linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   4 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   5 *
   6 *  Modified by Cort Dougan (cort@cs.nmt.edu)
   7 *  and Paul Mackerras (paulus@samba.org)
   8 */
   9
  10/*
  11 * This file handles the architecture-dependent parts of hardware exceptions
  12 */
  13
  14#include <linux/errno.h>
  15#include <linux/sched.h>
  16#include <linux/sched/debug.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/pkeys.h>
  20#include <linux/stddef.h>
  21#include <linux/unistd.h>
  22#include <linux/ptrace.h>
  23#include <linux/user.h>
  24#include <linux/interrupt.h>
  25#include <linux/init.h>
  26#include <linux/extable.h>
  27#include <linux/module.h>       /* print_modules */
  28#include <linux/prctl.h>
  29#include <linux/delay.h>
  30#include <linux/kprobes.h>
  31#include <linux/kexec.h>
  32#include <linux/backlight.h>
  33#include <linux/bug.h>
  34#include <linux/kdebug.h>
  35#include <linux/ratelimit.h>
  36#include <linux/context_tracking.h>
  37#include <linux/smp.h>
  38#include <linux/console.h>
  39#include <linux/kmsg_dump.h>
  40
  41#include <asm/emulated_ops.h>
  42#include <linux/uaccess.h>
  43#include <asm/debugfs.h>
  44#include <asm/interrupt.h>
  45#include <asm/io.h>
  46#include <asm/machdep.h>
  47#include <asm/rtas.h>
  48#include <asm/pmc.h>
  49#include <asm/reg.h>
  50#ifdef CONFIG_PMAC_BACKLIGHT
  51#include <asm/backlight.h>
  52#endif
  53#ifdef CONFIG_PPC64
  54#include <asm/firmware.h>
  55#include <asm/processor.h>
  56#endif
  57#include <asm/kexec.h>
  58#include <asm/ppc-opcode.h>
  59#include <asm/rio.h>
  60#include <asm/fadump.h>
  61#include <asm/switch_to.h>
  62#include <asm/tm.h>
  63#include <asm/debug.h>
  64#include <asm/asm-prototypes.h>
  65#include <asm/hmi.h>
  66#include <sysdev/fsl_pci.h>
  67#include <asm/kprobes.h>
  68#include <asm/stacktrace.h>
  69#include <asm/nmi.h>
  70#include <asm/disassemble.h>
  71
  72#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
  73int (*__debugger)(struct pt_regs *regs) __read_mostly;
  74int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  75int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  76int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  77int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  78int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  79int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  80
  81EXPORT_SYMBOL(__debugger);
  82EXPORT_SYMBOL(__debugger_ipi);
  83EXPORT_SYMBOL(__debugger_bpt);
  84EXPORT_SYMBOL(__debugger_sstep);
  85EXPORT_SYMBOL(__debugger_iabr_match);
  86EXPORT_SYMBOL(__debugger_break_match);
  87EXPORT_SYMBOL(__debugger_fault_handler);
  88#endif
  89
  90/* Transactional Memory trap debug */
  91#ifdef TM_DEBUG_SW
  92#define TM_DEBUG(x...) printk(KERN_INFO x)
  93#else
  94#define TM_DEBUG(x...) do { } while(0)
  95#endif
  96
  97static const char *signame(int signr)
  98{
  99        switch (signr) {
 100        case SIGBUS:    return "bus error";
 101        case SIGFPE:    return "floating point exception";
 102        case SIGILL:    return "illegal instruction";
 103        case SIGSEGV:   return "segfault";
 104        case SIGTRAP:   return "unhandled trap";
 105        }
 106
 107        return "unknown signal";
 108}
 109
 110/*
 111 * Trap & Exception support
 112 */
 113
 114#ifdef CONFIG_PMAC_BACKLIGHT
 115static void pmac_backlight_unblank(void)
 116{
 117        mutex_lock(&pmac_backlight_mutex);
 118        if (pmac_backlight) {
 119                struct backlight_properties *props;
 120
 121                props = &pmac_backlight->props;
 122                props->brightness = props->max_brightness;
 123                props->power = FB_BLANK_UNBLANK;
 124                backlight_update_status(pmac_backlight);
 125        }
 126        mutex_unlock(&pmac_backlight_mutex);
 127}
 128#else
 129static inline void pmac_backlight_unblank(void) { }
 130#endif
 131
 132/*
 133 * If oops/die is expected to crash the machine, return true here.
 134 *
 135 * This should not be expected to be 100% accurate, there may be
 136 * notifiers registered or other unexpected conditions that may bring
 137 * down the kernel. Or if the current process in the kernel is holding
 138 * locks or has other critical state, the kernel may become effectively
 139 * unusable anyway.
 140 */
 141bool die_will_crash(void)
 142{
 143        if (should_fadump_crash())
 144                return true;
 145        if (kexec_should_crash(current))
 146                return true;
 147        if (in_interrupt() || panic_on_oops ||
 148                        !current->pid || is_global_init(current))
 149                return true;
 150
 151        return false;
 152}
 153
 154static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 155static int die_owner = -1;
 156static unsigned int die_nest_count;
 157static int die_counter;
 158
 159extern void panic_flush_kmsg_start(void)
 160{
 161        /*
 162         * These are mostly taken from kernel/panic.c, but tries to do
 163         * relatively minimal work. Don't use delay functions (TB may
 164         * be broken), don't crash dump (need to set a firmware log),
 165         * don't run notifiers. We do want to get some information to
 166         * Linux console.
 167         */
 168        console_verbose();
 169        bust_spinlocks(1);
 170}
 171
 172extern void panic_flush_kmsg_end(void)
 173{
 174        printk_safe_flush_on_panic();
 175        kmsg_dump(KMSG_DUMP_PANIC);
 176        bust_spinlocks(0);
 177        debug_locks_off();
 178        console_flush_on_panic(CONSOLE_FLUSH_PENDING);
 179}
 180
 181static unsigned long oops_begin(struct pt_regs *regs)
 182{
 183        int cpu;
 184        unsigned long flags;
 185
 186        oops_enter();
 187
 188        /* racy, but better than risking deadlock. */
 189        raw_local_irq_save(flags);
 190        cpu = smp_processor_id();
 191        if (!arch_spin_trylock(&die_lock)) {
 192                if (cpu == die_owner)
 193                        /* nested oops. should stop eventually */;
 194                else
 195                        arch_spin_lock(&die_lock);
 196        }
 197        die_nest_count++;
 198        die_owner = cpu;
 199        console_verbose();
 200        bust_spinlocks(1);
 201        if (machine_is(powermac))
 202                pmac_backlight_unblank();
 203        return flags;
 204}
 205NOKPROBE_SYMBOL(oops_begin);
 206
 207static void oops_end(unsigned long flags, struct pt_regs *regs,
 208                               int signr)
 209{
 210        bust_spinlocks(0);
 211        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 212        die_nest_count--;
 213        oops_exit();
 214        printk("\n");
 215        if (!die_nest_count) {
 216                /* Nest count reaches zero, release the lock. */
 217                die_owner = -1;
 218                arch_spin_unlock(&die_lock);
 219        }
 220        raw_local_irq_restore(flags);
 221
 222        /*
 223         * system_reset_excption handles debugger, crash dump, panic, for 0x100
 224         */
 225        if (TRAP(regs) == INTERRUPT_SYSTEM_RESET)
 226                return;
 227
 228        crash_fadump(regs, "die oops");
 229
 230        if (kexec_should_crash(current))
 231                crash_kexec(regs);
 232
 233        if (!signr)
 234                return;
 235
 236        /*
 237         * While our oops output is serialised by a spinlock, output
 238         * from panic() called below can race and corrupt it. If we
 239         * know we are going to panic, delay for 1 second so we have a
 240         * chance to get clean backtraces from all CPUs that are oopsing.
