dummy_tool);
1311
1312        return perf_session__deliver_synth_event(cs_etm_synth->session,
1313                                                 event, NULL);
1314}
1315
1316static int cs_etm__synth_event(struct perf_session *session,
1317                               struct perf_event_attr *attr, u64 id)
1318{
1319        struct cs_etm_synth cs_etm_synth;
1320
1321        memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1322        cs_etm_synth.session = session;
1323
1324        return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1325                                           &id, cs_etm__event_synth);
1326}
1327
1328static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1329                                struct perf_session *session)
1330{
1331        struct evlist *evlist = session->evlist;
1332        struct evsel *evsel;
1333        struct perf_event_attr attr;
1334        bool found = false;
1335        u64 id;
1336        int err;
1337
1338        evlist__for_each_entry(evlist, evsel) {
1339                if (evsel->core.attr.type == etm->pmu_type) {
1340                        found = true;
1341                        break;
1342                }
1343        }
1344
1345        if (!found) {
1346                pr_debug("No selected events with CoreSight Trace data\n");
1347                return 0;
1348        }
1349
1350        memset(&attr, 0, sizeof(struct perf_event_attr));
1351        attr.size = sizeof(struct perf_event_attr);
1352        attr.type = PERF_TYPE_HARDWARE;
1353        attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1354        attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1355                            PERF_SAMPLE_PERIOD;
1356        if (etm->timeless_decoding)
1357                attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1358        else
1359                attr.sample_type |= PERF_SAMPLE_TIME;
1360
1361        attr.exclude_user = evsel->core.attr.exclude_user;
1362        attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1363        attr.exclude_hv = evsel->core.attr.exclude_hv;
1364        attr.exclude_host = evsel->core.attr.exclude_host;
1365        attr.exclude_guest = evsel->core.attr.exclude_guest;
1366        attr.sample_id_all = evsel->core.attr.sample_id_all;
1367        attr.read_format = evsel->core.attr.read_format;
1368
1369        /* create new id val to be a fixed offset from evsel id */
1370        id = evsel->core.id[0] + 1000000000;
1371
1372        if (!id)
1373                id = 1;
1374
1375        if (etm->synth_opts.branches) {
1376                attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1377                attr.sample_period = 1;
1378                attr.sample_type |= PERF_SAMPLE_ADDR;
1379                err = cs_etm__synth_event(session, &attr, id);
1380                if (err)
1381                        return err;
1382                etm->sample_branches = true;
1383                etm->branches_sample_type = attr.sample_type;
1384                etm->branches_id = id;
1385                id += 1;
1386                attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1387        }
1388
1389        if (etm->synth_opts.last_branch) {
1390                attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1391                /*
1392                 * We don't use the hardware index, but the sample generation
1393                 * code uses the new format branch_stack with this field,
1394                 * so the event attributes must indicate that it's present.
1395                 */
1396                attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1397        }
1398
1399        if (etm->synth_opts.instructions) {
1400                attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1401                attr.sample_period = etm->synth_opts.period;
1402                etm->instructions_sample_period = attr.sample_period;
1403                err = cs_etm__synth_event(session, &attr, id);
1404                if (err)
1405                        return err;
1406                etm->sample_instructions = true;
1407                etm->instructions_sample_type = attr.sample_type;
1408                etm->instructions_id = id;
1409                id += 1;
1410        }
1411
1412        return 0;
1413}
1414
1415static int cs_etm__sample(struct cs_etm_queue *etmq,
1416                          struct cs_etm_traceid_queue *tidq)
1417{
1418        struct cs_etm_auxtrace *etm = etmq->etm;
1419        int ret;
1420        u8 trace_chan_id = tidq->trace_chan_id;
1421        u64 instrs_prev;
1422
1423        /* Get instructions remainder from previous packet */
1424        instrs_prev = tidq->period_instructions;
1425
1426        tidq->period_instructions += tidq->packet->instr_count;
1427
1428        /*
1429         * Record a branch when the last instruction in
1430         * PREV_PACKET is a branch.
1431         */
1432        if (etm->synth_opts.last_branch &&
1433            tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1434            tidq->prev_packet->last_instr_taken_branch)
1435                cs_etm__update_last_branch_rb(etmq, tidq);
1436
1437        if (etm->sample_instructions &&
1438            tidq->period_instructions >= etm->instructions_sample_period) {
1439                /*
1440                 * Emit instruction sample periodically
1441                 * TODO: allow period to be defined in cycles and clock time
1442                 */
1443
1444                /*
1445                 * Below diagram demonstrates the instruction samples
1446                 * generation flows:
1447                 *
1448                 *    Instrs     Instrs       Instrs       Instrs
1449                 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1450                 *    |            |            |            |
1451                 *    V            V            V            V
1452                 *   --------------------------------------------------
1453                 *            ^                                  ^
1454                 *            |                                  |
1455                 *         Period                             Period
1456                 *    instructions(Pi)                   instructions(Pi')
1457                 *
1458                 *            |                                  |
1459                 *            \---------------- -----------------/
1460                 *                             V
1461                 *                 tidq->packet->instr_count
1462                 *
1463                 * Instrs Sample(n...) are the synthesised samples occurring
1464                 * every etm->instructions_sample_period instructions - as
1465                 * defined on the perf command line.  Sample(n) is being the
1466                 * last sample before the current etm packet, n+1 to n+3
1467                 * samples are generated from the current etm packet.
1468                 *
1469                 * tidq->packet->instr_count represents the number of
1470                 * instructions in the current etm packet.
1471                 *
1472                 * Period instructions (Pi) contains the the number of
1473                 * instructions executed after the sample point(n) from the
1474                 * previous etm packet.  This will always be less than
1475                 * etm->instructions_sample_period.
1476                 *
1477                 * When generate new samples, it combines with two parts
1478                 * instructions, one is the tail of the old packet and another
1479                 * is the head of the new coming packet, to generate
1480                 * sample(n+1); sample(n+2) and sample(n+3) consume the
1481                 * instructions with sample period.  After sample(n+3), the rest
1482                 * instructions will be used by later packet and it is assigned
1483                 * to tidq->period_instructions for next round calculation.
1484                 */
1485
1486                /*
1487                 * Get the initial offset into the current packet instructions;
1488                 * entry conditions ensure that instrs_prev is less than
1489                 * etm->instructions_sample_period.
