linux/arch/arm64/kvm/vgic/vgic-v4.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2017 ARM Ltd.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/interrupt.h>
   8#include <linux/irq.h>
   9#include <linux/irqdomain.h>
  10#include <linux/kvm_host.h>
  11#include <linux/irqchip/arm-gic-v3.h>
  12
  13#include "vgic.h"
  14
  15/*
  16 * How KVM uses GICv4 (insert rude comments here):
  17 *
  18 * The vgic-v4 layer acts as a bridge between several entities:
  19 * - The GICv4 ITS representation offered by the ITS driver
  20 * - VFIO, which is in charge of the PCI endpoint
  21 * - The virtual ITS, which is the only thing the guest sees
  22 *
  23 * The configuration of VLPIs is triggered by a callback from VFIO,
  24 * instructing KVM that a PCI device has been configured to deliver
  25 * MSIs to a vITS.
  26 *
  27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
  28 * and this is used to find the corresponding vITS data structures
  29 * (ITS instance, device, event and irq) using a process that is
  30 * extremely similar to the injection of an MSI.
  31 *
  32 * At this stage, we can link the guest's view of an LPI (uniquely
  33 * identified by the routing entry) and the host irq, using the GICv4
  34 * driver mapping operation. Should the mapping succeed, we've then
  35 * successfully upgraded the guest's LPI to a VLPI. We can then start
  36 * with updating GICv4's view of the property table and generating an
  37 * INValidation in order to kickstart the delivery of this VLPI to the
  38 * guest directly, without software intervention. Well, almost.
  39 *
  40 * When the PCI endpoint is deconfigured, this operation is reversed
  41 * with VFIO calling kvm_vgic_v4_unset_forwarding().
  42 *
  43 * Once the VLPI has been mapped, it needs to follow any change the
  44 * guest performs on its LPI through the vITS. For that, a number of
  45 * command handlers have hooks to communicate these changes to the HW:
  46 * - Any invalidation triggers a call to its_prop_update_vlpi()
  47 * - The INT command results in a irq_set_irqchip_state(), which
  48 *   generates an INT on the corresponding VLPI.
  49 * - The CLEAR command results in a irq_set_irqchip_state(), which
  50 *   generates an CLEAR on the corresponding VLPI.
  51 * - DISCARD translates into an unmap, similar to a call to
  52 *   kvm_vgic_v4_unset_forwarding().
  53 * - MOVI is translated by an update of the existing mapping, changing
  54 *   the target vcpu, resulting in a VMOVI being generated.
  55 * - MOVALL is translated by a string of mapping updates (similar to
  56 *   the handling of MOVI). MOVALL is horrible.
  57 *
  58 * Note that a DISCARD/MAPTI sequence emitted from the guest without
  59 * reprogramming the PCI endpoint after MAPTI does not result in a
  60 * VLPI being mapped, as there is no callback from VFIO (the guest
  61 * will get the interrupt via the normal SW injection). Fixing this is
  62 * not trivial, and requires some horrible messing with the VFIO
  63 * internals. Not fun. Don't do that.
  64 *
  65 * Then there is the scheduling. Each time a vcpu is about to run on a
  66 * physical CPU, KVM must tell the corresponding redistributor about
  67 * it. And if we've migrated our vcpu from one CPU to another, we must
  68 * tell the ITS (so that the messages reach the right redistributor).
  69 * This is done in two steps: first issue a irq_set_affinity() on the
  70 * irq corresponding to the vcpu, then call its_make_vpe_resident().
  71 * You must be in a non-preemptible context. On exit, a call to
  72 * its_make_vpe_non_resident() tells the redistributor that we're done
  73 * with the vcpu.
  74 *
  75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt
  76 * which will fire each time a VLPI is made pending whilst the vcpu is
  77 * not running. Each time the vcpu gets blocked, the doorbell
  78 * interrupt gets enabled. When the vcpu is unblocked (for whatever
  79 * reason), the doorbell interrupt is disabled.
  80 */
  81
  82#define DB_IRQ_FLAGS    (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
  83
  84static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
  85{
  86        struct kvm_vcpu *vcpu = info;
  87
  88        /* We got the message, no need to fire again */
  89        if (!kvm_vgic_global_state.has_gicv4_1 &&
  90            !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
  91                disable_irq_nosync(irq);
  92
  93        /*
  94         * The v4.1 doorbell can fire concurrently with the vPE being
  95         * made non-resident. Ensure we only update pending_last
  96         * *after* the non-residency sequence has completed.