 241         */
 242        if (in_interrupt() || panic_on_oops || !current->pid ||
 243            is_global_init(current)) {
 244                mdelay(MSEC_PER_SEC);
 245        }
 246
 247        if (panic_on_oops)
 248                panic("Fatal exception");
 249        do_exit(signr);
 250}
 251NOKPROBE_SYMBOL(oops_end);
 252
 253static char *get_mmu_str(void)
 254{
 255        if (early_radix_enabled())
 256                return " MMU=Radix";
 257        if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
 258                return " MMU=Hash";
 259        return "";
 260}
 261
 262static int __die(const char *str, struct pt_regs *regs, long err)
 263{
 264        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 265
 266        printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
 267               IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
 268               PAGE_SIZE / 1024, get_mmu_str(),
 269               IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
 270               IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
 271               IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
 272               debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
 273               IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
 274               ppc_md.name ? ppc_md.name : "");
 275
 276        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 277                return 1;
 278
 279        print_modules();
 280        show_regs(regs);
 281
 282        return 0;
 283}
 284NOKPROBE_SYMBOL(__die);
 285
 286void die(const char *str, struct pt_regs *regs, long err)
 287{
 288        unsigned long flags;
 289
 290        /*
 291         * system_reset_excption handles debugger, crash dump, panic, for 0x100
 292         */
 293        if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) {
 294                if (debugger(regs))
 295                        return;
 296        }
 297
 298        flags = oops_begin(regs);
 299        if (__die(str, regs, err))
 300                err = 0;
 301        oops_end(flags, regs, err);
 302}
 303NOKPROBE_SYMBOL(die);
 304
 305void user_single_step_report(struct pt_regs *regs)
 306{
 307        force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
 308}
 309
 310static void show_signal_msg(int signr, struct pt_regs *regs, int code,
 311                            unsigned long addr)
 312{
 313        static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 314                                      DEFAULT_RATELIMIT_BURST);
 315
 316        if (!show_unhandled_signals)
 317                return;
 318
 319        if (!unhandled_signal(current, signr))
 320                return;
 321
 322        if (!__ratelimit(&rs))
 323                return;
 324
 325        pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
 326                current->comm, current->pid, signame(signr), signr,
 327                addr, regs->nip, regs->link, code);
 328
 329        print_vma_addr(KERN_CONT " in ", regs->nip);
 330
 331        pr_cont("\n");
 332
 333        show_user_instructions(regs);
 334}
 335
 336static bool exception_common(int signr, struct pt_regs *regs, int code,
 337                              unsigned long addr)
 338{
 339        if (!user_mode(regs)) {
 340                die("Exception in kernel mode", regs, signr);
 341                return false;
 342        }
 343
 344        show_signal_msg(signr, regs, code, addr);
 345
 346        if (arch_irqs_disabled())
 347                interrupt_cond_local_irq_enable(regs);
 348
 349        current->thread.trap_nr = code;
 350
 351        return true;
 352}
 353
 354void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
 355{
 356        if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
 357                return;
 358
 359        force_sig_pkuerr((void __user *) addr, key);
 360}
 361
 362void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 363{
 364        if (!exception_common(signr, regs, code, addr))
 365                return;
 366
 367        force_sig_fault(signr, code, (void __user *)addr);
 368}
 369
 370/*
 371 * The interrupt architecture has a quirk in that the HV interrupts excluding
 372 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
 373 * that an interrupt handler must do is save off a GPR into a scratch register,
 374 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
 375 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
 376 * that it is non-reentrant, which leads to random data corruption.
 377 *
 378 * The solution is for NMI interrupts in HV mode to check if they originated
 379 * from these critical HV interrupt regions. If so, then mark them not
 380 * recoverable.
 381 *
 382 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
 383 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
 384 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
 385 * that would work. However any other guest OS that may have the SPRG live
 386 * and MSR[RI]=1 could encounter silent corruption.
 387 *
 388 * Builds that do not support KVM could take this second option to increase
 389 * the recoverability of NMIs.
 390 */
 391void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
 392{
 393#ifdef CONFIG_PPC_POWERNV
 394        unsigned long kbase = (unsigned long)_stext;
 395        unsigned long nip = regs->nip;
 396
 397        if (!(regs->msr & MSR_RI))
 398                return;
 399        if (!(regs->msr & MSR_HV))
 400                return;
 401        if (regs->msr & MSR_PR)
 402                return;
 403
 404        /*
 405         * Now test if the interrupt has hit a range that may be using
 406         * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
 407         * problem ranges all run un-relocated. Test real and virt modes
 408         * at the same time by dropping the high bit of the nip (virt mode
 409         * entry points still have the +0x4000 offset).
 410         */
 411        nip &= ~0xc000000000000000ULL;
 412        if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
 413                goto nonrecoverable;
 414        if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
 415                goto nonrecoverable;
 416        if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
 417                goto nonrecoverable;
 418        if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
 419                goto nonrecoverable;
 420
 421        /* Trampoline code runs un-relocated so subtract kbase. */
 422        if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
 423                        nip < (unsigned long)(end_real_trampolines - kbase))
 424                goto nonrecoverable;
 425        if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
 426                        nip < (unsigned long)(end_virt_trampolines - kbase))
 427                goto nonrecoverable;
 428        return;
 429
 430nonrecoverable:
 431        regs_set_return_msr(regs, regs->msr & ~MSR_RI);
 432#endif
 433}
 434DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)
 435{
 436        unsigned long hsrr0, hsrr1;
 437        bool saved_hsrrs = false;
 438
 439        /*
 440         * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
 441         * The system reset interrupt itself may clobber HSRRs (e.g., to call
 442         * OPAL), so save them here and restore them before returning.
 443         *
 444         * Machine checks don't need to save HSRRs, as the real mode handler
 445         * is careful to avoid them, and the regular handler is not delivered
 446         * as an NMI.
 447         */
 448        if (cpu_has_feature(CPU_FTR_HVMODE)) {
 449                hsrr0 = mfspr(SPRN_HSRR0);
 450                hsrr1 = mfspr(SPRN_HSRR1);
 451                saved_hsrrs = true;
 452        }
 453
 454        hv_nmi_check_nonrecoverable(regs);
 455
 456        __this_cpu_inc(irq_stat.sreset_irqs);
 457
 458        /* See if any machine dependent calls */
 459        if (ppc_md.system_reset_exception) {
 460                if (ppc_md.system_reset_exception(regs))
 461                        goto out;
 462        }
 463
 464        if (debugger(regs))
 465                goto out;
 466
 467        kmsg_dump(KMSG_DUMP_OOPS);
 468        /*
 469         * A system reset is a request to dump, so we always send
 470         * it through the crashdump code (if fadump or kdump are
 471         * registered).
 472         */
 473        crash_fadump(regs, "System Reset");
 474
 475        crash_kexec(regs);
 476
 477        /*
 478         * We aren't the primary crash CPU. We need to send it
 479         * to a holding pattern to avoid it ending up in the panic
 480         * code.
 481         */
 482        crash_kexec_secondary(regs);
 483
 484        /*
 485         * No debugger or crash dump registered, print logs then
 486         * panic.
 487         */
 488        die("System Reset", regs, SIGABRT);
 489
 490        mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
 491        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 492        nmi_panic(regs, "System Reset");
 493
 494out:
 495#ifdef CONFIG_PPC_BOOK3S_64
 496        BUG_ON(get_paca()->in_nmi == 0);
 497        if (get_paca()->in_nmi > 1)
 498                die("Unrecoverable nested System Reset", regs, SIGABRT);
 499#endif
 500        /* Must die if the interrupt is not recoverable */
 501        if (!(regs->msr & MSR_RI)) {
 502                /* For the reason explained in die_mce, nmi_exit before die */
 503                nmi_exit();
 504                die("Unrecoverable System Reset", regs, SIGABRT);
 505        }
 506
 507        if (saved_hsrrs) {
 508                mtspr(SPRN_HSRR0, hsrr0);
 509                mtspr(SPRN_HSRR1, hsrr1);
 510        }
 511
 512        /* What should we do here? We could issue a shutdown or hard reset. */
 513
 514        return 0;
 515}
 516
 517/*
 518 * I/O accesses can cause machine checks on powermacs.
 519 * Check if the NIP corresponds to the address of a sync
 520 * instruction for which there is an entry in the exception
 521 * table.
 522 *  -- paulus.
 523 */
 524static inline int check_io_access(struct pt_regs *regs)
 525{
 526#ifdef CONFIG_PPC32
 527        unsigned long msr = regs->msr;
 528        const struct exception_table_entry *entry;
 529        unsigned int *nip = (unsigned int *)regs->nip;
 530
 531        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 532            && (entry = search_exception_tables(regs->nip)) != NULL) {
 533                /*
 534                 * Check that it's a sync instruction, or somewhere
 535                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 536                 * As the address is in the exception table
 537                 * we should be able to read the instr there.
 538                 * For the debug message, we look at the preceding
 539                 * load or store.
