linux/arch/powerpc/kernel/eeh_pe.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * The file intends to implement PE based on the information from
   4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
   5 * All the PEs should be organized as hierarchy tree. The first level
   6 * of the tree will be associated to existing PHBs since the particular
   7 * PE is only meaningful in one PHB domain.
   8 *
   9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
  10 */
  11
  12#include <linux/delay.h>
  13#include <linux/export.h>
  14#include <linux/gfp.h>
  15#include <linux/kernel.h>
  16#include <linux/pci.h>
  17#include <linux/string.h>
  18
  19#include <asm/pci-bridge.h>
  20#include <asm/ppc-pci.h>
  21
  22static int eeh_pe_aux_size = 0;
  23static LIST_HEAD(eeh_phb_pe);
  24
  25/**
  26 * eeh_set_pe_aux_size - Set PE auxillary data size
  27 * @size: PE auxillary data size
  28 *
  29 * Set PE auxillary data size
  30 */
  31void eeh_set_pe_aux_size(int size)
  32{
  33        if (size < 0)
  34                return;
  35
  36        eeh_pe_aux_size = size;
  37}
  38
  39/**
  40 * eeh_pe_alloc - Allocate PE
  41 * @phb: PCI controller
  42 * @type: PE type
  43 *
  44 * Allocate PE instance dynamically.
  45 */
  46static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
  47{
  48        struct eeh_pe *pe;
  49        size_t alloc_size;
  50
  51        alloc_size = sizeof(struct eeh_pe);
  52        if (eeh_pe_aux_size) {
  53                alloc_size = ALIGN(alloc_size, cache_line_size());
  54                alloc_size += eeh_pe_aux_size;
  55        }
  56
  57        /* Allocate PHB PE */
  58        pe = kzalloc(alloc_size, GFP_KERNEL);
  59        if (!pe) return NULL;
  60
  61        /* Initialize PHB PE */
  62        pe->type = type;
  63        pe->phb = phb;
  64        INIT_LIST_HEAD(&pe->child_list);
  65        INIT_LIST_HEAD(&pe->edevs);
  66
  67        pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
  68                                      cache_line_size());
  69        return pe;
  70}
  71
  72/**
  73 * eeh_phb_pe_create - Create PHB PE
  74 * @phb: PCI controller
  75 *
  76 * The function should be called while the PHB is detected during
  77 * system boot or PCI hotplug in order to create PHB PE.
  78 */
  79int eeh_phb_pe_create(struct pci_controller *phb)
  80{
  81        struct eeh_pe *pe;
  82
  83        /* Allocate PHB PE */
  84        pe = eeh_pe_alloc(phb, EEH_PE_PHB);
  85        if (!pe) {
  86                pr_err("%s: out of memory!\n", __func__);
  87                return -ENOMEM;
  88        }
  89
  90        /* Put it into the list */
  91        list_add_tail(&pe->child, &eeh_phb_pe);
  92
  93        pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
  94
  95        return 0;
  96}
  97
  98/**
  99 * eeh_wait_state - Wait for PE state
 100 * @pe: EEH PE
 101 * @max_wait: maximal period in millisecond
 102 *
 103 * Wait for the state of associated PE. It might take some time
 104 * to retrieve the PE's state.
 105 */
 106int eeh_wait_state(struct eeh_pe *pe, int max_wait)
 107{
 108        int ret;
 109        int mwait;
 110
 111        /*
 112         * According to PAPR, the state of PE might be temporarily
 113         * unavailable. Under the circumstance, we have to wait
 114         * for indicated time determined by firmware. The maximal
 115         * wait time is 5 minutes, which is acquired from the original
 116         * EEH implementation. Also, the original implementation
 117         * also defined the minimal wait time as 1 second.