1490                 */
1491                u64 offset = etm->instructions_sample_period - instrs_prev;
1492                u64 addr;
1493
1494                /* Prepare last branches for instruction sample */
1495                if (etm->synth_opts.last_branch)
1496                        cs_etm__copy_last_branch_rb(etmq, tidq);
1497
1498                while (tidq->period_instructions >=
1499                                etm->instructions_sample_period) {
1500                        /*
1501                         * Calculate the address of the sampled instruction (-1
1502                         * as sample is reported as though instruction has just
1503                         * been executed, but PC has not advanced to next
1504                         * instruction)
1505                         */
1506                        addr = cs_etm__instr_addr(etmq, trace_chan_id,
1507                                                  tidq->packet, offset - 1);
1508                        ret = cs_etm__synth_instruction_sample(
1509                                etmq, tidq, addr,
1510                                etm->instructions_sample_period);
1511                        if (ret)
1512                                return ret;
1513
1514                        offset += etm->instructions_sample_period;
1515                        tidq->period_instructions -=
1516                                etm->instructions_sample_period;
1517                }
1518        }
1519
1520        if (etm->sample_branches) {
1521                bool generate_sample = false;
1522
1523                /* Generate sample for tracing on packet */
1524                if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1525                        generate_sample = true;
1526
1527                /* Generate sample for branch taken packet */
1528                if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1529                    tidq->prev_packet->last_instr_taken_branch)
1530                        generate_sample = true;
1531
1532                if (generate_sample) {
1533                        ret = cs_etm__synth_branch_sample(etmq, tidq);
1534                        if (ret)
1535                                return ret;
1536                }
1537        }
1538
1539        cs_etm__packet_swap(etm, tidq);
1540
1541        return 0;
1542}
1543
1544static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1545{
1546        /*
1547         * When the exception packet is inserted, whether the last instruction
1548         * in previous range packet is taken branch or not, we need to force
1549         * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1550         * to generate branch sample for the instruction range before the
1551         * exception is trapped to kernel or before the exception returning.
1552         *
1553         * The exception packet includes the dummy address values, so don't
1554         * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1555         * for generating instruction and branch samples.
1556         */
1557        if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1558                tidq->prev_packet->last_instr_taken_branch = true;
1559
1560        return 0;
1561}
1562
1563static int cs_etm__flush(struct cs_etm_queue *etmq,
1564                         struct cs_etm_traceid_queue *tidq)
1565{
1566        int err = 0;
1567        struct cs_etm_auxtrace *etm = etmq->etm;
1568
1569        /* Handle start tracing packet */
1570        if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1571                goto swap_packet;
1572
1573        if (etmq->etm->synth_opts.last_branch &&
1574            tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1575                u64 addr;
1576
1577                /* Prepare last branches for instruction sample */
1578                cs_etm__copy_last_branch_rb(etmq, tidq);
1579
1580                /*
1581                 * Generate a last branch event for the branches left in the
1582                 * circular buffer at the end of the trace.
1583                 *
1584                 * Use the address of the end of the last reported execution
1585                 * range
1586                 */
1587                addr = cs_etm__last_executed_instr(tidq->prev_packet);
1588
1589                err = cs_etm__synth_instruction_sample(
1590                        etmq, tidq, addr,
1591                        tidq->period_instructions);
1592                if (err)
1593                        return err;
1594
1595                tidq->period_instructions = 0;
1596
1597        }
1598
1599        if (etm->sample_branches &&
1600            tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1601                err = cs_etm__synth_branch_sample(etmq, tidq);
1602                if (err)
1603                        return err;
1604        }
1605
1606swap_packet:
1607        cs_etm__packet_swap(etm, tidq);
1608
1609        /* Reset last branches after flush the trace */
1610        if (etm->synth_opts.last_branch)
1611                cs_etm__reset_last_branch_rb(tidq);
1612
1613        return err;
1614}
1615
1616static int cs_etm__end_block(struct cs_etm_queue *etmq,
1617                             struct cs_etm_traceid_queue *tidq)
1618{
1619        int err;
1620
1621        /*
1622         * It has no new packet coming and 'etmq->packet' contains the stale
1623         * packet which was set at the previous time with packets swapping;
1624         * so skip to generate branch sample to avoid stale packet.
1625         *
1626         * For this case only flush branch stack and generate a last branch
1627         * event for the branches left in the circular buffer at the end of
1628         * the trace.
1629         */
1630        if (etmq->etm->synth_opts.last_branch &&
1631            tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1632                u64 addr;
1633
1634                /* Prepare last branches for instruction sample */
1635                cs_etm__copy_last_branch_rb(etmq, tidq);
1636
1637                /*
1638                 * Use the address of the end of the last reported execution
1639                 * range.
1640                 */
1641                addr = cs_etm__last_executed_instr(tidq->prev_packet);
1642
1643                err = cs_etm__synth_instruction_sample(
1644                        etmq, tidq, addr,
1645                        tidq->period_instructions);
1646                if (err)
1647                        return err;
1648
1649                tidq->period_instructions = 0;
1650        }
1651
1652        return 0;
1653}
1654/*
1655 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1656 *                         if need be.
1657 * Returns:     < 0     if error
1658 *              = 0     if no more auxtrace_buffer to read
1659 *              > 0     if the current buffer isn't empty yet
1660 */
1661static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1662{
1663        int ret;
1664
1665        if (!etmq->buf_len) {
1666                ret = cs_etm__get_trace(etmq);
1667                if (ret <= 0)
1668                        return ret;
1669                /*
1670                 * We cannot assume consecutive blocks in the data file
1671                 * are contiguous, reset the decoder to force re-sync.
1672                 */
1673                ret = cs_etm_decoder__reset(etmq->decoder);
1674                if (ret)
1675                        return ret;
1676        }
1677
1678        return etmq->buf_len;
1679}
1680
1681static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1682                                 struct cs_etm_packet *packet,
1683                                 u64 end_addr)
1684{
1685        /* Initialise to keep compiler happy */
1686        u16 instr16 = 0;
1687        u32 instr32 = 0;
1688        u64 addr;
1689
1690        switch (packet->isa) {
1691        case CS_ETM_ISA_T32:
1692                /*
1693                 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1694                 *
1695                 *  b'15         b'8
1696                 * +-----------------+--------+
1697                 * | 1 1 0 1 1 1 1 1 |  imm8  |
1698                 * +-----------------+--------+
1699                 *
1700                 * According to the specification, it only defines SVC for T32
1701                 * with 16 bits instruction and has no definition for 32bits;
1702                 * so below only read 2 bytes as instruction size for T32.
