linux/arch/powerpc/platforms/powernv/pci-ioda.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Support PCI/PCIe on PowerNV platforms
   4 *
   5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
   6 */
   7
   8#undef DEBUG
   9
  10#include <linux/kernel.h>
  11#include <linux/pci.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
  14#include <linux/string.h>
  15#include <linux/init.h>
  16#include <linux/memblock.h>
  17#include <linux/irq.h>
  18#include <linux/io.h>
  19#include <linux/msi.h>
  20#include <linux/iommu.h>
  21#include <linux/rculist.h>
  22#include <linux/sizes.h>
  23
  24#include <asm/sections.h>
  25#include <asm/io.h>
  26#include <asm/prom.h>
  27#include <asm/pci-bridge.h>
  28#include <asm/machdep.h>
  29#include <asm/msi_bitmap.h>
  30#include <asm/ppc-pci.h>
  31#include <asm/opal.h>
  32#include <asm/iommu.h>
  33#include <asm/tce.h>
  34#include <asm/xics.h>
  35#include <asm/debugfs.h>
  36#include <asm/firmware.h>
  37#include <asm/pnv-pci.h>
  38#include <asm/mmzone.h>
  39
  40#include <misc/cxl-base.h>
  41
  42#include "powernv.h"
  43#include "pci.h"
  44#include "../../../../drivers/pci/pci.h"
  45
  46#define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
  47#define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
  48#define PNV_IODA1_DMA32_SEGSIZE 0x10000000
  49
  50static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_OCAPI" };
  51
  52static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
  53static void pnv_pci_configure_bus(struct pci_bus *bus);
  54
  55void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
  56                            const char *fmt, ...)
  57{
  58        struct va_format vaf;
  59        va_list args;
  60        char pfix[32];
  61
  62        va_start(args, fmt);
  63
  64        vaf.fmt = fmt;
  65        vaf.va = &args;
  66
  67        if (pe->flags & PNV_IODA_PE_DEV)
  68                strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
  69        else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
  70                sprintf(pfix, "%04x:%02x     ",
  71                        pci_domain_nr(pe->pbus), pe->pbus->number);
  72#ifdef CONFIG_PCI_IOV
  73        else if (pe->flags & PNV_IODA_PE_VF)
  74                sprintf(pfix, "%04x:%02x:%2x.%d",
  75                        pci_domain_nr(pe->parent_dev->bus),
  76                        (pe->rid & 0xff00) >> 8,
  77                        PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
  78#endif /* CONFIG_PCI_IOV*/
  79
  80        printk("%spci %s: [PE# %.2x] %pV",
  81               level, pfix, pe->pe_number, &vaf);
  82
  83        va_end(args);
  84}
  85
  86static bool pnv_iommu_bypass_disabled __read_mostly;
  87static bool pci_reset_phbs __read_mostly;
  88
  89static int __init iommu_setup(char *str)
  90{
  91        if (!str)
  92                return -EINVAL;
  93
  94        while (*str) {
  95                if (!strncmp(str, "nobypass", 8)) {
  96                        pnv_iommu_bypass_disabled = true;
  97                        pr_info("PowerNV: IOMMU bypass window disabled.\n");
  98                        break;
  99                }
 100                str += strcspn(str, ",");
 101                if (*str == ',')
 102                        str++;
 103        }
 104
 105        return 0;
 106}
 107early_param("iommu", iommu_setup);
 108
 109static int __init pci_reset_phbs_setup(char *str)
 110{
 111        pci_reset_phbs = true;
 112        return 0;
 113}
 114
 115early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
 116
 117static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
 118{
 119        s64 rc;
 120
 121        phb->ioda.pe_array[pe_no].phb = phb;
 122        phb->ioda.pe_array[pe_no].pe_number = pe_no;
 123        phb->ioda.pe_array[pe_no].dma_setup_done = false;
 124
 125        /*
 126         * Clear the PE frozen state as it might be put into frozen state
 127         * in the last PCI remove path. It's not harmful to do so when the
 128         * PE is already in unfrozen state.
