linux/arch/arm64/kvm/arm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   5 */
   6
   7#include <linux/bug.h>
   8#include <linux/cpu_pm.h>
   9#include <linux/errno.h>
  10#include <linux/err.h>
  11#include <linux/kvm_host.h>
  12#include <linux/list.h>
  13#include <linux/module.h>
  14#include <linux/vmalloc.h>
  15#include <linux/fs.h>
  16#include <linux/mman.h>
  17#include <linux/sched.h>
  18#include <linux/kvm.h>
  19#include <linux/kvm_irqfd.h>
  20#include <linux/irqbypass.h>
  21#include <linux/sched/stat.h>
  22#include <linux/psci.h>
  23#include <trace/events/kvm.h>
  24
  25#define CREATE_TRACE_POINTS
  26#include "trace_arm.h"
  27
  28#include <linux/uaccess.h>
  29#include <asm/ptrace.h>
  30#include <asm/mman.h>
  31#include <asm/tlbflush.h>
  32#include <asm/cacheflush.h>
  33#include <asm/cpufeature.h>
  34#include <asm/virt.h>
  35#include <asm/kvm_arm.h>
  36#include <asm/kvm_asm.h>
  37#include <asm/kvm_mmu.h>
  38#include <asm/kvm_emulate.h>
  39#include <asm/sections.h>
  40
  41#include <kvm/arm_hypercalls.h>
  42#include <kvm/arm_pmu.h>
  43#include <kvm/arm_psci.h>
  44
  45#ifdef REQUIRES_VIRT
  46__asm__(".arch_extension        virt");
  47#endif
  48
  49static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
  50DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
  51
  52DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
  53
  54static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  55unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
  56DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
  57
  58/* The VMID used in the VTTBR */
  59static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  60static u32 kvm_next_vmid;
  61static DEFINE_SPINLOCK(kvm_vmid_lock);
  62
  63static bool vgic_present;
  64
  65static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  66DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
  67
  68int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  69{
  70        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  71}
  72
  73int kvm_arch_hardware_setup(void *opaque)
  74{
  75        return 0;
  76}
  77
  78int kvm_arch_check_processor_compat(void *opaque)
  79{
  80        return 0;
  81}
  82
  83int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
  84                            struct kvm_enable_cap *cap)
  85{
  86        int r;
  87
  88        if (cap->flags)
  89                return -EINVAL;
  90
  91        switch (cap->cap) {
  92        case KVM_CAP_ARM_NISV_TO_USER:
  93                r = 0;
  94                kvm->arch.return_nisv_io_abort_to_user = true;
  95                break;
  96        case KVM_CAP_ARM_MTE:
  97                mutex_lock(&kvm->lock);
  98                if (!system_supports_mte() || kvm->created_vcpus) {
  99                        r = -EINVAL;
 100                } else {
 101                        r = 0;
 102                        kvm->arch.mte_enabled = true;
 103                }
 104                mutex_unlock(&kvm->lock);
 105                break;
 106        default:
 107                r = -EINVAL;
 108                break;
 109        }
 110
 111        return r;
 112}
 113
 114static int kvm_arm_default_max_vcpus(void)
 115{
 116        return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 117}
 118
 119static void set_default_spectre(struct kvm *kvm)
 120{
 121        /*
 122         * The default is to expose CSV2 == 1 if the HW isn't affected.
 123         * Although this is a per-CPU feature, we make it global because
 124         * asymmetric systems are just a nuisance.
 125         *
 126         * Userspace can override this as long as it doesn't promise
 127         * the impossible.
 128         */
 129        if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
 130                kvm->arch.pfr0_csv2 = 1;
 131        if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
 132                kvm->arch.pfr0_csv3 = 1;
 133}
 134
 135/**
 136 * kvm_arch_init_vm - initializes a VM data structure
 137 * @kvm:        pointer to the KVM struct
 138 */
 139int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 140{
 141        int ret;
 142
 143        ret = kvm_arm_setup_stage2(kvm, type);
 144        if (ret)
 145                return ret;
 146
 147        ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
 148        if (ret)
 149                return ret;
 150
 151        ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
 152        if (ret)
 153                goto out_free_stage2_pgd;
 154
 155        kvm_vgic_early_init(kvm);
 156
 157        /* The maximum number of VCPUs is limited by the host's GIC model */
 158        kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
 159
 160        set_default_spectre(kvm);
 161
 162        return ret;
 163out_free_stage2_pgd:
 164        kvm_free_stage2_pgd(&kvm->arch.mmu);
 165        return ret;
 166}
 167
 168vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 169{
 170        return VM_FAULT_SIGBUS;
 171}
 172
 173
 174/**
 175 * kvm_arch_destroy_vm - destroy the VM data structure
 176 * @kvm:        pointer to the KVM struct
 177 */
 178void kvm_arch_destroy_vm(struct kvm *kvm)
 179{
 180        int i;
 181
 182        bitmap_free(kvm->arch.pmu_filter);
 183
 184        kvm_vgic_destroy(kvm);
 185
 186        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 187                if (kvm->vcpus[i]) {
 188                        kvm_vcpu_destroy(kvm->vcpus[i]);
 189                        kvm->vcpus[i] = NULL;
 190                }
 191        }
 192        atomic_set(&kvm->online_vcpus, 0);
 193}
 194
 195int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 196{
 197        int r;
 198        switch (ext) {
 199        case KVM_CAP_IRQCHIP:
 200                r = vgic_present;
 201                break;
 202        case KVM_CAP_IOEVENTFD:
 203        case KVM_CAP_DEVICE_CTRL:
 204        case KVM_CAP_USER_MEMORY:
 205        case KVM_CAP_SYNC_MMU:
 206        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 207        case KVM_CAP_ONE_REG:
 208        case KVM_CAP_ARM_PSCI:
 209        case KVM_CAP_ARM_PSCI_0_2:
 210        case KVM_CAP_READONLY_MEM:
 211        case KVM_CAP_MP_STATE:
 212        case KVM_CAP_IMMEDIATE_EXIT:
 213        case KVM_CAP_VCPU_EVENTS:
 214        case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
 215        case KVM_CAP_ARM_NISV_TO_USER:
 216        case KVM_CAP_ARM_INJECT_EXT_DABT:
 217        case KVM_CAP_SET_GUEST_DEBUG:
 218        case KVM_CAP_VCPU_ATTRIBUTES:
 219        case KVM_CAP_PTP_KVM:
 220                r = 1;
 221                break;
 222        case KVM_CAP_SET_GUEST_DEBUG2:
 223                return KVM_GUESTDBG_VALID_MASK;
 224        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 225                r = 1;
 226                break;
 227        case KVM_CAP_NR_VCPUS:
 228                r = num_online_cpus();
 229                break;
 230        case KVM_CAP_MAX_VCPUS:
 231        case KVM_CAP_MAX_VCPU_ID:
 232                if (kvm)
 233                        r = kvm->arch.max_vcpus;
 234                else
 235                        r = kvm_arm_default_max_vcpus();
 236                break;
 237        case KVM_CAP_MSI_DEVID:
 238                if (!kvm)
 239                        r = -EINVAL;
 240                else
 241                        r = kvm->arch.vgic.msis_require_devid;
 242                break;
 243        case KVM_CAP_ARM_USER_IRQ:
 244                /*
 245                 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
 246                 * (bump this number if adding more devices)
 247                 */
 248                r = 1;
 249                break;
 250        case KVM_CAP_ARM_MTE:
 251                r = system_supports_mte();
 252                break;
 253        case KVM_CAP_STEAL_TIME:
 254                r = kvm_arm_pvtime_supported();
 255                break;
 256        case KVM_CAP_ARM_EL1_32BIT:
 257                r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
 258                break;
 259        case KVM_CAP_GUEST_DEBUG_HW_BPS:
 260                r = get_num_brps();
 261                break;
 262        case KVM_CAP_GUEST_DEBUG_HW_WPS:
 263                r = get_num_wrps();
 264                break;
 265        case KVM_CAP_ARM_PMU_V3:
 266                r = kvm_arm_support_pmu_v3();