1703                 */
1704                addr = end_addr - 2;
1705                cs_etm__mem_access(etmq, trace_chan_id, addr,
1706                                   sizeof(instr16), (u8 *)&instr16);
1707                if ((instr16 & 0xFF00) == 0xDF00)
1708                        return true;
1709
1710                break;
1711        case CS_ETM_ISA_A32:
1712                /*
1713                 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1714                 *
1715                 *  b'31 b'28 b'27 b'24
1716                 * +---------+---------+-------------------------+
1717                 * |  !1111  | 1 1 1 1 |        imm24            |
1718                 * +---------+---------+-------------------------+
1719                 */
1720                addr = end_addr - 4;
1721                cs_etm__mem_access(etmq, trace_chan_id, addr,
1722                                   sizeof(instr32), (u8 *)&instr32);
1723                if ((instr32 & 0x0F000000) == 0x0F000000 &&
1724                    (instr32 & 0xF0000000) != 0xF0000000)
1725                        return true;
1726
1727                break;
1728        case CS_ETM_ISA_A64:
1729                /*
1730                 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1731                 *
1732                 *  b'31               b'21           b'4     b'0
1733                 * +-----------------------+---------+-----------+
1734                 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1735                 * +-----------------------+---------+-----------+
1736                 */
1737                addr = end_addr - 4;
1738                cs_etm__mem_access(etmq, trace_chan_id, addr,
1739                                   sizeof(instr32), (u8 *)&instr32);
1740                if ((instr32 & 0xFFE0001F) == 0xd4000001)
1741                        return true;
1742
1743                break;
1744        case CS_ETM_ISA_UNKNOWN:
1745        default:
1746                break;
1747        }
1748
1749        return false;
1750}
1751
1752static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1753                               struct cs_etm_traceid_queue *tidq, u64 magic)
1754{
1755        u8 trace_chan_id = tidq->trace_chan_id;
1756        struct cs_etm_packet *packet = tidq->packet;
1757        struct cs_etm_packet *prev_packet = tidq->prev_packet;
1758
1759        if (magic == __perf_cs_etmv3_magic)
1760                if (packet->exception_number == CS_ETMV3_EXC_SVC)
1761                        return true;
1762
1763        /*
1764         * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1765         * HVC cases; need to check if it's SVC instruction based on
1766         * packet address.
1767         */
1768        if (magic == __perf_cs_etmv4_magic) {
1769                if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1770                    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1771                                         prev_packet->end_addr))
1772                        return true;
1773        }
1774
1775        return false;
1776}
1777
1778static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1779                                       u64 magic)
1780{
1781        struct cs_etm_packet *packet = tidq->packet;
1782
1783        if (magic == __perf_cs_etmv3_magic)
1784                if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1785                    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1786                    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1787                    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1788                    packet->exception_number == CS_ETMV3_EXC_FIQ)
1789                        return true;
1790
1791        if (magic == __perf_cs_etmv4_magic)
1792                if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1793                    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1794                    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1795                    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1796                    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1797                    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1798                    packet->exception_number == CS_ETMV4_EXC_FIQ)
1799                        return true;
1800
1801        return false;
1802}
1803
1804static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1805                                      struct cs_etm_traceid_queue *tidq,
1806                                      u64 magic)
1807{
1808        u8 trace_chan_id = tidq->trace_chan_id;
1809        struct cs_etm_packet *packet = tidq->packet;
1810        struct cs_etm_packet *prev_packet = tidq->prev_packet;
1811
1812        if (magic == __perf_cs_etmv3_magic)
1813                if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1814                    packet->exception_number == CS_ETMV3_EXC_HYP ||
1815                    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1816                    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1817                    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1818                    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1819                    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1820                        return true;
1821
1822        if (magic == __perf_cs_etmv4_magic) {
1823                if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1824                    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1825                    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1826                    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1827                        return true;
1828
1829                /*
1830                 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1831                 * (SMC, HVC) are taken as sync exceptions.
1832                 */
1833                if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1834                    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1835                                          prev_packet->end_addr))
1836                        return true;
1837
1838                /*
1839                 * ETMv4 has 5 bits for exception number; if the numbers
1840                 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1841                 * they are implementation defined exceptions.
1842                 *
1843                 * For this case, simply take it as sync exception.
1844                 */
1845                if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1846                    packet->exception_number <= CS_ETMV4_EXC_END)
1847                        return true;
1848        }
1849
1850        return false;
1851}
1852
1853static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1854                                    struct cs_etm_traceid_queue *tidq)
1855{
1856        struct cs_etm_packet *packet = tidq->packet;
1857        struct cs_etm_packet *prev_packet = tidq->prev_packet;
1858        u8 trace_chan_id = tidq->trace_chan_id;
1859        u64 magic;
1860        int ret;
1861
1862        switch (packet->sample_type) {
1863        case CS_ETM_RANGE:
1864                /*
1865                 * Immediate branch instruction without neither link nor
1866                 * return flag, it's normal branch instruction within
1867                 * the function.
1868                 */
1869                if (packet->last_instr_type == OCSD_INSTR_BR &&
1870                    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1871                        packet->flags = PERF_IP_FLAG_BRANCH;
1872
1873                        if (packet->last_instr_cond)
1874                                packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1875                }
1876
1877                /*
1878                 * Immediate branch instruction with link (e.g. BL), this is
1879                 * branch instruction for function call.
1880                 */
1881                if (packet->last_instr_type == OCSD_INSTR_BR &&
1882                    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1883                        packet->flags = PERF_IP_FLAG_BRANCH |
1884                                        PERF_IP_FLAG_CALL;
1885
1886                /*
1887                 * Indirect branch instruction with link (e.g. BLR), this is
1888                 * branch instruction for function call.
1889                 */
1890                if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1891                    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1892                        packet->flags = PERF_IP_FLAG_BRANCH |
1893                                        PERF_IP_FLAG_CALL;
1894
1895                /*
1896                 * Indirect branch instruction with subtype of
1897                 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1898                 * function return for A32/T32.
1899                 */
1900                if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1901                    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1902                        packet->flags = PERF_IP_FLAG_BRANCH |
1903                                        PERF_IP_FLAG_RETURN;
1904
1905                /*
1906                 * Indirect branch instruction without link (e.g. BR), usually
1907                 * this is used for function return, especially for functions
1908                 * within dynamic link lib.