  97         */
  98        raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
  99        vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
 100        raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
 101
 102        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 103        kvm_vcpu_kick(vcpu);
 104
 105        return IRQ_HANDLED;
 106}
 107
 108static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
 109{
 110        vpe->sgi_config[irq->intid].enabled     = irq->enabled;
 111        vpe->sgi_config[irq->intid].group       = irq->group;
 112        vpe->sgi_config[irq->intid].priority    = irq->priority;
 113}
 114
 115static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
 116{
 117        struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 118        int i;
 119
 120        /*
 121         * With GICv4.1, every virtual SGI can be directly injected. So
 122         * let's pretend that they are HW interrupts, tied to a host
 123         * IRQ. The SGI code will do its magic.
 124         */
 125        for (i = 0; i < VGIC_NR_SGIS; i++) {
 126                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
 127                struct irq_desc *desc;
 128                unsigned long flags;
 129                int ret;
 130
 131                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 132
 133                if (irq->hw)
 134                        goto unlock;
 135
 136                irq->hw = true;
 137                irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
 138
 139                /* Transfer the full irq state to the vPE */
 140                vgic_v4_sync_sgi_config(vpe, irq);
 141                desc = irq_to_desc(irq->host_irq);
 142                ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
 143                                              false);
 144                if (!WARN_ON(ret)) {
 145                        /* Transfer pending state */
 146                        ret = irq_set_irqchip_state(irq->host_irq,
 147                                                    IRQCHIP_STATE_PENDING,
 148                                                    irq->pending_latch);
 149                        WARN_ON(ret);
 150                        irq->pending_latch = false;
 151                }
 152        unlock:
 153                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 154                vgic_put_irq(vcpu->kvm, irq);
 155        }
 156}
 157
 158static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
 159{
 160        int i;
 161
 162        for (i = 0; i < VGIC_NR_SGIS; i++) {
 163                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
 164                struct irq_desc *desc;
 165                unsigned long flags;
 166                int ret;
 167
 168                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 169
 170                if (!irq->hw)
 171                        goto unlock;
 172
 173                irq->hw = false;
 174                ret = irq_get_irqchip_state(irq->host_irq,
 175                                            IRQCHIP_STATE_PENDING,
 176                                            &irq->pending_latch);
 177                WARN_ON(ret);
 178
 179                desc = irq_to_desc(irq->host_irq);
 180                irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
 181        unlock:
 182                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 183                vgic_put_irq(vcpu->kvm, irq);
 184        }
 185}
 186
 187/* Must be called with the kvm lock held */
 188void vgic_v4_configure_vsgis(struct kvm *kvm)
 189{
 190        struct vgic_dist *dist = &kvm->arch.vgic;
 191        struct kvm_vcpu *vcpu;
 192        int i;
 193
 194        kvm_arm_halt_guest(kvm);
 195
 196        kvm_for_each_vcpu(i, vcpu, kvm) {
 197                if (dist->nassgireq)
 198                        vgic_v4_enable_vsgis(vcpu);
 199                else
 200                        vgic_v4_disable_vsgis(vcpu);
 201        }
 202
 203        kvm_arm_resume_guest(kvm);
 204}
 205
 206/*
 207 * Must be called with GICv4.1 and the vPE unmapped, which
 208 * indicates the invalidation of any VPT caches associated
 209 * with the vPE, thus we can get the VLPI state by peeking
 210 * at the VPT.
 211 */
 212void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
 213{
 214        struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 215        int mask = BIT(irq->intid % BITS_PER_BYTE);
 216        void *va;
 217        u8 *ptr;
 218
 219        va = page_address(vpe->vpt_page);
 220        ptr = va + irq->intid / BITS_PER_BYTE;
 221
 222        *val = !!(*ptr & mask);
 223}
 224
 225/**
 226 * vgic_v4_init - Initialize the GICv4 data structures
 227 * @kvm:        Pointer to the VM being initialized
 228 *
 229 * We may be called each time a vITS is created, or when the
 230 * vgic is initialized. This relies on kvm->lock to be
 231 * held. In both cases, the number of vcpus should now be
 232 * fixed.
