linux/arch/ia64/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Architecture-specific setup.
   4 *
   5 * Copyright (C) 1998-2003 Hewlett-Packard Co
   6 *      David Mosberger-Tang <davidm@hpl.hp.com>
   7 * 04/11/17 Ashok Raj   <ashok.raj@intel.com> Added CPU Hotplug Support
   8 *
   9 * 2005-10-07 Keith Owens <kaos@sgi.com>
  10 *            Add notify_die() hooks.
  11 */
  12#include <linux/cpu.h>
  13#include <linux/pm.h>
  14#include <linux/elf.h>
  15#include <linux/errno.h>
  16#include <linux/kernel.h>
  17#include <linux/mm.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/notifier.h>
  21#include <linux/personality.h>
  22#include <linux/sched.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sched/hotplug.h>
  25#include <linux/sched/task.h>
  26#include <linux/sched/task_stack.h>
  27#include <linux/stddef.h>
  28#include <linux/thread_info.h>
  29#include <linux/unistd.h>
  30#include <linux/efi.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/kdebug.h>
  34#include <linux/utsname.h>
  35#include <linux/tracehook.h>
  36#include <linux/rcupdate.h>
  37
  38#include <asm/cpu.h>
  39#include <asm/delay.h>
  40#include <asm/elf.h>
  41#include <asm/irq.h>
  42#include <asm/kexec.h>
  43#include <asm/processor.h>
  44#include <asm/sal.h>
  45#include <asm/switch_to.h>
  46#include <asm/tlbflush.h>
  47#include <linux/uaccess.h>
  48#include <asm/unwind.h>
  49#include <asm/user.h>
  50#include <asm/xtp.h>
  51
  52#include "entry.h"
  53
  54#include "sigframe.h"
  55
  56void (*ia64_mark_idle)(int);
  57
  58unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  59EXPORT_SYMBOL(boot_option_idle_override);
  60void (*pm_power_off) (void);
  61EXPORT_SYMBOL(pm_power_off);
  62
  63static void
  64ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  65{
  66        unsigned long ip, sp, bsp;
  67        const char *loglvl = arg;
  68
  69        printk("%s\nCall Trace:\n", loglvl);
  70        do {
  71                unw_get_ip(info, &ip);
  72                if (ip == 0)
  73                        break;
  74
  75                unw_get_sp(info, &sp);
  76                unw_get_bsp(info, &bsp);
  77                printk("%s [<%016lx>] %pS\n"
  78                         "                                sp=%016lx bsp=%016lx\n",
  79                         loglvl, ip, (void *)ip, sp, bsp);
  80        } while (unw_unwind(info) >= 0);
  81}
  82
  83void
  84show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
  85{
  86        if (!task)
  87                unw_init_running(ia64_do_show_stack, (void *)loglvl);
  88        else {
  89                struct unw_frame_info info;
  90
  91                unw_init_from_blocked_task(&info, task);
  92                ia64_do_show_stack(&info, (void *)loglvl);
  93        }
  94}
  95
  96void
  97show_regs (struct pt_regs *regs)
  98{
  99        unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
 100
 101        print_modules();
 102        printk("\n");
 103        show_regs_print_info(KERN_DEFAULT);
 104        printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
 105               regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
 106               init_utsname()->release);
 107        printk("ip is at %pS\n", (void *)ip);
 108        printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
 109               regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
 110        printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
 111               regs->ar_rnat, regs->ar_bspstore, regs->pr);
 112        printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
 113               regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
 114        printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
 115        printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
 116        printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
 117               regs->f6.u.bits[1], regs->f6.u.bits[0],
 118               regs->f7.u.bits[1], regs->f7.u.bits[0]);
 119        printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
 120               regs->f8.u.bits[1], regs->f8.u.bits[0],
 121               regs->f9.u.bits[1], regs->f9.u.bits[0]);
 122        printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
 123               regs->f10.u.bits[1], regs->f10.u.bits[0],
 124               regs->f11.u.bits[1], regs->f11.u.bits[0]);
 125
 126        printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
 127        printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
