linux/arch/powerpc/kvm/book3s_64_mmu_hv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/string.h>
   9#include <linux/kvm.h>
  10#include <linux/kvm_host.h>
  11#include <linux/highmem.h>
  12#include <linux/gfp.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/vmalloc.h>
  16#include <linux/srcu.h>
  17#include <linux/anon_inodes.h>
  18#include <linux/file.h>
  19#include <linux/debugfs.h>
  20
  21#include <asm/kvm_ppc.h>
  22#include <asm/kvm_book3s.h>
  23#include <asm/book3s/64/mmu-hash.h>
  24#include <asm/hvcall.h>
  25#include <asm/synch.h>
  26#include <asm/ppc-opcode.h>
  27#include <asm/cputable.h>
  28#include <asm/pte-walk.h>
  29
  30#include "book3s.h"
  31#include "trace_hv.h"
  32
  33//#define DEBUG_RESIZE_HPT      1
  34
  35#ifdef DEBUG_RESIZE_HPT
  36#define resize_hpt_debug(resize, ...)                           \
  37        do {                                                    \
  38                printk(KERN_DEBUG "RESIZE HPT %p: ", resize);   \
  39                printk(__VA_ARGS__);                            \
  40        } while (0)
  41#else
  42#define resize_hpt_debug(resize, ...)                           \
  43        do { } while (0)
  44#endif
  45
  46static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  47                                long pte_index, unsigned long pteh,
  48                                unsigned long ptel, unsigned long *pte_idx_ret);
  49
  50struct kvm_resize_hpt {
  51        /* These fields read-only after init */
  52        struct kvm *kvm;
  53        struct work_struct work;
  54        u32 order;
  55
  56        /* These fields protected by kvm->arch.mmu_setup_lock */
  57
  58        /* Possible values and their usage:
  59         *  <0     an error occurred during allocation,
  60         *  -EBUSY allocation is in the progress,
  61         *  0      allocation made successfuly.
  62         */
  63        int error;
  64
  65        /* Private to the work thread, until error != -EBUSY,
  66         * then protected by kvm->arch.mmu_setup_lock.
  67         */
  68        struct kvm_hpt_info hpt;
  69};
  70
  71int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
  72{
  73        unsigned long hpt = 0;
  74        int cma = 0;
  75        struct page *page = NULL;
  76        struct revmap_entry *rev;
  77        unsigned long npte;
  78
  79        if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
  80                return -EINVAL;
  81
  82        page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
  83        if (page) {
  84                hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
  85                memset((void *)hpt, 0, (1ul << order));
  86                cma = 1;
  87        }
  88
  89        if (!hpt)
  90                hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
  91                                       |__GFP_NOWARN, order - PAGE_SHIFT);
  92
  93        if (!hpt)
  94                return -ENOMEM;
  95
  96        /* HPTEs are 2**4 bytes long */
  97        npte = 1ul << (order - 4);
  98
  99        /* Allocate reverse map array */
 100        rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
 101        if (!rev) {
 102                if (cma)
 103                        kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
 104                else
 105                        free_pages(hpt, order - PAGE_SHIFT);
 106                return -ENOMEM;
 107        }
 108
 109        info->order = order;
 110        info->virt = hpt;
 111        info->cma = cma;
 112        info->rev = rev;
 113
 114        return 0;
 115}
 116
 117void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
 118{
 119        atomic64_set(&kvm->arch.mmio_update, 0);
 120        kvm->arch.hpt = *info;
 121        kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
 122
 123        pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
 124                 info->virt, (long)info->order, kvm->arch.lpid);
 125}
 126
 127long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
 128{
 129        long err = -EBUSY;
 130        struct kvm_hpt_info info;
 131
 132        mutex_lock(&kvm->arch.mmu_setup_lock);
 133        if (kvm->arch.mmu_ready) {
 134                kvm->arch.mmu_ready = 0;
 135                /* order mmu_ready vs. vcpus_running */
 136                smp_mb();
 137                if (atomic_read(&kvm->arch.vcpus_running)) {
 138                        kvm->arch.mmu_ready = 1;
 139                        goto out;
 140                }
 141        }
 142        if (kvm_is_radix(kvm)) {
 143                err = kvmppc_switch_mmu_to_hpt(kvm);
 144                if (err)
 145                        goto out;
 146        }
 147
 148        if (kvm->arch.hpt.order == order) {
 149                /* We already have a suitable HPT */
 150
 151                /* Set the entire HPT to 0, i.e. invalid HPTEs */
 152                memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
 153                /*
 154                 * Reset all the reverse-mapping chains for all memslots
 155                 */
 156                kvmppc_rmap_reset(kvm);
 157                err = 0;
 158                goto out;
 159        }
 160
 161        if (kvm->arch.hpt.virt) {
 162                kvmppc_free_hpt(&kvm->arch.hpt);
 163                kvmppc_rmap_reset(kvm);
 164        }
 165
 166        err = kvmppc_allocate_hpt(&info, order);
 167        if (err < 0)
 168                goto out;
 169        kvmppc_set_hpt(kvm, &info);
 170
 171out:
 172        if (err == 0)
 173                /* Ensure that each vcpu will flush its TLB on next entry. */
 174                cpumask_setall(&kvm->arch.need_tlb_flush);
 175
 176        mutex_unlock(&kvm->arch.mmu_setup_lock);
 177        return err;
 178}
 179
 180void kvmppc_free_hpt(struct kvm_hpt_info *info)
 181{
 182        vfree(info->rev);
 183        info->rev = NULL;
 184        if (info->cma)
 185                kvm_free_hpt_cma(virt_to_page(info->virt),
 186                                 1 << (info->order - PAGE_SHIFT));
 187        else if (info->virt)
 188                free_pages(info->virt, info->order - PAGE_SHIFT);
 189        info->virt = 0;
 190        info->order = 0;
 191}
 192
 193/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
 194static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
 195{
 196        return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
 197}
 198
 199/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
 200static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
 201{
 202        return (pgsize == 0x10000) ? 0x1000 : 0;
 203}
 204
 205void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
 206                     unsigned long porder)
 207{
 208        unsigned long i;
 209        unsigned long npages;
 210        unsigned long hp_v, hp_r;
 211        unsigned long addr, hash;
 212        unsigned long psize;
 213        unsigned long hp0, hp1;
 214        unsigned long idx_ret;
 215        long ret;
 216        struct kvm *kvm = vcpu->kvm;
 217
 218        psize = 1ul << porder;
 219        npages = memslot->npages >> (porder - PAGE_SHIFT);
 220
 221        /* VRMA can't be > 1TB */
 222        if (npages > 1ul << (40 - porder))
 223                npages = 1ul << (40 - porder);
 224        /* Can't use more than 1 HPTE per HPTEG */
 225        if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
 226                npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
 227
 228        hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
 229                HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
 230        hp1 = hpte1_pgsize_encoding(psize) |
 231                HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
 232
 233        for (i = 0; i < npages; ++i) {
 234                addr = i << porder;
 235                /* can't use hpt_hash since va > 64 bits */
 236                hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
 237                        & kvmppc_hpt_mask(&kvm->arch.hpt);
 238                /*
 239                 * We assume that the hash table is empty and no
 240                 * vcpus are using it at this stage.  Since we create
 241                 * at most one HPTE per HPTEG, we just assume entry 7
 242                 * is available and use it.