 267                break;
 268        case KVM_CAP_ARM_INJECT_SERROR_ESR:
 269                r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
 270                break;
 271        case KVM_CAP_ARM_VM_IPA_SIZE:
 272                r = get_kvm_ipa_limit();
 273                break;
 274        case KVM_CAP_ARM_SVE:
 275                r = system_supports_sve();
 276                break;
 277        case KVM_CAP_ARM_PTRAUTH_ADDRESS:
 278        case KVM_CAP_ARM_PTRAUTH_GENERIC:
 279                r = system_has_full_ptr_auth();
 280                break;
 281        default:
 282                r = 0;
 283        }
 284
 285        return r;
 286}
 287
 288long kvm_arch_dev_ioctl(struct file *filp,
 289                        unsigned int ioctl, unsigned long arg)
 290{
 291        return -EINVAL;
 292}
 293
 294struct kvm *kvm_arch_alloc_vm(void)
 295{
 296        if (!has_vhe())
 297                return kzalloc(sizeof(struct kvm), GFP_KERNEL);
 298
 299        return vzalloc(sizeof(struct kvm));
 300}
 301
 302void kvm_arch_free_vm(struct kvm *kvm)
 303{
 304        if (!has_vhe())
 305                kfree(kvm);
 306        else
 307                vfree(kvm);
 308}
 309
 310int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 311{
 312        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
 313                return -EBUSY;
 314
 315        if (id >= kvm->arch.max_vcpus)
 316                return -EINVAL;
 317
 318        return 0;
 319}
 320
 321int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 322{
 323        int err;
 324
 325        /* Force users to call KVM_ARM_VCPU_INIT */
 326        vcpu->arch.target = -1;
 327        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 328
 329        vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
 330
 331        /* Set up the timer */
 332        kvm_timer_vcpu_init(vcpu);
 333
 334        kvm_pmu_vcpu_init(vcpu);
 335
 336        kvm_arm_reset_debug_ptr(vcpu);
 337
 338        kvm_arm_pvtime_vcpu_init(&vcpu->arch);
 339
 340        vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
 341
 342        err = kvm_vgic_vcpu_init(vcpu);
 343        if (err)
 344                return err;
 345
 346        return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
 347}
 348
 349void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 350{
 351}
 352
 353void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 354{
 355        if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
 356                static_branch_dec(&userspace_irqchip_in_use);
 357
 358        kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
 359        kvm_timer_vcpu_terminate(vcpu);
 360        kvm_pmu_vcpu_destroy(vcpu);
 361
 362        kvm_arm_vcpu_destroy(vcpu);
 363}
 364
 365int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 366{
 367        return kvm_timer_is_pending(vcpu);
 368}
 369
 370void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 371{
 372        /*
 373         * If we're about to block (most likely because we've just hit a
 374         * WFI), we need to sync back the state of the GIC CPU interface
 375         * so that we have the latest PMR and group enables. This ensures
 376         * that kvm_arch_vcpu_runnable has up-to-date data to decide
 377         * whether we have pending interrupts.
 378         *
 379         * For the same reason, we want to tell GICv4 that we need
 380         * doorbells to be signalled, should an interrupt become pending.
 381         */
 382        preempt_disable();
 383        kvm_vgic_vmcr_sync(vcpu);
 384        vgic_v4_put(vcpu, true);
 385        preempt_enable();
 386}
 387
 388void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 389{
 390        preempt_disable();
 391        vgic_v4_load(vcpu);
 392        preempt_enable();
 393}
 394
 395void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 396{
 397        struct kvm_s2_mmu *mmu;
 398        int *last_ran;
 399
 400        mmu = vcpu->arch.hw_mmu;
 401        last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
 402
 403        /*
 404         * We guarantee that both TLBs and I-cache are private to each
 405         * vcpu. If detecting that a vcpu from the same VM has
 406         * previously run on the same physical CPU, call into the
 407         * hypervisor code to nuke the relevant contexts.
 408         *
 409         * We might get preempted before the vCPU actually runs, but
 410         * over-invalidation doesn't affect correctness.
 411         */
 412        if (*last_ran != vcpu->vcpu_id) {
 413                kvm_call_hyp(__kvm_flush_cpu_context, mmu);
 414                *last_ran = vcpu->vcpu_id;
 415        }
 416
 417        vcpu->cpu = cpu;
 418
 419        kvm_vgic_load(vcpu);
 420        kvm_timer_vcpu_load(vcpu);
 421        if (has_vhe())
 422                kvm_vcpu_load_sysregs_vhe(vcpu);
 423        kvm_arch_vcpu_load_fp(vcpu);
 424        kvm_vcpu_pmu_restore_guest(vcpu);
 425        if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
 426                kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
 427
 428        if (single_task_running())
 429                vcpu_clear_wfx_traps(vcpu);
 430        else
 431                vcpu_set_wfx_traps(vcpu);
 432
 433        if (vcpu_has_ptrauth(vcpu))
 434                vcpu_ptrauth_disable(vcpu);
 435        kvm_arch_vcpu_load_debug_state_flags(vcpu);
 436}
 437
 438void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 439{
 440        kvm_arch_vcpu_put_debug_state_flags(vcpu);
 441        kvm_arch_vcpu_put_fp(vcpu);
 442        if (has_vhe())
 443                kvm_vcpu_put_sysregs_vhe(vcpu);
 444        kvm_timer_vcpu_put(vcpu);
 445        kvm_vgic_put(vcpu);
 446        kvm_vcpu_pmu_restore_host(vcpu);
 447
 448        vcpu->cpu = -1;
 449}
 450
 451static void vcpu_power_off(struct kvm_vcpu *vcpu)
 452{
 453        vcpu->arch.power_off = true;
 454        kvm_make_request(KVM_REQ_SLEEP, vcpu);
 455        kvm_vcpu_kick(vcpu);
 456}
 457
 458int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 459                                    struct kvm_mp_state *mp_state)
 460{
 461        if (vcpu->arch.power_off)
 462                mp_state->mp_state = KVM_MP_STATE_STOPPED;
 463        else
 464                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 465
 466        return 0;
 467}
 468
 469int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 470                                    struct kvm_mp_state *mp_state)
 471{
 472        int ret = 0;
 473
 474        switch (mp_state->mp_state) {
 475        case KVM_MP_STATE_RUNNABLE:
 476                vcpu->arch.power_off = false;
 477                break;
 478        case KVM_MP_STATE_STOPPED:
 479                vcpu_power_off(vcpu);
 480                break;
 481        default:
 482                ret = -EINVAL;
 483        }
 484
 485        return ret;
 486}
 487
 488/**
 489 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 490 * @v:          The VCPU pointer
 491 *
 492 * If the guest CPU is not waiting for interrupts or an interrupt line is
 493 * asserted, the CPU is by definition runnable.
 494 */
 495int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 496{
 497        bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
 498        return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
 499                && !v->arch.power_off && !v->arch.pause);
 500}
 501
 502bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 503{
 504        return vcpu_mode_priv(vcpu);
 505}
 506
 507/* Just ensure a guest exit from a particular CPU */
 508static void exit_vm_noop(void *info)
 509{
 510}
 511
 512void force_vm_exit(const cpumask_t *mask)
 513{
 514        preempt_disable();
 515        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 516        preempt_enable();
 517}
 518
 519/**
 520 * need_new_vmid_gen - check that the VMID is still valid
 521 * @vmid: The VMID to check
 522 *
 523 * return true if there is a new generation of VMIDs being used
 524 *
 525 * The hardware supports a limited set of values with the value zero reserved
 526 * for the host, so we check if an assigned value belongs to a previous
 527 * generation, which requires us to assign a new value. If we're the first to
 528 * use a VMID for the new generation, we must flush necessary caches and TLBs
 529 * on all CPUs.