 118         */
 119#define EEH_STATE_MIN_WAIT_TIME (1000)
 120#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
 121
 122        while (1) {
 123                ret = eeh_ops->get_state(pe, &mwait);
 124
 125                if (ret != EEH_STATE_UNAVAILABLE)
 126                        return ret;
 127
 128                if (max_wait <= 0) {
 129                        pr_warn("%s: Timeout when getting PE's state (%d)\n",
 130                                __func__, max_wait);
 131                        return EEH_STATE_NOT_SUPPORT;
 132                }
 133
 134                if (mwait < EEH_STATE_MIN_WAIT_TIME) {
 135                        pr_warn("%s: Firmware returned bad wait value %d\n",
 136                                __func__, mwait);
 137                        mwait = EEH_STATE_MIN_WAIT_TIME;
 138                } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
 139                        pr_warn("%s: Firmware returned too long wait value %d\n",
 140                                __func__, mwait);
 141                        mwait = EEH_STATE_MAX_WAIT_TIME;
 142                }
 143
 144                msleep(min(mwait, max_wait));
 145                max_wait -= mwait;
 146        }
 147}
 148
 149/**
 150 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
 151 * @phb: PCI controller
 152 *
 153 * The overall PEs form hierarchy tree. The first layer of the
 154 * hierarchy tree is composed of PHB PEs. The function is used
 155 * to retrieve the corresponding PHB PE according to the given PHB.
 156 */
 157struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
 158{
 159        struct eeh_pe *pe;
 160
 161        list_for_each_entry(pe, &eeh_phb_pe, child) {
 162                /*
 163                 * Actually, we needn't check the type since
 164                 * the PE for PHB has been determined when that
 165                 * was created.
 166                 */
 167                if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
 168                        return pe;
 169        }
 170
 171        return NULL;
 172}
 173
 174/**
 175 * eeh_pe_next - Retrieve the next PE in the tree
 176 * @pe: current PE
 177 * @root: root PE
 178 *
 179 * The function is used to retrieve the next PE in the
 180 * hierarchy PE tree.
 181 */
 182struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
 183{
 184        struct list_head *next = pe->child_list.next;
 185
 186        if (next == &pe->child_list) {
 187                while (1) {
 188                        if (pe == root)
 189                                return NULL;
 190                        next = pe->child.next;
 191                        if (next != &pe->parent->child_list)
 192                                break;
 193                        pe = pe->parent;
 194                }
 195        }
 196
 197        return list_entry(next, struct eeh_pe, child);
 198}
 199
 200/**
 201 * eeh_pe_traverse - Traverse PEs in the specified PHB
 202 * @root: root PE
 203 * @fn: callback
 204 * @flag: extra parameter to callback
 205 *
 206 * The function is used to traverse the specified PE and its
 207 * child PEs. The traversing is to be terminated once the
 208 * callback returns something other than NULL, or no more PEs
 209 * to be traversed.
 210 */
 211void *eeh_pe_traverse(struct eeh_pe *root,
 212                      eeh_pe_traverse_func fn, void *flag)
 213{
 214        struct eeh_pe *pe;
 215        void *ret;
 216
 217        eeh_for_each_pe(root, pe) {
 218                ret = fn(pe, flag);
 219                if (ret) return ret;
 220        }
 221
 222        return NULL;
 223}
 224
 225/**
 226 * eeh_pe_dev_traverse - Traverse the devices from the PE
 227 * @root: EEH PE
 228 * @fn: function callback
 229 * @flag: extra parameter to callback
 230 *
 231 * The function is used to traverse the devices of the specified
 232 * PE and its child PEs.
 233 */
 234void eeh_pe_dev_traverse(struct eeh_pe *root,
 235                          eeh_edev_traverse_func fn, void *flag)
 236{
 237        struct eeh_pe *pe;
 238        struct eeh_dev *edev, *tmp;
 239
 240        if (!root) {
 241                pr_warn("%s: Invalid PE %p\n",
 242                        __func__, root);
 243                return;
 244        }
 245
 246        /* Traverse root PE */
 247        eeh_for_each_pe(root, pe)
 248                eeh_pe_for_each_dev(pe, edev, tmp)
 249                        fn(edev, flag);
 250}
 251
 252/**
 253 * __eeh_pe_get - Check the PE address
 254 *
 255 * For one particular PE, it can be identified by PE address
 256 * or tranditional BDF address. BDF address is composed of
 257 * Bus/Device/Function number. The extra data referred by flag
 258 * indicates which type of address should be used.