1909                 */
1910                if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1911                    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1912                        packet->flags = PERF_IP_FLAG_BRANCH |
1913                                        PERF_IP_FLAG_RETURN;
1914
1915                /* Return instruction for function return. */
1916                if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1917                    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1918                        packet->flags = PERF_IP_FLAG_BRANCH |
1919                                        PERF_IP_FLAG_RETURN;
1920
1921                /*
1922                 * Decoder might insert a discontinuity in the middle of
1923                 * instruction packets, fixup prev_packet with flag
1924                 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1925                 */
1926                if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1927                        prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1928                                              PERF_IP_FLAG_TRACE_BEGIN;
1929
1930                /*
1931                 * If the previous packet is an exception return packet
1932                 * and the return address just follows SVC instruction,
1933                 * it needs to calibrate the previous packet sample flags
1934                 * as PERF_IP_FLAG_SYSCALLRET.
1935                 */
1936                if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1937                                           PERF_IP_FLAG_RETURN |
1938                                           PERF_IP_FLAG_INTERRUPT) &&
1939                    cs_etm__is_svc_instr(etmq, trace_chan_id,
1940                                         packet, packet->start_addr))
1941                        prev_packet->flags = PERF_IP_FLAG_BRANCH |
1942                                             PERF_IP_FLAG_RETURN |
1943                                             PERF_IP_FLAG_SYSCALLRET;
1944                break;
1945        case CS_ETM_DISCONTINUITY:
1946                /*
1947                 * The trace is discontinuous, if the previous packet is
1948                 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1949                 * for previous packet.
1950                 */
1951                if (prev_packet->sample_type == CS_ETM_RANGE)
1952                        prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1953                                              PERF_IP_FLAG_TRACE_END;
1954                break;
1955        case CS_ETM_EXCEPTION:
1956                ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1957                if (ret)
1958                        return ret;
1959
1960                /* The exception is for system call. */
1961                if (cs_etm__is_syscall(etmq, tidq, magic))
1962                        packet->flags = PERF_IP_FLAG_BRANCH |
1963                                        PERF_IP_FLAG_CALL |
1964                                        PERF_IP_FLAG_SYSCALLRET;
1965                /*
1966                 * The exceptions are triggered by external signals from bus,
1967                 * interrupt controller, debug module, PE reset or halt.
1968                 */
1969                else if (cs_etm__is_async_exception(tidq, magic))
1970                        packet->flags = PERF_IP_FLAG_BRANCH |
1971                                        PERF_IP_FLAG_CALL |
1972                                        PERF_IP_FLAG_ASYNC |
1973                                        PERF_IP_FLAG_INTERRUPT;
1974                /*
1975                 * Otherwise, exception is caused by trap, instruction &
1976                 * data fault, or alignment errors.
1977                 */
1978                else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1979                        packet->flags = PERF_IP_FLAG_BRANCH |
1980                                        PERF_IP_FLAG_CALL |
1981                                        PERF_IP_FLAG_INTERRUPT;
1982
1983                /*
1984                 * When the exception packet is inserted, since exception
1985                 * packet is not used standalone for generating samples
1986                 * and it's affiliation to the previous instruction range
1987                 * packet; so set previous range packet flags to tell perf
1988                 * it is an exception taken branch.
1989                 */
1990                if (prev_packet->sample_type == CS_ETM_RANGE)
1991                        prev_packet->flags = packet->flags;
1992                break;
1993        case CS_ETM_EXCEPTION_RET:
1994                /*
1995                 * When the exception return packet is inserted, since
1996                 * exception return packet is not used standalone for
1997                 * generating samples and it's affiliation to the previous
1998                 * instruction range packet; so set previous range packet
1999                 * flags to tell perf it is an exception return branch.
2000                 *
2001                 * The exception return can be for either system call or
2002                 * other exception types; unfortunately the packet doesn't
2003                 * contain exception type related info so we cannot decide
2004                 * the exception type purely based on exception return packet.
2005                 * If we record the exception number from exception packet and
2006                 * reuse it for exception return packet, this is not reliable
2007                 * due the trace can be discontinuity or the interrupt can
2008                 * be nested, thus the recorded exception number cannot be
2009                 * used for exception return packet for these two cases.
2010                 *
2011                 * For exception return packet, we only need to distinguish the
2012                 * packet is for system call or for other types.  Thus the
2013                 * decision can be deferred when receive the next packet which
2014                 * contains the return address, based on the return address we
2015                 * can read out the previous instruction and check if it's a
2016                 * system call instruction and then calibrate the sample flag
2017                 * as needed.
2018                 */
2019                if (prev_packet->sample_type == CS_ETM_RANGE)
2020                        prev_packet->flags = PERF_IP_FLAG_BRANCH |
2021                                             PERF_IP_FLAG_RETURN |
2022                                             PERF_IP_FLAG_INTERRUPT;
2023                break;
2024        case CS_ETM_EMPTY:
2025        default:
2026                break;
2027        }
2028
2029        return 0;
2030}
2031
2032static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2033{
2034        int ret = 0;
2035        size_t processed = 0;
2036
2037        /*
2038         * Packets are decoded and added to the decoder's packet queue
2039         * until the decoder packet processing callback has requested that
2040         * processing stops or there is nothing left in the buffer.  Normal
2041         * operations that stop processing are a timestamp packet or a full
2042         * decoder buffer queue.
2043         */
2044        ret = cs_etm_decoder__process_data_block(etmq->decoder,
2045                                                 etmq->offset,
2046                                                 &etmq->buf[etmq->buf_used],
2047                                                 etmq->buf_len,
2048                                                 &processed);
2049        if (ret)
2050                goto out;
2051
2052        etmq->offset += processed;
2053        etmq->buf_used += processed;
2054        etmq->buf_len -= processed;
2055
2056out:
2057        return ret;
2058}
2059
2060static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2061                                         struct cs_etm_traceid_queue *tidq)
2062{
2063        int ret;
2064        struct cs_etm_packet_queue *packet_queue;
2065
2066        packet_queue = &tidq->packet_queue;
2067
2068        /* Process each packet in this chunk */
2069        while (1) {
2070                ret = cs_etm_decoder__get_packet(packet_queue,
2071                                                 tidq->packet);
2072                if (ret <= 0)
2073                        /*
2074                         * Stop processing this chunk on
2075                         * end of data or error
2076                         */
2077                        break;
2078
2079                /*
2080                 * Since packet addresses are swapped in packet
2081                 * handling within below switch() statements,
2082                 * thus setting sample flags must be called
2083                 * prior to switch() statement to use address
2084                 * information before packets swapping.
2085                 */
2086                ret = cs_etm__set_sample_flags(etmq, tidq);
2087                if (ret < 0)
2088                        break;
2089
2090                switch (tidq->packet->sample_type) {
2091                case CS_ETM_RANGE:
2092                        /*
2093                         * If the packet contains an instruction
2094                         * range, generate instruction sequence
2095                         * events.