 129         */
 130        rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
 131                                       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 132        if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
 133                pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
 134                        __func__, rc, phb->hose->global_number, pe_no);
 135
 136        return &phb->ioda.pe_array[pe_no];
 137}
 138
 139static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
 140{
 141        if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
 142                pr_warn("%s: Invalid PE %x on PHB#%x\n",
 143                        __func__, pe_no, phb->hose->global_number);
 144                return;
 145        }
 146
 147        mutex_lock(&phb->ioda.pe_alloc_mutex);
 148        if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
 149                pr_debug("%s: PE %x was reserved on PHB#%x\n",
 150                         __func__, pe_no, phb->hose->global_number);
 151        mutex_unlock(&phb->ioda.pe_alloc_mutex);
 152
 153        pnv_ioda_init_pe(phb, pe_no);
 154}
 155
 156struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
 157{
 158        struct pnv_ioda_pe *ret = NULL;
 159        int run = 0, pe, i;
 160
 161        mutex_lock(&phb->ioda.pe_alloc_mutex);
 162
 163        /* scan backwards for a run of @count cleared bits */
 164        for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
 165                if (test_bit(pe, phb->ioda.pe_alloc)) {
 166                        run = 0;
 167                        continue;
 168                }
 169
 170                run++;
 171                if (run == count)
 172                        break;
 173        }
 174        if (run != count)
 175                goto out;
 176
 177        for (i = pe; i < pe + count; i++) {
 178                set_bit(i, phb->ioda.pe_alloc);
 179                pnv_ioda_init_pe(phb, i);
 180        }
 181        ret = &phb->ioda.pe_array[pe];
 182
 183out:
 184        mutex_unlock(&phb->ioda.pe_alloc_mutex);
 185        return ret;
 186}
 187
 188void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
 189{
 190        struct pnv_phb *phb = pe->phb;
 191        unsigned int pe_num = pe->pe_number;
 192
 193        WARN_ON(pe->pdev);
 194        memset(pe, 0, sizeof(struct pnv_ioda_pe));
 195
 196        mutex_lock(&phb->ioda.pe_alloc_mutex);
 197        clear_bit(pe_num, phb->ioda.pe_alloc);
 198        mutex_unlock(&phb->ioda.pe_alloc_mutex);
 199}
 200
 201/* The default M64 BAR is shared by all PEs */
 202static int pnv_ioda2_init_m64(struct pnv_phb *phb)
 203{
 204        const char *desc;
 205        struct resource *r;
 206        s64 rc;
 207
 208        /* Configure the default M64 BAR */
 209        rc = opal_pci_set_phb_mem_window(phb->opal_id,
 210                                         OPAL_M64_WINDOW_TYPE,
 211                                         phb->ioda.m64_bar_idx,
 212                                         phb->ioda.m64_base,
 213                                         0, /* unused */
 214                                         phb->ioda.m64_size);
 215        if (rc != OPAL_SUCCESS) {
 216                desc = "configuring";
 217                goto fail;
 218        }
 219
 220        /* Enable the default M64 BAR */
 221        rc = opal_pci_phb_mmio_enable(phb->opal_id,
 222                                      OPAL_M64_WINDOW_TYPE,
 223                                      phb->ioda.m64_bar_idx,
 224                                      OPAL_ENABLE_M64_SPLIT);
 225        if (rc != OPAL_SUCCESS) {
 226                desc = "enabling";
 227                goto fail;
 228        }
 229
 230        /*
 231         * Exclude the segments for reserved and root bus PE, which
 232         * are first or last two PEs.
 233         */
 234        r = &phb->hose->mem_resources[1];
 235        if (phb->ioda.reserved_pe_idx == 0)
 236                r->start += (2 * phb->ioda.m64_segsize);
 237        else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
 238                r->end -= (2 * phb->ioda.m64_segsize);
 239        else
 240                pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
 241                        phb->ioda.reserved_pe_idx);
 242
 243        return 0;
 244
 245fail:
 246        pr_warn("  Failure %lld %s M64 BAR#%d\n",
 247                rc, desc, phb->ioda.m64_bar_idx);
 248        opal_pci_phb_mmio_enable(phb->opal_id,
 249                                 OPAL_M64_WINDOW_TYPE,
 250                                 phb->ioda.m64_bar_idx,
 251                                 OPAL_DISABLE_M64);
 252        return -EIO;
 253}
 254
 255static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
 256                                         unsigned long *pe_bitmap)
 257{
 258        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
 259        struct resource *r;
 260        resource_size_t base, sgsz, start, end;
 261        int segno, i;
 262
 263        base = phb->ioda.m64_base;
 264        sgsz = phb->ioda.m64_segsize;
 265        for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
 266                r = &pdev->resource[i];
 267                if (!r->parent || !pnv_pci_is_m64(phb, r))
 268                        continue;
 269
 270                start = ALIGN_DOWN(r->start - base, sgsz);
 271                end = ALIGN(r->end - base, sgsz);
 272                for (segno = start / sgsz; segno < end / sgsz; segno++) {
 273                        if (pe_bitmap)
 274                                set_bit(segno, pe_bitmap);
 275                        else
 276                                pnv_ioda_reserve_pe(phb, segno);
 277                }
 278        }
 279}
 280
 281static int pnv_ioda1_init_m64(struct pnv_phb *phb)
 282{
 283        struct resource *r;
 284        int index;
 285
 286        /*
 287         * There are 16 M64 BARs, each of which has 8 segments. So
 288         * there are as many M64 segments as the maximum number of
 289         * PEs, which is 128.