 530 */
 531static bool need_new_vmid_gen(struct kvm_vmid *vmid)
 532{
 533        u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
 534        smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
 535        return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
 536}
 537
 538/**
 539 * update_vmid - Update the vmid with a valid VMID for the current generation
 540 * @vmid: The stage-2 VMID information struct
 541 */
 542static void update_vmid(struct kvm_vmid *vmid)
 543{
 544        if (!need_new_vmid_gen(vmid))
 545                return;
 546
 547        spin_lock(&kvm_vmid_lock);
 548
 549        /*
 550         * We need to re-check the vmid_gen here to ensure that if another vcpu
 551         * already allocated a valid vmid for this vm, then this vcpu should
 552         * use the same vmid.
 553         */
 554        if (!need_new_vmid_gen(vmid)) {
 555                spin_unlock(&kvm_vmid_lock);
 556                return;
 557        }
 558
 559        /* First user of a new VMID generation? */
 560        if (unlikely(kvm_next_vmid == 0)) {
 561                atomic64_inc(&kvm_vmid_gen);
 562                kvm_next_vmid = 1;
 563
 564                /*
 565                 * On SMP we know no other CPUs can use this CPU's or each
 566                 * other's VMID after force_vm_exit returns since the
 567                 * kvm_vmid_lock blocks them from reentry to the guest.
 568                 */
 569                force_vm_exit(cpu_all_mask);
 570                /*
 571                 * Now broadcast TLB + ICACHE invalidation over the inner
 572                 * shareable domain to make sure all data structures are
 573                 * clean.
 574                 */
 575                kvm_call_hyp(__kvm_flush_vm_context);
 576        }
 577
 578        vmid->vmid = kvm_next_vmid;
 579        kvm_next_vmid++;
 580        kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
 581
 582        smp_wmb();
 583        WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
 584
 585        spin_unlock(&kvm_vmid_lock);
 586}
 587
 588static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 589{
 590        struct kvm *kvm = vcpu->kvm;
 591        int ret = 0;
 592
 593        if (likely(vcpu->arch.has_run_once))
 594                return 0;
 595
 596        if (!kvm_arm_vcpu_is_finalized(vcpu))
 597                return -EPERM;
 598
 599        vcpu->arch.has_run_once = true;
 600
 601        kvm_arm_vcpu_init_debug(vcpu);
 602
 603        if (likely(irqchip_in_kernel(kvm))) {
 604                /*
 605                 * Map the VGIC hardware resources before running a vcpu the
 606                 * first time on this VM.
 607                 */
 608                ret = kvm_vgic_map_resources(kvm);
 609                if (ret)
 610                        return ret;
 611        } else {
 612                /*
 613                 * Tell the rest of the code that there are userspace irqchip
 614                 * VMs in the wild.
 615                 */
 616                static_branch_inc(&userspace_irqchip_in_use);
 617        }
 618
 619        ret = kvm_timer_enable(vcpu);
 620        if (ret)
 621                return ret;
 622
 623        ret = kvm_arm_pmu_v3_enable(vcpu);
 624
 625        return ret;
 626}
 627
 628bool kvm_arch_intc_initialized(struct kvm *kvm)
 629{
 630        return vgic_initialized(kvm);
 631}
 632
 633void kvm_arm_halt_guest(struct kvm *kvm)
 634{
 635        int i;
 636        struct kvm_vcpu *vcpu;
 637
 638        kvm_for_each_vcpu(i, vcpu, kvm)
 639                vcpu->arch.pause = true;
 640        kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
 641}
 642
 643void kvm_arm_resume_guest(struct kvm *kvm)
 644{
 645        int i;
 646        struct kvm_vcpu *vcpu;
 647
 648        kvm_for_each_vcpu(i, vcpu, kvm) {
 649                vcpu->arch.pause = false;
 650                rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
 651        }
 652}
 653
 654static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
 655{
 656        struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
 657
 658        rcuwait_wait_event(wait,
 659                           (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
 660                           TASK_INTERRUPTIBLE);
 661
 662        if (vcpu->arch.power_off || vcpu->arch.pause) {
 663                /* Awaken to handle a signal, request we sleep again later. */
 664                kvm_make_request(KVM_REQ_SLEEP, vcpu);
 665        }
 666
 667        /*
 668         * Make sure we will observe a potential reset request if we've
 669         * observed a change to the power state. Pairs with the smp_wmb() in
 670         * kvm_psci_vcpu_on().
 671         */
 672        smp_rmb();
 673}
 674
 675static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 676{
 677        return vcpu->arch.target >= 0;
 678}
 679
 680static void check_vcpu_requests(struct kvm_vcpu *vcpu)
 681{
 682        if (kvm_request_pending(vcpu)) {
 683                if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
 684                        vcpu_req_sleep(vcpu);
 685
 686                if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
 687                        kvm_reset_vcpu(vcpu);
 688
 689                /*
 690                 * Clear IRQ_PENDING requests that were made to guarantee
 691                 * that a VCPU sees new virtual interrupts.
 692                 */
 693                kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
 694
 695                if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
 696                        kvm_update_stolen_time(vcpu);
 697
 698                if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
 699                        /* The distributor enable bits were changed */
 700                        preempt_disable();
 701                        vgic_v4_put(vcpu, false);
 702                        vgic_v4_load(vcpu);
 703                        preempt_enable();
 704                }
 705
 706                if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
 707                        kvm_pmu_handle_pmcr(vcpu,
 708                                            __vcpu_sys_reg(vcpu, PMCR_EL0));
 709        }
 710}
 711
 712static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
 713{
 714        if (likely(!vcpu_mode_is_32bit(vcpu)))
 715                return false;
 716
 717        return !system_supports_32bit_el0() ||
 718                static_branch_unlikely(&arm64_mismatched_32bit_el0);
 719}
 720
 721/**
 722 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 723 * @vcpu:       The VCPU pointer
 724 *
 725 * This function is called through the VCPU_RUN ioctl called from user space. It
 726 * will execute VM code in a loop until the time slice for the process is used
 727 * or some emulation is needed from user space in which case the function will
 728 * return with return value 0 and with the kvm_run structure filled in with the
 729 * required data for the requested emulation.
 730 */
 731int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
 732{
 733        struct kvm_run *run = vcpu->run;
 734        int ret;
 735
 736        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 737                return -ENOEXEC;
 738
 739        ret = kvm_vcpu_first_run_init(vcpu);
 740        if (ret)
 741                return ret;
 742
 743        if (run->exit_reason == KVM_EXIT_MMIO) {
 744                ret = kvm_handle_mmio_return(vcpu);
 745                if (ret)
 746                        return ret;
 747        }
 748
 749        vcpu_load(vcpu);
 750
 751        if (run->immediate_exit) {
 752                ret = -EINTR;
 753                goto out;
 754        }
 755
 756        kvm_sigset_activate(vcpu);
 757
 758        ret = 1;
 759        run->exit_reason = KVM_EXIT_UNKNOWN;
 760        while (ret > 0) {
 761                /*
 762                 * Check conditions before entering the guest
 763                 */
 764                cond_resched();
 765
 766                update_vmid(&vcpu->arch.hw_mmu->vmid);
 767
 768                check_vcpu_requests(vcpu);
 769
 770                /*
 771                 * Preparing the interrupts to be injected also
 772                 * involves poking the GIC, which must be done in a
 773                 * non-preemptible context.
 774                 */
 775                preempt_disable();
 776
 777                kvm_pmu_flush_hwstate(vcpu);
 778
 779                local_irq_disable();
 780
 781                kvm_vgic_flush_hwstate(vcpu);
 782
 783                /*
 784                 * Exit if we have a signal pending so that we can deliver the
 785                 * signal to user space.