 259 */
 260static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
 261{
 262        int *target_pe = flag;
 263
 264        /* PHB PEs are special and should be ignored */
 265        if (pe->type & EEH_PE_PHB)
 266                return NULL;
 267
 268        if (*target_pe == pe->addr)
 269                return pe;
 270
 271        return NULL;
 272}
 273
 274/**
 275 * eeh_pe_get - Search PE based on the given address
 276 * @phb: PCI controller
 277 * @pe_no: PE number
 278 *
 279 * Search the corresponding PE based on the specified address which
 280 * is included in the eeh device. The function is used to check if
 281 * the associated PE has been created against the PE address. It's
 282 * notable that the PE address has 2 format: traditional PE address
 283 * which is composed of PCI bus/device/function number, or unified
 284 * PE address.
 285 */
 286struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
 287{
 288        struct eeh_pe *root = eeh_phb_pe_get(phb);
 289
 290        return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
 291}
 292
 293/**
 294 * eeh_pe_tree_insert - Add EEH device to parent PE
 295 * @edev: EEH device
 296 * @new_pe_parent: PE to create additional PEs under
 297 *
 298 * Add EEH device to the PE in edev->pe_config_addr. If a PE already
 299 * exists with that address then @edev is added to that PE. Otherwise
 300 * a new PE is created and inserted into the PE tree as a child of
 301 * @new_pe_parent.
 302 *
 303 * If @new_pe_parent is NULL then the new PE will be inserted under
 304 * directly under the the PHB.
 305 */
 306int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
 307{
 308        struct pci_controller *hose = edev->controller;
 309        struct eeh_pe *pe, *parent;
 310
 311        /*
 312         * Search the PE has been existing or not according
 313         * to the PE address. If that has been existing, the
 314         * PE should be composed of PCI bus and its subordinate
 315         * components.
 316         */
 317        pe = eeh_pe_get(hose, edev->pe_config_addr);
 318        if (pe) {
 319                if (pe->type & EEH_PE_INVALID) {
 320                        list_add_tail(&edev->entry, &pe->edevs);
 321                        edev->pe = pe;
 322                        /*
 323                         * We're running to here because of PCI hotplug caused by
 324                         * EEH recovery. We need clear EEH_PE_INVALID until the top.
 325                         */
 326                        parent = pe;
 327                        while (parent) {
 328                                if (!(parent->type & EEH_PE_INVALID))
 329                                        break;
 330                                parent->type &= ~EEH_PE_INVALID;
 331                                parent = parent->parent;
 332                        }
 333
 334                        eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
 335                                     pe->parent->addr);
 336                } else {
 337                        /* Mark the PE as type of PCI bus */
 338                        pe->type = EEH_PE_BUS;
 339                        edev->pe = pe;
 340
 341                        /* Put the edev to PE */
 342                        list_add_tail(&edev->entry, &pe->edevs);
 343                        eeh_edev_dbg(edev, "Added to bus PE\n");
 344                }
 345                return 0;
 346        }
 347
 348        /* Create a new EEH PE */
 349        if (edev->physfn)
 350                pe = eeh_pe_alloc(hose, EEH_PE_VF);
 351        else
 352                pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
 353        if (!pe) {
 354                pr_err("%s: out of memory!\n", __func__);
 355                return -ENOMEM;
 356        }
 357
 358        pe->addr = edev->pe_config_addr;
 359
 360        /*
 361         * Put the new EEH PE into hierarchy tree. If the parent
 362         * can't be found, the newly created PE will be attached
 363         * to PHB directly. Otherwise, we have to associate the
 364         * PE with its parent.