 290         */
 291        for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
 292                unsigned long base, segsz = phb->ioda.m64_segsize;
 293                int64_t rc;
 294
 295                base = phb->ioda.m64_base +
 296                       index * PNV_IODA1_M64_SEGS * segsz;
 297                rc = opal_pci_set_phb_mem_window(phb->opal_id,
 298                                OPAL_M64_WINDOW_TYPE, index, base, 0,
 299                                PNV_IODA1_M64_SEGS * segsz);
 300                if (rc != OPAL_SUCCESS) {
 301                        pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
 302                                rc, phb->hose->global_number, index);
 303                        goto fail;
 304                }
 305
 306                rc = opal_pci_phb_mmio_enable(phb->opal_id,
 307                                OPAL_M64_WINDOW_TYPE, index,
 308                                OPAL_ENABLE_M64_SPLIT);
 309                if (rc != OPAL_SUCCESS) {
 310                        pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
 311                                rc, phb->hose->global_number, index);
 312                        goto fail;
 313                }
 314        }
 315
 316        for (index = 0; index < phb->ioda.total_pe_num; index++) {
 317                int64_t rc;
 318
 319                /*
 320                 * P7IOC supports M64DT, which helps mapping M64 segment
 321                 * to one particular PE#. However, PHB3 has fixed mapping
 322                 * between M64 segment and PE#. In order to have same logic
 323                 * for P7IOC and PHB3, we enforce fixed mapping between M64
 324                 * segment and PE# on P7IOC.
 325                 */
 326                rc = opal_pci_map_pe_mmio_window(phb->opal_id,
 327                                index, OPAL_M64_WINDOW_TYPE,
 328                                index / PNV_IODA1_M64_SEGS,
 329                                index % PNV_IODA1_M64_SEGS);
 330                if (rc != OPAL_SUCCESS) {
 331                        pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
 332                                __func__, rc, phb->hose->global_number,
 333                                index);
 334                        goto fail;
 335                }
 336        }
 337
 338        /*
 339         * Exclude the segments for reserved and root bus PE, which
 340         * are first or last two PEs.
 341         */
 342        r = &phb->hose->mem_resources[1];
 343        if (phb->ioda.reserved_pe_idx == 0)
 344                r->start += (2 * phb->ioda.m64_segsize);
 345        else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
 346                r->end -= (2 * phb->ioda.m64_segsize);
 347        else
 348                WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
 349                     phb->ioda.reserved_pe_idx, phb->hose->global_number);
 350
 351        return 0;
 352
 353fail:
 354        for ( ; index >= 0; index--)
 355                opal_pci_phb_mmio_enable(phb->opal_id,
 356                        OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
 357
 358        return -EIO;
 359}
 360
 361static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
 362                                    unsigned long *pe_bitmap,
 363                                    bool all)
 364{
 365        struct pci_dev *pdev;
 366
 367        list_for_each_entry(pdev, &bus->devices, bus_list) {
 368                pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
 369
 370                if (all && pdev->subordinate)
 371                        pnv_ioda_reserve_m64_pe(pdev->subordinate,
 372                                                pe_bitmap, all);
 373        }
 374}
 375
 376static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
 377{
 378        struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
 379        struct pnv_ioda_pe *master_pe, *pe;
 380        unsigned long size, *pe_alloc;
 381        int i;
 382
 383        /* Root bus shouldn't use M64 */
 384        if (pci_is_root_bus(bus))
 385                return NULL;
 386
 387        /* Allocate bitmap */
 388        size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
 389        pe_alloc = kzalloc(size, GFP_KERNEL);
 390        if (!pe_alloc) {
 391                pr_warn("%s: Out of memory !\n",
 392                        __func__);
 393                return NULL;
 394        }
 395
 396        /* Figure out reserved PE numbers by the PE */
 397        pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
 398
 399        /*
 400         * the current bus might not own M64 window and that's all
 401         * contributed by its child buses. For the case, we needn't
 402         * pick M64 dependent PE#.
 403         */
 404        if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
 405                kfree(pe_alloc);
 406                return NULL;
 407        }
 408
 409        /*
 410         * Figure out the master PE and put all slave PEs to master
 411         * PE's list to form compound PE.
 412         */
 413        master_pe = NULL;
 414        i = -1;
 415        while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
 416                phb->ioda.total_pe_num) {
 417                pe = &phb->ioda.pe_array[i];
 418
 419                phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
 420                if (!master_pe) {
 421                        pe->flags |= PNV_IODA_PE_MASTER;
 422                        INIT_LIST_HEAD(&pe->slaves);
 423                        master_pe = pe;
 424                } else {
 425                        pe->flags |= PNV_IODA_PE_SLAVE;
 426                        pe->master = master_pe;
 427                        list_add_tail(&pe->list, &master_pe->slaves);
 428                }
 429        }
 430
 431        kfree(pe_alloc);
 432        return master_pe;
 433}
 434
 435static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
 436{
 437        struct pci_controller *hose = phb->hose;
 438        struct device_node *dn = hose->dn;
 439        struct resource *res;
 440        u32 m64_range[2], i;
 441        const __be32 *r;
 442        u64 pci_addr;
 443
 444        if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
 445                pr_info("  Not support M64 window\n");
 446                return;
 447        }
 448
 449        if (!firmware_has_feature(FW_FEATURE_OPAL)) {
 450                pr_info("  Firmware too old to support M64 window\n");
 451                return;
 452        }
 453
 454        r = of_get_property(dn, "ibm,opal-m64-window", NULL);
 455        if (!r) {
 456                pr_info("  No <ibm,opal-m64-window> on %pOF\n",
 457                        dn);
 458                return;
 459        }
 460
 461        /*
 462         * Find the available M64 BAR range and pickup the last one for
 463         * covering the whole 64-bits space. We support only one range.