2096                         */
2097                        cs_etm__sample(etmq, tidq);
2098                        break;
2099                case CS_ETM_EXCEPTION:
2100                case CS_ETM_EXCEPTION_RET:
2101                        /*
2102                         * If the exception packet is coming,
2103                         * make sure the previous instruction
2104                         * range packet to be handled properly.
2105                         */
2106                        cs_etm__exception(tidq);
2107                        break;
2108                case CS_ETM_DISCONTINUITY:
2109                        /*
2110                         * Discontinuity in trace, flush
2111                         * previous branch stack
2112                         */
2113                        cs_etm__flush(etmq, tidq);
2114                        break;
2115                case CS_ETM_EMPTY:
2116                        /*
2117                         * Should not receive empty packet,
2118                         * report error.
2119                         */
2120                        pr_err("CS ETM Trace: empty packet\n");
2121                        return -EINVAL;
2122                default:
2123                        break;
2124                }
2125        }
2126
2127        return ret;
2128}
2129
2130static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2131{
2132        int idx;
2133        struct int_node *inode;
2134        struct cs_etm_traceid_queue *tidq;
2135        struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2136
2137        intlist__for_each_entry(inode, traceid_queues_list) {
2138                idx = (int)(intptr_t)inode->priv;
2139                tidq = etmq->traceid_queues[idx];
2140
2141                /* Ignore return value */
2142                cs_etm__process_traceid_queue(etmq, tidq);
2143
2144                /*
2145                 * Generate an instruction sample with the remaining
2146                 * branchstack entries.
2147                 */
2148                cs_etm__flush(etmq, tidq);
2149        }
2150}
2151
2152static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2153{
2154        int err = 0;
2155        struct cs_etm_traceid_queue *tidq;
2156
2157        tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2158        if (!tidq)
2159                return -EINVAL;
2160
2161        /* Go through each buffer in the queue and decode them one by one */
2162        while (1) {
2163                err = cs_etm__get_data_block(etmq);
2164                if (err <= 0)
2165                        return err;
2166
2167                /* Run trace decoder until buffer consumed or end of trace */
2168                do {
2169                        err = cs_etm__decode_data_block(etmq);
2170                        if (err)
2171                                return err;
2172
2173                        /*
2174                         * Process each packet in this chunk, nothing to do if
2175                         * an error occurs other than hoping the next one will
2176                         * be better.
2177                         */
2178                        err = cs_etm__process_traceid_queue(etmq, tidq);
2179
2180                } while (etmq->buf_len);
2181
2182                if (err == 0)
2183                        /* Flush any remaining branch stack entries */
2184                        err = cs_etm__end_block(etmq, tidq);
2185        }
2186
2187        return err;
2188}
2189
2190static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2191                                           pid_t tid)
2192{
2193        unsigned int i;
2194        struct auxtrace_queues *queues = &etm->queues;
2195
2196        for (i = 0; i < queues->nr_queues; i++) {
2197                struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2198                struct cs_etm_queue *etmq = queue->priv;
2199                struct cs_etm_traceid_queue *tidq;
2200
2201                if (!etmq)
2202                        continue;
2203
2204                tidq = cs_etm__etmq_get_traceid_queue(etmq,
2205                                                CS_ETM_PER_THREAD_TRACEID);
2206
2207                if (!tidq)
2208                        continue;
2209
2210                if ((tid == -1) || (tidq->tid == tid)) {
2211                        cs_etm__set_pid_tid_cpu(etm, tidq);
2212                        cs_etm__run_decoder(etmq);
2213                }
2214        }
2215
2216        return 0;
2217}
2218
2219static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2220{
2221        int ret = 0;
2222        unsigned int cs_queue_nr, queue_nr;
2223        u8 trace_chan_id;
2224        u64 timestamp;
2225        struct auxtrace_queue *queue;
2226        struct cs_etm_queue *etmq;
2227        struct cs_etm_traceid_queue *tidq;
2228
2229        while (1) {
2230                if (!etm->heap.heap_cnt)
2231                        goto out;
2232
2233                /* Take the entry at the top of the min heap */
2234                cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2235                queue_nr = TO_QUEUE_NR(cs_queue_nr);
2236                trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2237                queue = &etm->queues.queue_array[queue_nr];
2238                etmq = queue->priv;
2239
2240                /*
2241                 * Remove the top entry from the heap since we are about
2242                 * to process it.
2243                 */
2244                auxtrace_heap__pop(&etm->heap);
2245
2246                tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2247                if (!tidq) {
2248                        /*
2249                         * No traceID queue has been allocated for this traceID,
2250                         * which means something somewhere went very wrong.  No
2251                         * other choice than simply exit.
2252                         */
2253                        ret = -EINVAL;
2254                        goto out;
2255                }
2256
2257                /*
2258                 * Packets associated with this timestamp are already in
2259                 * the etmq's traceID queue, so process them.
2260                 */
2261                ret = cs_etm__process_traceid_queue(etmq, tidq);
2262                if (ret < 0)
2263                        goto out;
2264
2265                /*
2266                 * Packets for this timestamp have been processed, time to
2267                 * move on to the next timestamp, fetching a new auxtrace_buffer
2268                 * if need be.
2269                 */
2270refetch:
2271                ret = cs_etm__get_data_block(etmq);
2272                if (ret < 0)
2273                        goto out;
2274
2275                /*
2276                 * No more auxtrace_buffers to process in this etmq, simply
2277                 * move on to another entry in the auxtrace_heap.
2278                 */
2279                if (!ret)
2280                        continue;
2281
2282                ret = cs_etm__decode_data_block(etmq);
2283                if (ret)
2284                        goto out;
2285
2286                timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2287
2288                if (!timestamp) {
2289                        /*
2290                         * Function cs_etm__decode_data_block() returns when
2291                         * there is no more traces to decode in the current
2292                         * auxtrace_buffer OR when a timestamp has been
2293                         * encountered on any of the traceID queues.  Since we
2294                         * did not get a timestamp, there is no more traces to
2295                         * process in this auxtrace_buffer.  As such empty and
2296                         * flush all traceID queues.
2297                         */
2298                        cs_etm__clear_all_traceid_queues(etmq);
2299
2300                        /* Fetch another auxtrace_buffer for this etmq */
2301                        goto refetch;
2302                }
2303
2304                /*
2305                 * Add to the min heap the timestamp for packets that have
2306                 * just been decoded.  They will be processed and synthesized
2307                 * during the next call to cs_etm__process_traceid_queue() for
2308                 * this queue/traceID.