 365         */
 366        if (!new_pe_parent) {
 367                new_pe_parent = eeh_phb_pe_get(hose);
 368                if (!new_pe_parent) {
 369                        pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
 370                                __func__, hose->global_number);
 371                        edev->pe = NULL;
 372                        kfree(pe);
 373                        return -EEXIST;
 374                }
 375        }
 376
 377        /* link new PE into the tree */
 378        pe->parent = new_pe_parent;
 379        list_add_tail(&pe->child, &new_pe_parent->child_list);
 380
 381        /*
 382         * Put the newly created PE into the child list and
 383         * link the EEH device accordingly.
 384         */
 385        list_add_tail(&edev->entry, &pe->edevs);
 386        edev->pe = pe;
 387        eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
 388                     new_pe_parent->addr);
 389
 390        return 0;
 391}
 392
 393/**
 394 * eeh_pe_tree_remove - Remove one EEH device from the associated PE
 395 * @edev: EEH device
 396 *
 397 * The PE hierarchy tree might be changed when doing PCI hotplug.
 398 * Also, the PCI devices or buses could be removed from the system
 399 * during EEH recovery. So we have to call the function remove the
 400 * corresponding PE accordingly if necessary.
 401 */
 402int eeh_pe_tree_remove(struct eeh_dev *edev)
 403{
 404        struct eeh_pe *pe, *parent, *child;
 405        bool keep, recover;
 406        int cnt;
 407
 408        pe = eeh_dev_to_pe(edev);
 409        if (!pe) {
 410                eeh_edev_dbg(edev, "No PE found for device.\n");
 411                return -EEXIST;
 412        }
 413
 414        /* Remove the EEH device */
 415        edev->pe = NULL;
 416        list_del(&edev->entry);
 417
 418        /*
 419         * Check if the parent PE includes any EEH devices.
 420         * If not, we should delete that. Also, we should
 421         * delete the parent PE if it doesn't have associated
 422         * child PEs and EEH devices.
 423         */
 424        while (1) {
 425                parent = pe->parent;
 426
 427                /* PHB PEs should never be removed */
 428                if (pe->type & EEH_PE_PHB)
 429                        break;
 430
 431                /*
 432                 * XXX: KEEP is set while resetting a PE. I don't think it's
 433                 * ever set without RECOVERING also being set. I could
 434                 * be wrong though so catch that with a WARN.
 435                 */
 436                keep = !!(pe->state & EEH_PE_KEEP);
 437                recover = !!(pe->state & EEH_PE_RECOVERING);
 438                WARN_ON(keep && !recover);
 439
 440                if (!keep && !recover) {
 441                        if (list_empty(&pe->edevs) &&
 442                            list_empty(&pe->child_list)) {
 443                                list_del(&pe->child);
 444                                kfree(pe);
 445                        } else {
 446                                break;
 447                        }
 448                } else {
 449                        /*
 450                         * Mark the PE as invalid. At the end of the recovery
 451                         * process any invalid PEs will be garbage collected.
 452                         *
 453                         * We need to delay the free()ing of them since we can
 454                         * remove edev's while traversing the PE tree which
 455                         * might trigger the removal of a PE and we can't
 456                         * deal with that (yet).
 457                         */
 458                        if (list_empty(&pe->edevs)) {
 459                                cnt = 0;
 460                                list_for_each_entry(child, &pe->child_list, child) {
 461                                        if (!(child->type & EEH_PE_INVALID)) {
 462                                                cnt++;
 463                                                break;
 464                                        }
 465                                }
 466
 467                                if (!cnt)
 468                                        pe->type |= EEH_PE_INVALID;
 469                                else
 470                                        break;
 471                        }
 472                }
 473
 474                pe = parent;
 475        }
 476
 477        return 0;
 478}
 479
 480/**
 481 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
 482 * @pe: EEH PE
 483 *
 484 * We have time stamp for each PE to trace its time of getting
 485 * frozen in last hour. The function should be called to update
 486 * the time stamp on first error of the specific PE. On the other
 487 * handle, we needn't account for errors happened in last hour.