 464         */
 465        if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
 466                                       m64_range, 2)) {
 467                /* In absence of the property, assume 0..15 */
 468                m64_range[0] = 0;
 469                m64_range[1] = 16;
 470        }
 471        /* We only support 64 bits in our allocator */
 472        if (m64_range[1] > 63) {
 473                pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
 474                        __func__, m64_range[1], phb->hose->global_number);
 475                m64_range[1] = 63;
 476        }
 477        /* Empty range, no m64 */
 478        if (m64_range[1] <= m64_range[0]) {
 479                pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
 480                        __func__, phb->hose->global_number);
 481                return;
 482        }
 483
 484        /* Configure M64 informations */
 485        res = &hose->mem_resources[1];
 486        res->name = dn->full_name;
 487        res->start = of_translate_address(dn, r + 2);
 488        res->end = res->start + of_read_number(r + 4, 2) - 1;
 489        res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
 490        pci_addr = of_read_number(r, 2);
 491        hose->mem_offset[1] = res->start - pci_addr;
 492
 493        phb->ioda.m64_size = resource_size(res);
 494        phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
 495        phb->ioda.m64_base = pci_addr;
 496
 497        /* This lines up nicely with the display from processing OF ranges */
 498        pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
 499                res->start, res->end, pci_addr, m64_range[0],
 500                m64_range[0] + m64_range[1] - 1);
 501
 502        /* Mark all M64 used up by default */
 503        phb->ioda.m64_bar_alloc = (unsigned long)-1;
 504
 505        /* Use last M64 BAR to cover M64 window */
 506        m64_range[1]--;
 507        phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
 508
 509        pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
 510
 511        /* Mark remaining ones free */
 512        for (i = m64_range[0]; i < m64_range[1]; i++)
 513                clear_bit(i, &phb->ioda.m64_bar_alloc);
 514
 515        /*
 516         * Setup init functions for M64 based on IODA version, IODA3 uses
 517         * the IODA2 code.
 518         */
 519        if (phb->type == PNV_PHB_IODA1)
 520                phb->init_m64 = pnv_ioda1_init_m64;
 521        else
 522                phb->init_m64 = pnv_ioda2_init_m64;
 523}
 524
 525static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
 526{
 527        struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
 528        struct pnv_ioda_pe *slave;
 529        s64 rc;
 530
 531        /* Fetch master PE */
 532        if (pe->flags & PNV_IODA_PE_SLAVE) {
 533                pe = pe->master;
 534                if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
 535                        return;
 536
 537                pe_no = pe->pe_number;
 538        }
 539
 540        /* Freeze master PE */
 541        rc = opal_pci_eeh_freeze_set(phb->opal_id,
 542                                     pe_no,
 543                                     OPAL_EEH_ACTION_SET_FREEZE_ALL);
 544        if (rc != OPAL_SUCCESS) {
 545                pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
 546                        __func__, rc, phb->hose->global_number, pe_no);
 547                return;
 548        }
 549
 550        /* Freeze slave PEs */
 551        if (!(pe->flags & PNV_IODA_PE_MASTER))
 552                return;
 553
 554        list_for_each_entry(slave, &pe->slaves, list) {
 555                rc = opal_pci_eeh_freeze_set(phb->opal_id,
 556                                             slave->pe_number,
 557                                             OPAL_EEH_ACTION_SET_FREEZE_ALL);
 558                if (rc != OPAL_SUCCESS)
 559                        pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
 560                                __func__, rc, phb->hose->global_number,
 561                                slave->pe_number);
 562        }
 563}
 564
 565static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
 566{
 567        struct pnv_ioda_pe *pe, *slave;
 568        s64 rc;
 569
 570        /* Find master PE */
 571        pe = &phb->ioda.pe_array[pe_no];
 572        if (pe->flags & PNV_IODA_PE_SLAVE) {
 573                pe = pe->master;
 574                WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
 575                pe_no = pe->pe_number;
 576        }
 577
 578        /* Clear frozen state for master PE */
 579        rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
 580        if (rc != OPAL_SUCCESS) {
 581                pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
 582                        __func__, rc, opt, phb->hose->global_number, pe_no);
 583                return -EIO;
 584        }
 585
 586        if (!(pe->flags & PNV_IODA_PE_MASTER))
 587                return 0;
 588
 589        /* Clear frozen state for slave PEs */
 590        list_for_each_entry(slave, &pe->slaves, list) {
 591                rc = opal_pci_eeh_freeze_clear(phb->opal_id,
 592                                             slave->pe_number,
 593                                             opt);
 594                if (rc != OPAL_SUCCESS) {
 595                        pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
 596                                __func__, rc, opt, phb->hose->global_number,
 597                                slave->pe_number);
 598                        return -EIO;
 599                }
 600        }
 601
 602        return 0;
 603}
 604
 605static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
 606{
 607        struct pnv_ioda_pe *slave, *pe;
 608        u8 fstate = 0, state;
 609        __be16 pcierr = 0;
 610        s64 rc;
 611
 612        /* Sanity check on PE number */
 613        if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
 614                return OPAL_EEH_STOPPED_PERM_UNAVAIL;
 615
 616        /*
 617         * Fetch the master PE and the PE instance might be
 618         * not initialized yet.