 243                 */
 244                hash = (hash << 3) + 7;
 245                hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
 246                hp_r = hp1 | addr;
 247                ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
 248                                                 &idx_ret);
 249                if (ret != H_SUCCESS) {
 250                        pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
 251                               addr, ret);
 252                        break;
 253                }
 254        }
 255}
 256
 257int kvmppc_mmu_hv_init(void)
 258{
 259        unsigned long host_lpid, rsvd_lpid;
 260
 261        if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
 262                return -EINVAL;
 263
 264        host_lpid = 0;
 265        if (cpu_has_feature(CPU_FTR_HVMODE))
 266                host_lpid = mfspr(SPRN_LPID);
 267
 268        /* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */
 269        if (cpu_has_feature(CPU_FTR_ARCH_207S))
 270                rsvd_lpid = LPID_RSVD;
 271        else
 272                rsvd_lpid = LPID_RSVD_POWER7;
 273
 274        kvmppc_init_lpid(rsvd_lpid + 1);
 275
 276        kvmppc_claim_lpid(host_lpid);
 277        /* rsvd_lpid is reserved for use in partition switching */
 278        kvmppc_claim_lpid(rsvd_lpid);
 279
 280        return 0;
 281}
 282
 283static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
 284                                long pte_index, unsigned long pteh,
 285                                unsigned long ptel, unsigned long *pte_idx_ret)
 286{
 287        long ret;
 288
 289        preempt_disable();
 290        ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
 291                                kvm->mm->pgd, false, pte_idx_ret);
 292        preempt_enable();
 293        if (ret == H_TOO_HARD) {
 294                /* this can't happen */
 295                pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
 296                ret = H_RESOURCE;       /* or something */
 297        }
 298        return ret;
 299
 300}
 301
 302static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
 303                                                         gva_t eaddr)
 304{
 305        u64 mask;
 306        int i;
 307
 308        for (i = 0; i < vcpu->arch.slb_nr; i++) {
 309                if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
 310                        continue;
 311
 312                if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
 313                        mask = ESID_MASK_1T;
 314                else
 315                        mask = ESID_MASK;
 316
 317                if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
 318                        return &vcpu->arch.slb[i];
 319        }
 320        return NULL;
 321}
 322
 323static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
 324                        unsigned long ea)
 325{
 326        unsigned long ra_mask;
 327
 328        ra_mask = kvmppc_actual_pgsz(v, r) - 1;
 329        return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
 330}
 331
 332static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 333                        struct kvmppc_pte *gpte, bool data, bool iswrite)
 334{
 335        struct kvm *kvm = vcpu->kvm;
 336        struct kvmppc_slb *slbe;
 337        unsigned long slb_v;
 338        unsigned long pp, key;
 339        unsigned long v, orig_v, gr;
 340        __be64 *hptep;
 341        long int index;
 342        int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
 343
 344        if (kvm_is_radix(vcpu->kvm))
 345                return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
 346
 347        /* Get SLB entry */
 348        if (virtmode) {
 349                slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
 350                if (!slbe)
 351                        return -EINVAL;
 352                slb_v = slbe->origv;
 353        } else {
 354                /* real mode access */
 355                slb_v = vcpu->kvm->arch.vrma_slb_v;
 356        }
 357
 358        preempt_disable();
 359        /* Find the HPTE in the hash table */
 360        index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
 361                                         HPTE_V_VALID | HPTE_V_ABSENT);
 362        if (index < 0) {
 363                preempt_enable();
 364                return -ENOENT;
 365        }
 366        hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
 367        v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 368        if (cpu_has_feature(CPU_FTR_ARCH_300))
 369                v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
 370        gr = kvm->arch.hpt.rev[index].guest_rpte;
 371
 372        unlock_hpte(hptep, orig_v);
 373        preempt_enable();
 374
 375        gpte->eaddr = eaddr;
 376        gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
 377
 378        /* Get PP bits and key for permission check */
 379        pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
 380        key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
 381        key &= slb_v;
 382
 383        /* Calculate permissions */
 384        gpte->may_read = hpte_read_permission(pp, key);
 385        gpte->may_write = hpte_write_permission(pp, key);
 386        gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
 387
 388        /* Storage key permission check for POWER7 */
 389        if (data && virtmode) {
 390                int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
 391                if (amrfield & 1)
 392                        gpte->may_read = 0;
 393                if (amrfield & 2)
 394                        gpte->may_write = 0;
 395        }
 396
 397        /* Get the guest physical address */
 398        gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
 399        return 0;
 400}
 401
 402/*
 403 * Quick test for whether an instruction is a load or a store.
 404 * If the instruction is a load or a store, then this will indicate
 405 * which it is, at least on server processors.  (Embedded processors
 406 * have some external PID instructions that don't follow the rule
 407 * embodied here.)  If the instruction isn't a load or store, then
 408 * this doesn't return anything useful.
 409 */
 410static int instruction_is_store(unsigned int instr)
 411{
 412        unsigned int mask;
 413
 414        mask = 0x10000000;
 415        if ((instr & 0xfc000000) == 0x7c000000)
 416                mask = 0x100;           /* major opcode 31 */
 417        return (instr & mask) != 0;
 418}
 419
 420int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
 421                           unsigned long gpa, gva_t ea, int is_store)
 422{
 423        u32 last_inst;
 424
 425        /*
 426         * Fast path - check if the guest physical address corresponds to a
 427         * device on the FAST_MMIO_BUS, if so we can avoid loading the
 428         * instruction all together, then we can just handle it and return.
 429         */
 430        if (is_store) {
 431                int idx, ret;
 432
 433                idx = srcu_read_lock(&vcpu->kvm->srcu);
 434                ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
 435                                       NULL);
 436                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 437                if (!ret) {
 438                        kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
 439                        return RESUME_GUEST;
 440                }
 441        }
 442
 443        /*
 444         * If we fail, we just return to the guest and try executing it again.
 445         */
 446        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 447                EMULATE_DONE)
 448                return RESUME_GUEST;
 449
 450        /*
 451         * WARNING: We do not know for sure whether the instruction we just
 452         * read from memory is the same that caused the fault in the first
 453         * place.  If the instruction we read is neither an load or a store,
 454         * then it can't access memory, so we don't need to worry about
 455         * enforcing access permissions.  So, assuming it is a load or
 456         * store, we just check that its direction (load or store) is
 457         * consistent with the original fault, since that's what we
 458         * checked the access permissions against.  If there is a mismatch
 459         * we just return and retry the instruction.
 460         */
 461
 462        if (instruction_is_store(last_inst) != !!is_store)
 463                return RESUME_GUEST;
 464
 465        /*
 466         * Emulated accesses are emulated by looking at the hash for
 467         * translation once, then performing the access later. The
 468         * translation could be invalidated in the meantime in which
 469         * point performing the subsequent memory access on the old
 470         * physical address could possibly be a security hole for the
 471         * guest (but not the host).
 472         *
 473         * This is less of an issue for MMIO stores since they aren't
 474         * globally visible. It could be an issue for MMIO loads to
 475         * a certain extent but we'll ignore it for now.
 476         */
 477
 478        vcpu->arch.paddr_accessed = gpa;
 479        vcpu->arch.vaddr_accessed = ea;
 480        return kvmppc_emulate_mmio(vcpu);
 481}
 482
 483int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
 484                                unsigned long ea, unsigned long dsisr)
 485{
 486        struct kvm *kvm = vcpu->kvm;
 487        unsigned long hpte[3], r;
 488        unsigned long hnow_v, hnow_r;
 489        __be64 *hptep;
 490        unsigned long mmu_seq, psize, pte_size;
 491        unsigned long gpa_base, gfn_base;
 492        unsigned long gpa, gfn, hva, pfn, hpa;
 493        struct kvm_memory_slot *memslot;
 494        unsigned long *rmap;
 495        struct revmap_entry *rev;
 496        struct page *page;
 497        long index, ret;
 498        bool is_ci;
 499        bool writing, write_ok;
 500        unsigned int shift;
 501        unsigned long rcbits;
 502        long mmio_update;
 503        pte_t pte, *ptep;
 504
 505        if (kvm_is_radix(kvm))
 506                return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
 507
 508        /*
 509         * Real-mode code has already searched the HPT and found the
 510         * entry we're interested in.  Lock the entry and check that
 511         * it hasn't changed.  If it has, just return and re-execute the
 512         * instruction.