 488 */
 489void eeh_pe_update_time_stamp(struct eeh_pe *pe)
 490{
 491        time64_t tstamp;
 492
 493        if (!pe) return;
 494
 495        if (pe->freeze_count <= 0) {
 496                pe->freeze_count = 0;
 497                pe->tstamp = ktime_get_seconds();
 498        } else {
 499                tstamp = ktime_get_seconds();
 500                if (tstamp - pe->tstamp > 3600) {
 501                        pe->tstamp = tstamp;
 502                        pe->freeze_count = 0;
 503                }
 504        }
 505}
 506
 507/**
 508 * eeh_pe_state_mark - Mark specified state for PE and its associated device
 509 * @pe: EEH PE
 510 *
 511 * EEH error affects the current PE and its child PEs. The function
 512 * is used to mark appropriate state for the affected PEs and the
 513 * associated devices.
 514 */
 515void eeh_pe_state_mark(struct eeh_pe *root, int state)
 516{
 517        struct eeh_pe *pe;
 518
 519        eeh_for_each_pe(root, pe)
 520                if (!(pe->state & EEH_PE_REMOVED))
 521                        pe->state |= state;
 522}
 523EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
 524
 525/**
 526 * eeh_pe_mark_isolated
 527 * @pe: EEH PE
 528 *
 529 * Record that a PE has been isolated by marking the PE and it's children as
 530 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
 531 * as pci_channel_io_frozen.
 532 */
 533void eeh_pe_mark_isolated(struct eeh_pe *root)
 534{
 535        struct eeh_pe *pe;
 536        struct eeh_dev *edev;
 537        struct pci_dev *pdev;
 538
 539        eeh_pe_state_mark(root, EEH_PE_ISOLATED);
 540        eeh_for_each_pe(root, pe) {
 541                list_for_each_entry(edev, &pe->edevs, entry) {
 542                        pdev = eeh_dev_to_pci_dev(edev);
 543                        if (pdev)
 544                                pdev->error_state = pci_channel_io_frozen;
 545                }
 546                /* Block PCI config access if required */
 547                if (pe->state & EEH_PE_CFG_RESTRICTED)
 548                        pe->state |= EEH_PE_CFG_BLOCKED;
 549        }
 550}
 551EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
 552
 553static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
 554{
 555        int mode = *((int *)flag);
 556
 557        edev->mode |= mode;
 558}
 559
 560/**
 561 * eeh_pe_dev_state_mark - Mark state for all device under the PE
 562 * @pe: EEH PE
 563 *
 564 * Mark specific state for all child devices of the PE.
 565 */
 566void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
 567{
 568        eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
 569}
 570
 571/**
 572 * eeh_pe_state_clear - Clear state for the PE
 573 * @data: EEH PE
 574 * @state: state
 575 * @include_passed: include passed-through devices?
 576 *
 577 * The function is used to clear the indicated state from the
 578 * given PE. Besides, we also clear the check count of the PE
 579 * as well.
 580 */
 581void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
 582{
 583        struct eeh_pe *pe;
 584        struct eeh_dev *edev, *tmp;
 585        struct pci_dev *pdev;
 586
 587        eeh_for_each_pe(root, pe) {
 588                /* Keep the state of permanently removed PE intact */
 589                if (pe->state & EEH_PE_REMOVED)
 590                        continue;
 591
 592                if (!include_passed && eeh_pe_passed(pe))
 593                        continue;
 594
 595                pe->state &= ~state;
 596
 597                /*
 598                 * Special treatment on clearing isolated state. Clear
 599                 * check count since last isolation and put all affected
 600                 * devices to normal state.