 619         */
 620        pe = &phb->ioda.pe_array[pe_no];
 621        if (pe->flags & PNV_IODA_PE_SLAVE) {
 622                pe = pe->master;
 623                WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
 624                pe_no = pe->pe_number;
 625        }
 626
 627        /* Check the master PE */
 628        rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
 629                                        &state, &pcierr, NULL);
 630        if (rc != OPAL_SUCCESS) {
 631                pr_warn("%s: Failure %lld getting "
 632                        "PHB#%x-PE#%x state\n",
 633                        __func__, rc,
 634                        phb->hose->global_number, pe_no);
 635                return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
 636        }
 637
 638        /* Check the slave PE */
 639        if (!(pe->flags & PNV_IODA_PE_MASTER))
 640                return state;
 641
 642        list_for_each_entry(slave, &pe->slaves, list) {
 643                rc = opal_pci_eeh_freeze_status(phb->opal_id,
 644                                                slave->pe_number,
 645                                                &fstate,
 646                                                &pcierr,
 647                                                NULL);
 648                if (rc != OPAL_SUCCESS) {
 649                        pr_warn("%s: Failure %lld getting "
 650                                "PHB#%x-PE#%x state\n",
 651                                __func__, rc,
 652                                phb->hose->global_number, slave->pe_number);
 653                        return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
 654                }
 655
 656                /*
 657                 * Override the result based on the ascending
 658                 * priority.
 659                 */
 660                if (fstate > state)
 661                        state = fstate;
 662        }
 663
 664        return state;
 665}
 666
 667struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
 668{
 669        int pe_number = phb->ioda.pe_rmap[bdfn];
 670
 671        if (pe_number == IODA_INVALID_PE)
 672                return NULL;
 673
 674        return &phb->ioda.pe_array[pe_number];
 675}
 676
 677struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
 678{
 679        struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
 680        struct pci_dn *pdn = pci_get_pdn(dev);
 681
 682        if (!pdn)
 683                return NULL;
 684        if (pdn->pe_number == IODA_INVALID_PE)
 685                return NULL;
 686        return &phb->ioda.pe_array[pdn->pe_number];
 687}
 688
 689static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
 690                                  struct pnv_ioda_pe *parent,
 691                                  struct pnv_ioda_pe *child,
 692                                  bool is_add)
 693{
 694        const char *desc = is_add ? "adding" : "removing";
 695        uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
 696                              OPAL_REMOVE_PE_FROM_DOMAIN;
 697        struct pnv_ioda_pe *slave;
 698        long rc;
 699
 700        /* Parent PE affects child PE */
 701        rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
 702                                child->pe_number, op);
 703        if (rc != OPAL_SUCCESS) {
 704                pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
 705                        rc, desc);
 706                return -ENXIO;
 707        }
 708
 709        if (!(child->flags & PNV_IODA_PE_MASTER))
 710                return 0;
 711
 712        /* Compound case: parent PE affects slave PEs */
 713        list_for_each_entry(slave, &child->slaves, list) {
 714                rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
 715                                        slave->pe_number, op);
 716                if (rc != OPAL_SUCCESS) {
 717                        pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
 718                                rc, desc);
 719                        return -ENXIO;
 720                }
 721        }
 722
 723        return 0;
 724}
 725
 726static int pnv_ioda_set_peltv(struct pnv_phb *phb,
 727                              struct pnv_ioda_pe *pe,
 728                              bool is_add)
 729{
 730        struct pnv_ioda_pe *slave;
 731        struct pci_dev *pdev = NULL;
 732        int ret;
 733
 734        /*
 735         * Clear PE frozen state. If it's master PE, we need
 736         * clear slave PE frozen state as well.
 737         */
 738        if (is_add) {
 739                opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
 740                                          OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 741                if (pe->flags & PNV_IODA_PE_MASTER) {
 742                        list_for_each_entry(slave, &pe->slaves, list)
 743                                opal_pci_eeh_freeze_clear(phb->opal_id,
 744                                                          slave->pe_number,
 745                                                          OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 746                }
 747        }
 748
 749        /*
 750         * Associate PE in PELT. We need add the PE into the
 751         * corresponding PELT-V as well. Otherwise, the error
 752         * originated from the PE might contribute to other
 753         * PEs.