 786                 */
 787                if (signal_pending(current)) {
 788                        ret = -EINTR;
 789                        run->exit_reason = KVM_EXIT_INTR;
 790                }
 791
 792                /*
 793                 * If we're using a userspace irqchip, then check if we need
 794                 * to tell a userspace irqchip about timer or PMU level
 795                 * changes and if so, exit to userspace (the actual level
 796                 * state gets updated in kvm_timer_update_run and
 797                 * kvm_pmu_update_run below).
 798                 */
 799                if (static_branch_unlikely(&userspace_irqchip_in_use)) {
 800                        if (kvm_timer_should_notify_user(vcpu) ||
 801                            kvm_pmu_should_notify_user(vcpu)) {
 802                                ret = -EINTR;
 803                                run->exit_reason = KVM_EXIT_INTR;
 804                        }
 805                }
 806
 807                /*
 808                 * Ensure we set mode to IN_GUEST_MODE after we disable
 809                 * interrupts and before the final VCPU requests check.
 810                 * See the comment in kvm_vcpu_exiting_guest_mode() and
 811                 * Documentation/virt/kvm/vcpu-requests.rst
 812                 */
 813                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 814
 815                if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
 816                    kvm_request_pending(vcpu)) {
 817                        vcpu->mode = OUTSIDE_GUEST_MODE;
 818                        isb(); /* Ensure work in x_flush_hwstate is committed */
 819                        kvm_pmu_sync_hwstate(vcpu);
 820                        if (static_branch_unlikely(&userspace_irqchip_in_use))
 821                                kvm_timer_sync_user(vcpu);
 822                        kvm_vgic_sync_hwstate(vcpu);
 823                        local_irq_enable();
 824                        preempt_enable();
 825                        continue;
 826                }
 827
 828                kvm_arm_setup_debug(vcpu);
 829
 830                /**************************************************************
 831                 * Enter the guest
 832                 */
 833                trace_kvm_entry(*vcpu_pc(vcpu));
 834                guest_enter_irqoff();
 835
 836                ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
 837
 838                vcpu->mode = OUTSIDE_GUEST_MODE;
 839                vcpu->stat.exits++;
 840                /*
 841                 * Back from guest
 842                 *************************************************************/
 843
 844                kvm_arm_clear_debug(vcpu);
 845
 846                /*
 847                 * We must sync the PMU state before the vgic state so
 848                 * that the vgic can properly sample the updated state of the
 849                 * interrupt line.
 850                 */
 851                kvm_pmu_sync_hwstate(vcpu);
 852
 853                /*
 854                 * Sync the vgic state before syncing the timer state because
 855                 * the timer code needs to know if the virtual timer
 856                 * interrupts are active.
 857                 */
 858                kvm_vgic_sync_hwstate(vcpu);
 859
 860                /*
 861                 * Sync the timer hardware state before enabling interrupts as
 862                 * we don't want vtimer interrupts to race with syncing the
 863                 * timer virtual interrupt state.
 864                 */
 865                if (static_branch_unlikely(&userspace_irqchip_in_use))
 866                        kvm_timer_sync_user(vcpu);
 867
 868                kvm_arch_vcpu_ctxsync_fp(vcpu);
 869
 870                /*
 871                 * We may have taken a host interrupt in HYP mode (ie
 872                 * while executing the guest). This interrupt is still
 873                 * pending, as we haven't serviced it yet!
 874                 *
 875                 * We're now back in SVC mode, with interrupts
 876                 * disabled.  Enabling the interrupts now will have
 877                 * the effect of taking the interrupt again, in SVC
 878                 * mode this time.
 879                 */
 880                local_irq_enable();
 881
 882                /*
 883                 * We do local_irq_enable() before calling guest_exit() so
 884                 * that if a timer interrupt hits while running the guest we
 885                 * account that tick as being spent in the guest.  We enable
 886                 * preemption after calling guest_exit() so that if we get
 887                 * preempted we make sure ticks after that is not counted as
 888                 * guest time.
 889                 */
 890                guest_exit();
 891                trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 892
 893                /* Exit types that need handling before we can be preempted */
 894                handle_exit_early(vcpu, ret);
 895
 896                preempt_enable();
 897
 898                /*
 899                 * The ARMv8 architecture doesn't give the hypervisor
 900                 * a mechanism to prevent a guest from dropping to AArch32 EL0
 901                 * if implemented by the CPU. If we spot the guest in such
 902                 * state and that we decided it wasn't supposed to do so (like
 903                 * with the asymmetric AArch32 case), return to userspace with
 904                 * a fatal error.
 905                 */
 906                if (vcpu_mode_is_bad_32bit(vcpu)) {
 907                        /*
 908                         * As we have caught the guest red-handed, decide that
 909                         * it isn't fit for purpose anymore by making the vcpu
 910                         * invalid. The VMM can try and fix it by issuing  a
 911                         * KVM_ARM_VCPU_INIT if it really wants to.
 912                         */
 913                        vcpu->arch.target = -1;
 914                        ret = ARM_EXCEPTION_IL;
 915                }
 916
 917                ret = handle_exit(vcpu, ret);
 918        }
 919
 920        /* Tell userspace about in-kernel device output levels */
 921        if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
 922                kvm_timer_update_run(vcpu);
 923                kvm_pmu_update_run(vcpu);
 924        }
 925
 926        kvm_sigset_deactivate(vcpu);
 927
 928out:
 929        /*
 930         * In the unlikely event that we are returning to userspace
 931         * with pending exceptions or PC adjustment, commit these
 932         * adjustments in order to give userspace a consistent view of
 933         * the vcpu state. Note that this relies on __kvm_adjust_pc()
 934         * being preempt-safe on VHE.
 935         */
 936        if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
 937                                         KVM_ARM64_INCREMENT_PC)))
 938                kvm_call_hyp(__kvm_adjust_pc, vcpu);
 939
 940        vcpu_put(vcpu);
 941        return ret;
 942}
 943
 944static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 945{
 946        int bit_index;
 947        bool set;
 948        unsigned long *hcr;
 949
 950        if (number == KVM_ARM_IRQ_CPU_IRQ)
 951                bit_index = __ffs(HCR_VI);
 952        else /* KVM_ARM_IRQ_CPU_FIQ */
 953                bit_index = __ffs(HCR_VF);
 954
 955        hcr = vcpu_hcr(vcpu);
 956        if (level)
 957                set = test_and_set_bit(bit_index, hcr);
 958        else
 959                set = test_and_clear_bit(bit_index, hcr);
 960
 961        /*
 962         * If we didn't change anything, no need to wake up or kick other CPUs
 963         */
 964        if (set == level)
 965                return 0;
 966
 967        /*
 968         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 969         * trigger a world-switch round on the running physical CPU to set the
 970         * virtual IRQ/FIQ fields in the HCR appropriately.
 971         */
 972        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 973        kvm_vcpu_kick(vcpu);
 974
 975        return 0;
 976}
 977
 978int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 979                          bool line_status)
 980{
 981        u32 irq = irq_level->irq;
 982        unsigned int irq_type, vcpu_idx, irq_num;
 983        int nrcpus = atomic_read(&kvm->online_vcpus);
 984        struct kvm_vcpu *vcpu = NULL;
 985        bool level = irq_level->level;
 986
 987        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 988        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 989        vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
 990        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 991
 992        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 993
 994        switch (irq_type) {
 995        case KVM_ARM_IRQ_TYPE_CPU:
 996                if (irqchip_in_kernel(kvm))
 997                        return -ENXIO;
 998
 999                if (vcpu_idx >= nrcpus)
1000                        return -EINVAL;
1001
1002                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1003                if (!vcpu)
1004                        return -EINVAL;
1005
1006                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1007                        return -EINVAL;
1008
1009                return vcpu_interrupt_line(vcpu, irq_num, level);
1010        case KVM_ARM_IRQ_TYPE_PPI:
1011                if (!irqchip_in_kernel(kvm))
1012                        return -ENXIO;
1013
1014                if (vcpu_idx >= nrcpus)
1015                        return -EINVAL;
1016
1017                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1018                if (!vcpu)
1019                        return -EINVAL;
1020
1021                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1022                        return -EINVAL;
1023
1024                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1025        case KVM_ARM_IRQ_TYPE_SPI:
1026                if (!irqchip_in_kernel(kvm))
1027                        return -ENXIO;
1028
1029                if (irq_num < VGIC_NR_PRIVATE_IRQS)
1030                        return -EINVAL;
1031
1032                return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1033        }
1034
1035        return -EINVAL;
1036}
1037
1038static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1039                               const struct kvm_vcpu_init *init)
1040{
1041        unsigned int i, ret;
1042        int phys_target = kvm_target_cpu();
1043
1044        if (init->target != phys_target)
1045                return -EINVAL;
1046
1047        /*
1048         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1049         * use the same target.
