linux/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vsx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2016, Cyril Bur, IBM Corp.
   4 *
   5 * Test the kernel's signal frame code.
   6 *
   7 * The kernel sets up two sets of ucontexts if the signal was to be
   8 * delivered while the thread was in a transaction (referred too as
   9 * first and second contexts).
  10 * Expected behaviour is that the checkpointed state is in the user
  11 * context passed to the signal handler (first context). The speculated
  12 * state can be accessed with the uc_link pointer (second context).
  13 *
  14 * The rationale for this is that if TM unaware code (which linked
  15 * against TM libs) installs a signal handler it will not know of the
  16 * speculative nature of the 'live' registers and may infer the wrong
  17 * thing.
  18 */
  19
  20#include <stdlib.h>
  21#include <stdio.h>
  22#include <string.h>
  23#include <signal.h>
  24#include <unistd.h>
  25
  26#include <altivec.h>
  27
  28#include "utils.h"
  29#include "tm.h"
  30
  31#define MAX_ATTEMPT 500000
  32
  33#define NV_VSX_REGS 12 /* Number of VSX registers to check. */
  34#define VSX20 20 /* First VSX register to check in vsr20-vsr31 subset */
  35#define FPR20 20 /* FPR20 overlaps VSX20 most significant doubleword */
  36
  37long tm_signal_self_context_load(pid_t pid, long *gprs, double *fps, vector int *vms, vector int *vss);
  38
  39static sig_atomic_t fail, broken;
  40
  41/* Test only 12 vsx registers from vsr20 to vsr31 */
  42vector int vsxs[] = {
  43        /* First context will be set with these values, i.e. non-speculative */
  44        /* VSX20     ,  VSX21      , ... */
  45        { 1, 2, 3, 4},{ 5, 6, 7, 8},{ 9,10,11,12},
  46        {13,14,15,16},{17,18,19,20},{21,22,23,24},
  47        {25,26,27,28},{29,30,31,32},{33,34,35,36},
  48        {37,38,39,40},{41,42,43,44},{45,46,47,48},
  49        /* Second context will be set with these values, i.e. speculative */
  50        /* VSX20         ,  VSX21          , ... */
  51        {-1, -2, -3, -4 },{-5, -6, -7, -8 },{-9, -10,-11,-12},
  52        {-13,-14,-15,-16},{-17,-18,-19,-20},{-21,-22,-23,-24},
  53        {-25,-26,-27,-28},{-29,-30,-31,-32},{-33,-34,-35,-36},
  54        {-37,-38,-39,-40},{-41,-42,-43,-44},{-45,-46,-47,-48}
  55};
  56
  57static void signal_usr1(int signum, siginfo_t *info, void *uc)
  58{
  59        int i, j;
  60        uint8_t vsx[sizeof(vector int)];
  61        uint8_t vsx_tm[sizeof(vector int)];
  62        ucontext_t *ucp = uc;
  63        ucontext_t *tm_ucp = ucp->uc_link;
  64
  65        /*
  66         * FP registers and VMX registers overlap the VSX registers.
  67         *
  68         * FP registers (f0-31) overlap the most significant 64 bits of VSX
  69         * registers vsr0-31, whilst VMX registers vr0-31, being 128-bit like
  70         * the VSX registers, overlap fully the other half of VSX registers,
  71         * i.e. vr0-31 overlaps fully vsr32-63.
  72         *
  73         * Due to compatibility and historical reasons (VMX/Altivec support
  74         * appeared first on the architecture), VMX registers vr0-31 (so VSX
  75         * half vsr32-63 too) are stored right after the v_regs pointer, in an
  76         * area allocated for 'vmx_reverse' array (please see
  77         * arch/powerpc/include/uapi/asm/sigcontext.h for details about the
  78         * mcontext_t structure on Power).
  79         *
  80         * The other VSX half (vsr0-31) is hence stored below vr0-31/vsr32-63
  81         * registers, but only the least significant 64 bits of vsr0-31. The
  82         * most significant 64 bits of vsr0-31 (f0-31), as it overlaps the FP
  83         * registers, is kept in fp_regs.