 754         */
 755        ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
 756        if (ret)
 757                return ret;
 758
 759        /* For compound PEs, any one affects all of them */
 760        if (pe->flags & PNV_IODA_PE_MASTER) {
 761                list_for_each_entry(slave, &pe->slaves, list) {
 762                        ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
 763                        if (ret)
 764                                return ret;
 765                }
 766        }
 767
 768        if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
 769                pdev = pe->pbus->self;
 770        else if (pe->flags & PNV_IODA_PE_DEV)
 771                pdev = pe->pdev->bus->self;
 772#ifdef CONFIG_PCI_IOV
 773        else if (pe->flags & PNV_IODA_PE_VF)
 774                pdev = pe->parent_dev;
 775#endif /* CONFIG_PCI_IOV */
 776        while (pdev) {
 777                struct pci_dn *pdn = pci_get_pdn(pdev);
 778                struct pnv_ioda_pe *parent;
 779
 780                if (pdn && pdn->pe_number != IODA_INVALID_PE) {
 781                        parent = &phb->ioda.pe_array[pdn->pe_number];
 782                        ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
 783                        if (ret)
 784                                return ret;
 785                }
 786
 787                pdev = pdev->bus->self;
 788        }
 789
 790        return 0;
 791}
 792
 793static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
 794                                 struct pnv_ioda_pe *pe,
 795                                 struct pci_dev *parent)
 796{
 797        int64_t rc;
 798
 799        while (parent) {
 800                struct pci_dn *pdn = pci_get_pdn(parent);
 801
 802                if (pdn && pdn->pe_number != IODA_INVALID_PE) {
 803                        rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
 804                                                pe->pe_number,
 805                                                OPAL_REMOVE_PE_FROM_DOMAIN);
 806                        /* XXX What to do in case of error ? */
 807                }
 808                parent = parent->bus->self;
 809        }
 810
 811        opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
 812                                  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 813
 814        /* Disassociate PE in PELT */
 815        rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
 816                                pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
 817        if (rc)
 818                pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
 819}
 820
 821int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
 822{
 823        struct pci_dev *parent;
 824        uint8_t bcomp, dcomp, fcomp;
 825        int64_t rc;
 826        long rid_end, rid;
 827
 828        /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
 829        if (pe->pbus) {
 830                int count;
 831
 832                dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
 833                fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
 834                parent = pe->pbus->self;
 835                if (pe->flags & PNV_IODA_PE_BUS_ALL)
 836                        count = resource_size(&pe->pbus->busn_res);
 837                else
 838                        count = 1;
 839
 840                switch(count) {
 841                case  1: bcomp = OpalPciBusAll;         break;
 842                case  2: bcomp = OpalPciBus7Bits;       break;
 843                case  4: bcomp = OpalPciBus6Bits;       break;
 844                case  8: bcomp = OpalPciBus5Bits;       break;
 845                case 16: bcomp = OpalPciBus4Bits;       break;
 846                case 32: bcomp = OpalPciBus3Bits;       break;
 847                default:
 848                        dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
 849                                count);
 850                        /* Do an exact match only */
 851                        bcomp = OpalPciBusAll;
 852                }
 853                rid_end = pe->rid + (count << 8);
 854        } else {
 855#ifdef CONFIG_PCI_IOV
 856                if (pe->flags & PNV_IODA_PE_VF)
 857                        parent = pe->parent_dev;
 858                else
 859#endif
 860                        parent = pe->pdev->bus->self;
 861                bcomp = OpalPciBusAll;
 862                dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
 863                fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
 864                rid_end = pe->rid + 1;
 865        }
 866
 867        /* Clear the reverse map */
 868        for (rid = pe->rid; rid < rid_end; rid++)
 869                phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
 870
 871        /*
 872         * Release from all parents PELT-V. NPUs don't have a PELTV
 873         * table
 874         */
 875        if (phb->type != PNV_PHB_NPU_OCAPI)
 876                pnv_ioda_unset_peltv(phb, pe, parent);
 877
 878        rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
 879                             bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
 880        if (rc)
 881                pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
 882
 883        pe->pbus = NULL;
 884        pe->pdev = NULL;
 885#ifdef CONFIG_PCI_IOV
 886        pe->parent_dev = NULL;
 887#endif
 888
 889        return 0;
 890}
 891
 892int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
 893{
 894        uint8_t bcomp, dcomp, fcomp;
 895        long rc, rid_end, rid;
 896
 897        /* Bus validation ? */
 898        if (pe->pbus) {
 899                int count;
 900
 901                dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
 902                fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
 903                if (pe->flags & PNV_IODA_PE_BUS_ALL)
 904                        count = resource_size(&pe->pbus->busn_res);
 905                else
 906                        count = 1;
 907
 908                switch(count) {
 909                case  1: bcomp = OpalPciBusAll;         break;
 910                case  2: bcomp = OpalPciBus7Bits;       break;
 911                case  4: bcomp = OpalPciBus6Bits;       break;
 912                case  8: bcomp = OpalPciBus5Bits;       break;
 913                case 16: bcomp = OpalPciBus4Bits;       break;
 914                case 32: bcomp = OpalPciBus3Bits;       break;
 915                default:
 916                        dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
 917                                count);
 918                        /* Do an exact match only */
 919                        bcomp = OpalPciBusAll;
 920                }
 921                rid_end = pe->rid + (count << 8);
 922        } else {
 923                bcomp = OpalPciBusAll;
 924                dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
 925                fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
 926                rid_end = pe->rid + 1;
 927        }
 928
 929        /*
 930         * Associate PE in PELT. We need add the PE into the
 931         * corresponding PELT-V as well. Otherwise, the error
 932         * originated from the PE might contribute to other
 933         * PEs.