 233 */
 234int vgic_v4_init(struct kvm *kvm)
 235{
 236        struct vgic_dist *dist = &kvm->arch.vgic;
 237        struct kvm_vcpu *vcpu;
 238        int i, nr_vcpus, ret;
 239
 240        if (!kvm_vgic_global_state.has_gicv4)
 241                return 0; /* Nothing to see here... move along. */
 242
 243        if (dist->its_vm.vpes)
 244                return 0;
 245
 246        nr_vcpus = atomic_read(&kvm->online_vcpus);
 247
 248        dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
 249                                    GFP_KERNEL);
 250        if (!dist->its_vm.vpes)
 251                return -ENOMEM;
 252
 253        dist->its_vm.nr_vpes = nr_vcpus;
 254
 255        kvm_for_each_vcpu(i, vcpu, kvm)
 256                dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 257
 258        ret = its_alloc_vcpu_irqs(&dist->its_vm);
 259        if (ret < 0) {
 260                kvm_err("VPE IRQ allocation failure\n");
 261                kfree(dist->its_vm.vpes);
 262                dist->its_vm.nr_vpes = 0;
 263                dist->its_vm.vpes = NULL;
 264                return ret;
 265        }
 266
 267        kvm_for_each_vcpu(i, vcpu, kvm) {
 268                int irq = dist->its_vm.vpes[i]->irq;
 269                unsigned long irq_flags = DB_IRQ_FLAGS;
 270
 271                /*
 272                 * Don't automatically enable the doorbell, as we're
 273                 * flipping it back and forth when the vcpu gets
 274                 * blocked. Also disable the lazy disabling, as the
 275                 * doorbell could kick us out of the guest too
 276                 * early...
 277                 *
 278                 * On GICv4.1, the doorbell is managed in HW and must
 279                 * be left enabled.
 280                 */
 281                if (kvm_vgic_global_state.has_gicv4_1)
 282                        irq_flags &= ~IRQ_NOAUTOEN;
 283                irq_set_status_flags(irq, irq_flags);
 284
 285                ret = request_irq(irq, vgic_v4_doorbell_handler,
 286                                  0, "vcpu", vcpu);
 287                if (ret) {
 288                        kvm_err("failed to allocate vcpu IRQ%d\n", irq);
 289                        /*
 290                         * Trick: adjust the number of vpes so we know
 291                         * how many to nuke on teardown...
 292                         */
 293                        dist->its_vm.nr_vpes = i;
 294                        break;
 295                }
 296        }
 297
 298        if (ret)
 299                vgic_v4_teardown(kvm);
 300
 301        return ret;
 302}
 303
 304/**
 305 * vgic_v4_teardown - Free the GICv4 data structures
 306 * @kvm:        Pointer to the VM being destroyed
 307 *
 308 * Relies on kvm->lock to be held.
 309 */
 310void vgic_v4_teardown(struct kvm *kvm)
 311{
 312        struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
 313        int i;
 314
 315        if (!its_vm->vpes)
 316                return;
 317
 318        for (i = 0; i < its_vm->nr_vpes; i++) {
 319                struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
 320                int irq = its_vm->vpes[i]->irq;
 321
 322                irq_clear_status_flags(irq, DB_IRQ_FLAGS);
 323                free_irq(irq, vcpu);
 324        }
 325
 326        its_free_vcpu_irqs(its_vm);
 327        kfree(its_vm->vpes);
 328        its_vm->nr_vpes = 0;
 329        its_vm->vpes = NULL;
 330}
 331
 332int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db)
 333{
 334        struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 335
 336        if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
 337                return 0;
 338
 339        return its_make_vpe_non_resident(vpe, need_db);
 340}
 341
 342int vgic_v4_load(struct kvm_vcpu *vcpu)
 343{
 344        struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 345        int err;
 346
 347        if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
 348                return 0;
 349
 350        /*
 351         * Before making the VPE resident, make sure the redistributor
 352         * corresponding to our current CPU expects us here. See the
 353         * doc in drivers/irqchip/irq-gic-v4.c to understand how this
 354         * turns into a VMOVP command at the ITS level.
 355         */
 356        err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
 357        if (err)
 358                return err;
 359
 360        err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
 361        if (err)
 362                return err;
 363
 364        /*
 365         * Now that the VPE is resident, let's get rid of a potential
 366         * doorbell interrupt that would still be pending. This is a
 367         * GICv4.0 only "feature"...