 513         */
 514        if (ea != vcpu->arch.pgfault_addr)
 515                return RESUME_GUEST;
 516
 517        if (vcpu->arch.pgfault_cache) {
 518                mmio_update = atomic64_read(&kvm->arch.mmio_update);
 519                if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
 520                        r = vcpu->arch.pgfault_cache->rpte;
 521                        psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
 522                                                   r);
 523                        gpa_base = r & HPTE_R_RPN & ~(psize - 1);
 524                        gfn_base = gpa_base >> PAGE_SHIFT;
 525                        gpa = gpa_base | (ea & (psize - 1));
 526                        return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
 527                                                dsisr & DSISR_ISSTORE);
 528                }
 529        }
 530        index = vcpu->arch.pgfault_index;
 531        hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
 532        rev = &kvm->arch.hpt.rev[index];
 533        preempt_disable();
 534        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 535                cpu_relax();
 536        hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 537        hpte[1] = be64_to_cpu(hptep[1]);
 538        hpte[2] = r = rev->guest_rpte;
 539        unlock_hpte(hptep, hpte[0]);
 540        preempt_enable();
 541
 542        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 543                hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
 544                hpte[1] = hpte_new_to_old_r(hpte[1]);
 545        }
 546        if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
 547            hpte[1] != vcpu->arch.pgfault_hpte[1])
 548                return RESUME_GUEST;
 549
 550        /* Translate the logical address and get the page */
 551        psize = kvmppc_actual_pgsz(hpte[0], r);
 552        gpa_base = r & HPTE_R_RPN & ~(psize - 1);
 553        gfn_base = gpa_base >> PAGE_SHIFT;
 554        gpa = gpa_base | (ea & (psize - 1));
 555        gfn = gpa >> PAGE_SHIFT;
 556        memslot = gfn_to_memslot(kvm, gfn);
 557
 558        trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
 559
 560        /* No memslot means it's an emulated MMIO region */
 561        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 562                return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
 563                                              dsisr & DSISR_ISSTORE);
 564
 565        /*
 566         * This should never happen, because of the slot_is_aligned()
 567         * check in kvmppc_do_h_enter().
 568         */
 569        if (gfn_base < memslot->base_gfn)
 570                return -EFAULT;
 571
 572        /* used to check for invalidations in progress */
 573        mmu_seq = kvm->mmu_notifier_seq;
 574        smp_rmb();
 575
 576        ret = -EFAULT;
 577        page = NULL;
 578        writing = (dsisr & DSISR_ISSTORE) != 0;
 579        /* If writing != 0, then the HPTE must allow writing, if we get here */
 580        write_ok = writing;
 581        hva = gfn_to_hva_memslot(memslot, gfn);
 582
 583        /*
 584         * Do a fast check first, since __gfn_to_pfn_memslot doesn't
 585         * do it with !atomic && !async, which is how we call it.
 586         * We always ask for write permission since the common case
 587         * is that the page is writable.
 588         */
 589        if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
 590                write_ok = true;
 591        } else {
 592                /* Call KVM generic code to do the slow-path check */
 593                pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
 594                                           writing, &write_ok, NULL);
 595                if (is_error_noslot_pfn(pfn))
 596                        return -EFAULT;
 597                page = NULL;
 598                if (pfn_valid(pfn)) {
 599                        page = pfn_to_page(pfn);
 600                        if (PageReserved(page))
 601                                page = NULL;
 602                }
 603        }
 604
 605        /*
 606         * Read the PTE from the process' radix tree and use that
 607         * so we get the shift and attribute bits.
 608         */
 609        spin_lock(&kvm->mmu_lock);
 610        ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
 611        pte = __pte(0);
 612        if (ptep)
 613                pte = READ_ONCE(*ptep);
 614        spin_unlock(&kvm->mmu_lock);
 615        /*
 616         * If the PTE disappeared temporarily due to a THP
 617         * collapse, just return and let the guest try again.
 618         */
 619        if (!pte_present(pte)) {
 620                if (page)
 621                        put_page(page);
 622                return RESUME_GUEST;
 623        }
 624        hpa = pte_pfn(pte) << PAGE_SHIFT;
 625        pte_size = PAGE_SIZE;
 626        if (shift)
 627                pte_size = 1ul << shift;
 628        is_ci = pte_ci(pte);
 629
 630        if (psize > pte_size)
 631                goto out_put;
 632        if (pte_size > psize)
 633                hpa |= hva & (pte_size - psize);
 634
 635        /* Check WIMG vs. the actual page we're accessing */
 636        if (!hpte_cache_flags_ok(r, is_ci)) {
 637                if (is_ci)
 638                        goto out_put;
 639                /*
 640                 * Allow guest to map emulated device memory as
 641                 * uncacheable, but actually make it cacheable.
 642                 */
 643                r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
 644        }
 645
 646        /*
 647         * Set the HPTE to point to hpa.
 648         * Since the hpa is at PAGE_SIZE granularity, make sure we
 649         * don't mask out lower-order bits if psize < PAGE_SIZE.
 650         */
 651        if (psize < PAGE_SIZE)
 652                psize = PAGE_SIZE;
 653        r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
 654        if (hpte_is_writable(r) && !write_ok)
 655                r = hpte_make_readonly(r);
 656        ret = RESUME_GUEST;
 657        preempt_disable();
 658        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 659                cpu_relax();
 660        hnow_v = be64_to_cpu(hptep[0]);
 661        hnow_r = be64_to_cpu(hptep[1]);
 662        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 663                hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
 664                hnow_r = hpte_new_to_old_r(hnow_r);
 665        }
 666
 667        /*
 668         * If the HPT is being resized, don't update the HPTE,
 669         * instead let the guest retry after the resize operation is complete.
 670         * The synchronization for mmu_ready test vs. set is provided
 671         * by the HPTE lock.
 672         */
 673        if (!kvm->arch.mmu_ready)
 674                goto out_unlock;
 675
 676        if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
 677            rev->guest_rpte != hpte[2])
 678                /* HPTE has been changed under us; let the guest retry */
 679                goto out_unlock;
 680        hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
 681
 682        /* Always put the HPTE in the rmap chain for the page base address */
 683        rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
 684        lock_rmap(rmap);
 685
 686        /* Check if we might have been invalidated; let the guest retry if so */
 687        ret = RESUME_GUEST;
 688        if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
 689                unlock_rmap(rmap);
 690                goto out_unlock;
 691        }
 692
 693        /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
 694        rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
 695        r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
 696
 697        if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
 698                /* HPTE was previously valid, so we need to invalidate it */
 699                unlock_rmap(rmap);
 700                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 701                kvmppc_invalidate_hpte(kvm, hptep, index);
 702                /* don't lose previous R and C bits */
 703                r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 704        } else {
 705                kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
 706        }
 707
 708        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 709                r = hpte_old_to_new_r(hpte[0], r);
 710                hpte[0] = hpte_old_to_new_v(hpte[0]);
 711        }
 712        hptep[1] = cpu_to_be64(r);
 713        eieio();
 714        __unlock_hpte(hptep, hpte[0]);
 715        asm volatile("ptesync" : : : "memory");
 716        preempt_enable();
 717        if (page && hpte_is_writable(r))
 718                set_page_dirty_lock(page);
 719
 720 out_put:
 721        trace_kvm_page_fault_exit(vcpu, hpte, ret);
 722
 723        if (page)
 724                put_page(page);
 725        return ret;
 726
 727 out_unlock:
 728        __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 729        preempt_enable();
 730        goto out_put;
 731}
 732
 733void kvmppc_rmap_reset(struct kvm *kvm)
 734{
 735        struct kvm_memslots *slots;
 736        struct kvm_memory_slot *memslot;
 737        int srcu_idx;
 738
 739        srcu_idx = srcu_read_lock(&kvm->srcu);
 740        slots = kvm_memslots(kvm);
 741        kvm_for_each_memslot(memslot, slots) {
 742                /* Mutual exclusion with kvm_unmap_hva_range etc. */
 743                spin_lock(&kvm->mmu_lock);
 744                /*
 745                 * This assumes it is acceptable to lose reference and
 746                 * change bits across a reset.