 128        printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
 129        printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
 130        printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
 131        printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
 132        printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
 133        printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
 134        printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
 135
 136        if (user_mode(regs)) {
 137                /* print the stacked registers */
 138                unsigned long val, *bsp, ndirty;
 139                int i, sof, is_nat = 0;
 140
 141                sof = regs->cr_ifs & 0x7f;      /* size of frame */
 142                ndirty = (regs->loadrs >> 19);
 143                bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
 144                for (i = 0; i < sof; ++i) {
 145                        get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
 146                        printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
 147                               ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
 148                }
 149        } else
 150                show_stack(NULL, NULL, KERN_DEFAULT);
 151}
 152
 153/* local support for deprecated console_print */
 154void
 155console_print(const char *s)
 156{
 157        printk(KERN_EMERG "%s", s);
 158}
 159
 160void
 161do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
 162{
 163        if (fsys_mode(current, &scr->pt)) {
 164                /*
 165                 * defer signal-handling etc. until we return to
 166                 * privilege-level 0.
 167                 */
 168                if (!ia64_psr(&scr->pt)->lp)
 169                        ia64_psr(&scr->pt)->lp = 1;
 170                return;
 171        }
 172
 173        /* deal with pending signal delivery */
 174        if (test_thread_flag(TIF_SIGPENDING) ||
 175            test_thread_flag(TIF_NOTIFY_SIGNAL)) {
 176                local_irq_enable();     /* force interrupt enable */
 177                ia64_do_signal(scr, in_syscall);
 178        }
 179
 180        if (test_thread_flag(TIF_NOTIFY_RESUME)) {
 181                local_irq_enable();     /* force interrupt enable */
 182                tracehook_notify_resume(&scr->pt);
 183        }
 184
 185        /* copy user rbs to kernel rbs */
 186        if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
 187                local_irq_enable();     /* force interrupt enable */
 188                ia64_sync_krbs();
 189        }
 190
 191        local_irq_disable();    /* force interrupt disable */
 192}
 193
 194static int __init nohalt_setup(char * str)
 195{
 196        cpu_idle_poll_ctrl(true);
 197        return 1;
 198}
 199__setup("nohalt", nohalt_setup);
 200
 201#ifdef CONFIG_HOTPLUG_CPU
 202/* We don't actually take CPU down, just spin without interrupts. */
 203static inline void play_dead(void)
 204{
 205        unsigned int this_cpu = smp_processor_id();
 206
 207        /* Ack it */
 208        __this_cpu_write(cpu_state, CPU_DEAD);
 209
 210        max_xtp();
 211        local_irq_disable();
 212        idle_task_exit();
 213        ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
 214        /*
 215         * The above is a point of no-return, the processor is
 216         * expected to be in SAL loop now.
 217         */
 218        BUG();
 219}
 220#else
 221static inline void play_dead(void)
 222{
 223        BUG();
 224}
 225#endif /* CONFIG_HOTPLUG_CPU */
 226
 227void arch_cpu_idle_dead(void)
 228{
 229        play_dead();
 230}
 231
 232void arch_cpu_idle(void)
 233{
 234        void (*mark_idle)(int) = ia64_mark_idle;
 235
 236#ifdef CONFIG_SMP
 237        min_xtp();
 238#endif
 239        rmb();
 240        if (mark_idle)
 241                (*mark_idle)(1);
 242
 243        raw_safe_halt();
 244
 245        if (mark_idle)
 246                (*mark_idle)(0);
 247#ifdef CONFIG_SMP
 248        normal_xtp();
 249#endif
 250}
 251
 252void
 253ia64_save_extra (struct task_struct *task)
 254{
 255        if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
 256                ia64_save_debug_regs(&task->thread.dbr[0]);
 257}
 258
 259void
 260ia64_load_extra (struct task_struct *task)
 261{
 262        if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
 263                ia64_load_debug_regs(&task->thread.dbr[0]);
 264}
 265
 266/*
 267 * Copy the state of an ia-64 thread.