2309                 */
2310                cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2311                ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2312        }
2313
2314out:
2315        return ret;
2316}
2317
2318static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2319                                        union perf_event *event)
2320{
2321        struct thread *th;
2322
2323        if (etm->timeless_decoding)
2324                return 0;
2325
2326        /*
2327         * Add the tid/pid to the log so that we can get a match when
2328         * we get a contextID from the decoder.
2329         */
2330        th = machine__findnew_thread(etm->machine,
2331                                     event->itrace_start.pid,
2332                                     event->itrace_start.tid);
2333        if (!th)
2334                return -ENOMEM;
2335
2336        thread__put(th);
2337
2338        return 0;
2339}
2340
2341static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2342                                           union perf_event *event)
2343{
2344        struct thread *th;
2345        bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2346
2347        /*
2348         * Context switch in per-thread mode are irrelevant since perf
2349         * will start/stop tracing as the process is scheduled.
2350         */
2351        if (etm->timeless_decoding)
2352                return 0;
2353
2354        /*
2355         * SWITCH_IN events carry the next process to be switched out while
2356         * SWITCH_OUT events carry the process to be switched in.  As such
2357         * we don't care about IN events.
2358         */
2359        if (!out)
2360                return 0;
2361
2362        /*
2363         * Add the tid/pid to the log so that we can get a match when
2364         * we get a contextID from the decoder.
2365         */
2366        th = machine__findnew_thread(etm->machine,
2367                                     event->context_switch.next_prev_pid,
2368                                     event->context_switch.next_prev_tid);
2369        if (!th)
2370                return -ENOMEM;
2371
2372        thread__put(th);
2373
2374        return 0;
2375}
2376
2377static int cs_etm__process_event(struct perf_session *session,
2378                                 union perf_event *event,
2379                                 struct perf_sample *sample,
2380                                 struct perf_tool *tool)
2381{
2382        int err = 0;
2383        u64 timestamp;
2384        struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2385                                                   struct cs_etm_auxtrace,
2386                                                   auxtrace);
2387
2388        if (dump_trace)
2389                return 0;
2390
2391        if (!tool->ordered_events) {
2392                pr_err("CoreSight ETM Trace requires ordered events\n");
2393                return -EINVAL;
2394        }
2395
2396        if (sample->time && (sample->time != (u64) -1))
2397                timestamp = sample->time;
2398        else
2399                timestamp = 0;
2400
2401        if (timestamp || etm->timeless_decoding) {
2402                err = cs_etm__update_queues(etm);
2403                if (err)
2404                        return err;
2405        }
2406
2407        if (etm->timeless_decoding &&
2408            event->header.type == PERF_RECORD_EXIT)
2409                return cs_etm__process_timeless_queues(etm,
2410                                                       event->fork.tid);
2411
2412        if (event->header.type == PERF_RECORD_ITRACE_START)
2413                return cs_etm__process_itrace_start(etm, event);
2414        else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2415                return cs_etm__process_switch_cpu_wide(etm, event);
2416
2417        if (!etm->timeless_decoding &&
2418            event->header.type == PERF_RECORD_AUX)
2419                return cs_etm__process_queues(etm);
2420
2421        return 0;
2422}
2423
2424static int cs_etm__process_auxtrace_event(struct perf_session *session,
2425                                          union perf_event *event,
2426                                          struct perf_tool *tool __maybe_unused)
2427{
2428        struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2429                                                   struct cs_etm_auxtrace,
2430                                                   auxtrace);
2431        if (!etm->data_queued) {
2432                struct auxtrace_buffer *buffer;
2433                off_t  data_offset;
2434                int fd = perf_data__fd(session->data);
2435                bool is_pipe = perf_data__is_pipe(session->data);
2436                int err;
2437
2438                if (is_pipe)
2439                        data_offset = 0;
2440                else {
2441                        data_offset = lseek(fd, 0, SEEK_CUR);
2442                        if (data_offset == -1)
2443                                return -errno;
2444                }
2445
2446                err = auxtrace_queues__add_event(&etm->queues, session,
2447                                                 event, data_offset, &buffer);
2448                if (err)
2449                        return err;
2450
2451                if (dump_trace)
2452                        if (auxtrace_buffer__get_data(buffer, fd)) {
2453                                cs_etm__dump_event(etm, buffer);
2454                                auxtrace_buffer__put_data(buffer);
2455                        }
2456        }
2457
2458        return 0;
2459}
2460
2461static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2462{
2463        struct evsel *evsel;
2464        struct evlist *evlist = etm->session->evlist;
2465        bool timeless_decoding = true;
2466
2467        /*
2468         * Circle through the list of event and complain if we find one
2469         * with the time bit set.