 747                 */
 748                memset(memslot->arch.rmap, 0,
 749                       memslot->npages * sizeof(*memslot->arch.rmap));
 750                spin_unlock(&kvm->mmu_lock);
 751        }
 752        srcu_read_unlock(&kvm->srcu, srcu_idx);
 753}
 754
 755/* Must be called with both HPTE and rmap locked */
 756static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
 757                              struct kvm_memory_slot *memslot,
 758                              unsigned long *rmapp, unsigned long gfn)
 759{
 760        __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 761        struct revmap_entry *rev = kvm->arch.hpt.rev;
 762        unsigned long j, h;
 763        unsigned long ptel, psize, rcbits;
 764
 765        j = rev[i].forw;
 766        if (j == i) {
 767                /* chain is now empty */
 768                *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
 769        } else {
 770                /* remove i from chain */
 771                h = rev[i].back;
 772                rev[h].forw = j;
 773                rev[j].back = h;
 774                rev[i].forw = rev[i].back = i;
 775                *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
 776        }
 777
 778        /* Now check and modify the HPTE */
 779        ptel = rev[i].guest_rpte;
 780        psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
 781        if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 782            hpte_rpn(ptel, psize) == gfn) {
 783                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 784                kvmppc_invalidate_hpte(kvm, hptep, i);
 785                hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
 786                /* Harvest R and C */
 787                rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 788                *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
 789                if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
 790                        kvmppc_update_dirty_map(memslot, gfn, psize);
 791                if (rcbits & ~rev[i].guest_rpte) {
 792                        rev[i].guest_rpte = ptel | rcbits;
 793                        note_hpte_modification(kvm, &rev[i]);
 794                }
 795        }
 796}
 797
 798static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 799                            unsigned long gfn)
 800{
 801        unsigned long i;
 802        __be64 *hptep;
 803        unsigned long *rmapp;
 804
 805        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
 806        for (;;) {
 807                lock_rmap(rmapp);
 808                if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 809                        unlock_rmap(rmapp);
 810                        break;
 811                }
 812
 813                /*
 814                 * To avoid an ABBA deadlock with the HPTE lock bit,
 815                 * we can't spin on the HPTE lock while holding the
 816                 * rmap chain lock.
 817                 */
 818                i = *rmapp & KVMPPC_RMAP_INDEX;
 819                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 820                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 821                        /* unlock rmap before spinning on the HPTE lock */
 822                        unlock_rmap(rmapp);
 823                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 824                                cpu_relax();
 825                        continue;
 826                }
 827
 828                kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
 829                unlock_rmap(rmapp);
 830                __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 831        }
 832}
 833
 834bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
 835{
 836        gfn_t gfn;
 837
 838        if (kvm_is_radix(kvm)) {
 839                for (gfn = range->start; gfn < range->end; gfn++)
 840                        kvm_unmap_radix(kvm, range->slot, gfn);
 841        } else {
 842                for (gfn = range->start; gfn < range->end; gfn++)
 843                        kvm_unmap_rmapp(kvm, range->slot, gfn);
 844        }
 845
 846        return false;
 847}
 848
 849void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
 850                                  struct kvm_memory_slot *memslot)
 851{
 852        unsigned long gfn;
 853        unsigned long n;
 854        unsigned long *rmapp;
 855
 856        gfn = memslot->base_gfn;
 857        rmapp = memslot->arch.rmap;
 858        if (kvm_is_radix(kvm)) {
 859                kvmppc_radix_flush_memslot(kvm, memslot);
 860                return;
 861        }
 862
 863        for (n = memslot->npages; n; --n, ++gfn) {
 864                /*
 865                 * Testing the present bit without locking is OK because
 866                 * the memslot has been marked invalid already, and hence
 867                 * no new HPTEs referencing this page can be created,
 868                 * thus the present bit can't go from 0 to 1.
 869                 */
 870                if (*rmapp & KVMPPC_RMAP_PRESENT)
 871                        kvm_unmap_rmapp(kvm, memslot, gfn);
 872                ++rmapp;
 873        }
 874}
 875
 876static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 877                          unsigned long gfn)
 878{
 879        struct revmap_entry *rev = kvm->arch.hpt.rev;
 880        unsigned long head, i, j;
 881        __be64 *hptep;
 882        int ret = 0;
 883        unsigned long *rmapp;
 884
 885        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
 886 retry:
 887        lock_rmap(rmapp);
 888        if (*rmapp & KVMPPC_RMAP_REFERENCED) {
 889                *rmapp &= ~KVMPPC_RMAP_REFERENCED;
 890                ret = 1;
 891        }
 892        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 893                unlock_rmap(rmapp);
 894                return ret;
 895        }
 896
 897        i = head = *rmapp & KVMPPC_RMAP_INDEX;
 898        do {
 899                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 900                j = rev[i].forw;
 901
 902                /* If this HPTE isn't referenced, ignore it */
 903                if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
 904                        continue;
 905
 906                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 907                        /* unlock rmap before spinning on the HPTE lock */
 908                        unlock_rmap(rmapp);
 909                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 910                                cpu_relax();
 911                        goto retry;
 912                }
 913
 914                /* Now check and modify the HPTE */
 915                if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 916                    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
 917                        kvmppc_clear_ref_hpte(kvm, hptep, i);
 918                        if (!(rev[i].guest_rpte & HPTE_R_R)) {
 919                                rev[i].guest_rpte |= HPTE_R_R;
 920                                note_hpte_modification(kvm, &rev[i]);
 921                        }
 922                        ret = 1;
 923                }
 924                __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 925        } while ((i = j) != head);
 926
 927        unlock_rmap(rmapp);
 928        return ret;
 929}
 930
 931bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
 932{
 933        gfn_t gfn;
 934        bool ret = false;
 935
 936        if (kvm_is_radix(kvm)) {
 937                for (gfn = range->start; gfn < range->end; gfn++)
 938                        ret |= kvm_age_radix(kvm, range->slot, gfn);
 939        } else {
 940                for (gfn = range->start; gfn < range->end; gfn++)
 941                        ret |= kvm_age_rmapp(kvm, range->slot, gfn);
 942        }
 943
 944        return ret;
 945}
 946
 947static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 948                               unsigned long gfn)
 949{
 950        struct revmap_entry *rev = kvm->arch.hpt.rev;
 951        unsigned long head, i, j;
 952        unsigned long *hp;
 953        bool ret = true;
 954        unsigned long *rmapp;
 955
 956        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
 957        if (*rmapp & KVMPPC_RMAP_REFERENCED)
 958                return true;
 959
 960        lock_rmap(rmapp);
 961        if (*rmapp & KVMPPC_RMAP_REFERENCED)
 962                goto out;
 963
 964        if (*rmapp & KVMPPC_RMAP_PRESENT) {
 965                i = head = *rmapp & KVMPPC_RMAP_INDEX;
 966                do {
 967                        hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
 968                        j = rev[i].forw;
 969                        if (be64_to_cpu(hp[1]) & HPTE_R_R)
 970                                goto out;
 971                } while ((i = j) != head);
 972        }
 973        ret = false;
 974
 975 out:
 976        unlock_rmap(rmapp);
 977        return ret;
 978}
 979
 980bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
 981{
 982        WARN_ON(range->start + 1 != range->end);
 983
 984        if (kvm_is_radix(kvm))
 985                return kvm_test_age_radix(kvm, range->slot, range->start);
 986        else
 987                return kvm_test_age_rmapp(kvm, range->slot, range->start);
 988}
 989
 990bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
 991{
 992        WARN_ON(range->start + 1 != range->end);
 993
 994        if (kvm_is_radix(kvm))
 995                kvm_unmap_radix(kvm, range->slot, range->start);
 996        else
 997                kvm_unmap_rmapp(kvm, range->slot, range->start);
 998
 999        return false;
1000}
1001
1002static int vcpus_running(struct kvm *kvm)
1003{
1004        return atomic_read(&kvm->arch.vcpus_running) != 0;
1005}
1006
1007/*
1008 * Returns the number of system pages that are dirty.
1009 * This can be more than 1 if we find a huge-page HPTE.
1010 */
1011static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1012{
1013        struct revmap_entry *rev = kvm->arch.hpt.rev;
1014        unsigned long head, i, j;
1015        unsigned long n;
1016        unsigned long v, r;
1017        __be64 *hptep;
1018        int npages_dirty = 0;
1019
1020 retry:
1021        lock_rmap(rmapp);
1022        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1023                unlock_rmap(rmapp);
1024                return npages_dirty;
1025        }
1026
1027        i = head = *rmapp & KVMPPC_RMAP_INDEX;
1028        do {
1029                unsigned long hptep1;
1030                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1031                j = rev[i].forw;
1032
1033                /*
1034                 * Checking the C (changed) bit here is racy since there
1035                 * is no guarantee about when the hardware writes it back.
1036                 * If the HPTE is not writable then it is stable since the
1037                 * page can't be written to, and we would have done a tlbie
1038                 * (which forces the hardware to complete any writeback)
1039                 * when making the HPTE read-only.
1040                 * If vcpus are running then this call is racy anyway
1041                 * since the page could get dirtied subsequently, so we
1042                 * expect there to be a further call which would pick up
1043                 * any delayed C bit writeback.