1050         */
1051        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1052                return -EINVAL;
1053
1054        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1055        for (i = 0; i < sizeof(init->features) * 8; i++) {
1056                bool set = (init->features[i / 32] & (1 << (i % 32)));
1057
1058                if (set && i >= KVM_VCPU_MAX_FEATURES)
1059                        return -ENOENT;
1060
1061                /*
1062                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1063                 * use the same feature set.
1064                 */
1065                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1066                    test_bit(i, vcpu->arch.features) != set)
1067                        return -EINVAL;
1068
1069                if (set)
1070                        set_bit(i, vcpu->arch.features);
1071        }
1072
1073        vcpu->arch.target = phys_target;
1074
1075        /* Now we know what it is, we can reset it. */
1076        ret = kvm_reset_vcpu(vcpu);
1077        if (ret) {
1078                vcpu->arch.target = -1;
1079                bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1080        }
1081
1082        return ret;
1083}
1084
1085static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1086                                         struct kvm_vcpu_init *init)
1087{
1088        int ret;
1089
1090        ret = kvm_vcpu_set_target(vcpu, init);
1091        if (ret)
1092                return ret;
1093
1094        /*
1095         * Ensure a rebooted VM will fault in RAM pages and detect if the
1096         * guest MMU is turned off and flush the caches as needed.
1097         *
1098         * S2FWB enforces all memory accesses to RAM being cacheable,
1099         * ensuring that the data side is always coherent. We still
1100         * need to invalidate the I-cache though, as FWB does *not*
1101         * imply CTR_EL0.DIC.
1102         */
1103        if (vcpu->arch.has_run_once) {
1104                if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1105                        stage2_unmap_vm(vcpu->kvm);
1106                else
1107                        icache_inval_all_pou();
1108        }
1109
1110        vcpu_reset_hcr(vcpu);
1111
1112        /*
1113         * Handle the "start in power-off" case.
1114         */
1115        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1116                vcpu_power_off(vcpu);
1117        else
1118                vcpu->arch.power_off = false;
1119
1120        return 0;
1121}
1122
1123static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1124                                 struct kvm_device_attr *attr)
1125{
1126        int ret = -ENXIO;
1127
1128        switch (attr->group) {
1129        default:
1130                ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1131                break;
1132        }
1133
1134        return ret;
1135}
1136
1137static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1138                                 struct kvm_device_attr *attr)
1139{
1140        int ret = -ENXIO;
1141
1142        switch (attr->group) {
1143        default:
1144                ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1145                break;
1146        }
1147
1148        return ret;
1149}
1150
1151static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1152                                 struct kvm_device_attr *attr)
1153{
1154        int ret = -ENXIO;
1155
1156        switch (attr->group) {
1157        default:
1158                ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1159                break;
1160        }
1161
1162        return ret;
1163}
1164
1165static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1166                                   struct kvm_vcpu_events *events)
1167{
1168        memset(events, 0, sizeof(*events));
1169
1170        return __kvm_arm_vcpu_get_events(vcpu, events);
1171}
1172
1173static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1174                                   struct kvm_vcpu_events *events)
1175{
1176        int i;
1177
1178        /* check whether the reserved field is zero */
1179        for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1180                if (events->reserved[i])
1181                        return -EINVAL;
1182
1183        /* check whether the pad field is zero */
1184        for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1185                if (events->exception.pad[i])
1186                        return -EINVAL;
1187
1188        return __kvm_arm_vcpu_set_events(vcpu, events);
1189}
1190
1191long kvm_arch_vcpu_ioctl(struct file *filp,
1192                         unsigned int ioctl, unsigned long arg)
1193{
1194        struct kvm_vcpu *vcpu = filp->private_data;
1195        void __user *argp = (void __user *)arg;
1196        struct kvm_device_attr attr;
1197        long r;
1198
1199        switch (ioctl) {
1200        case KVM_ARM_VCPU_INIT: {
1201                struct kvm_vcpu_init init;
1202
1203                r = -EFAULT;
1204                if (copy_from_user(&init, argp, sizeof(init)))
1205                        break;
1206
1207                r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1208                break;
1209        }
1210        case KVM_SET_ONE_REG:
1211        case KVM_GET_ONE_REG: {
1212                struct kvm_one_reg reg;
1213
1214                r = -ENOEXEC;
1215                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1216                        break;
1217
1218                r = -EFAULT;
1219                if (copy_from_user(&reg, argp, sizeof(reg)))
1220                        break;
1221
1222                if (ioctl == KVM_SET_ONE_REG)
1223                        r = kvm_arm_set_reg(vcpu, &reg);
1224                else
1225                        r = kvm_arm_get_reg(vcpu, &reg);
1226                break;
1227        }
1228        case KVM_GET_REG_LIST: {
1229                struct kvm_reg_list __user *user_list = argp;
1230                struct kvm_reg_list reg_list;
1231                unsigned n;
1232
1233                r = -ENOEXEC;
1234                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1235                        break;
1236
1237                r = -EPERM;
1238                if (!kvm_arm_vcpu_is_finalized(vcpu))
1239                        break;
1240
1241                r = -EFAULT;
1242                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1243                        break;
1244                n = reg_list.n;
1245                reg_list.n = kvm_arm_num_regs(vcpu);
1246                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1247                        break;
1248                r = -E2BIG;
1249                if (n < reg_list.n)
1250                        break;
1251                r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1252                break;
1253        }
1254        case KVM_SET_DEVICE_ATTR: {
1255                r = -EFAULT;
1256                if (copy_from_user(&attr, argp, sizeof(attr)))
1257                        break;
1258                r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1259                break;
1260        }
1261        case KVM_GET_DEVICE_ATTR: {
1262                r = -EFAULT;
1263                if (copy_from_user(&attr, argp, sizeof(attr)))
1264                        break;
1265                r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1266                break;
1267        }
1268        case KVM_HAS_DEVICE_ATTR: {
1269                r = -EFAULT;
1270                if (copy_from_user(&attr, argp, sizeof(attr)))
1271                        break;
1272                r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1273                break;
1274        }
1275        case KVM_GET_VCPU_EVENTS: {
1276                struct kvm_vcpu_events events;
1277
1278                if (kvm_arm_vcpu_get_events(vcpu, &events))
1279                        return -EINVAL;
1280
1281                if (copy_to_user(argp, &events, sizeof(events)))
1282                        return -EFAULT;
1283
1284                return 0;
1285        }
1286        case KVM_SET_VCPU_EVENTS: {
1287                struct kvm_vcpu_events events;
1288
1289                if (copy_from_user(&events, argp, sizeof(events)))
1290                        return -EFAULT;
1291
1292                return kvm_arm_vcpu_set_events(vcpu, &events);
1293        }
1294        case KVM_ARM_VCPU_FINALIZE: {
1295                int what;
1296
1297                if (!kvm_vcpu_initialized(vcpu))
1298                        return -ENOEXEC;
1299
1300                if (get_user(what, (const int __user *)argp))
1301                        return -EFAULT;
1302
1303                return kvm_arm_vcpu_finalize(vcpu, what);
1304        }
1305        default:
1306                r = -EINVAL;
1307        }
1308
1309        return r;
1310}
1311
1312void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1313{
1314
1315}
1316
1317void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1318                                        const struct kvm_memory_slot *memslot)
1319{
1320        kvm_flush_remote_tlbs(kvm);
1321}
1322
1323static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1324                                        struct kvm_arm_device_addr *dev_addr)
1325{
1326        unsigned long dev_id, type;
1327
1328        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1329                KVM_ARM_DEVICE_ID_SHIFT;
1330        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1331                KVM_ARM_DEVICE_TYPE_SHIFT;
1332
1333        switch (dev_id) {
1334        case KVM_ARM_DEVICE_VGIC_V2:
1335                if (!vgic_present)
1336                        return -ENXIO;
1337                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1338        default:
1339                return -ENODEV;
1340        }
1341}
1342