 540                 */
 541                if (*nip == PPC_RAW_NOP())
 542                        nip -= 2;
 543                else if (*nip == PPC_RAW_ISYNC())
 544                        --nip;
 545                if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) {
 546                        unsigned int rb;
 547
 548                        --nip;
 549                        rb = (*nip >> 11) & 0x1f;
 550                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 551                               (*nip & 0x100)? "OUT to": "IN from",
 552                               regs->gpr[rb] - _IO_BASE, nip);
 553                        regs_set_return_msr(regs, regs->msr | MSR_RI);
 554                        regs_set_return_ip(regs, extable_fixup(entry));
 555                        return 1;
 556                }
 557        }
 558#endif /* CONFIG_PPC32 */
 559        return 0;
 560}
 561
 562#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 563/* On 4xx, the reason for the machine check or program exception
 564   is in the ESR. */
 565#define get_reason(regs)        ((regs)->dsisr)
 566#define REASON_FP               ESR_FP
 567#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 568#define REASON_PRIVILEGED       ESR_PPR
 569#define REASON_TRAP             ESR_PTR
 570#define REASON_PREFIXED         0
 571#define REASON_BOUNDARY         0
 572
 573/* single-step stuff */
 574#define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
 575#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
 576#define clear_br_trace(regs)    do {} while(0)
 577#else
 578/* On non-4xx, the reason for the machine check or program
 579   exception is in the MSR. */
 580#define get_reason(regs)        ((regs)->msr)
 581#define REASON_TM               SRR1_PROGTM
 582#define REASON_FP               SRR1_PROGFPE
 583#define REASON_ILLEGAL          SRR1_PROGILL
 584#define REASON_PRIVILEGED       SRR1_PROGPRIV
 585#define REASON_TRAP             SRR1_PROGTRAP
 586#define REASON_PREFIXED         SRR1_PREFIXED
 587#define REASON_BOUNDARY         SRR1_BOUNDARY
 588
 589#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 590#define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE))
 591#define clear_br_trace(regs)    (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE))
 592#endif
 593
 594#define inst_length(reason)     (((reason) & REASON_PREFIXED) ? 8 : 4)
 595
 596#if defined(CONFIG_E500)
 597int machine_check_e500mc(struct pt_regs *regs)
 598{
 599        unsigned long mcsr = mfspr(SPRN_MCSR);
 600        unsigned long pvr = mfspr(SPRN_PVR);
 601        unsigned long reason = mcsr;
 602        int recoverable = 1;
 603
 604        if (reason & MCSR_LD) {
 605                recoverable = fsl_rio_mcheck_exception(regs);
 606                if (recoverable == 1)
 607                        goto silent_out;
 608        }
 609
 610        printk("Machine check in kernel mode.\n");
 611        printk("Caused by (from MCSR=%lx): ", reason);
 612
 613        if (reason & MCSR_MCP)
 614                pr_cont("Machine Check Signal\n");
 615
 616        if (reason & MCSR_ICPERR) {
 617                pr_cont("Instruction Cache Parity Error\n");
 618
 619                /*
 620                 * This is recoverable by invalidating the i-cache.
 621                 */
 622                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 623                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 624                        ;
 625
 626                /*
 627                 * This will generally be accompanied by an instruction
 628                 * fetch error report -- only treat MCSR_IF as fatal
 629                 * if it wasn't due to an L1 parity error.
 630                 */
 631                reason &= ~MCSR_IF;
 632        }
 633
 634        if (reason & MCSR_DCPERR_MC) {
 635                pr_cont("Data Cache Parity Error\n");
 636
 637                /*
 638                 * In write shadow mode we auto-recover from the error, but it
 639                 * may still get logged and cause a machine check.  We should
 640                 * only treat the non-write shadow case as non-recoverable.
 641                 */
 642                /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
 643                 * is not implemented but L1 data cache always runs in write
 644                 * shadow mode. Hence on data cache parity errors HW will
 645                 * automatically invalidate the L1 Data Cache.
 646                 */
 647                if (PVR_VER(pvr) != PVR_VER_E6500) {
 648                        if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 649                                recoverable = 0;
 650                }
 651        }
 652
 653        if (reason & MCSR_L2MMU_MHIT) {
 654                pr_cont("Hit on multiple TLB entries\n");
 655                recoverable = 0;
 656        }
 657
 658        if (reason & MCSR_NMI)
 659                pr_cont("Non-maskable interrupt\n");
 660
 661        if (reason & MCSR_IF) {
 662                pr_cont("Instruction Fetch Error Report\n");
 663                recoverable = 0;
 664        }
 665
 666        if (reason & MCSR_LD) {
 667                pr_cont("Load Error Report\n");
 668                recoverable = 0;
 669        }
 670
 671        if (reason & MCSR_ST) {
 672                pr_cont("Store Error Report\n");
 673                recoverable = 0;
 674        }
 675
 676        if (reason & MCSR_LDG) {
 677                pr_cont("Guarded Load Error Report\n");
 678                recoverable = 0;
 679        }
 680
 681        if (reason & MCSR_TLBSYNC)
 682                pr_cont("Simultaneous tlbsync operations\n");
 683
 684        if (reason & MCSR_BSL2_ERR) {
 685                pr_cont("Level 2 Cache Error\n");
 686                recoverable = 0;
 687        }
 688
 689        if (reason & MCSR_MAV) {
 690                u64 addr;
 691
 692                addr = mfspr(SPRN_MCAR);
 693                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 694
 695                pr_cont("Machine Check %s Address: %#llx\n",
 696                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 697        }
 698
 699silent_out:
 700        mtspr(SPRN_MCSR, mcsr);
 701        return mfspr(SPRN_MCSR) == 0 && recoverable;
 702}
 703
 704int machine_check_e500(struct pt_regs *regs)
 705{
 706        unsigned long reason = mfspr(SPRN_MCSR);
 707
 708        if (reason & MCSR_BUS_RBERR) {
 709                if (fsl_rio_mcheck_exception(regs))
 710                        return 1;
 711                if (fsl_pci_mcheck_exception(regs))
 712                        return 1;
 713        }
 714
 715        printk("Machine check in kernel mode.\n");
 716        printk("Caused by (from MCSR=%lx): ", reason);
 717
 718        if (reason & MCSR_MCP)
 719                pr_cont("Machine Check Signal\n");
 720        if (reason & MCSR_ICPERR)
 721                pr_cont("Instruction Cache Parity Error\n");
 722        if (reason & MCSR_DCP_PERR)
 723                pr_cont("Data Cache Push Parity Error\n");
 724        if (reason & MCSR_DCPERR)
 725                pr_cont("Data Cache Parity Error\n");
 726        if (reason & MCSR_BUS_IAERR)
 727                pr_cont("Bus - Instruction Address Error\n");
 728        if (reason & MCSR_BUS_RAERR)
 729                pr_cont("Bus - Read Address Error\n");
 730        if (reason & MCSR_BUS_WAERR)
 731                pr_cont("Bus - Write Address Error\n");
 732        if (reason & MCSR_BUS_IBERR)
 733                pr_cont("Bus - Instruction Data Error\n");
 734        if (reason & MCSR_BUS_RBERR)
 735                pr_cont("Bus - Read Data Bus Error\n");
 736        if (reason & MCSR_BUS_WBERR)
 737                pr_cont("Bus - Write Data Bus Error\n");
 738        if (reason & MCSR_BUS_IPERR)
 739                pr_cont("Bus - Instruction Parity Error\n");
 740        if (reason & MCSR_BUS_RPERR)
 741                pr_cont("Bus - Read Parity Error\n");
 742
 743        return 0;
 744}
 745
 746int machine_check_generic(struct pt_regs *regs)
 747{
 748        return 0;
 749}
 750#elif defined(CONFIG_PPC32)
 751int machine_check_generic(struct pt_regs *regs)
 752{
 753        unsigned long reason = regs->msr;
 754
 755        printk("Machine check in kernel mode.\n");
 756        printk("Caused by (from SRR1=%lx): ", reason);
 757        switch (reason & 0x601F0000) {
 758        case 0x80000:
 759                pr_cont("Machine check signal\n");
 760                break;
 761        case 0x40000:
 762        case 0x140000:  /* 7450 MSS error and TEA */
 763                pr_cont("Transfer error ack signal\n");
 764                break;
 765        case 0x20000:
 766                pr_cont("Data parity error signal\n");
 767                break;
 768        case 0x10000:
 769                pr_cont("Address parity error signal\n");
 770                break;
 771        case 0x20000000:
 772                pr_cont("L1 Data Cache error\n");
 773                break;
 774        case 0x40000000:
 775                pr_cont("L1 Instruction Cache error\n");
 776                break;
 777        case 0x00100000:
 778                pr_cont("L2 data cache parity error\n");
 779                break;
 780        default:
 781                pr_cont("Unknown values in msr\n");
 782        }
 783        return 0;
 784}
 785#endif /* everything else */
 786
 787void die_mce(const char *str, struct pt_regs *regs, long err)
 788{
 789        /*
 790         * The machine check wants to kill the interrupted context, but
 791         * do_exit() checks for in_interrupt() and panics in that case, so
 792         * exit the irq/nmi before calling die.
 793         */
 794        if (IS_ENABLED(CONFIG_PPC_BOOK3S_64))
 795                irq_exit();
 796        else
 797                nmi_exit();
 798        die(str, regs, err);
 799}
 800
 801/*
 802 * BOOK3S_64 does not call this handler as a non-maskable interrupt
 803 * (it uses its own early real-mode handler to handle the MCE proper
 804 * and then raises irq_work to call this handler when interrupts are
 805 * enabled).
 806 */
 807#ifdef CONFIG_PPC_BOOK3S_64
 808DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception)
 809#else
 810DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)
 811#endif
 812{
 813        int recover = 0;
 814
 815        __this_cpu_inc(irq_stat.mce_exceptions);
 816
 817        add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 818
 819        /* See if any machine dependent calls. In theory, we would want
 820         * to call the CPU first, and call the ppc_md. one if the CPU
 821         * one returns a positive number. However there is existing code
 822         * that assumes the board gets a first chance, so let's keep it
 823         * that way for now and fix things later. --BenH.