 268 *
 269 * We get here through the following  call chain:
 270 *
 271 *      from user-level:        from kernel:
 272 *
 273 *      <clone syscall>         <some kernel call frames>
 274 *      sys_clone                  :
 275 *      kernel_clone            kernel_clone
 276 *      copy_thread             copy_thread
 277 *
 278 * This means that the stack layout is as follows:
 279 *
 280 *      +---------------------+ (highest addr)
 281 *      |   struct pt_regs    |
 282 *      +---------------------+
 283 *      | struct switch_stack |
 284 *      +---------------------+
 285 *      |                     |
 286 *      |    memory stack     |
 287 *      |                     | <-- sp (lowest addr)
 288 *      +---------------------+
 289 *
 290 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
 291 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
 292 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
 293 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
 294 * the stack is page aligned and the page size is at least 4KB, this is always the case,
 295 * so there is nothing to worry about.
 296 */
 297int
 298copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
 299            unsigned long user_stack_size, struct task_struct *p, unsigned long tls)
 300{
 301        extern char ia64_ret_from_clone;
 302        struct switch_stack *child_stack, *stack;
 303        unsigned long rbs, child_rbs, rbs_size;
 304        struct pt_regs *child_ptregs;
 305        struct pt_regs *regs = current_pt_regs();
 306        int retval = 0;
 307
 308        child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
 309        child_stack = (struct switch_stack *) child_ptregs - 1;
 310
 311        rbs = (unsigned long) current + IA64_RBS_OFFSET;
 312        child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
 313
 314        /* copy parts of thread_struct: */
 315        p->thread.ksp = (unsigned long) child_stack - 16;
 316
 317        /*
 318         * NOTE: The calling convention considers all floating point
 319         * registers in the high partition (fph) to be scratch.  Since
 320         * the only way to get to this point is through a system call,
 321         * we know that the values in fph are all dead.  Hence, there
 322         * is no need to inherit the fph state from the parent to the
 323         * child and all we have to do is to make sure that
 324         * IA64_THREAD_FPH_VALID is cleared in the child.
 325         *
 326         * XXX We could push this optimization a bit further by
 327         * clearing IA64_THREAD_FPH_VALID on ANY system call.
 328         * However, it's not clear this is worth doing.  Also, it
 329         * would be a slight deviation from the normal Linux system
 330         * call behavior where scratch registers are preserved across
 331         * system calls (unless used by the system call itself).
 332         */
 333#       define THREAD_FLAGS_TO_CLEAR    (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
 334                                         | IA64_THREAD_PM_VALID)
 335#       define THREAD_FLAGS_TO_SET      0
 336        p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
 337                           | THREAD_FLAGS_TO_SET);
 338
 339        ia64_drop_fpu(p);       /* don't pick up stale state from a CPU's fph */
 340
 341        if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
 342                if (unlikely(!user_stack_base)) {
 343                        /* fork_idle() called us */
 344                        return 0;
 345                }
 346                memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
 347                child_stack->r4 = user_stack_base;      /* payload */
 348                child_stack->r5 = user_stack_size;      /* argument */
 349                /*
 350                 * Preserve PSR bits, except for bits 32-34 and 37-45,
 351                 * which we can't read.
 352                 */
 353                child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
 354                /* mark as valid, empty frame */
 355                child_ptregs->cr_ifs = 1UL << 63;
 356                child_stack->ar_fpsr = child_ptregs->ar_fpsr
 357                        = ia64_getreg(_IA64_REG_AR_FPSR);
 358                child_stack->pr = (1 << PRED_KERNEL_STACK);
 359                child_stack->ar_bspstore = child_rbs;
 360                child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
 361
 362                /* stop some PSR bits from being inherited.