1343long kvm_arch_vm_ioctl(struct file *filp,
1344                       unsigned int ioctl, unsigned long arg)
1345{
1346        struct kvm *kvm = filp->private_data;
1347        void __user *argp = (void __user *)arg;
1348
1349        switch (ioctl) {
1350        case KVM_CREATE_IRQCHIP: {
1351                int ret;
1352                if (!vgic_present)
1353                        return -ENXIO;
1354                mutex_lock(&kvm->lock);
1355                ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1356                mutex_unlock(&kvm->lock);
1357                return ret;
1358        }
1359        case KVM_ARM_SET_DEVICE_ADDR: {
1360                struct kvm_arm_device_addr dev_addr;
1361
1362                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1363                        return -EFAULT;
1364                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1365        }
1366        case KVM_ARM_PREFERRED_TARGET: {
1367                int err;
1368                struct kvm_vcpu_init init;
1369
1370                err = kvm_vcpu_preferred_target(&init);
1371                if (err)
1372                        return err;
1373
1374                if (copy_to_user(argp, &init, sizeof(init)))
1375                        return -EFAULT;
1376
1377                return 0;
1378        }
1379        case KVM_ARM_MTE_COPY_TAGS: {
1380                struct kvm_arm_copy_mte_tags copy_tags;
1381
1382                if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1383                        return -EFAULT;
1384                return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1385        }
1386        default:
1387                return -EINVAL;
1388        }
1389}
1390
1391static unsigned long nvhe_percpu_size(void)
1392{
1393        return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1394                (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1395}
1396
1397static unsigned long nvhe_percpu_order(void)
1398{
1399        unsigned long size = nvhe_percpu_size();
1400
1401        return size ? get_order(size) : 0;
1402}
1403
1404/* A lookup table holding the hypervisor VA for each vector slot */
1405static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1406
1407static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1408{
1409        hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1410}
1411
1412static int kvm_init_vector_slots(void)
1413{
1414        int err;
1415        void *base;
1416
1417        base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1418        kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1419
1420        base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1421        kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1422
1423        if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1424                return 0;
1425
1426        if (!has_vhe()) {
1427                err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1428                                               __BP_HARDEN_HYP_VECS_SZ, &base);
1429                if (err)
1430                        return err;
1431        }
1432
1433        kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1434        kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1435        return 0;
1436}
1437
1438static void cpu_prepare_hyp_mode(int cpu)
1439{
1440        struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1441        unsigned long tcr;
1442
1443        /*
1444         * Calculate the raw per-cpu offset without a translation from the
1445         * kernel's mapping to the linear mapping, and store it in tpidr_el2
1446         * so that we can use adr_l to access per-cpu variables in EL2.
1447         * Also drop the KASAN tag which gets in the way...
1448         */
1449        params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1450                            (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1451
1452        params->mair_el2 = read_sysreg(mair_el1);
1453
1454        /*
1455         * The ID map may be configured to use an extended virtual address
1456         * range. This is only the case if system RAM is out of range for the
1457         * currently configured page size and VA_BITS, in which case we will
1458         * also need the extended virtual range for the HYP ID map, or we won't
1459         * be able to enable the EL2 MMU.
1460         *
1461         * However, at EL2, there is only one TTBR register, and we can't switch
1462         * between translation tables *and* update TCR_EL2.T0SZ at the same
1463         * time. Bottom line: we need to use the extended range with *both* our
1464         * translation tables.
1465         *
1466         * So use the same T0SZ value we use for the ID map.
1467         */
1468        tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1469        tcr &= ~TCR_T0SZ_MASK;
1470        tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1471        params->tcr_el2 = tcr;
1472
1473        params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1474        params->pgd_pa = kvm_mmu_get_httbr();
1475        if (is_protected_kvm_enabled())
1476                params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1477        else
1478                params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1479        params->vttbr = params->vtcr = 0;
1480
1481        /*
1482         * Flush the init params from the data cache because the struct will
1483         * be read while the MMU is off.
1484         */
1485        kvm_flush_dcache_to_poc(params, sizeof(*params));
1486}
1487
1488static void hyp_install_host_vector(void)
1489{
1490        struct kvm_nvhe_init_params *params;
1491        struct arm_smccc_res res;
1492
1493        /* Switch from the HYP stub to our own HYP init vector */
1494        __hyp_set_vectors(kvm_get_idmap_vector());
1495
1496        /*
1497         * Call initialization code, and switch to the full blown HYP code.
1498         * If the cpucaps haven't been finalized yet, something has gone very
1499         * wrong, and hyp will crash and burn when it uses any
1500         * cpus_have_const_cap() wrapper.
1501         */
1502        BUG_ON(!system_capabilities_finalized());
1503        params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1504        arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1505        WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1506}
1507
1508static void cpu_init_hyp_mode(void)
1509{
1510        hyp_install_host_vector();
1511
1512        /*
1513         * Disabling SSBD on a non-VHE system requires us to enable SSBS
1514         * at EL2.
1515         */
1516        if (this_cpu_has_cap(ARM64_SSBS) &&
1517            arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1518                kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1519        }
1520}
1521
1522static void cpu_hyp_reset(void)
1523{
1524        if (!is_kernel_in_hyp_mode())
1525                __hyp_reset_vectors();
1526}
1527
1528/*
1529 * EL2 vectors can be mapped and rerouted in a number of ways,
1530 * depending on the kernel configuration and CPU present:
1531 *
1532 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1533 *   placed in one of the vector slots, which is executed before jumping
1534 *   to the real vectors.
1535 *
1536 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1537 *   containing the hardening sequence is mapped next to the idmap page,
1538 *   and executed before jumping to the real vectors.
1539 *
1540 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1541 *   empty slot is selected, mapped next to the idmap page, and
1542 *   executed before jumping to the real vectors.
1543 *
1544 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1545 * VHE, as we don't have hypervisor-specific mappings. If the system
1546 * is VHE and yet selects this capability, it will be ignored.
1547 */
1548static void cpu_set_hyp_vector(void)
1549{
1550        struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1551        void *vector = hyp_spectre_vector_selector[data->slot];
1552
1553        if (!is_protected_kvm_enabled())
1554                *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1555        else
1556                kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1557}
1558
1559static void cpu_hyp_reinit(void)
1560{
1561        kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1562
1563        cpu_hyp_reset();
1564
1565        if (is_kernel_in_hyp_mode())
1566                kvm_timer_init_vhe();
1567        else
1568                cpu_init_hyp_mode();
1569
1570        cpu_set_hyp_vector();
1571
1572        kvm_arm_init_debug();
1573
1574        if (vgic_present)
1575                kvm_vgic_init_cpu_hardware();
1576}
1577
1578static void _kvm_arch_hardware_enable(void *discard)
1579{
1580        if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1581                cpu_hyp_reinit();
1582                __this_cpu_write(kvm_arm_hardware_enabled, 1);
1583        }
1584}
1585
1586int kvm_arch_hardware_enable(void)
1587{
1588        _kvm_arch_hardware_enable(NULL);
1589        return 0;
1590}
1591
1592static void _kvm_arch_hardware_disable(void *discard)
1593{
1594        if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1595                cpu_hyp_reset();
1596                __this_cpu_write(kvm_arm_hardware_enabled, 0);
1597        }
1598}
1599
1600void kvm_arch_hardware_disable(void)
1601{
1602        if (!is_protected_kvm_enabled())
1603                _kvm_arch_hardware_disable(NULL);
1604}
1605
1606#ifdef CONFIG_CPU_PM
1607static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1608                                    unsigned long cmd,
1609                                    void *v)
1610{
1611        /*
1612         * kvm_arm_hardware_enabled is left with its old value over
1613         * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1614         * re-enable hyp.