 824         */
 825        if (ppc_md.machine_check_exception)
 826                recover = ppc_md.machine_check_exception(regs);
 827        else if (cur_cpu_spec->machine_check)
 828                recover = cur_cpu_spec->machine_check(regs);
 829
 830        if (recover > 0)
 831                goto bail;
 832
 833        if (debugger_fault_handler(regs))
 834                goto bail;
 835
 836        if (check_io_access(regs))
 837                goto bail;
 838
 839        die_mce("Machine check", regs, SIGBUS);
 840
 841bail:
 842        /* Must die if the interrupt is not recoverable */
 843        if (!(regs->msr & MSR_RI))
 844                die_mce("Unrecoverable Machine check", regs, SIGBUS);
 845
 846#ifdef CONFIG_PPC_BOOK3S_64
 847        return;
 848#else
 849        return 0;
 850#endif
 851}
 852
 853DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */
 854{
 855        die("System Management Interrupt", regs, SIGABRT);
 856}
 857
 858#ifdef CONFIG_VSX
 859static void p9_hmi_special_emu(struct pt_regs *regs)
 860{
 861        unsigned int ra, rb, t, i, sel, instr, rc;
 862        const void __user *addr;
 863        u8 vbuf[16] __aligned(16), *vdst;
 864        unsigned long ea, msr, msr_mask;
 865        bool swap;
 866
 867        if (__get_user(instr, (unsigned int __user *)regs->nip))
 868                return;
 869
 870        /*
 871         * lxvb16x      opcode: 0x7c0006d8
 872         * lxvd2x       opcode: 0x7c000698
 873         * lxvh8x       opcode: 0x7c000658
 874         * lxvw4x       opcode: 0x7c000618
 875         */
 876        if ((instr & 0xfc00073e) != 0x7c000618) {
 877                pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
 878                         " instr=%08x\n",
 879                         smp_processor_id(), current->comm, current->pid,
 880                         regs->nip, instr);
 881                return;
 882        }
 883
 884        /* Grab vector registers into the task struct */
 885        msr = regs->msr; /* Grab msr before we flush the bits */
 886        flush_vsx_to_thread(current);
 887        enable_kernel_altivec();
 888
 889        /*
 890         * Is userspace running with a different endian (this is rare but
 891         * not impossible)
 892         */
 893        swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
 894
 895        /* Decode the instruction */
 896        ra = (instr >> 16) & 0x1f;
 897        rb = (instr >> 11) & 0x1f;
 898        t = (instr >> 21) & 0x1f;
 899        if (instr & 1)
 900                vdst = (u8 *)&current->thread.vr_state.vr[t];
 901        else
 902                vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
 903
 904        /* Grab the vector address */
 905        ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
 906        if (is_32bit_task())
 907                ea &= 0xfffffffful;
 908        addr = (__force const void __user *)ea;
 909
 910        /* Check it */
 911        if (!access_ok(addr, 16)) {
 912                pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
 913                         " instr=%08x addr=%016lx\n",
 914                         smp_processor_id(), current->comm, current->pid,
 915                         regs->nip, instr, (unsigned long)addr);
 916                return;
 917        }
 918
 919        /* Read the vector */
 920        rc = 0;
 921        if ((unsigned long)addr & 0xfUL)
 922                /* unaligned case */
 923                rc = __copy_from_user_inatomic(vbuf, addr, 16);
 924        else
 925                __get_user_atomic_128_aligned(vbuf, addr, rc);
 926        if (rc) {
 927                pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
 928                         " instr=%08x addr=%016lx\n",
 929                         smp_processor_id(), current->comm, current->pid,
 930                         regs->nip, instr, (unsigned long)addr);
 931                return;
 932        }
 933
 934        pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
 935                 " instr=%08x addr=%016lx\n",
 936                 smp_processor_id(), current->comm, current->pid, regs->nip,
 937                 instr, (unsigned long) addr);
 938
 939        /* Grab instruction "selector" */
 940        sel = (instr >> 6) & 3;
 941
 942        /*
 943         * Check to make sure the facility is actually enabled. This
 944         * could happen if we get a false positive hit.
 945         *
 946         * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
 947         * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
 948         */
 949        msr_mask = MSR_VSX;
 950        if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
 951                msr_mask = MSR_VEC;
 952        if (!(msr & msr_mask)) {
 953                pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
 954                         " instr=%08x msr:%016lx\n",
 955                         smp_processor_id(), current->comm, current->pid,
 956                         regs->nip, instr, msr);
 957                return;
 958        }
 959
 960        /* Do logging here before we modify sel based on endian */
 961        switch (sel) {
 962        case 0: /* lxvw4x */
 963                PPC_WARN_EMULATED(lxvw4x, regs);
 964                break;
 965        case 1: /* lxvh8x */
 966                PPC_WARN_EMULATED(lxvh8x, regs);
 967                break;
 968        case 2: /* lxvd2x */
 969                PPC_WARN_EMULATED(lxvd2x, regs);
 970                break;
 971        case 3: /* lxvb16x */
 972                PPC_WARN_EMULATED(lxvb16x, regs);
 973                break;
 974        }
 975
 976#ifdef __LITTLE_ENDIAN__
 977        /*
 978         * An LE kernel stores the vector in the task struct as an LE
 979         * byte array (effectively swapping both the components and
 980         * the content of the components). Those instructions expect
 981         * the components to remain in ascending address order, so we
 982         * swap them back.
 983         *
 984         * If we are running a BE user space, the expectation is that
 985         * of a simple memcpy, so forcing the emulation to look like
 986         * a lxvb16x should do the trick.
 987         */
 988        if (swap)
 989                sel = 3;
 990
 991        switch (sel) {
 992        case 0: /* lxvw4x */
 993                for (i = 0; i < 4; i++)
 994                        ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
 995                break;
 996        case 1: /* lxvh8x */
 997                for (i = 0; i < 8; i++)
 998                        ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
 999                break;
1000        case 2: /* lxvd2x */
1001                for (i = 0; i < 2; i++)
1002                        ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1003                break;
1004        case 3: /* lxvb16x */
1005                for (i = 0; i < 16; i++)
1006                        vdst[i] = vbuf[15-i];
1007                break;
1008        }
1009#else /* __LITTLE_ENDIAN__ */
1010        /* On a big endian kernel, a BE userspace only needs a memcpy */
1011        if (!swap)
1012                sel = 3;
1013
1014        /* Otherwise, we need to swap the content of the components */
1015        switch (sel) {
1016        case 0: /* lxvw4x */
1017                for (i = 0; i < 4; i++)
1018                        ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1019                break;
1020        case 1: /* lxvh8x */
1021                for (i = 0; i < 8; i++)
1022                        ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1023                break;
1024        case 2: /* lxvd2x */
1025                for (i = 0; i < 2; i++)
1026                        ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1027                break;
1028        case 3: /* lxvb16x */
1029                memcpy(vdst, vbuf, 16);
1030                break;
1031        }
1032#endif /* !__LITTLE_ENDIAN__ */
1033
1034        /* Go to next instruction */
1035        regs_add_return_ip(regs, 4);
1036}
1037#endif /* CONFIG_VSX */
1038
1039DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)
1040{
1041        struct pt_regs *old_regs;
1042
1043        old_regs = set_irq_regs(regs);
1044
1045#ifdef CONFIG_VSX
1046        /* Real mode flagged P9 special emu is needed */
1047        if (local_paca->hmi_p9_special_emu) {
1048                local_paca->hmi_p9_special_emu = 0;
1049
1050                /*
1051                 * We don't want to take page faults while doing the
1052                 * emulation, we just replay the instruction if necessary.