 368         */
 369        if (!kvm_vgic_global_state.has_gicv4_1)
 370                err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
 371
 372        return err;
 373}
 374
 375void vgic_v4_commit(struct kvm_vcpu *vcpu)
 376{
 377        struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 378
 379        /*
 380         * No need to wait for the vPE to be ready across a shallow guest
 381         * exit, as only a vcpu_put will invalidate it.
 382         */
 383        if (!vpe->ready)
 384                its_commit_vpe(vpe);
 385}
 386
 387static struct vgic_its *vgic_get_its(struct kvm *kvm,
 388                                     struct kvm_kernel_irq_routing_entry *irq_entry)
 389{
 390        struct kvm_msi msi  = (struct kvm_msi) {
 391                .address_lo     = irq_entry->msi.address_lo,
 392                .address_hi     = irq_entry->msi.address_hi,
 393                .data           = irq_entry->msi.data,
 394                .flags          = irq_entry->msi.flags,
 395                .devid          = irq_entry->msi.devid,
 396        };
 397
 398        return vgic_msi_to_its(kvm, &msi);
 399}
 400
 401int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
 402                               struct kvm_kernel_irq_routing_entry *irq_entry)
 403{
 404        struct vgic_its *its;
 405        struct vgic_irq *irq;
 406        struct its_vlpi_map map;
 407        unsigned long flags;
 408        int ret;
 409
 410        if (!vgic_supports_direct_msis(kvm))
 411                return 0;
 412
 413        /*
 414         * Get the ITS, and escape early on error (not a valid
 415         * doorbell for any of our vITSs).
 416         */
 417        its = vgic_get_its(kvm, irq_entry);
 418        if (IS_ERR(its))
 419                return 0;
 420
 421        mutex_lock(&its->its_lock);
 422
 423        /* Perform the actual DevID/EventID -> LPI translation. */
 424        ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
 425                                   irq_entry->msi.data, &irq);
 426        if (ret)
 427                goto out;
 428
 429        /*
 430         * Emit the mapping request. If it fails, the ITS probably
 431         * isn't v4 compatible, so let's silently bail out. Holding
 432         * the ITS lock should ensure that nothing can modify the
 433         * target vcpu.
 434         */
 435        map = (struct its_vlpi_map) {
 436                .vm             = &kvm->arch.vgic.its_vm,
 437                .vpe            = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
 438                .vintid         = irq->intid,
 439                .properties     = ((irq->priority & 0xfc) |
 440                                   (irq->enabled ? LPI_PROP_ENABLED : 0) |
 441                                   LPI_PROP_GROUP1),
 442                .db_enabled     = true,
 443        };
 444
 445        ret = its_map_vlpi(virq, &map);
 446        if (ret)
 447                goto out;
 448
 449        irq->hw         = true;
 450        irq->host_irq   = virq;
 451        atomic_inc(&map.vpe->vlpi_count);
 452
 453        /* Transfer pending state */
 454        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 455        if (irq->pending_latch) {
 456                ret = irq_set_irqchip_state(irq->host_irq,
 457                                            IRQCHIP_STATE_PENDING,
 458                                            irq->pending_latch);
 459                WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
 460
 461                /*
 462                 * Clear pending_latch and communicate this state
 463                 * change via vgic_queue_irq_unlock.
 464                 */
 465                irq->pending_latch = false;
 466                vgic_queue_irq_unlock(kvm, irq, flags);
 467        } else {
 468                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 469        }
 470
 471out:
 472        mutex_unlock(&its->its_lock);
 473        return ret;
 474}
 475
 476int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
 477                                 struct kvm_kernel_irq_routing_entry *irq_entry)
 478{
 479        struct vgic_its *its;
 480        struct vgic_irq *irq;
 481        int ret;
 482
 483        if (!vgic_supports_direct_msis(kvm))
 484                return 0;
 485
 486        /*
 487         * Get the ITS, and escape early on error (not a valid
 488         * doorbell for any of our vITSs).
 489         */
 490        its = vgic_get_its(kvm, irq_entry);
 491        if (IS_ERR(its))
 492                return 0;
 493
 494        mutex_lock(&its->its_lock);
 495
 496        ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
 497                                   irq_entry->msi.data, &irq);
 498        if (ret)
 499                goto out;
 500
 501        WARN_ON(!(irq->hw && irq->host_irq == virq));
 502        if (irq->hw) {
 503                atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
 504                irq->hw = false;
 505                ret = its_unmap_vlpi(virq);
 506        }
 507
 508out:
 509        mutex_unlock(&its->its_lock);
 510        return ret;
 511}
 512