1615         */
1616        switch (cmd) {
1617        case CPU_PM_ENTER:
1618                if (__this_cpu_read(kvm_arm_hardware_enabled))
1619                        /*
1620                         * don't update kvm_arm_hardware_enabled here
1621                         * so that the hardware will be re-enabled
1622                         * when we resume. See below.
1623                         */
1624                        cpu_hyp_reset();
1625
1626                return NOTIFY_OK;
1627        case CPU_PM_ENTER_FAILED:
1628        case CPU_PM_EXIT:
1629                if (__this_cpu_read(kvm_arm_hardware_enabled))
1630                        /* The hardware was enabled before suspend. */
1631                        cpu_hyp_reinit();
1632
1633                return NOTIFY_OK;
1634
1635        default:
1636                return NOTIFY_DONE;
1637        }
1638}
1639
1640static struct notifier_block hyp_init_cpu_pm_nb = {
1641        .notifier_call = hyp_init_cpu_pm_notifier,
1642};
1643
1644static void hyp_cpu_pm_init(void)
1645{
1646        if (!is_protected_kvm_enabled())
1647                cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1648}
1649static void hyp_cpu_pm_exit(void)
1650{
1651        if (!is_protected_kvm_enabled())
1652                cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1653}
1654#else
1655static inline void hyp_cpu_pm_init(void)
1656{
1657}
1658static inline void hyp_cpu_pm_exit(void)
1659{
1660}
1661#endif
1662
1663static void init_cpu_logical_map(void)
1664{
1665        unsigned int cpu;
1666
1667        /*
1668         * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1669         * Only copy the set of online CPUs whose features have been chacked
1670         * against the finalized system capabilities. The hypervisor will not
1671         * allow any other CPUs from the `possible` set to boot.
1672         */
1673        for_each_online_cpu(cpu)
1674                hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1675}
1676
1677#define init_psci_0_1_impl_state(config, what)  \
1678        config.psci_0_1_ ## what ## _implemented = psci_ops.what
1679
1680static bool init_psci_relay(void)
1681{
1682        /*
1683         * If PSCI has not been initialized, protected KVM cannot install
1684         * itself on newly booted CPUs.
1685         */
1686        if (!psci_ops.get_version) {
1687                kvm_err("Cannot initialize protected mode without PSCI\n");
1688                return false;
1689        }
1690
1691        kvm_host_psci_config.version = psci_ops.get_version();
1692
1693        if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1694                kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1695                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1696                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1697                init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1698                init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1699        }
1700        return true;
1701}
1702
1703static int init_common_resources(void)
1704{
1705        return kvm_set_ipa_limit();
1706}
1707
1708static int init_subsystems(void)
1709{
1710        int err = 0;
1711
1712        /*
1713         * Enable hardware so that subsystem initialisation can access EL2.
1714         */
1715        on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1716
1717        /*
1718         * Register CPU lower-power notifier
1719         */
1720        hyp_cpu_pm_init();
1721
1722        /*
1723         * Init HYP view of VGIC
1724         */
1725        err = kvm_vgic_hyp_init();
1726        switch (err) {
1727        case 0:
1728                vgic_present = true;
1729                break;
1730        case -ENODEV:
1731        case -ENXIO:
1732                vgic_present = false;
1733                err = 0;
1734                break;
1735        default:
1736                goto out;
1737        }
1738
1739        /*
1740         * Init HYP architected timer support
1741         */
1742        err = kvm_timer_hyp_init(vgic_present);
1743        if (err)
1744                goto out;
1745
1746        kvm_perf_init();
1747        kvm_sys_reg_table_init();
1748
1749out:
1750        if (err || !is_protected_kvm_enabled())
1751                on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1752
1753        return err;
1754}
1755
1756static void teardown_hyp_mode(void)
1757{
1758        int cpu;
1759
1760        free_hyp_pgds();
1761        for_each_possible_cpu(cpu) {
1762                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1763                free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1764        }
1765}
1766
1767static int do_pkvm_init(u32 hyp_va_bits)
1768{
1769        void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1770        int ret;
1771
1772        preempt_disable();
1773        hyp_install_host_vector();
1774        ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1775                                num_possible_cpus(), kern_hyp_va(per_cpu_base),
1776                                hyp_va_bits);
1777        preempt_enable();
1778
1779        return ret;
1780}
1781
1782static int kvm_hyp_init_protection(u32 hyp_va_bits)
1783{
1784        void *addr = phys_to_virt(hyp_mem_base);
1785        int ret;
1786
1787        kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1788        kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1789
1790        ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1791        if (ret)
1792                return ret;
1793
1794        ret = do_pkvm_init(hyp_va_bits);
1795        if (ret)
1796                return ret;
1797
1798        free_hyp_pgds();
1799
1800        return 0;
1801}
1802
1803/**
1804 * Inits Hyp-mode on all online CPUs
1805 */
1806static int init_hyp_mode(void)
1807{
1808        u32 hyp_va_bits;
1809        int cpu;
1810        int err = -ENOMEM;
1811
1812        /*
1813         * The protected Hyp-mode cannot be initialized if the memory pool
1814         * allocation has failed.
1815         */
1816        if (is_protected_kvm_enabled() && !hyp_mem_base)
1817                goto out_err;
1818
1819        /*
1820         * Allocate Hyp PGD and setup Hyp identity mapping
1821         */
1822        err = kvm_mmu_init(&hyp_va_bits);
1823        if (err)
1824                goto out_err;
1825
1826        /*
1827         * Allocate stack pages for Hypervisor-mode
1828         */
1829        for_each_possible_cpu(cpu) {
1830                unsigned long stack_page;
1831
1832                stack_page = __get_free_page(GFP_KERNEL);
1833                if (!stack_page) {
1834                        err = -ENOMEM;
1835                        goto out_err;
1836                }
1837
1838                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1839        }
1840
1841        /*
1842         * Allocate and initialize pages for Hypervisor-mode percpu regions.
1843         */
1844        for_each_possible_cpu(cpu) {
1845                struct page *page;
1846                void *page_addr;
1847
1848                page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1849                if (!page) {
1850                        err = -ENOMEM;
1851                        goto out_err;
1852                }
1853
1854                page_addr = page_address(page);
1855                memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1856                kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1857        }
1858
1859        /*
1860         * Map the Hyp-code called directly from the host
1861         */
1862        err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1863                                  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1864        if (err) {
1865                kvm_err("Cannot map world-switch code\n");
1866                goto out_err;
1867        }
1868
1869        err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1870                                  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1871        if (err) {
1872                kvm_err("Cannot map .hyp.rodata section\n");
1873                goto out_err;
1874        }
1875
1876        err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1877                                  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1878        if (err) {
1879                kvm_err("Cannot map rodata section\n");
1880                goto out_err;
1881        }
1882
1883        /*
1884         * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1885         * section thanks to an assertion in the linker script. Map it RW and
1886         * the rest of .bss RO.