1053                 */
1054                pagefault_disable();
1055                p9_hmi_special_emu(regs);
1056                pagefault_enable();
1057        }
1058#endif /* CONFIG_VSX */
1059
1060        if (ppc_md.handle_hmi_exception)
1061                ppc_md.handle_hmi_exception(regs);
1062
1063        set_irq_regs(old_regs);
1064}
1065
1066DEFINE_INTERRUPT_HANDLER(unknown_exception)
1067{
1068        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1069               regs->nip, regs->msr, regs->trap);
1070
1071        _exception(SIGTRAP, regs, TRAP_UNK, 0);
1072}
1073
1074DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)
1075{
1076        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1077               regs->nip, regs->msr, regs->trap);
1078
1079        _exception(SIGTRAP, regs, TRAP_UNK, 0);
1080}
1081
1082DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)
1083{
1084        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1085               regs->nip, regs->msr, regs->trap);
1086
1087        _exception(SIGTRAP, regs, TRAP_UNK, 0);
1088
1089        return 0;
1090}
1091
1092DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)
1093{
1094        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1095                                        5, SIGTRAP) == NOTIFY_STOP)
1096                return;
1097        if (debugger_iabr_match(regs))
1098                return;
1099        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1100}
1101
1102DEFINE_INTERRUPT_HANDLER(RunModeException)
1103{
1104        _exception(SIGTRAP, regs, TRAP_UNK, 0);
1105}
1106
1107static void __single_step_exception(struct pt_regs *regs)
1108{
1109        clear_single_step(regs);
1110        clear_br_trace(regs);
1111
1112        if (kprobe_post_handler(regs))
1113                return;
1114
1115        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1116                                        5, SIGTRAP) == NOTIFY_STOP)
1117                return;
1118        if (debugger_sstep(regs))
1119                return;
1120
1121        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1122}
1123
1124DEFINE_INTERRUPT_HANDLER(single_step_exception)
1125{
1126        __single_step_exception(regs);
1127}
1128
1129/*
1130 * After we have successfully emulated an instruction, we have to
1131 * check if the instruction was being single-stepped, and if so,
1132 * pretend we got a single-step exception.  This was pointed out
1133 * by Kumar Gala.  -- paulus
1134 */
1135static void emulate_single_step(struct pt_regs *regs)
1136{
1137        if (single_stepping(regs))
1138                __single_step_exception(regs);
1139}
1140
1141static inline int __parse_fpscr(unsigned long fpscr)
1142{
1143        int ret = FPE_FLTUNK;
1144
1145        /* Invalid operation */
1146        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1147                ret = FPE_FLTINV;
1148
1149        /* Overflow */
1150        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1151                ret = FPE_FLTOVF;
1152
1153        /* Underflow */
1154        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1155                ret = FPE_FLTUND;
1156
1157        /* Divide by zero */
1158        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1159                ret = FPE_FLTDIV;
1160
1161        /* Inexact result */
1162        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1163                ret = FPE_FLTRES;
1164
1165        return ret;
1166}
1167
1168static void parse_fpe(struct pt_regs *regs)
1169{
1170        int code = 0;
1171
1172        flush_fp_to_thread(current);
1173
1174#ifdef CONFIG_PPC_FPU_REGS
1175        code = __parse_fpscr(current->thread.fp_state.fpscr);
1176#endif
1177
1178        _exception(SIGFPE, regs, code, regs->nip);
1179}
1180
1181/*
1182 * Illegal instruction emulation support.  Originally written to
1183 * provide the PVR to user applications using the mfspr rd, PVR.
1184 * Return non-zero if we can't emulate, or -EFAULT if the associated
1185 * memory access caused an access fault.  Return zero on success.
1186 *
1187 * There are a couple of ways to do this, either "decode" the instruction
1188 * or directly match lots of bits.  In this case, matching lots of
1189 * bits is faster and easier.
1190 *
1191 */
1192static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1193{
1194        u8 rT = (instword >> 21) & 0x1f;
1195        u8 rA = (instword >> 16) & 0x1f;
1196        u8 NB_RB = (instword >> 11) & 0x1f;
1197        u32 num_bytes;
1198        unsigned long EA;
1199        int pos = 0;
1200
1201        /* Early out if we are an invalid form of lswx */
1202        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1203                if ((rT == rA) || (rT == NB_RB))
1204                        return -EINVAL;
1205
1206        EA = (rA == 0) ? 0 : regs->gpr[rA];
1207
1208        switch (instword & PPC_INST_STRING_MASK) {
1209                case PPC_INST_LSWX:
1210                case PPC_INST_STSWX:
1211                        EA += NB_RB;
1212                        num_bytes = regs->xer & 0x7f;
1213                        break;
1214                case PPC_INST_LSWI:
1215                case PPC_INST_STSWI:
1216                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1217                        break;
1218                default:
1219                        return -EINVAL;
1220        }
1221
1222        while (num_bytes != 0)
1223        {
1224                u8 val;
1225                u32 shift = 8 * (3 - (pos & 0x3));
1226
1227                /* if process is 32-bit, clear upper 32 bits of EA */
1228                if ((regs->msr & MSR_64BIT) == 0)
1229                        EA &= 0xFFFFFFFF;
1230
1231                switch ((instword & PPC_INST_STRING_MASK)) {
1232                        case PPC_INST_LSWX:
1233                        case PPC_INST_LSWI:
1234                                if (get_user(val, (u8 __user *)EA))
1235                                        return -EFAULT;
1236                                /* first time updating this reg,
1237                                 * zero it out */
1238                                if (pos == 0)
1239                                        regs->gpr[rT] = 0;
1240                                regs->gpr[rT] |= val << shift;
1241                                break;
1242                        case PPC_INST_STSWI:
1243                        case PPC_INST_STSWX:
1244                                val = regs->gpr[rT] >> shift;
1245                                if (put_user(val, (u8 __user *)EA))
1246                                        return -EFAULT;
1247                                break;
1248                }
1249                /* move EA to next address */
1250                EA += 1;
1251                num_bytes--;
1252
1253                /* manage our position within the register */
1254                if (++pos == 4) {
1255                        pos = 0;
1256                        if (++rT == 32)
1257                                rT = 0;
1258                }
1259        }
1260
1261        return 0;
1262}
1263
1264static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1265{
1266        u32 ra,rs;
1267        unsigned long tmp;
1268
1269        ra = (instword >> 16) & 0x1f;
1270        rs = (instword >> 21) & 0x1f;
1271
1272        tmp = regs->gpr[rs];
1273        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1274        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1275        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1276        regs->gpr[ra] = tmp;
1277
1278        return 0;
1279}
1280
1281static int emulate_isel(struct pt_regs *regs, u32 instword)
1282{
1283        u8 rT = (instword >> 21) & 0x1f;
1284        u8 rA = (instword >> 16) & 0x1f;
1285        u8 rB = (instword >> 11) & 0x1f;
1286        u8 BC = (instword >> 6) & 0x1f;
1287        u8 bit;
1288        unsigned long tmp;
1289
1290        tmp = (rA == 0) ? 0 : regs->gpr[rA];
1291        bit = (regs->ccr >> (31 - BC)) & 0x1;
1292
1293        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1294
1295        return 0;
1296}
1297
1298#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1299static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1300{
1301        /* If we're emulating a load/store in an active transaction, we cannot
1302         * emulate it as the kernel operates in transaction suspended context.
1303         * We need to abort the transaction.  This creates a persistent TM
1304         * abort so tell the user what caused it with a new code.