 363                 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
 364                 * therefore we must specify them explicitly here and not include them in
 365                 * IA64_PSR_BITS_TO_CLEAR.
 366                 */
 367                child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
 368                                 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
 369
 370                return 0;
 371        }
 372        stack = ((struct switch_stack *) regs) - 1;
 373        /* copy parent's switch_stack & pt_regs to child: */
 374        memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
 375
 376        /* copy the parent's register backing store to the child: */
 377        rbs_size = stack->ar_bspstore - rbs;
 378        memcpy((void *) child_rbs, (void *) rbs, rbs_size);
 379        if (clone_flags & CLONE_SETTLS)
 380                child_ptregs->r13 = tls;
 381        if (user_stack_base) {
 382                child_ptregs->r12 = user_stack_base + user_stack_size - 16;
 383                child_ptregs->ar_bspstore = user_stack_base;
 384                child_ptregs->ar_rnat = 0;
 385                child_ptregs->loadrs = 0;
 386        }
 387        child_stack->ar_bspstore = child_rbs + rbs_size;
 388        child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
 389
 390        /* stop some PSR bits from being inherited.
 391         * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
 392         * therefore we must specify them explicitly here and not include them in
 393         * IA64_PSR_BITS_TO_CLEAR.
 394         */
 395        child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
 396                                 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
 397        return retval;
 398}
 399
 400asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
 401                           unsigned long stack_size, unsigned long parent_tidptr,
 402                           unsigned long child_tidptr, unsigned long tls)
 403{
 404        struct kernel_clone_args args = {
 405                .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
 406                .pidfd          = (int __user *)parent_tidptr,
 407                .child_tid      = (int __user *)child_tidptr,
 408                .parent_tid     = (int __user *)parent_tidptr,
 409                .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
 410                .stack          = stack_start,
 411                .stack_size     = stack_size,
 412                .tls            = tls,
 413        };
 414
 415        return kernel_clone(&args);
 416}
 417
 418static void
 419do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
 420{
 421        unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
 422        unsigned long ip;
 423        elf_greg_t *dst = arg;
 424        struct pt_regs *pt;
 425        char nat;
 426        int i;
 427
 428        memset(dst, 0, sizeof(elf_gregset_t));  /* don't leak any kernel bits to user-level */
 429
 430        if (unw_unwind_to_user(info) < 0)
 431                return;
 432
 433        unw_get_sp(info, &sp);
 434        pt = (struct pt_regs *) (sp + 16);
 435
 436        urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
 437
 438        if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
 439                return;
 440
 441        ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
 442                  &ar_rnat);
 443
 444        /*
 445         * coredump format:
 446         *      r0-r31
 447         *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
 448         *      predicate registers (p0-p63)
 449         *      b0-b7
 450         *      ip cfm user-mask
 451         *      ar.rsc ar.bsp ar.bspstore ar.rnat
 452         *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
 453         */
 454
 455        /* r0 is zero */
 456        for (i = 1, mask = (1UL << i); i < 32; ++i) {
 457                unw_get_gr(info, i, &dst[i], &nat);
 458                if (nat)
 459                        nat_bits |= mask;
 460                mask <<= 1;
 461        }
 462        dst[32] = nat_bits;
 463        unw_get_pr(info, &dst[33]);
 464
 465        for (i = 0; i < 8; ++i)
 466                unw_get_br(info, i, &dst[34 + i]);
 467
 468        unw_get_rp(info, &ip);
 469        dst[42] = ip + ia64_psr(pt)->ri;
 470        dst[43] = cfm;
 471        dst[44] = pt->cr_ipsr & IA64_PSR_UM;
 472
 473        unw_get_ar(info, UNW_AR_RSC, &dst[45]);
 474        /*
 475         * For bsp and bspstore, unw_get_ar() would return the kernel
 476         * addresses, but we need the user-level addresses instead:
 477         */
 478        dst[46] = urbs_end;     /* note: by convention PT_AR_BSP points to the end of the urbs! */
 479        dst[47] = pt->ar_bspstore;
 480        dst[48] = ar_rnat;
 481        unw_get_ar(info, UNW_AR_CCV, &dst[49]);
 482        unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
 483        unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
 484        dst[52] = pt->ar_pfs;   /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
 485        unw_get_ar(info, UNW_AR_LC, &dst[53]);
 486        unw_get_ar(info, UNW_AR_EC, &dst[54]);
 487        unw_get_ar(info, UNW_AR_CSD, &dst[55]);
 488        unw_get_ar(info, UNW_AR_SSD, &dst[56]);
 489}
 490
 491static void
 492do_copy_regs (struct unw_frame_info *info, void *arg)
 493{
 494        do_copy_task_regs(current, info, arg);
 495}
 496
 497void
 498ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
 499{
 500        unw_init_running(do_copy_regs, dst);
 501}
 502
 503/*
 504 * Flush thread state.  This is called when a thread does an execve().