1887         */
1888        err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1889                                  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1890        if (err) {
1891                kvm_err("Cannot map hyp bss section: %d\n", err);
1892                goto out_err;
1893        }
1894
1895        err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1896                                  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1897        if (err) {
1898                kvm_err("Cannot map bss section\n");
1899                goto out_err;
1900        }
1901
1902        /*
1903         * Map the Hyp stack pages
1904         */
1905        for_each_possible_cpu(cpu) {
1906                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1907                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1908                                          PAGE_HYP);
1909
1910                if (err) {
1911                        kvm_err("Cannot map hyp stack\n");
1912                        goto out_err;
1913                }
1914        }
1915
1916        for_each_possible_cpu(cpu) {
1917                char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1918                char *percpu_end = percpu_begin + nvhe_percpu_size();
1919
1920                /* Map Hyp percpu pages */
1921                err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1922                if (err) {
1923                        kvm_err("Cannot map hyp percpu region\n");
1924                        goto out_err;
1925                }
1926
1927                /* Prepare the CPU initialization parameters */
1928                cpu_prepare_hyp_mode(cpu);
1929        }
1930
1931        if (is_protected_kvm_enabled()) {
1932                init_cpu_logical_map();
1933
1934                if (!init_psci_relay()) {
1935                        err = -ENODEV;
1936                        goto out_err;
1937                }
1938        }
1939
1940        if (is_protected_kvm_enabled()) {
1941                err = kvm_hyp_init_protection(hyp_va_bits);
1942                if (err) {
1943                        kvm_err("Failed to init hyp memory protection\n");
1944                        goto out_err;
1945                }
1946        }
1947
1948        return 0;
1949
1950out_err:
1951        teardown_hyp_mode();
1952        kvm_err("error initializing Hyp mode: %d\n", err);
1953        return err;
1954}
1955
1956static void _kvm_host_prot_finalize(void *discard)
1957{
1958        WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1959}
1960
1961static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1962{
1963        return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1964}
1965
1966#define pkvm_mark_hyp_section(__section)                \
1967        pkvm_mark_hyp(__pa_symbol(__section##_start),   \
1968                        __pa_symbol(__section##_end))
1969
1970static int finalize_hyp_mode(void)
1971{
1972        int cpu, ret;
1973
1974        if (!is_protected_kvm_enabled())
1975                return 0;
1976
1977        ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1978        if (ret)
1979                return ret;
1980
1981        ret = pkvm_mark_hyp_section(__hyp_text);
1982        if (ret)
1983                return ret;
1984
1985        ret = pkvm_mark_hyp_section(__hyp_rodata);
1986        if (ret)
1987                return ret;
1988
1989        ret = pkvm_mark_hyp_section(__hyp_bss);
1990        if (ret)
1991                return ret;
1992
1993        ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1994        if (ret)
1995                return ret;
1996
1997        for_each_possible_cpu(cpu) {
1998                phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1999                phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
2000
2001                ret = pkvm_mark_hyp(start, end);
2002                if (ret)
2003                        return ret;
2004
2005                start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
2006                end = start + PAGE_SIZE;
2007                ret = pkvm_mark_hyp(start, end);
2008                if (ret)
2009                        return ret;
2010        }
2011
2012        /*
2013         * Flip the static key upfront as that may no longer be possible
2014         * once the host stage 2 is installed.
2015         */
2016        static_branch_enable(&kvm_protected_mode_initialized);
2017        on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
2018
2019        return 0;
2020}
2021
2022static void check_kvm_target_cpu(void *ret)
2023{
2024        *(int *)ret = kvm_target_cpu();
2025}
2026
2027struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2028{
2029        struct kvm_vcpu *vcpu;
2030        int i;
2031
2032        mpidr &= MPIDR_HWID_BITMASK;
2033        kvm_for_each_vcpu(i, vcpu, kvm) {
2034                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2035                        return vcpu;
2036        }
2037        return NULL;
2038}
2039
2040bool kvm_arch_has_irq_bypass(void)
2041{
2042        return true;
2043}
2044
2045int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2046                                      struct irq_bypass_producer *prod)
2047{
2048        struct kvm_kernel_irqfd *irqfd =
2049                container_of(cons, struct kvm_kernel_irqfd, consumer);
2050
2051        return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2052                                          &irqfd->irq_entry);
2053}
2054void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2055                                      struct irq_bypass_producer *prod)
2056{
2057        struct kvm_kernel_irqfd *irqfd =
2058                container_of(cons, struct kvm_kernel_irqfd, consumer);
2059
2060        kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2061                                     &irqfd->irq_entry);
2062}
2063
2064void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2065{
2066        struct kvm_kernel_irqfd *irqfd =
2067                container_of(cons, struct kvm_kernel_irqfd, consumer);
2068
2069        kvm_arm_halt_guest(irqfd->kvm);
2070}
2071
2072void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2073{
2074        struct kvm_kernel_irqfd *irqfd =
2075                container_of(cons, struct kvm_kernel_irqfd, consumer);
2076
2077        kvm_arm_resume_guest(irqfd->kvm);
2078}
2079
2080/**
2081 * Initialize Hyp-mode and memory mappings on all CPUs.
2082 */
2083int kvm_arch_init(void *opaque)
2084{
2085        int err;
2086        int ret, cpu;
2087        bool in_hyp_mode;
2088
2089        if (!is_hyp_mode_available()) {
2090                kvm_info("HYP mode not available\n");
2091                return -ENODEV;
2092        }
2093
2094        in_hyp_mode = is_kernel_in_hyp_mode();
2095
2096        if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2097            cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2098                kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2099                         "Only trusted guests should be used on this system.\n");
2100
2101        for_each_online_cpu(cpu) {
2102                smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
2103                if (ret < 0) {
2104                        kvm_err("Error, CPU %d not supported!\n", cpu);
2105                        return -ENODEV;
2106                }
2107        }
2108
2109        err = init_common_resources();
2110        if (err)
2111                return err;
2112
2113        err = kvm_arm_init_sve();
2114        if (err)
2115                return err;
2116
2117        if (!in_hyp_mode) {
2118                err = init_hyp_mode();
2119                if (err)
2120                        goto out_err;
2121        }
2122
2123        err = kvm_init_vector_slots();
2124        if (err) {
2125                kvm_err("Cannot initialise vector slots\n");
2126                goto out_err;
2127        }
2128
2129        err = init_subsystems();
2130        if (err)
2131                goto out_hyp;
2132
2133        if (!in_hyp_mode) {
2134                err = finalize_hyp_mode();
2135                if (err) {
2136                        kvm_err("Failed to finalize Hyp protection\n");
2137                        goto out_hyp;
2138                }
2139        }
2140
2141        if (is_protected_kvm_enabled()) {
2142                kvm_info("Protected nVHE mode initialized successfully\n");
2143        } else if (in_hyp_mode) {
2144                kvm_info("VHE mode initialized successfully\n");
2145        } else {
2146                kvm_info("Hyp mode initialized successfully\n");
2147        }
2148
2149        return 0;
2150
2151out_hyp:
2152        hyp_cpu_pm_exit();
2153        if (!in_hyp_mode)
2154                teardown_hyp_mode();
2155out_err:
2156        return err;
2157}
2158
2159/* NOP: Compiling as a module not supported */
2160void kvm_arch_exit(void)
2161{
2162        kvm_perf_teardown();
2163}
2164
2165static int __init early_kvm_mode_cfg(char *arg)
2166{
2167        if (!arg)
2168                return -EINVAL;
2169
2170        if (strcmp(arg, "protected") == 0) {
2171                kvm_mode = KVM_MODE_PROTECTED;
2172                return 0;
2173        }
2174
2175        if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2176                return 0;
2177
2178        return -EINVAL;
2179}
2180early_param("kvm-arm.mode", early_kvm_mode_cfg);
2181
2182enum kvm_mode kvm_get_mode(void)
2183{
2184        return kvm_mode;
2185}
2186
2187static int arm_init(void)
2188{
2189        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2190        return rc;
2191}
2192
2193module_init(arm_init);
2194