1305         */
1306        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1307                tm_enable();
1308                tm_abort(cause);
1309                return true;
1310        }
1311        return false;
1312}
1313#else
1314static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1315{
1316        return false;
1317}
1318#endif
1319
1320static int emulate_instruction(struct pt_regs *regs)
1321{
1322        u32 instword;
1323        u32 rd;
1324
1325        if (!user_mode(regs))
1326                return -EINVAL;
1327
1328        if (get_user(instword, (u32 __user *)(regs->nip)))
1329                return -EFAULT;
1330
1331        /* Emulate the mfspr rD, PVR. */
1332        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1333                PPC_WARN_EMULATED(mfpvr, regs);
1334                rd = (instword >> 21) & 0x1f;
1335                regs->gpr[rd] = mfspr(SPRN_PVR);
1336                return 0;
1337        }
1338
1339        /* Emulating the dcba insn is just a no-op.  */
1340        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1341                PPC_WARN_EMULATED(dcba, regs);
1342                return 0;
1343        }
1344
1345        /* Emulate the mcrxr insn.  */
1346        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1347                int shift = (instword >> 21) & 0x1c;
1348                unsigned long msk = 0xf0000000UL >> shift;
1349
1350                PPC_WARN_EMULATED(mcrxr, regs);
1351                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1352                regs->xer &= ~0xf0000000UL;
1353                return 0;
1354        }
1355
1356        /* Emulate load/store string insn. */
1357        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1358                if (tm_abort_check(regs,
1359                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1360                        return -EINVAL;
1361                PPC_WARN_EMULATED(string, regs);
1362                return emulate_string_inst(regs, instword);
1363        }
1364
1365        /* Emulate the popcntb (Population Count Bytes) instruction. */
1366        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1367                PPC_WARN_EMULATED(popcntb, regs);
1368                return emulate_popcntb_inst(regs, instword);
1369        }
1370
1371        /* Emulate isel (Integer Select) instruction */
1372        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1373                PPC_WARN_EMULATED(isel, regs);
1374                return emulate_isel(regs, instword);
1375        }
1376
1377        /* Emulate sync instruction variants */
1378        if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1379                PPC_WARN_EMULATED(sync, regs);
1380                asm volatile("sync");
1381                return 0;
1382        }
1383
1384#ifdef CONFIG_PPC64
1385        /* Emulate the mfspr rD, DSCR. */
1386        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1387                PPC_INST_MFSPR_DSCR_USER) ||
1388             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1389                PPC_INST_MFSPR_DSCR)) &&
1390                        cpu_has_feature(CPU_FTR_DSCR)) {
1391                PPC_WARN_EMULATED(mfdscr, regs);
1392                rd = (instword >> 21) & 0x1f;
1393                regs->gpr[rd] = mfspr(SPRN_DSCR);
1394                return 0;
1395        }
1396        /* Emulate the mtspr DSCR, rD. */
1397        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1398                PPC_INST_MTSPR_DSCR_USER) ||
1399             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1400                PPC_INST_MTSPR_DSCR)) &&
1401                        cpu_has_feature(CPU_FTR_DSCR)) {
1402                PPC_WARN_EMULATED(mtdscr, regs);
1403                rd = (instword >> 21) & 0x1f;
1404                current->thread.dscr = regs->gpr[rd];
1405                current->thread.dscr_inherit = 1;
1406                mtspr(SPRN_DSCR, current->thread.dscr);
1407                return 0;
1408        }
1409#endif
1410
1411        return -EINVAL;
1412}
1413
1414int is_valid_bugaddr(unsigned long addr)
1415{
1416        return is_kernel_addr(addr);
1417}
1418
1419#ifdef CONFIG_MATH_EMULATION
1420static int emulate_math(struct pt_regs *regs)
1421{
1422        int ret;
1423
1424        ret = do_mathemu(regs);
1425        if (ret >= 0)
1426                PPC_WARN_EMULATED(math, regs);
1427
1428        switch (ret) {
1429        case 0:
1430                emulate_single_step(regs);
1431                return 0;
1432        case 1: {
1433                        int code = 0;
1434                        code = __parse_fpscr(current->thread.fp_state.fpscr);
1435                        _exception(SIGFPE, regs, code, regs->nip);
1436                        return 0;
1437                }
1438        case -EFAULT:
1439                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1440                return 0;
1441        }
1442
1443        return -1;
1444}
1445#else
1446static inline int emulate_math(struct pt_regs *regs) { return -1; }
1447#endif
1448
1449static void do_program_check(struct pt_regs *regs)
1450{
1451        unsigned int reason = get_reason(regs);
1452
1453        /* We can now get here via a FP Unavailable exception if the core
1454         * has no FPU, in that case the reason flags will be 0 */
1455
1456        if (reason & REASON_FP) {
1457                /* IEEE FP exception */
1458                parse_fpe(regs);
1459                return;
1460        }
1461        if (reason & REASON_TRAP) {
1462                unsigned long bugaddr;
1463                /* Debugger is first in line to stop recursive faults in
1464                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1465                if (debugger_bpt(regs))
1466                        return;
1467
1468                if (kprobe_handler(regs))
1469                        return;
1470
1471                /* trap exception */
1472                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1473                                == NOTIFY_STOP)
1474                        return;
1475
1476                bugaddr = regs->nip;
1477                /*
1478                 * Fixup bugaddr for BUG_ON() in real mode
1479                 */
1480                if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1481                        bugaddr += PAGE_OFFSET;
1482
1483                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1484                    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1485                        regs_add_return_ip(regs, 4);
1486                        return;
1487                }
1488                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1489                return;
1490        }
1491#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1492        if (reason & REASON_TM) {
1493                /* This is a TM "Bad Thing Exception" program check.
1494                 * This occurs when:
1495                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1496                 *    transition in TM states.
1497                 * -  A trechkpt is attempted when transactional.
1498                 * -  A treclaim is attempted when non transactional.
1499                 * -  A tend is illegally attempted.
1500                 * -  writing a TM SPR when transactional.
1501                 *
1502                 * If usermode caused this, it's done something illegal and
1503                 * gets a SIGILL slap on the wrist.  We call it an illegal
1504                 * operand to distinguish from the instruction just being bad
1505                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1506                 * illegal /placement/ of a valid instruction.
1507                 */
1508                if (user_mode(regs)) {
1509                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1510                        return;
1511                } else {
1512                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1513                               "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1514                               regs->nip, regs->msr, get_paca()->tm_scratch);
1515                        die("Unrecoverable exception", regs, SIGABRT);
1516                }
1517        }
1518#endif
1519
1520        /*
1521         * If we took the program check in the kernel skip down to sending a
1522         * SIGILL. The subsequent cases all relate to emulating instructions
1523         * which we should only do for userspace. We also do not want to enable
1524         * interrupts for kernel faults because that might lead to further
1525         * faults, and loose the context of the original exception.
1526         */
1527        if (!user_mode(regs))
1528                goto sigill;
1529
1530        interrupt_cond_local_irq_enable(regs);
1531
1532        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1533         * but there seems to be a hardware bug on the 405GP (RevD)
1534         * that means ESR is sometimes set incorrectly - either to
1535         * ESR_DST (!?) or 0.  In the process of chasing this with the
1536         * hardware people - not sure if it can happen on any illegal
1537         * instruction or only on FP instructions, whether there is a
1538         * pattern to occurrences etc. -dgibson 31/Mar/2003
1539         */
1540        if (!emulate_math(regs))
1541                return;
1542
1543        /* Try to emulate it if we should. */
1544        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1545                switch (emulate_instruction(regs)) {
1546                case 0:
1547                        regs_add_return_ip(regs, 4);
1548                        emulate_single_step(regs);
1549                        return;
1550                case -EFAULT:
1551                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1552                        return;
1553                }
1554        }
1555
1556sigill:
1557        if (reason & REASON_PRIVILEGED)
1558                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1559        else
1560                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1561
1562}
1563
1564DEFINE_INTERRUPT_HANDLER(program_check_exception)
1565{
1566        do_program_check(regs);
1567}
1568
1569/*
1570 * This occurs when running in hypervisor mode on POWER6 or later
1571 * and an illegal instruction is encountered.
1572 */
1573DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)
1574{
1575        regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL);
1576        do_program_check(regs);
1577}
1578
1579DEFINE_INTERRUPT_HANDLER(alignment_exception)
1580{
1581        int sig, code, fixed = 0;
1582        unsigned long  reason;
1583
1584        interrupt_cond_local_irq_enable(regs);
1585
1586        reason = get_reason(regs);
1587        if (reason & REASON_BOUNDARY) {
1588                sig = SIGBUS;
1589                code = BUS_ADRALN;
1590                goto bad;
1591        }
1592
1593        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1594                return;
1595
1596        /* we don't implement logging of alignment exceptions */
1597        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1598                fixed = fix_alignment(regs);
1599
1600        if (fixed == 1) {
1601                /* skip over emulated instruction */
1602                regs_add_return_ip(regs, inst_length(reason));
1603                emulate_single_step(regs);
1604                return;
1605        }
1606
1607        /* Operand address was bad */
1608        if (fixed == -EFAULT) {
1609                sig = SIGSEGV;
1610                code = SEGV_ACCERR;
1611        } else {
1612                sig = SIGBUS;
1613                code = BUS_ADRALN;
1614        }
1615bad:
1616        if (user_mode(regs))
1617                _exception(sig, regs, code, regs->dar);
1618        else
1619                bad_page_fault(regs, sig);
1620}
1621
1622DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)
1623{
1624        die("Kernel stack overflow", regs, SIGSEGV);
1625}
1626
1627DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)
1628{
1629        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1630                          "%lx at %lx\n", regs->trap, regs->nip);
1631        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1632}
1633
1634DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)
1635{
1636        if (user_mode(regs)) {
1637                /* A user program has executed an altivec instruction,
1638                   but this kernel doesn't support altivec. */
1639                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1640                return;
1641        }
1642
1643        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1644                        "%lx at %lx\n", regs->trap, regs->nip);
1645        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1646}
1647
1648DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)
1649{
1650        if (user_mode(regs)) {
1651                /* A user program has executed an vsx instruction,
1652                   but this kernel doesn't support vsx. */
1653                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1654                return;
1655        }
1656
1657        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1658                        "%lx at %lx\n", regs->trap, regs->nip);
1659        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1660}
1661
1662#ifdef CONFIG_PPC64
1663static void tm_unavailable(struct pt_regs *regs)
1664{
1665#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1666        if (user_mode(regs)) {
1667                current->thread.load_tm++;
1668                regs_set_return_msr(regs, regs->msr | MSR_TM);
1669                tm_enable();
1670                tm_restore_sprs(&current->thread);
1671                return;
1672        }
1673#endif
1674        pr_emerg("Unrecoverable TM Unavailable Exception "
1675                        "%lx at %lx\n", regs->trap, regs->nip);
1676        die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1677}
1678
1679DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)
1680{
1681        static char *facility_strings[] = {
1682                [FSCR_FP_LG] = "FPU",
1683                [FSCR_VECVSX_LG] = "VMX/VSX",
1684                [FSCR_DSCR_LG] = "DSCR",
1685                [FSCR_PM_LG] = "PMU SPRs",
1686                [FSCR_BHRB_LG] = "BHRB",
1687                [FSCR_TM_LG] = "TM",
1688                [FSCR_EBB_LG] = "EBB",
1689                [FSCR_TAR_LG] = "TAR",
1690                [FSCR_MSGP_LG] = "MSGP",
1691                [FSCR_SCV_LG] = "SCV",
1692                [FSCR_PREFIX_LG] = "PREFIX",
1693        };
1694        char *facility = "unknown";
1695        u64 value;
1696        u32 instword, rd;
1697        u8 status;
1698        bool hv;
1699
1700        hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL);
1701        if (hv)
1702                value = mfspr(SPRN_HFSCR);
1703        else
1704                value = mfspr(SPRN_FSCR);
1705
1706        status = value >> 56;
1707        if ((hv || status >= 2) &&
1708            (status < ARRAY_SIZE(facility_strings)) &&
1709            facility_strings[status])
1710                facility = facility_strings[status];
1711
1712        /* We should not have taken this interrupt in kernel */
1713        if (!user_mode(regs)) {
1714                pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1715                         facility, status, regs->nip);
1716                die("Unexpected facility unavailable exception", regs, SIGABRT);
1717        }
1718
1719        interrupt_cond_local_irq_enable(regs);
1720
1721        if (status == FSCR_DSCR_LG) {
1722                /*
1723                 * User is accessing the DSCR register using the problem
1724                 * state only SPR number (0x03) either through a mfspr or
1725                 * a mtspr instruction. If it is a write attempt through
1726                 * a mtspr, then we set the inherit bit. This also allows
1727                 * the user to write or read the register directly in the
1728                 * future by setting via the FSCR DSCR bit. But in case it
1729                 * is a read DSCR attempt through a mfspr instruction, we
1730                 * just emulate the instruction instead. This code path will
1731                 * always emulate all the mfspr instructions till the user
1732                 * has attempted at least one mtspr instruction. This way it
1733                 * preserves the same behaviour when the user is accessing
1734                 * the DSCR through privilege level only SPR number (0x11)
1735                 * which is emulated through illegal instruction exception.