 601                 */
 602                if (!(state & EEH_PE_ISOLATED))
 603                        continue;
 604
 605                pe->check_count = 0;
 606                eeh_pe_for_each_dev(pe, edev, tmp) {
 607                        pdev = eeh_dev_to_pci_dev(edev);
 608                        if (!pdev)
 609                                continue;
 610
 611                        pdev->error_state = pci_channel_io_normal;
 612                }
 613
 614                /* Unblock PCI config access if required */
 615                if (pe->state & EEH_PE_CFG_RESTRICTED)
 616                        pe->state &= ~EEH_PE_CFG_BLOCKED;
 617        }
 618}
 619
 620/*
 621 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
 622 * buses assigned explicitly by firmware, and we probably have
 623 * lost that after reset. So we have to delay the check until
 624 * the PCI-CFG registers have been restored for the parent
 625 * bridge.
 626 *
 627 * Don't use normal PCI-CFG accessors, which probably has been
 628 * blocked on normal path during the stage. So we need utilize
 629 * eeh operations, which is always permitted.
 630 */
 631static void eeh_bridge_check_link(struct eeh_dev *edev)
 632{
 633        int cap;
 634        uint32_t val;
 635        int timeout = 0;
 636
 637        /*
 638         * We only check root port and downstream ports of
 639         * PCIe switches
 640         */
 641        if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
 642                return;
 643
 644        eeh_edev_dbg(edev, "Checking PCIe link...\n");
 645
 646        /* Check slot status */
 647        cap = edev->pcie_cap;
 648        eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
 649        if (!(val & PCI_EXP_SLTSTA_PDS)) {
 650                eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
 651                return;
 652        }
 653
 654        /* Check power status if we have the capability */
 655        eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
 656        if (val & PCI_EXP_SLTCAP_PCP) {
 657                eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
 658                if (val & PCI_EXP_SLTCTL_PCC) {
 659                        eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
 660                        val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
 661                        val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
 662                        eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
 663                        msleep(2 * 1000);
 664                }
 665        }
 666
 667        /* Enable link */
 668        eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
 669        val &= ~PCI_EXP_LNKCTL_LD;
 670        eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
 671
 672        /* Check link */
 673        eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val);
 674        if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
 675                eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
 676                msleep(1000);
 677                return;
 678        }
 679
 680        /* Wait the link is up until timeout (5s) */
 681        timeout = 0;
 682        while (timeout < 5000) {
 683                msleep(20);
 684                timeout += 20;
 685
 686                eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
 687                if (val & PCI_EXP_LNKSTA_DLLLA)
 688                        break;
 689        }
 690
 691        if (val & PCI_EXP_LNKSTA_DLLLA)
 692                eeh_edev_dbg(edev, "Link up (%s)\n",
 693                         (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
 694        else
 695                eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
 696}
 697
 698#define BYTE_SWAP(OFF)  (8*((OFF)/4)+3-(OFF))
 699#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
 700
 701static void eeh_restore_bridge_bars(struct eeh_dev *edev)
 702{
 703        int i;
 704
 705        /*
 706         * Device BARs: 0x10 - 0x18
 707         * Bus numbers and windows: 0x18 - 0x30
 708         */
 709        for (i = 4; i < 13; i++)
 710                eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
 711        /* Rom: 0x38 */
 712        eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
 713
 714        /* Cache line & Latency timer: 0xC 0xD */
 715        eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
 716                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 717        eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
 718                SAVED_BYTE(PCI_LATENCY_TIMER));
 719        /* Max latency, min grant, interrupt ping and line: 0x3C */
 720        eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
 721
 722        /* PCI Command: 0x4 */
 723        eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
 724                              PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
 725
 726        /* Check the PCIe link is ready */
 727        eeh_bridge_check_link(edev);
 728}
 729
 730static void eeh_restore_device_bars(struct eeh_dev *edev)
 731{
 732        int i;
 733        u32 cmd;
 734
 735        for (i = 4; i < 10; i++)
 736                eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
 737        /* 12 == Expansion ROM Address */
 738        eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
 739
 740        eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
 741                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 742        eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
 743                SAVED_BYTE(PCI_LATENCY_TIMER));
 744
 745        /* max latency, min grant, interrupt pin and line */
 746        eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
 747
 748        /*
 749         * Restore PERR & SERR bits, some devices require it,
 750         * don't touch the other command bits
 751         */
 752        eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
 753        if (edev->config_space[1] & PCI_COMMAND_PARITY)
 754                cmd |= PCI_COMMAND_PARITY;
 755        else
 756                cmd &= ~PCI_COMMAND_PARITY;
 757        if (edev->config_space[1] & PCI_COMMAND_SERR)
 758                cmd |= PCI_COMMAND_SERR;
 759        else
 760                cmd &= ~PCI_COMMAND_SERR;
 761        eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
 762}
 763
 764/**
 765 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
 766 * @data: EEH device
 767 * @flag: Unused
 768 *
 769 * Loads the PCI configuration space base address registers,
 770 * the expansion ROM base address, the latency timer, and etc.