2470         */
2471        evlist__for_each_entry(evlist, evsel) {
2472                if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2473                        timeless_decoding = false;
2474        }
2475
2476        return timeless_decoding;
2477}
2478
2479static const char * const cs_etm_global_header_fmts[] = {
2480        [CS_HEADER_VERSION]     = "     Header version                 %llx\n",
2481        [CS_PMU_TYPE_CPUS]      = "     PMU type/num cpus              %llx\n",
2482        [CS_ETM_SNAPSHOT]       = "     Snapshot                       %llx\n",
2483};
2484
2485static const char * const cs_etm_priv_fmts[] = {
2486        [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2487        [CS_ETM_CPU]            = "     CPU                            %lld\n",
2488        [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2489        [CS_ETM_ETMCR]          = "     ETMCR                          %llx\n",
2490        [CS_ETM_ETMTRACEIDR]    = "     ETMTRACEIDR                    %llx\n",
2491        [CS_ETM_ETMCCER]        = "     ETMCCER                        %llx\n",
2492        [CS_ETM_ETMIDR]         = "     ETMIDR                         %llx\n",
2493};
2494
2495static const char * const cs_etmv4_priv_fmts[] = {
2496        [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2497        [CS_ETM_CPU]            = "     CPU                            %lld\n",
2498        [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2499        [CS_ETMV4_TRCCONFIGR]   = "     TRCCONFIGR                     %llx\n",
2500        [CS_ETMV4_TRCTRACEIDR]  = "     TRCTRACEIDR                    %llx\n",
2501        [CS_ETMV4_TRCIDR0]      = "     TRCIDR0                        %llx\n",
2502        [CS_ETMV4_TRCIDR1]      = "     TRCIDR1                        %llx\n",
2503        [CS_ETMV4_TRCIDR2]      = "     TRCIDR2                        %llx\n",
2504        [CS_ETMV4_TRCIDR8]      = "     TRCIDR8                        %llx\n",
2505        [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS                  %llx\n",
2506};
2507
2508static const char * const param_unk_fmt =
2509        "       Unknown parameter [%d]         %llx\n";
2510static const char * const magic_unk_fmt =
2511        "       Magic number Unknown           %llx\n";
2512
2513static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2514{
2515        int i = *offset, j, nr_params = 0, fmt_offset;
2516        __u64 magic;
2517
2518        /* check magic value */
2519        magic = val[i + CS_ETM_MAGIC];
2520        if ((magic != __perf_cs_etmv3_magic) &&
2521            (magic != __perf_cs_etmv4_magic)) {
2522                /* failure - note bad magic value */
2523                fprintf(stdout, magic_unk_fmt, magic);
2524                return -EINVAL;
2525        }
2526
2527        /* print common header block */
2528        fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2529        fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2530
2531        if (magic == __perf_cs_etmv3_magic) {
2532                nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2533                fmt_offset = CS_ETM_ETMCR;
2534                /* after common block, offset format index past NR_PARAMS */
2535                for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2536                        fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2537        } else if (magic == __perf_cs_etmv4_magic) {
2538                nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2539                fmt_offset = CS_ETMV4_TRCCONFIGR;
2540                /* after common block, offset format index past NR_PARAMS */
2541                for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2542                        fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2543        }
2544        *offset = i;
2545        return 0;
2546}
2547
2548static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2549{
2550        int i = *offset, j, total_params = 0;
2551        __u64 magic;
2552
2553        magic = val[i + CS_ETM_MAGIC];
2554        /* total params to print is NR_PARAMS + common block size for v1 */
2555        total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2556
2557        if (magic == __perf_cs_etmv3_magic) {
2558                for (j = 0; j < total_params; j++, i++) {
2559                        /* if newer record - could be excess params */
2560                        if (j >= CS_ETM_PRIV_MAX)
2561                                fprintf(stdout, param_unk_fmt, j, val[i]);
2562                        else
2563                                fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2564                }
2565        } else if (magic == __perf_cs_etmv4_magic) {
2566                for (j = 0; j < total_params; j++, i++) {
2567                        /* if newer record - could be excess params */
2568                        if (j >= CS_ETMV4_PRIV_MAX)
2569                                fprintf(stdout, param_unk_fmt, j, val[i]);
2570                        else
2571                                fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2572                }
2573        } else {
2574                /* failure - note bad magic value and error out */
2575                fprintf(stdout, magic_unk_fmt, magic);
2576                return -EINVAL;
2577        }
2578        *offset = i;
2579        return 0;
2580}
2581
2582static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2583{
2584        int i, cpu = 0, version, err;
2585
2586        /* bail out early on bad header version */
2587        version = val[0];
2588        if (version > CS_HEADER_CURRENT_VERSION) {
2589                /* failure.. return */
2590                fprintf(stdout, "       Unknown Header Version = %x, ", version);
2591                fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2592                return;
2593        }
2594
2595        for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2596                fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2597
2598        for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2599                if (version == 0)
2600                        err = cs_etm__print_cpu_metadata_v0(val, &i);
2601                else if (version == 1)
2602                        err = cs_etm__print_cpu_metadata_v1(val, &i);
2603                if (err)
2604                        return;
2605        }
2606}
2607
2608/*
2609 * Read a single cpu parameter block from the auxtrace_info priv block.
2610 *
2611 * For version 1 there is a per cpu nr_params entry. If we are handling
2612 * version 1 file, then there may be less, the same, or more params
2613 * indicated by this value than the compile time number we understand.
2614 *
2615 * For a version 0 info block, there are a fixed number, and we need to
2616 * fill out the nr_param value in the metadata we create.
2617 */
2618static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2619                                    int out_blk_size, int nr_params_v0)
2620{
2621        u64 *metadata = NULL;
2622        int hdr_version;
2623        int nr_in_params, nr_out_params, nr_cmn_params;
2624        int i, k;
2625
2626        metadata = zalloc(sizeof(*metadata) * out_blk_size);
2627        if (!metadata)
2628                return NULL;
2629
2630        /* read block current index & version */
2631        i = *buff_in_offset;
2632        hdr_version = buff_in[CS_HEADER_VERSION];
2633
2634        if (!hdr_version) {
2635        /* read version 0 info block into a version 1 metadata block  */
2636                nr_in_params = nr_params_v0;
2637                metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2638                metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2639                metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2640                /* remaining block params at offset +1 from source */
2641                for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2642                        metadata[k + 1] = buff_in[i + k];
2643                /* version 0 has 2 common params */
2644                nr_cmn_params = 2;
2645        } else {
2646        /* read version 1 info block - input and output nr_params may differ */
2647                /* version 1 has 3 common params */
2648                nr_cmn_params = 3;
2649                nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2650
2651                /* if input has more params than output - skip excess */
2652                nr_out_params = nr_in_params + nr_cmn_params;
2653                if (nr_out_params > out_blk_size)
2654                        nr_out_params = out_blk_size;
2655
2656                for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2657                        metadata[k] = buff_in[i + k];
2658
2659                /* record the actual nr params we copied */
2660                metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2661        }
2662
2663        /* adjust in offset by number of in params used */
2664        i += nr_in_params + nr_cmn_params;
2665        *buff_in_offset = i;
2666        return metadata;
2667}
2668
2669int cs_etm__process_auxtrace_info(union perf_event *event,
2670                                  struct perf_session *session)
2671{
2672        struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2673        struct cs_etm_auxtrace *etm = NULL;
2674        struct int_node *inode;
2675        unsigned int pmu_type;
2676        int event_header_size = sizeof(struct perf_event_header);
2677        int info_header_size;
2678        int total_size = auxtrace_info->header.size;
2679        int priv_size = 0;
2680        int num_cpu, trcidr_idx;
2681        int err = 0;
2682        int i, j;
2683        u64 *ptr, *hdr = NULL;
2684        u64 **metadata = NULL;
2685        u64 hdr_version;
2686
2687        /*
2688         * sizeof(auxtrace_info_event::type) +
2689         * sizeof(auxtrace_info_event::reserved) == 8
2690         */
2691        info_header_size = 8;
2692
2693        if (total_size < (event_header_size + info_header_size))
2694                return -EINVAL;
2695
2696        priv_size = total_size - event_header_size - info_header_size;
2697
2698        /* First the global part */
2699        ptr = (u64 *) auxtrace_info->priv;
2700
2701        /* Look for version of the header */
2702        hdr_version = ptr[0];
2703        if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2704                /* print routine will print an error on bad version */
2705                if (dump_trace)
2706                        cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2707                return -EINVAL;
2708        }
2709
2710        hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2711        if (!hdr)
2712                return -ENOMEM;
2713
2714        /* Extract header information - see cs-etm.h for format */
2715        for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2716                hdr[i] = ptr[i];
2717        num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2718        pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2719                                    0xffffffff);
2720
2721        /*
2722         * Create an RB tree for traceID-metadata tuple.  Since the conversion
2723         * has to be made for each packet that gets decoded, optimizing access
2724         * in anything other than a sequential array is worth doing.