1044                 * Otherwise we need to do the tlbie even if C==0 in
1045                 * order to pick up any delayed writeback of C.
1046                 */
1047                hptep1 = be64_to_cpu(hptep[1]);
1048                if (!(hptep1 & HPTE_R_C) &&
1049                    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1050                        continue;
1051
1052                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1053                        /* unlock rmap before spinning on the HPTE lock */
1054                        unlock_rmap(rmapp);
1055                        while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1056                                cpu_relax();
1057                        goto retry;
1058                }
1059
1060                /* Now check and modify the HPTE */
1061                if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1062                        __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1063                        continue;
1064                }
1065
1066                /* need to make it temporarily absent so C is stable */
1067                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1068                kvmppc_invalidate_hpte(kvm, hptep, i);
1069                v = be64_to_cpu(hptep[0]);
1070                r = be64_to_cpu(hptep[1]);
1071                if (r & HPTE_R_C) {
1072                        hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1073                        if (!(rev[i].guest_rpte & HPTE_R_C)) {
1074                                rev[i].guest_rpte |= HPTE_R_C;
1075                                note_hpte_modification(kvm, &rev[i]);
1076                        }
1077                        n = kvmppc_actual_pgsz(v, r);
1078                        n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1079                        if (n > npages_dirty)
1080                                npages_dirty = n;
1081                        eieio();
1082                }
1083                v &= ~HPTE_V_ABSENT;
1084                v |= HPTE_V_VALID;
1085                __unlock_hpte(hptep, v);
1086        } while ((i = j) != head);
1087
1088        unlock_rmap(rmapp);
1089        return npages_dirty;
1090}
1091
1092void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1093                              struct kvm_memory_slot *memslot,
1094                              unsigned long *map)
1095{
1096        unsigned long gfn;
1097
1098        if (!vpa->dirty || !vpa->pinned_addr)
1099                return;
1100        gfn = vpa->gpa >> PAGE_SHIFT;
1101        if (gfn < memslot->base_gfn ||
1102            gfn >= memslot->base_gfn + memslot->npages)
1103                return;
1104
1105        vpa->dirty = false;
1106        if (map)
1107                __set_bit_le(gfn - memslot->base_gfn, map);
1108}
1109
1110long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1111                        struct kvm_memory_slot *memslot, unsigned long *map)
1112{
1113        unsigned long i;
1114        unsigned long *rmapp;
1115
1116        preempt_disable();
1117        rmapp = memslot->arch.rmap;
1118        for (i = 0; i < memslot->npages; ++i) {
1119                int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1120                /*
1121                 * Note that if npages > 0 then i must be a multiple of npages,
1122                 * since we always put huge-page HPTEs in the rmap chain
1123                 * corresponding to their page base address.
1124                 */
1125                if (npages)
1126                        set_dirty_bits(map, i, npages);
1127                ++rmapp;
1128        }
1129        preempt_enable();
1130        return 0;
1131}
1132
1133void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1134                            unsigned long *nb_ret)
1135{
1136        struct kvm_memory_slot *memslot;
1137        unsigned long gfn = gpa >> PAGE_SHIFT;
1138        struct page *page, *pages[1];
1139        int npages;
1140        unsigned long hva, offset;
1141        int srcu_idx;
1142
1143        srcu_idx = srcu_read_lock(&kvm->srcu);
1144        memslot = gfn_to_memslot(kvm, gfn);
1145        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1146                goto err;
1147        hva = gfn_to_hva_memslot(memslot, gfn);
1148        npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1149        if (npages < 1)
1150                goto err;
1151        page = pages[0];
1152        srcu_read_unlock(&kvm->srcu, srcu_idx);
1153
1154        offset = gpa & (PAGE_SIZE - 1);
1155        if (nb_ret)
1156                *nb_ret = PAGE_SIZE - offset;
1157        return page_address(page) + offset;
1158
1159 err:
1160        srcu_read_unlock(&kvm->srcu, srcu_idx);
1161        return NULL;
1162}
1163
1164void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1165                             bool dirty)
1166{
1167        struct page *page = virt_to_page(va);
1168        struct kvm_memory_slot *memslot;
1169        unsigned long gfn;
1170        int srcu_idx;
1171
1172        put_page(page);
1173
1174        if (!dirty)
1175                return;
1176
1177        /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1178        gfn = gpa >> PAGE_SHIFT;
1179        srcu_idx = srcu_read_lock(&kvm->srcu);
1180        memslot = gfn_to_memslot(kvm, gfn);
1181        if (memslot && memslot->dirty_bitmap)
1182                set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1183        srcu_read_unlock(&kvm->srcu, srcu_idx);
1184}
1185
1186/*
1187 * HPT resizing
1188 */
1189static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1190{
1191        int rc;
1192
1193        rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1194        if (rc < 0)
1195                return rc;
1196
1197        resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1198                         resize->hpt.virt);
1199
1200        return 0;
1201}
1202
1203static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1204                                            unsigned long idx)
1205{
1206        struct kvm *kvm = resize->kvm;
1207        struct kvm_hpt_info *old = &kvm->arch.hpt;
1208        struct kvm_hpt_info *new = &resize->hpt;
1209        unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1210        unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1211        __be64 *hptep, *new_hptep;
1212        unsigned long vpte, rpte, guest_rpte;
1213        int ret;
1214        struct revmap_entry *rev;
1215        unsigned long apsize, avpn, pteg, hash;
1216        unsigned long new_idx, new_pteg, replace_vpte;
1217        int pshift;
1218
1219        hptep = (__be64 *)(old->virt + (idx << 4));
1220
1221        /* Guest is stopped, so new HPTEs can't be added or faulted
1222         * in, only unmapped or altered by host actions.  So, it's
1223         * safe to check this before we take the HPTE lock */
1224        vpte = be64_to_cpu(hptep[0]);
1225        if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1226                return 0; /* nothing to do */
1227
1228        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1229                cpu_relax();
1230
1231        vpte = be64_to_cpu(hptep[0]);
1232
1233        ret = 0;
1234        if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1235                /* Nothing to do */
1236                goto out;
1237
1238        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1239                rpte = be64_to_cpu(hptep[1]);
1240                vpte = hpte_new_to_old_v(vpte, rpte);
1241        }
1242
1243        /* Unmap */
1244        rev = &old->rev[idx];
1245        guest_rpte = rev->guest_rpte;
1246
1247        ret = -EIO;
1248        apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1249        if (!apsize)
1250                goto out;
1251
1252        if (vpte & HPTE_V_VALID) {
1253                unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1254                int srcu_idx = srcu_read_lock(&kvm->srcu);
1255                struct kvm_memory_slot *memslot =
1256                        __gfn_to_memslot(kvm_memslots(kvm), gfn);
1257
1258                if (memslot) {
1259                        unsigned long *rmapp;
1260                        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1261
1262                        lock_rmap(rmapp);
1263                        kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1264                        unlock_rmap(rmapp);
1265                }
1266
1267                srcu_read_unlock(&kvm->srcu, srcu_idx);
1268        }
1269
1270        /* Reload PTE after unmap */
1271        vpte = be64_to_cpu(hptep[0]);
1272        BUG_ON(vpte & HPTE_V_VALID);
1273        BUG_ON(!(vpte & HPTE_V_ABSENT));
1274
1275        ret = 0;
1276        if (!(vpte & HPTE_V_BOLTED))
1277                goto out;
1278
1279        rpte = be64_to_cpu(hptep[1]);
1280
1281        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1282                vpte = hpte_new_to_old_v(vpte, rpte);
1283                rpte = hpte_new_to_old_r(rpte);
1284        }
1285
1286        pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1287        avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1288        pteg = idx / HPTES_PER_GROUP;
1289        if (vpte & HPTE_V_SECONDARY)
1290                pteg = ~pteg;
1291
1292        if (!(vpte & HPTE_V_1TB_SEG)) {
1293                unsigned long offset, vsid;
1294
1295                /* We only have 28 - 23 bits of offset in avpn */
1296                offset = (avpn & 0x1f) << 23;
1297                vsid = avpn >> 5;