 934         */
 935        rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
 936                             bcomp, dcomp, fcomp, OPAL_MAP_PE);
 937        if (rc) {
 938                pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
 939                return -ENXIO;
 940        }
 941
 942        /*
 943         * Configure PELTV. NPUs don't have a PELTV table so skip
 944         * configuration on them.
 945         */
 946        if (phb->type != PNV_PHB_NPU_OCAPI)
 947                pnv_ioda_set_peltv(phb, pe, true);
 948
 949        /* Setup reverse map */
 950        for (rid = pe->rid; rid < rid_end; rid++)
 951                phb->ioda.pe_rmap[rid] = pe->pe_number;
 952
 953        /* Setup one MVTs on IODA1 */
 954        if (phb->type != PNV_PHB_IODA1) {
 955                pe->mve_number = 0;
 956                goto out;
 957        }
 958
 959        pe->mve_number = pe->pe_number;
 960        rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
 961        if (rc != OPAL_SUCCESS) {
 962                pe_err(pe, "OPAL error %ld setting up MVE %x\n",
 963                       rc, pe->mve_number);
 964                pe->mve_number = -1;
 965        } else {
 966                rc = opal_pci_set_mve_enable(phb->opal_id,
 967                                             pe->mve_number, OPAL_ENABLE_MVE);
 968                if (rc) {
 969                        pe_err(pe, "OPAL error %ld enabling MVE %x\n",
 970                               rc, pe->mve_number);
 971                        pe->mve_number = -1;
 972                }
 973        }
 974
 975out:
 976        return 0;
 977}
 978
 979static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
 980{
 981        struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
 982        struct pci_dn *pdn = pci_get_pdn(dev);
 983        struct pnv_ioda_pe *pe;
 984
 985        if (!pdn) {
 986                pr_err("%s: Device tree node not associated properly\n",
 987                           pci_name(dev));
 988                return NULL;
 989        }
 990        if (pdn->pe_number != IODA_INVALID_PE)
 991                return NULL;
 992
 993        pe = pnv_ioda_alloc_pe(phb, 1);
 994        if (!pe) {
 995                pr_warn("%s: Not enough PE# available, disabling device\n",
 996                        pci_name(dev));
 997                return NULL;
 998        }
 999
1000        /* NOTE: We don't get a reference for the pointer in the PE
1001         * data structure, both the device and PE structures should be
1002         * destroyed at the same time.
1003         *
1004         * At some point we want to remove the PDN completely anyways
1005         */
1006        pdn->pe_number = pe->pe_number;
1007        pe->flags = PNV_IODA_PE_DEV;
1008        pe->pdev = dev;
1009        pe->pbus = NULL;
1010        pe->mve_number = -1;
1011        pe->rid = dev->bus->number << 8 | pdn->devfn;
1012        pe->device_count++;
1013
1014        pe_info(pe, "Associated device to PE\n");
1015
1016        if (pnv_ioda_configure_pe(phb, pe)) {
1017                /* XXX What do we do here ? */
1018                pnv_ioda_free_pe(pe);
1019                pdn->pe_number = IODA_INVALID_PE;
1020                pe->pdev = NULL;
1021                return NULL;
1022        }
1023
1024        /* Put PE to the list */
1025        mutex_lock(&phb->ioda.pe_list_mutex);
1026        list_add_tail(&pe->list, &phb->ioda.pe_list);
1027        mutex_unlock(&phb->ioda.pe_list_mutex);
1028        return pe;
1029}
1030
1031/*
1032 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1033 * single PCI bus. Another one that contains the primary PCI bus and its
1034 * subordinate PCI devices and buses. The second type of PE is normally
1035 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1036 */
1037static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1038{
1039        struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1040        struct pnv_ioda_pe *pe = NULL;
1041        unsigned int pe_num;
1042
1043        /*
1044         * In partial hotplug case, the PE instance might be still alive.
1045         * We should reuse it instead of allocating a new one.
1046         */
1047        pe_num = phb->ioda.pe_rmap[bus->number << 8];
1048        if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1049                pe = &phb->ioda.pe_array[pe_num];
1050                return NULL;
1051        }
1052
1053        /* PE number for root bus should have been reserved */
1054        if (pci_is_root_bus(bus))
1055                pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1056
1057        /* Check if PE is determined by M64 */
1058        if (!pe)
1059                pe = pnv_ioda_pick_m64_pe(bus, all);
1060
1061        /* The PE number isn't pinned by M64 */
1062        if (!pe)
1063                pe = pnv_ioda_alloc_pe(phb, 1);
1064
1065        if (!pe) {
1066                pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1067                        __func__, pci_domain_nr(bus), bus->number);
1068                return NULL;
1069        }
1070
1071        pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1072        pe->pbus = bus;
1073        pe->pdev = NULL;
1074        pe->mve_number = -1;
1075        pe->rid = bus->busn_res.start << 8;
1076
1077        if (all)
1078                pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1079                        &bus->busn_res.start, &bus->busn_res.end,
1080                        pe->pe_number);
1081        else
1082                pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1083                        &bus->busn_res.start, pe->pe_number);
1084
1085        if (pnv_ioda_configure_pe(phb, pe)) {
1086                /* XXX What do we do here ? */
1087                pnv_ioda_free_pe(pe);
1088                pe->pbus = NULL;
1089                return NULL;
1090        }
1091
1092        /* Put PE to the list */
1093        list_add_tail(&pe->list, &phb->ioda.pe_list);
1094
1095        return pe;
1096}
1097
1098static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1099                                       struct pnv_ioda_pe *pe);
1100
1101static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1102{
1103        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1104        struct pci_dn *pdn = pci_get_pdn(pdev);
1105        struct pnv_ioda_pe *pe;
1106
1107        /* Check if the BDFN for this device is associated with a PE yet */
1108        pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1109        if (!pe) {
1110                /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1111                if (WARN_ON(pdev->is_virtfn))
1112                        return;
1113
1114                pnv_pci_configure_bus(pdev->bus);
1115                pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1116                pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1117
1118
1119                /*
1120                 * If we can't setup the IODA PE something has gone horribly
1121                 * wrong and we can't enable DMA for the device.