 771 * from the saved values in the device node.
 772 */
 773static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
 774{
 775        /* Do special restore for bridges */
 776        if (edev->mode & EEH_DEV_BRIDGE)
 777                eeh_restore_bridge_bars(edev);
 778        else
 779                eeh_restore_device_bars(edev);
 780
 781        if (eeh_ops->restore_config)
 782                eeh_ops->restore_config(edev);
 783}
 784
 785/**
 786 * eeh_pe_restore_bars - Restore the PCI config space info
 787 * @pe: EEH PE
 788 *
 789 * This routine performs a recursive walk to the children
 790 * of this device as well.
 791 */
 792void eeh_pe_restore_bars(struct eeh_pe *pe)
 793{
 794        /*
 795         * We needn't take the EEH lock since eeh_pe_dev_traverse()
 796         * will take that.
 797         */
 798        eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
 799}
 800
 801/**
 802 * eeh_pe_loc_get - Retrieve location code binding to the given PE
 803 * @pe: EEH PE
 804 *
 805 * Retrieve the location code of the given PE. If the primary PE bus
 806 * is root bus, we will grab location code from PHB device tree node
 807 * or root port. Otherwise, the upstream bridge's device tree node
 808 * of the primary PE bus will be checked for the location code.
 809 */
 810const char *eeh_pe_loc_get(struct eeh_pe *pe)
 811{
 812        struct pci_bus *bus = eeh_pe_bus_get(pe);
 813        struct device_node *dn;
 814        const char *loc = NULL;
 815
 816        while (bus) {
 817                dn = pci_bus_to_OF_node(bus);
 818                if (!dn) {
 819                        bus = bus->parent;
 820                        continue;
 821                }
 822
 823                if (pci_is_root_bus(bus))
 824                        loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
 825                else
 826                        loc = of_get_property(dn, "ibm,slot-location-code",
 827                                              NULL);
 828
 829                if (loc)
 830                        return loc;
 831
 832                bus = bus->parent;
 833        }
 834
 835        return "N/A";
 836}
 837
 838/**
 839 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
 840 * @pe: EEH PE
 841 *
 842 * Retrieve the PCI bus according to the given PE. Basically,
 843 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
 844 * primary PCI bus will be retrieved. The parent bus will be
 845 * returned for BUS PE. However, we don't have associated PCI
 846 * bus for DEVICE PE.
 847 */
 848struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
 849{
 850        struct eeh_dev *edev;
 851        struct pci_dev *pdev;
 852
 853        if (pe->type & EEH_PE_PHB)
 854                return pe->phb->bus;
 855
 856        /* The primary bus might be cached during probe time */
 857        if (pe->state & EEH_PE_PRI_BUS)
 858                return pe->bus;
 859
 860        /* Retrieve the parent PCI bus of first (top) PCI device */
 861        edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
 862        pdev = eeh_dev_to_pci_dev(edev);
 863        if (pdev)
 864                return pdev->bus;
 865
 866        return NULL;
 867}
 868