1298                /* We can find more bits from the pteg value */
1299                if (pshift < 23)
1300                        offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1301
1302                hash = vsid ^ (offset >> pshift);
1303        } else {
1304                unsigned long offset, vsid;
1305
1306                /* We only have 40 - 23 bits of seg_off in avpn */
1307                offset = (avpn & 0x1ffff) << 23;
1308                vsid = avpn >> 17;
1309                if (pshift < 23)
1310                        offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1311
1312                hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1313        }
1314
1315        new_pteg = hash & new_hash_mask;
1316        if (vpte & HPTE_V_SECONDARY)
1317                new_pteg = ~hash & new_hash_mask;
1318
1319        new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1320        new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1321
1322        replace_vpte = be64_to_cpu(new_hptep[0]);
1323        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1324                unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1325                replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1326        }
1327
1328        if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1329                BUG_ON(new->order >= old->order);
1330
1331                if (replace_vpte & HPTE_V_BOLTED) {
1332                        if (vpte & HPTE_V_BOLTED)
1333                                /* Bolted collision, nothing we can do */
1334                                ret = -ENOSPC;
1335                        /* Discard the new HPTE */
1336                        goto out;
1337                }
1338
1339                /* Discard the previous HPTE */
1340        }
1341
1342        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1343                rpte = hpte_old_to_new_r(vpte, rpte);
1344                vpte = hpte_old_to_new_v(vpte);
1345        }
1346
1347        new_hptep[1] = cpu_to_be64(rpte);
1348        new->rev[new_idx].guest_rpte = guest_rpte;
1349        /* No need for a barrier, since new HPT isn't active */
1350        new_hptep[0] = cpu_to_be64(vpte);
1351        unlock_hpte(new_hptep, vpte);
1352
1353out:
1354        unlock_hpte(hptep, vpte);
1355        return ret;
1356}
1357
1358static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1359{
1360        struct kvm *kvm = resize->kvm;
1361        unsigned  long i;
1362        int rc;
1363
1364        for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1365                rc = resize_hpt_rehash_hpte(resize, i);
1366                if (rc != 0)
1367                        return rc;
1368        }
1369
1370        return 0;
1371}
1372
1373static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1374{
1375        struct kvm *kvm = resize->kvm;
1376        struct kvm_hpt_info hpt_tmp;
1377
1378        /* Exchange the pending tables in the resize structure with
1379         * the active tables */
1380
1381        resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1382
1383        spin_lock(&kvm->mmu_lock);
1384        asm volatile("ptesync" : : : "memory");
1385
1386        hpt_tmp = kvm->arch.hpt;
1387        kvmppc_set_hpt(kvm, &resize->hpt);
1388        resize->hpt = hpt_tmp;
1389
1390        spin_unlock(&kvm->mmu_lock);
1391
1392        synchronize_srcu_expedited(&kvm->srcu);
1393
1394        if (cpu_has_feature(CPU_FTR_ARCH_300))
1395                kvmppc_setup_partition_table(kvm);
1396
1397        resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1398}
1399
1400static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1401{
1402        if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1403                return;
1404
1405        if (!resize)
1406                return;
1407
1408        if (resize->error != -EBUSY) {
1409                if (resize->hpt.virt)
1410                        kvmppc_free_hpt(&resize->hpt);
1411                kfree(resize);
1412        }
1413
1414        if (kvm->arch.resize_hpt == resize)
1415                kvm->arch.resize_hpt = NULL;
1416}
1417
1418static void resize_hpt_prepare_work(struct work_struct *work)
1419{
1420        struct kvm_resize_hpt *resize = container_of(work,
1421                                                     struct kvm_resize_hpt,
1422                                                     work);
1423        struct kvm *kvm = resize->kvm;
1424        int err = 0;
1425
1426        if (WARN_ON(resize->error != -EBUSY))
1427                return;
1428
1429        mutex_lock(&kvm->arch.mmu_setup_lock);
1430
1431        /* Request is still current? */
1432        if (kvm->arch.resize_hpt == resize) {
1433                /* We may request large allocations here:
1434                 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1435                 */
1436                mutex_unlock(&kvm->arch.mmu_setup_lock);
1437
1438                resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1439                                 resize->order);
1440
1441                err = resize_hpt_allocate(resize);
1442
1443                /* We have strict assumption about -EBUSY
1444                 * when preparing for HPT resize.
1445                 */
1446                if (WARN_ON(err == -EBUSY))
1447                        err = -EINPROGRESS;
1448
1449                mutex_lock(&kvm->arch.mmu_setup_lock);
1450                /* It is possible that kvm->arch.resize_hpt != resize
1451                 * after we grab kvm->arch.mmu_setup_lock again.
1452                 */
1453        }
1454
1455        resize->error = err;
1456
1457        if (kvm->arch.resize_hpt != resize)
1458                resize_hpt_release(kvm, resize);
1459
1460        mutex_unlock(&kvm->arch.mmu_setup_lock);
1461}
1462
1463long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1464                                     struct kvm_ppc_resize_hpt *rhpt)
1465{
1466        unsigned long flags = rhpt->flags;
1467        unsigned long shift = rhpt->shift;
1468        struct kvm_resize_hpt *resize;
1469        int ret;
1470
1471        if (flags != 0 || kvm_is_radix(kvm))
1472                return -EINVAL;
1473
1474        if (shift && ((shift < 18) || (shift > 46)))
1475                return -EINVAL;
1476
1477        mutex_lock(&kvm->arch.mmu_setup_lock);
1478
1479        resize = kvm->arch.resize_hpt;
1480
1481        if (resize) {
1482                if (resize->order == shift) {
1483                        /* Suitable resize in progress? */
1484                        ret = resize->error;
1485                        if (ret == -EBUSY)
1486                                ret = 100; /* estimated time in ms */
1487                        else if (ret)
1488                                resize_hpt_release(kvm, resize);
1489
1490                        goto out;
1491                }
1492
1493                /* not suitable, cancel it */
1494                resize_hpt_release(kvm, resize);
1495        }
1496
1497        ret = 0;
1498        if (!shift)
1499                goto out; /* nothing to do */
1500
1501        /* start new resize */
1502
1503        resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1504        if (!resize) {
1505                ret = -ENOMEM;
1506                goto out;
1507        }
1508
1509        resize->error = -EBUSY;
1510        resize->order = shift;
1511        resize->kvm = kvm;
1512        INIT_WORK(&resize->work, resize_hpt_prepare_work);
1513        kvm->arch.resize_hpt = resize;
1514
1515        schedule_work(&resize->work);
1516
1517        ret = 100; /* estimated time in ms */
1518
1519out:
1520        mutex_unlock(&kvm->arch.mmu_setup_lock);
1521        return ret;
1522}
1523
1524static void resize_hpt_boot_vcpu(void *opaque)
1525{
1526        /* Nothing to do, just force a KVM exit */
1527}
1528
1529long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1530                                    struct kvm_ppc_resize_hpt *rhpt)
1531{
1532        unsigned long flags = rhpt->flags;
1533        unsigned long shift = rhpt->shift;
1534        struct kvm_resize_hpt *resize;
1535        long ret;
1536
1537        if (flags != 0 || kvm_is_radix(kvm))
1538                return -EINVAL;
1539
1540        if (shift && ((shift < 18) || (shift > 46)))
1541                return -EINVAL;
1542
1543        mutex_lock(&kvm->arch.mmu_setup_lock);
1544
1545        resize = kvm->arch.resize_hpt;
1546
1547        /* This shouldn't be possible */
1548        ret = -EIO;
1549        if (WARN_ON(!kvm->arch.mmu_ready))
1550                goto out_no_hpt;
1551
1552        /* Stop VCPUs from running while we mess with the HPT */
1553        kvm->arch.mmu_ready = 0;
1554        smp_mb();
1555
1556        /* Boot all CPUs out of the guest so they re-read
1557         * mmu_ready */
1558        on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1559
1560        ret = -ENXIO;
1561        if (!resize || (resize->order != shift))
1562                goto out;
1563
1564        ret = resize->error;
1565        if (ret)
1566                goto out;
1567
1568        ret = resize_hpt_rehash(resize);
1569        if (ret)
1570                goto out;
1571
1572        resize_hpt_pivot(resize);
1573
1574out:
1575        /* Let VCPUs run again */
1576        kvm->arch.mmu_ready = 1;
1577        smp_mb();
1578out_no_hpt:
1579        resize_hpt_release(kvm, resize);
1580        mutex_unlock(&kvm->arch.mmu_setup_lock);
1581        return ret;
1582}
1583
1584/*
1585 * Functions for reading and writing the hash table via reads and
1586 * writes on a file descriptor.