1736                 * We always leave HFSCR DSCR set.
1737                 */
1738                if (get_user(instword, (u32 __user *)(regs->nip))) {
1739                        pr_err("Failed to fetch the user instruction\n");
1740                        return;
1741                }
1742
1743                /* Write into DSCR (mtspr 0x03, RS) */
1744                if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1745                                == PPC_INST_MTSPR_DSCR_USER) {
1746                        rd = (instword >> 21) & 0x1f;
1747                        current->thread.dscr = regs->gpr[rd];
1748                        current->thread.dscr_inherit = 1;
1749                        current->thread.fscr |= FSCR_DSCR;
1750                        mtspr(SPRN_FSCR, current->thread.fscr);
1751                }
1752
1753                /* Read from DSCR (mfspr RT, 0x03) */
1754                if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1755                                == PPC_INST_MFSPR_DSCR_USER) {
1756                        if (emulate_instruction(regs)) {
1757                                pr_err("DSCR based mfspr emulation failed\n");
1758                                return;
1759                        }
1760                        regs_add_return_ip(regs, 4);
1761                        emulate_single_step(regs);
1762                }
1763                return;
1764        }
1765
1766        if (status == FSCR_TM_LG) {
1767                /*
1768                 * If we're here then the hardware is TM aware because it
1769                 * generated an exception with FSRM_TM set.
1770                 *
1771                 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1772                 * told us not to do TM, or the kernel is not built with TM
1773                 * support.
1774                 *
1775                 * If both of those things are true, then userspace can spam the
1776                 * console by triggering the printk() below just by continually
1777                 * doing tbegin (or any TM instruction). So in that case just
1778                 * send the process a SIGILL immediately.
1779                 */
1780                if (!cpu_has_feature(CPU_FTR_TM))
1781                        goto out;
1782
1783                tm_unavailable(regs);
1784                return;
1785        }
1786
1787        pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1788                hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1789
1790out:
1791        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1792}
1793#endif
1794
1795#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1796
1797DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)
1798{
1799        /* Note:  This does not handle any kind of FP laziness. */
1800
1801        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1802                 regs->nip, regs->msr);
1803
1804        /* We can only have got here if the task started using FP after
1805         * beginning the transaction.  So, the transactional regs are just a
1806         * copy of the checkpointed ones.  But, we still need to recheckpoint
1807         * as we're enabling FP for the process; it will return, abort the
1808         * transaction, and probably retry but now with FP enabled.  So the
1809         * checkpointed FP registers need to be loaded.
1810         */
1811        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1812
1813        /*
1814         * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1815         * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1816         *
1817         * At this point, ck{fp,vr}_state contains the exact values we want to
1818         * recheckpoint.
1819         */
1820
1821        /* Enable FP for the task: */
1822        current->thread.load_fp = 1;
1823
1824        /*
1825         * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1826         */
1827        tm_recheckpoint(&current->thread);
1828}
1829
1830DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)
1831{
1832        /* See the comments in fp_unavailable_tm().  This function operates
1833         * the same way.
1834         */
1835
1836        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1837                 "MSR=%lx\n",
1838                 regs->nip, regs->msr);
1839        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1840        current->thread.load_vec = 1;
1841        tm_recheckpoint(&current->thread);
1842        current->thread.used_vr = 1;
1843}
1844
1845DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)
1846{
1847        /* See the comments in fp_unavailable_tm().  This works similarly,
1848         * though we're loading both FP and VEC registers in here.
1849         *
1850         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1851         * regs.  Either way, set MSR_VSX.
1852         */
1853
1854        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1855                 "MSR=%lx\n",
1856                 regs->nip, regs->msr);
1857
1858        current->thread.used_vsr = 1;
1859
1860        /* This reclaims FP and/or VR regs if they're already enabled */
1861        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1862
1863        current->thread.load_vec = 1;
1864        current->thread.load_fp = 1;
1865
1866        tm_recheckpoint(&current->thread);
1867}
1868#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1869
1870#ifdef CONFIG_PPC64
1871DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi);
1872DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)
1873{
1874        __this_cpu_inc(irq_stat.pmu_irqs);
1875
1876        perf_irq(regs);
1877
1878        return 0;
1879}
1880#endif
1881
1882DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async);
1883DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)
1884{
1885        __this_cpu_inc(irq_stat.pmu_irqs);
1886
1887        perf_irq(regs);
1888}
1889
1890DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)
1891{
1892        /*
1893         * On 64-bit, if perf interrupts hit in a local_irq_disable
1894         * (soft-masked) region, we consider them as NMIs. This is required to
1895         * prevent hash faults on user addresses when reading callchains (and
1896         * looks better from an irq tracing perspective).
1897         */
1898        if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs)))
1899                performance_monitor_exception_nmi(regs);
1900        else
1901                performance_monitor_exception_async(regs);
1902
1903        return 0;
1904}
1905
1906#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1907static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1908{
1909        int changed = 0;
1910        /*
1911         * Determine the cause of the debug event, clear the
1912         * event flags and send a trap to the handler. Torez
1913         */
1914        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1915                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1916#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1917                current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1918#endif
1919                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1920                             5);
1921                changed |= 0x01;
1922        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1923                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1924                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1925                             6);
1926                changed |= 0x01;
1927        }  else if (debug_status & DBSR_IAC1) {
1928                current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1929                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1930                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1931                             1);
1932                changed |= 0x01;
1933        }  else if (debug_status & DBSR_IAC2) {
1934                current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1935                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1936                             2);
1937                changed |= 0x01;
1938        }  else if (debug_status & DBSR_IAC3) {
1939                current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1940                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1941                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1942                             3);
1943                changed |= 0x01;
1944        }  else if (debug_status & DBSR_IAC4) {
1945                current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1946                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1947                             4);
1948                changed |= 0x01;
1949        }
1950        /*
1951         * At the point this routine was called, the MSR(DE) was turned off.
1952         * Check all other debug flags and see if that bit needs to be turned
1953         * back on or not.