 505 */
 506void
 507flush_thread (void)
 508{
 509        /* drop floating-point and debug-register state if it exists: */
 510        current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
 511        ia64_drop_fpu(current);
 512}
 513
 514/*
 515 * Clean up state associated with a thread.  This is called when
 516 * the thread calls exit().
 517 */
 518void
 519exit_thread (struct task_struct *tsk)
 520{
 521
 522        ia64_drop_fpu(tsk);
 523}
 524
 525unsigned long
 526get_wchan (struct task_struct *p)
 527{
 528        struct unw_frame_info info;
 529        unsigned long ip;
 530        int count = 0;
 531
 532        if (!p || p == current || task_is_running(p))
 533                return 0;
 534
 535        /*
 536         * Note: p may not be a blocked task (it could be current or
 537         * another process running on some other CPU.  Rather than
 538         * trying to determine if p is really blocked, we just assume
 539         * it's blocked and rely on the unwind routines to fail
 540         * gracefully if the process wasn't really blocked after all.
 541         * --davidm 99/12/15
 542         */
 543        unw_init_from_blocked_task(&info, p);
 544        do {
 545                if (task_is_running(p))
 546                        return 0;
 547                if (unw_unwind(&info) < 0)
 548                        return 0;
 549                unw_get_ip(&info, &ip);
 550                if (!in_sched_functions(ip))
 551                        return ip;
 552        } while (count++ < 16);
 553        return 0;
 554}
 555
 556void
 557cpu_halt (void)
 558{
 559        pal_power_mgmt_info_u_t power_info[8];
 560        unsigned long min_power;
 561        int i, min_power_state;
 562
 563        if (ia64_pal_halt_info(power_info) != 0)
 564                return;
 565
 566        min_power_state = 0;
 567        min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
 568        for (i = 1; i < 8; ++i)
 569                if (power_info[i].pal_power_mgmt_info_s.im
 570                    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
 571                        min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
 572                        min_power_state = i;
 573                }
 574
 575        while (1)
 576                ia64_pal_halt(min_power_state);
 577}
 578
 579void machine_shutdown(void)
 580{
 581        smp_shutdown_nonboot_cpus(reboot_cpu);
 582
 583#ifdef CONFIG_KEXEC
 584        kexec_disable_iosapic();
 585#endif
 586}
 587
 588void
 589machine_restart (char *restart_cmd)
 590{
 591        (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
 592        efi_reboot(REBOOT_WARM, NULL);
 593}
 594
 595void
 596machine_halt (void)
 597{
 598        (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
 599        cpu_halt();
 600}
 601
 602void
 603machine_power_off (void)
 604{
 605        if (pm_power_off)
 606                pm_power_off();
 607        machine_halt();
 608}
 609
 610EXPORT_SYMBOL(ia64_delay_loop);
 611