1587 *
1588 * Reads return the guest view of the hash table, which has to be
1589 * pieced together from the real hash table and the guest_rpte
1590 * values in the revmap array.
1591 *
1592 * On writes, each HPTE written is considered in turn, and if it
1593 * is valid, it is written to the HPT as if an H_ENTER with the
1594 * exact flag set was done.  When the invalid count is non-zero
1595 * in the header written to the stream, the kernel will make
1596 * sure that that many HPTEs are invalid, and invalidate them
1597 * if not.
1598 */
1599
1600struct kvm_htab_ctx {
1601        unsigned long   index;
1602        unsigned long   flags;
1603        struct kvm      *kvm;
1604        int             first_pass;
1605};
1606
1607#define HPTE_SIZE       (2 * sizeof(unsigned long))
1608
1609/*
1610 * Returns 1 if this HPT entry has been modified or has pending
1611 * R/C bit changes.
1612 */
1613static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1614{
1615        unsigned long rcbits_unset;
1616
1617        if (revp->guest_rpte & HPTE_GR_MODIFIED)
1618                return 1;
1619
1620        /* Also need to consider changes in reference and changed bits */
1621        rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1622        if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1623            (be64_to_cpu(hptp[1]) & rcbits_unset))
1624                return 1;
1625
1626        return 0;
1627}
1628
1629static long record_hpte(unsigned long flags, __be64 *hptp,
1630                        unsigned long *hpte, struct revmap_entry *revp,
1631                        int want_valid, int first_pass)
1632{
1633        unsigned long v, r, hr;
1634        unsigned long rcbits_unset;
1635        int ok = 1;
1636        int valid, dirty;
1637
1638        /* Unmodified entries are uninteresting except on the first pass */
1639        dirty = hpte_dirty(revp, hptp);
1640        if (!first_pass && !dirty)
1641                return 0;
1642
1643        valid = 0;
1644        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1645                valid = 1;
1646                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1647                    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1648                        valid = 0;
1649        }
1650        if (valid != want_valid)
1651                return 0;
1652
1653        v = r = 0;
1654        if (valid || dirty) {
1655                /* lock the HPTE so it's stable and read it */
1656                preempt_disable();
1657                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1658                        cpu_relax();
1659                v = be64_to_cpu(hptp[0]);
1660                hr = be64_to_cpu(hptp[1]);
1661                if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1662                        v = hpte_new_to_old_v(v, hr);
1663                        hr = hpte_new_to_old_r(hr);
1664                }
1665
1666                /* re-evaluate valid and dirty from synchronized HPTE value */
1667                valid = !!(v & HPTE_V_VALID);
1668                dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1669
1670                /* Harvest R and C into guest view if necessary */
1671                rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1672                if (valid && (rcbits_unset & hr)) {
1673                        revp->guest_rpte |= (hr &
1674                                (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1675                        dirty = 1;
1676                }
1677
1678                if (v & HPTE_V_ABSENT) {
1679                        v &= ~HPTE_V_ABSENT;
1680                        v |= HPTE_V_VALID;
1681                        valid = 1;
1682                }
1683                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1684                        valid = 0;
1685
1686                r = revp->guest_rpte;
1687                /* only clear modified if this is the right sort of entry */
1688                if (valid == want_valid && dirty) {
1689                        r &= ~HPTE_GR_MODIFIED;
1690                        revp->guest_rpte = r;
1691                }
1692                unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1693                preempt_enable();
1694                if (!(valid == want_valid && (first_pass || dirty)))
1695                        ok = 0;
1696        }
1697        hpte[0] = cpu_to_be64(v);
1698        hpte[1] = cpu_to_be64(r);
1699        return ok;
1700}
1701
1702static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1703                             size_t count, loff_t *ppos)
1704{
1705        struct kvm_htab_ctx *ctx = file->private_data;
1706        struct kvm *kvm = ctx->kvm;
1707        struct kvm_get_htab_header hdr;
1708        __be64 *hptp;
1709        struct revmap_entry *revp;
1710        unsigned long i, nb, nw;
1711        unsigned long __user *lbuf;
1712        struct kvm_get_htab_header __user *hptr;
1713        unsigned long flags;
1714        int first_pass;
1715        unsigned long hpte[2];
1716
1717        if (!access_ok(buf, count))
1718                return -EFAULT;
1719        if (kvm_is_radix(kvm))
1720                return 0;
1721
1722        first_pass = ctx->first_pass;
1723        flags = ctx->flags;
1724
1725        i = ctx->index;
1726        hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1727        revp = kvm->arch.hpt.rev + i;
1728        lbuf = (unsigned long __user *)buf;
1729
1730        nb = 0;
1731        while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1732                /* Initialize header */
1733                hptr = (struct kvm_get_htab_header __user *)buf;
1734                hdr.n_valid = 0;
1735                hdr.n_invalid = 0;
1736                nw = nb;
1737                nb += sizeof(hdr);
1738                lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1739
1740                /* Skip uninteresting entries, i.e. clean on not-first pass */
1741                if (!first_pass) {
1742                        while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1743                               !hpte_dirty(revp, hptp)) {
1744                                ++i;
1745                                hptp += 2;
1746                                ++revp;
1747                        }
1748                }
1749                hdr.index = i;
1750
1751                /* Grab a series of valid entries */
1752                while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1753                       hdr.n_valid < 0xffff &&
1754                       nb + HPTE_SIZE < count &&
1755                       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1756                        /* valid entry, write it out */
1757                        ++hdr.n_valid;
1758                        if (__put_user(hpte[0], lbuf) ||
1759                            __put_user(hpte[1], lbuf + 1))
1760                                return -EFAULT;
1761                        nb += HPTE_SIZE;
1762                        lbuf += 2;
1763                        ++i;
1764                        hptp += 2;
1765                        ++revp;
1766                }
1767                /* Now skip invalid entries while we can */
1768                while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1769                       hdr.n_invalid < 0xffff &&
1770                       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1771                        /* found an invalid entry */
1772                        ++hdr.n_invalid;
1773                        ++i;
1774                        hptp += 2;
1775                        ++revp;
1776                }
1777
1778                if (hdr.n_valid || hdr.n_invalid) {
1779                        /* write back the header */
1780                        if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1781                                return -EFAULT;
1782                        nw = nb;
1783                        buf = (char __user *)lbuf;
1784                } else {
1785                        nb = nw;
1786                }
1787
1788                /* Check if we've wrapped around the hash table */
1789                if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1790                        i = 0;
1791                        ctx->first_pass = 0;
1792                        break;
1793                }
1794        }
1795
1796        ctx->index = i;
1797
1798        return nb;
1799}
1800
1801static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1802                              size_t count, loff_t *ppos)
1803{
1804        struct kvm_htab_ctx *ctx = file->private_data;
1805        struct kvm *kvm = ctx->kvm;
1806        struct kvm_get_htab_header hdr;
1807        unsigned long i, j;
1808        unsigned long v, r;
1809        unsigned long __user *lbuf;
1810        __be64 *hptp;
1811        unsigned long tmp[2];
1812        ssize_t nb;
1813        long int err, ret;
1814        int mmu_ready;
1815        int pshift;
1816
1817        if (!access_ok(buf, count))
1818                return -EFAULT;
1819        if (kvm_is_radix(kvm))
1820                return -EINVAL;
1821
1822        /* lock out vcpus from running while we're doing this */
1823        mutex_lock(&kvm->arch.mmu_setup_lock);
1824        mmu_ready = kvm->arch.mmu_ready;
1825        if (mmu_ready) {
1826                kvm->arch.mmu_ready = 0;        /* temporarily */
1827                /* order mmu_ready vs. vcpus_running */
1828                smp_mb();
1829                if (atomic_read(&kvm->arch.vcpus_running)) {
1830                        kvm->arch.mmu_ready = 1;
1831                        mutex_unlock(&kvm->arch.mmu_setup_lock);
1832                        return -EBUSY;
1833                }
1834        }
1835
1836        err = 0;
1837        for (nb = 0; nb + sizeof(hdr) <= count; ) {
1838                err = -EFAULT;
1839                if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1840                        break;
1841
1842                err = 0;
1843                if (nb + hdr.n_valid * HPTE_SIZE > count)
1844                        break;
1845
1846                nb += sizeof(hdr);
1847                buf += sizeof(hdr);
1848
1849                err = -EINVAL;