1954         */
1955        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1956                               current->thread.debug.dbcr1))
1957                regs_set_return_msr(regs, regs->msr | MSR_DE);
1958        else
1959                /* Make sure the IDM flag is off */
1960                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1961
1962        if (changed & 0x01)
1963                mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1964}
1965
1966DEFINE_INTERRUPT_HANDLER(DebugException)
1967{
1968        unsigned long debug_status = regs->dsisr;
1969
1970        current->thread.debug.dbsr = debug_status;
1971
1972        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1973         * on server, it stops on the target of the branch. In order to simulate
1974         * the server behaviour, we thus restart right away with a single step
1975         * instead of stopping here when hitting a BT
1976         */
1977        if (debug_status & DBSR_BT) {
1978                regs_set_return_msr(regs, regs->msr & ~MSR_DE);
1979
1980                /* Disable BT */
1981                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1982                /* Clear the BT event */
1983                mtspr(SPRN_DBSR, DBSR_BT);
1984
1985                /* Do the single step trick only when coming from userspace */
1986                if (user_mode(regs)) {
1987                        current->thread.debug.dbcr0 &= ~DBCR0_BT;
1988                        current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1989                        regs_set_return_msr(regs, regs->msr | MSR_DE);
1990                        return;
1991                }
1992
1993                if (kprobe_post_handler(regs))
1994                        return;
1995
1996                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1997                               5, SIGTRAP) == NOTIFY_STOP) {
1998                        return;
1999                }
2000                if (debugger_sstep(regs))
2001                        return;
2002        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
2003                regs_set_return_msr(regs, regs->msr & ~MSR_DE);
2004
2005                /* Disable instruction completion */
2006                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2007                /* Clear the instruction completion event */
2008                mtspr(SPRN_DBSR, DBSR_IC);
2009
2010                if (kprobe_post_handler(regs))
2011                        return;
2012
2013                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2014                               5, SIGTRAP) == NOTIFY_STOP) {
2015                        return;
2016                }
2017
2018                if (debugger_sstep(regs))
2019                        return;
2020
2021                if (user_mode(regs)) {
2022                        current->thread.debug.dbcr0 &= ~DBCR0_IC;
2023                        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2024                                               current->thread.debug.dbcr1))
2025                                regs_set_return_msr(regs, regs->msr | MSR_DE);
2026                        else
2027                                /* Make sure the IDM bit is off */
2028                                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2029                }
2030
2031                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2032        } else
2033                handle_debug(regs, debug_status);
2034}
2035#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2036
2037#ifdef CONFIG_ALTIVEC
2038DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)
2039{
2040        int err;
2041
2042        if (!user_mode(regs)) {
2043                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2044                       " at %lx\n", regs->nip);
2045                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2046        }
2047
2048        flush_altivec_to_thread(current);
2049
2050        PPC_WARN_EMULATED(altivec, regs);
2051        err = emulate_altivec(regs);
2052        if (err == 0) {
2053                regs_add_return_ip(regs, 4); /* skip emulated instruction */
2054                emulate_single_step(regs);
2055                return;
2056        }
2057
2058        if (err == -EFAULT) {
2059                /* got an error reading the instruction */
2060                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2061        } else {
2062                /* didn't recognize the instruction */
2063                /* XXX quick hack for now: set the non-Java bit in the VSCR */
2064                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2065                                   "in %s at %lx\n", current->comm, regs->nip);
2066                current->thread.vr_state.vscr.u[3] |= 0x10000;
2067        }
2068}
2069#endif /* CONFIG_ALTIVEC */
2070
2071#ifdef CONFIG_FSL_BOOKE
2072DEFINE_INTERRUPT_HANDLER(CacheLockingException)
2073{
2074        unsigned long error_code = regs->dsisr;
2075
2076        /* We treat cache locking instructions from the user
2077         * as priv ops, in the future we could try to do
2078         * something smarter
2079         */
2080        if (error_code & (ESR_DLK|ESR_ILK))
2081                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2082        return;
2083}
2084#endif /* CONFIG_FSL_BOOKE */
2085
2086#ifdef CONFIG_SPE
2087DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)
2088{
2089        extern int do_spe_mathemu(struct pt_regs *regs);
2090        unsigned long spefscr;
2091        int fpexc_mode;
2092        int code = FPE_FLTUNK;
2093        int err;
2094
2095        interrupt_cond_local_irq_enable(regs);
2096
2097        flush_spe_to_thread(current);
2098
2099        spefscr = current->thread.spefscr;
2100        fpexc_mode = current->thread.fpexc_mode;
2101
2102        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2103                code = FPE_FLTOVF;
2104        }
2105        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2106                code = FPE_FLTUND;
2107        }
2108        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2109                code = FPE_FLTDIV;
2110        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2111                code = FPE_FLTINV;
2112        }
2113        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2114                code = FPE_FLTRES;
2115
2116        err = do_spe_mathemu(regs);
2117        if (err == 0) {
2118                regs_add_return_ip(regs, 4); /* skip emulated instruction */
2119                emulate_single_step(regs);
2120                return;
2121        }
2122
2123        if (err == -EFAULT) {
2124                /* got an error reading the instruction */
2125                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2126        } else if (err == -EINVAL) {
2127                /* didn't recognize the instruction */
2128                printk(KERN_ERR "unrecognized spe instruction "
2129                       "in %s at %lx\n", current->comm, regs->nip);
2130        } else {
2131                _exception(SIGFPE, regs, code, regs->nip);
2132        }
2133
2134        return;
2135}
2136
2137DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)
2138{
2139        extern int speround_handler(struct pt_regs *regs);
2140        int err;
2141
2142        interrupt_cond_local_irq_enable(regs);
2143
2144        preempt_disable();
2145        if (regs->msr & MSR_SPE)
2146                giveup_spe(current);
2147        preempt_enable();
2148
2149        regs_add_return_ip(regs, -4);
2150        err = speround_handler(regs);
2151        if (err == 0) {
2152                regs_add_return_ip(regs, 4); /* skip emulated instruction */
2153                emulate_single_step(regs);
2154                return;
2155        }
2156
2157        if (err == -EFAULT) {
2158                /* got an error reading the instruction */
2159                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2160        } else if (err == -EINVAL) {
2161                /* didn't recognize the instruction */
2162                printk(KERN_ERR "unrecognized spe instruction "
2163                       "in %s at %lx\n", current->comm, regs->nip);
2164        } else {
2165                _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2166                return;
2167        }
2168}
2169#endif
2170
2171/*
2172 * We enter here if we get an unrecoverable exception, that is, one
2173 * that happened at a point where the RI (recoverable interrupt) bit
2174 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2175 * we therefore lost state by taking this exception.
2176 */
2177void __noreturn unrecoverable_exception(struct pt_regs *regs)
2178{
2179        pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2180                 regs->trap, regs->nip, regs->msr);
2181        die("Unrecoverable exception", regs, SIGABRT);
2182        /* die() should not return */
2183        for (;;)
2184                ;
2185}
2186
2187#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2188/*
2189 * Default handler for a Watchdog exception,
2190 * spins until a reboot occurs
2191 */
2192void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2193{
2194        /* Generic WatchdogHandler, implement your own */
2195        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2196        return;
2197}
2198
2199DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)
2200{
2201        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2202        WatchdogHandler(regs);
2203        return 0;
2204}
2205#endif
2206
2207/*
2208 * We enter here if we discover during exception entry that we are
2209 * running in supervisor mode with a userspace value in the stack pointer.
2210 */
2211DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)
2212{
2213        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2214               regs->gpr[1], regs->nip);
2215        die("Bad kernel stack pointer", regs, SIGABRT);
2216}
2217
2218void __init trap_init(void)
2219{
2220}
2221
2222
2223#ifdef CONFIG_PPC_EMULATED_STATS
2224
2225#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
2226
2227struct ppc_emulated ppc_emulated = {
2228#ifdef CONFIG_ALTIVEC
2229        WARN_EMULATED_SETUP(altivec),
2230#endif
2231        WARN_EMULATED_SETUP(dcba),
2232        WARN_EMULATED_SETUP(dcbz),
2233        WARN_EMULATED_SETUP(fp_pair),
2234        WARN_EMULATED_SETUP(isel),
2235        WARN_EMULATED_SETUP(mcrxr),
2236        WARN_EMULATED_SETUP(mfpvr),
2237        WARN_EMULATED_SETUP(multiple),
2238        WARN_EMULATED_SETUP(popcntb),
2239        WARN_EMULATED_SETUP(spe),
2240        WARN_EMULATED_SETUP(string),
2241        WARN_EMULATED_SETUP(sync),
2242        WARN_EMULATED_SETUP(unaligned),
2243#ifdef CONFIG_MATH_EMULATION
2244        WARN_EMULATED_SETUP(math),
2245#endif
2246#ifdef CONFIG_VSX
2247        WARN_EMULATED_SETUP(vsx),
2248#endif
2249#ifdef CONFIG_PPC64
2250        WARN_EMULATED_SETUP(mfdscr),
2251        WARN_EMULATED_SETUP(mtdscr),
2252        WARN_EMULATED_SETUP(lq_stq),
2253        WARN_EMULATED_SETUP(lxvw4x),
2254        WARN_EMULATED_SETUP(lxvh8x),
2255        WARN_EMULATED_SETUP(lxvd2x),
2256        WARN_EMULATED_SETUP(lxvb16x),
2257#endif
2258};
2259
2260u32 ppc_warn_emulated;
2261
2262void ppc_warn_emulated_print(const char *type)
2263{
2264        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2265                            type);
2266}
2267
2268static int __init ppc_warn_emulated_init(void)
2269{
2270        struct dentry *dir;
2271        unsigned int i;
2272        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2273
2274        dir = debugfs_create_dir("emulated_instructions",
2275                                 powerpc_debugfs_root);
2276
2277        debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2278
2279        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2280                debugfs_create_u32(entries[i].name, 0644, dir,
2281                                   (u32 *)&entries[i].val.counter);
2282
2283        return 0;
2284}
2285
2286device_initcall(ppc_warn_emulated_init);
2287
2288#endif /* CONFIG_PPC_EMULATED_STATS */
2289