  84         *
  85         * v_regs is a 16 byte aligned pointer at the start of vmx_reserve
  86         * (vmx_reserve may or may not be 16 aligned) where the v_regs structure
  87         * exists, so v_regs points to where vr0-31 / vsr32-63 registers are
  88         * fully stored. Since v_regs type is elf_vrregset_t, v_regs + 1
  89         * skips all the slots used to store vr0-31 / vsr32-64 and points to
  90         * part of one VSX half, i.e. v_regs + 1 points to the least significant
  91         * 64 bits of vsr0-31. The other part of this half (the most significant
  92         * part of vsr0-31) is stored in fp_regs.
  93         *
  94         */
  95        /* Get pointer to least significant doubleword of vsr0-31 */
  96        long *vsx_ptr = (long *)(ucp->uc_mcontext.v_regs + 1);
  97        long *tm_vsx_ptr = (long *)(tm_ucp->uc_mcontext.v_regs + 1);
  98
  99        /* Check first context. Print all mismatches. */
 100        for (i = 0; i < NV_VSX_REGS; i++) {
 101                /*
 102                 * Copy VSX most significant doubleword from fp_regs and
 103                 * copy VSX least significant one from 64-bit slots below
 104                 * saved VMX registers.
 105                 */
 106                memcpy(vsx, &ucp->uc_mcontext.fp_regs[FPR20 + i], 8);
 107                memcpy(vsx + 8, &vsx_ptr[VSX20 + i], 8);
 108
 109                fail = memcmp(vsx, &vsxs[i], sizeof(vector int));
 110
 111                if (fail) {
 112                        broken = 1;
 113                        printf("VSX%d (1st context) == 0x", VSX20 + i);
 114                        for (j = 0; j < 16; j++)
 115                                printf("%02x", vsx[j]);
 116                        printf(" instead of 0x");
 117                        for (j = 0; j < 4; j++)
 118                                printf("%08x", vsxs[i][j]);
 119                        printf(" (expected)\n");
 120                }
 121        }
 122
 123        /* Check second context. Print all mismatches. */
 124        for (i = 0; i < NV_VSX_REGS; i++) {
 125                /*
 126                 * Copy VSX most significant doubleword from fp_regs and
 127                 * copy VSX least significant one from 64-bit slots below
 128                 * saved VMX registers.
 129                 */
 130                memcpy(vsx_tm, &tm_ucp->uc_mcontext.fp_regs[FPR20 + i], 8);
 131                memcpy(vsx_tm + 8, &tm_vsx_ptr[VSX20 + i], 8);
 132
 133                fail = memcmp(vsx_tm, &vsxs[NV_VSX_REGS + i], sizeof(vector int));
 134
 135                if (fail) {
 136                        broken = 1;
 137                        printf("VSX%d (2nd context) == 0x", VSX20 + i);
 138                        for (j = 0; j < 16; j++)
 139                                printf("%02x", vsx_tm[j]);
 140                        printf(" instead of 0x");
 141                        for (j = 0; j < 4; j++)
 142                                printf("%08x", vsxs[NV_VSX_REGS + i][j]);
 143                        printf("(expected)\n");
 144                }
 145        }
 146}
 147
 148static int tm_signal_context_chk()
 149{
 150        struct sigaction act;
 151        int i;
 152        long rc;
 153        pid_t pid = getpid();
 154
 155        SKIP_IF(!have_htm());
 156
 157        act.sa_sigaction = signal_usr1;
 158        sigemptyset(&act.sa_mask);
 159        act.sa_flags = SA_SIGINFO;
 160        if (sigaction(SIGUSR1, &act, NULL) < 0) {
 161                perror("sigaction sigusr1");
 162                exit(1);
 163        }
 164
 165        i = 0;
 166        while (i < MAX_ATTEMPT && !broken) {
 167               /*
 168                * tm_signal_self_context_load will set both first and second
 169                * contexts accordingly to the values passed through non-NULL
 170                * array pointers to it, in that case 'vsxs', and invoke the
 171                * signal handler installed for SIGUSR1.
 172                */
 173                rc = tm_signal_self_context_load(pid, NULL, NULL, NULL, vsxs);
 174                FAIL_IF(rc != pid);
 175                i++;
 176        }
 177
 178        return (broken);
 179}
 180
 181int main(void)
 182{
 183        return test_harness(tm_signal_context_chk, "tm_signal_context_chk_vsx");
 184}
 185