2725         */
2726        traceid_list = intlist__new(NULL);
2727        if (!traceid_list) {
2728                err = -ENOMEM;
2729                goto err_free_hdr;
2730        }
2731
2732        metadata = zalloc(sizeof(*metadata) * num_cpu);
2733        if (!metadata) {
2734                err = -ENOMEM;
2735                goto err_free_traceid_list;
2736        }
2737
2738        /*
2739         * The metadata is stored in the auxtrace_info section and encodes
2740         * the configuration of the ARM embedded trace macrocell which is
2741         * required by the trace decoder to properly decode the trace due
2742         * to its highly compressed nature.
2743         */
2744        for (j = 0; j < num_cpu; j++) {
2745                if (ptr[i] == __perf_cs_etmv3_magic) {
2746                        metadata[j] =
2747                                cs_etm__create_meta_blk(ptr, &i,
2748                                                        CS_ETM_PRIV_MAX,
2749                                                        CS_ETM_NR_TRC_PARAMS_V0);
2750
2751                        /* The traceID is our handle */
2752                        trcidr_idx = CS_ETM_ETMTRACEIDR;
2753
2754                } else if (ptr[i] == __perf_cs_etmv4_magic) {
2755                        metadata[j] =
2756                                cs_etm__create_meta_blk(ptr, &i,
2757                                                        CS_ETMV4_PRIV_MAX,
2758                                                        CS_ETMV4_NR_TRC_PARAMS_V0);
2759
2760                        /* The traceID is our handle */
2761                        trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2762                }
2763
2764                if (!metadata[j]) {
2765                        err = -ENOMEM;
2766                        goto err_free_metadata;
2767                }
2768
2769                /* Get an RB node for this CPU */
2770                inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2771
2772                /* Something went wrong, no need to continue */
2773                if (!inode) {
2774                        err = -ENOMEM;
2775                        goto err_free_metadata;
2776                }
2777
2778                /*
2779                 * The node for that CPU should not be taken.
2780                 * Back out if that's the case.
2781                 */
2782                if (inode->priv) {
2783                        err = -EINVAL;
2784                        goto err_free_metadata;
2785                }
2786                /* All good, associate the traceID with the metadata pointer */
2787                inode->priv = metadata[j];
2788        }
2789
2790        /*
2791         * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2792         * CS_ETMV4_PRIV_MAX mark how many double words are in the
2793         * global metadata, and each cpu's metadata respectively.
2794         * The following tests if the correct number of double words was
2795         * present in the auxtrace info section.
2796         */
2797        if (i * 8 != priv_size) {
2798                err = -EINVAL;
2799                goto err_free_metadata;
2800        }
2801
2802        etm = zalloc(sizeof(*etm));
2803
2804        if (!etm) {
2805                err = -ENOMEM;
2806                goto err_free_metadata;
2807        }
2808
2809        err = auxtrace_queues__init(&etm->queues);
2810        if (err)
2811                goto err_free_etm;
2812
2813        etm->session = session;
2814        etm->machine = &session->machines.host;
2815
2816        etm->num_cpu = num_cpu;
2817        etm->pmu_type = pmu_type;
2818        etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2819        etm->metadata = metadata;
2820        etm->auxtrace_type = auxtrace_info->type;
2821        etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2822
2823        etm->auxtrace.process_event = cs_etm__process_event;
2824        etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2825        etm->auxtrace.flush_events = cs_etm__flush_events;
2826        etm->auxtrace.free_events = cs_etm__free_events;
2827        etm->auxtrace.free = cs_etm__free;
2828        etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2829        session->auxtrace = &etm->auxtrace;
2830
2831        etm->unknown_thread = thread__new(999999999, 999999999);
2832        if (!etm->unknown_thread) {
2833                err = -ENOMEM;
2834                goto err_free_queues;
2835        }
2836
2837        /*
2838         * Initialize list node so that at thread__zput() we can avoid
2839         * segmentation fault at list_del_init().
2840         */
2841        INIT_LIST_HEAD(&etm->unknown_thread->node);
2842
2843        err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2844        if (err)
2845                goto err_delete_thread;
2846
2847        if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2848                err = -ENOMEM;
2849                goto err_delete_thread;
2850        }
2851
2852        if (dump_trace) {
2853                cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2854                return 0;
2855        }
2856
2857        if (session->itrace_synth_opts->set) {
2858                etm->synth_opts = *session->itrace_synth_opts;
2859        } else {
2860                itrace_synth_opts__set_default(&etm->synth_opts,
2861                                session->itrace_synth_opts->default_no_sample);
2862                etm->synth_opts.callchain = false;
2863        }
2864
2865        err = cs_etm__synth_events(etm, session);
2866        if (err)
2867                goto err_delete_thread;
2868
2869        err = auxtrace_queues__process_index(&etm->queues, session);
2870        if (err)
2871                goto err_delete_thread;
2872
2873        etm->data_queued = etm->queues.populated;
2874
2875        return 0;
2876
2877err_delete_thread:
2878        thread__zput(etm->unknown_thread);
2879err_free_queues:
2880        auxtrace_queues__free(&etm->queues);
2881        session->auxtrace = NULL;
2882err_free_etm:
2883        zfree(&etm);
2884err_free_metadata:
2885        /* No need to check @metadata[j], free(NULL) is supported */
2886        for (j = 0; j < num_cpu; j++)
2887                zfree(&metadata[j]);
2888        zfree(&metadata);
2889err_free_traceid_list:
2890        intlist__delete(traceid_list);
2891err_free_hdr:
2892        zfree(&hdr);
2893        /*
2894         * At this point, as a minimum we have valid header. Dump the rest of
2895         * the info section - the print routines will error out on structural
2896         * issues.
2897         */
2898        if (dump_trace)
2899                cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2900        return err;
2901}
2902