1850                i = hdr.index;
1851                if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1852                    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1853                        break;
1854
1855                hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1856                lbuf = (unsigned long __user *)buf;
1857                for (j = 0; j < hdr.n_valid; ++j) {
1858                        __be64 hpte_v;
1859                        __be64 hpte_r;
1860
1861                        err = -EFAULT;
1862                        if (__get_user(hpte_v, lbuf) ||
1863                            __get_user(hpte_r, lbuf + 1))
1864                                goto out;
1865                        v = be64_to_cpu(hpte_v);
1866                        r = be64_to_cpu(hpte_r);
1867                        err = -EINVAL;
1868                        if (!(v & HPTE_V_VALID))
1869                                goto out;
1870                        pshift = kvmppc_hpte_base_page_shift(v, r);
1871                        if (pshift <= 0)
1872                                goto out;
1873                        lbuf += 2;
1874                        nb += HPTE_SIZE;
1875
1876                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1877                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1878                        err = -EIO;
1879                        ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1880                                                         tmp);
1881                        if (ret != H_SUCCESS) {
1882                                pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1883                                       "r=%lx\n", ret, i, v, r);
1884                                goto out;
1885                        }
1886                        if (!mmu_ready && is_vrma_hpte(v)) {
1887                                unsigned long senc, lpcr;
1888
1889                                senc = slb_pgsize_encoding(1ul << pshift);
1890                                kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1891                                        (VRMA_VSID << SLB_VSID_SHIFT_1T);
1892                                if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1893                                        lpcr = senc << (LPCR_VRMASD_SH - 4);
1894                                        kvmppc_update_lpcr(kvm, lpcr,
1895                                                           LPCR_VRMASD);
1896                                } else {
1897                                        kvmppc_setup_partition_table(kvm);
1898                                }
1899                                mmu_ready = 1;
1900                        }
1901                        ++i;
1902                        hptp += 2;
1903                }
1904
1905                for (j = 0; j < hdr.n_invalid; ++j) {
1906                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1907                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1908                        ++i;
1909                        hptp += 2;
1910                }
1911                err = 0;
1912        }
1913
1914 out:
1915        /* Order HPTE updates vs. mmu_ready */
1916        smp_wmb();
1917        kvm->arch.mmu_ready = mmu_ready;
1918        mutex_unlock(&kvm->arch.mmu_setup_lock);
1919
1920        if (err)
1921                return err;
1922        return nb;
1923}
1924
1925static int kvm_htab_release(struct inode *inode, struct file *filp)
1926{
1927        struct kvm_htab_ctx *ctx = filp->private_data;
1928
1929        filp->private_data = NULL;
1930        if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1931                atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1932        kvm_put_kvm(ctx->kvm);
1933        kfree(ctx);
1934        return 0;
1935}
1936
1937static const struct file_operations kvm_htab_fops = {
1938        .read           = kvm_htab_read,
1939        .write          = kvm_htab_write,
1940        .llseek         = default_llseek,
1941        .release        = kvm_htab_release,
1942};
1943
1944int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1945{
1946        int ret;
1947        struct kvm_htab_ctx *ctx;
1948        int rwflag;
1949
1950        /* reject flags we don't recognize */
1951        if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1952                return -EINVAL;
1953        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1954        if (!ctx)
1955                return -ENOMEM;
1956        kvm_get_kvm(kvm);
1957        ctx->kvm = kvm;
1958        ctx->index = ghf->start_index;
1959        ctx->flags = ghf->flags;
1960        ctx->first_pass = 1;
1961
1962        rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1963        ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1964        if (ret < 0) {
1965                kfree(ctx);
1966                kvm_put_kvm_no_destroy(kvm);
1967                return ret;
1968        }
1969
1970        if (rwflag == O_RDONLY) {
1971                mutex_lock(&kvm->slots_lock);
1972                atomic_inc(&kvm->arch.hpte_mod_interest);
1973                /* make sure kvmppc_do_h_enter etc. see the increment */
1974                synchronize_srcu_expedited(&kvm->srcu);
1975                mutex_unlock(&kvm->slots_lock);
1976        }
1977
1978        return ret;
1979}
1980
1981struct debugfs_htab_state {
1982        struct kvm      *kvm;
1983        struct mutex    mutex;
1984        unsigned long   hpt_index;
1985        int             chars_left;
1986        int             buf_index;
1987        char            buf[64];
1988};
1989
1990static int debugfs_htab_open(struct inode *inode, struct file *file)
1991{
1992        struct kvm *kvm = inode->i_private;
1993        struct debugfs_htab_state *p;
1994
1995        p = kzalloc(sizeof(*p), GFP_KERNEL);
1996        if (!p)
1997                return -ENOMEM;
1998
1999        kvm_get_kvm(kvm);
2000        p->kvm = kvm;
2001        mutex_init(&p->mutex);
2002        file->private_data = p;
2003
2004        return nonseekable_open(inode, file);
2005}
2006
2007static int debugfs_htab_release(struct inode *inode, struct file *file)
2008{
2009        struct debugfs_htab_state *p = file->private_data;
2010
2011        kvm_put_kvm(p->kvm);
2012        kfree(p);
2013        return 0;
2014}
2015
2016static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2017                                 size_t len, loff_t *ppos)
2018{
2019        struct debugfs_htab_state *p = file->private_data;
2020        ssize_t ret, r;
2021        unsigned long i, n;
2022        unsigned long v, hr, gr;
2023        struct kvm *kvm;
2024        __be64 *hptp;
2025
2026        kvm = p->kvm;
2027        if (kvm_is_radix(kvm))
2028                return 0;
2029
2030        ret = mutex_lock_interruptible(&p->mutex);
2031        if (ret)
2032                return ret;
2033
2034        if (p->chars_left) {
2035                n = p->chars_left;
2036                if (n > len)
2037                        n = len;
2038                r = copy_to_user(buf, p->buf + p->buf_index, n);
2039                n -= r;
2040                p->chars_left -= n;
2041                p->buf_index += n;
2042                buf += n;
2043                len -= n;
2044                ret = n;
2045                if (r) {
2046                        if (!n)
2047                                ret = -EFAULT;
2048                        goto out;
2049                }
2050        }
2051
2052        i = p->hpt_index;
2053        hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2054        for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2055             ++i, hptp += 2) {
2056                if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2057                        continue;
2058
2059                /* lock the HPTE so it's stable and read it */
2060                preempt_disable();
2061                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2062                        cpu_relax();
2063                v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2064                hr = be64_to_cpu(hptp[1]);
2065                gr = kvm->arch.hpt.rev[i].guest_rpte;
2066                unlock_hpte(hptp, v);
2067                preempt_enable();
2068
2069                if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2070                        continue;
2071
2072                n = scnprintf(p->buf, sizeof(p->buf),
2073                              "%6lx %.16lx %.16lx %.16lx\n",
2074                              i, v, hr, gr);
2075                p->chars_left = n;
2076                if (n > len)
2077                        n = len;
2078                r = copy_to_user(buf, p->buf, n);
2079                n -= r;
2080                p->chars_left -= n;
2081                p->buf_index = n;
2082                buf += n;
2083                len -= n;
2084                ret += n;
2085                if (r) {
2086                        if (!ret)
2087                                ret = -EFAULT;
2088                        goto out;
2089                }
2090        }
2091        p->hpt_index = i;
2092
2093 out:
2094        mutex_unlock(&p->mutex);
2095        return ret;
2096}
2097
2098static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2099                           size_t len, loff_t *ppos)
2100{
2101        return -EACCES;
2102}
2103
2104static const struct file_operations debugfs_htab_fops = {
2105        .owner   = THIS_MODULE,
2106        .open    = debugfs_htab_open,
2107        .release = debugfs_htab_release,
2108        .read    = debugfs_htab_read,
2109        .write   = debugfs_htab_write,
2110        .llseek  = generic_file_llseek,
2111};
2112
2113void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2114{
2115        debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2116                            &debugfs_htab_fops);
2117}
2118
2119void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2120{
2121        struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2122
2123        vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
2124
2125        mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2126
2127        vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2128}
2129