1122                 */
1123                if (WARN_ON(!pe))
1124                        return;
1125        } else {
1126                pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1127        }
1128
1129        /*
1130         * We assume that bridges *probably* don't need to do any DMA so we can
1131         * skip allocating a TCE table, etc unless we get a non-bridge device.
1132         */
1133        if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1134                switch (phb->type) {
1135                case PNV_PHB_IODA1:
1136                        pnv_pci_ioda1_setup_dma_pe(phb, pe);
1137                        break;
1138                case PNV_PHB_IODA2:
1139                        pnv_pci_ioda2_setup_dma_pe(phb, pe);
1140                        break;
1141                default:
1142                        pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1143                                __func__, phb->hose->global_number, phb->type);
1144                }
1145        }
1146
1147        if (pdn)
1148                pdn->pe_number = pe->pe_number;
1149        pe->device_count++;
1150
1151        WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1152        pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1153        set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1154
1155        /* PEs with a DMA weight of zero won't have a group */
1156        if (pe->table_group.group)
1157                iommu_add_device(&pe->table_group, &pdev->dev);
1158}
1159
1160/*
1161 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1162 *
1163 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1164 * Devices can only access more than that if bit 59 of the PCI address is set
1165 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1166 * Many PCI devices are not capable of addressing that many bits, and as a
1167 * result are limited to the 4GB of virtual memory made available to 32-bit
1168 * devices in TVE#0.
1169 *
1170 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1171 * devices by configuring the virtual memory past the first 4GB inaccessible
1172 * by 64-bit DMAs.  This should only be used by devices that want more than
1173 * 4GB, and only on PEs that have no 32-bit devices.
1174 *
1175 * Currently this will only work on PHB3 (POWER8).
1176 */
1177static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1178{
1179        u64 window_size, table_size, tce_count, addr;
1180        struct page *table_pages;
1181        u64 tce_order = 28; /* 256MB TCEs */
1182        __be64 *tces;
1183        s64 rc;
1184
1185        /*
1186         * Window size needs to be a power of two, but needs to account for
1187         * shifting memory by the 4GB offset required to skip 32bit space.
1188         */
1189        window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1190        tce_count = window_size >> tce_order;
1191        table_size = tce_count << 3;
1192
1193        if (table_size < PAGE_SIZE)
1194                table_size = PAGE_SIZE;
1195
1196        table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1197                                       get_order(table_size));
1198        if (!table_pages)
1199                goto err;
1200
1201        tces = page_address(table_pages);
1202        if (!tces)
1203                goto err;
1204
1205        memset(tces, 0, table_size);
1206
1207        for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1208                tces[(addr + (1ULL << 32)) >> tce_order] =
1209                        cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1210        }
1211
1212        rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1213                                        pe->pe_number,
1214                                        /* reconfigure window 0 */
1215                                        (pe->pe_number << 1) + 0,
1216                                        1,
1217                                        __pa(tces),
1218                                        table_size,
1219                                        1 << tce_order);
1220        if (rc == OPAL_SUCCESS) {
1221                pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1222                return 0;
1223        }
1224err:
1225        pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1226        return -EIO;
1227}
1228
1229static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1230                u64 dma_mask)
1231{
1232        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1233        struct pci_dn *pdn = pci_get_pdn(pdev);
1234        struct pnv_ioda_pe *pe;
1235
1236        if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1237                return false;
1238
1239        pe = &phb->ioda.pe_array[pdn->pe_number];
1240        if (pe->tce_bypass_enabled) {
1241                u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1242                if (dma_mask >= top)
1243                        return true;
1244        }
1245
1246        /*
1247         * If the device can't set the TCE bypass bit but still wants
1248         * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1249         * bypass the 32-bit region and be usable for 64-bit DMAs.
1250         * The device needs to be able to address all of this space.
1251         */
1252        if (dma_mask >> 32 &&
1253            dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1254            /* pe->pdev should be set if it's a single device, pe->pbus if not */
1255            (pe->device_count == 1 || !pe->pbus) &&
1256            phb->model == PNV_PHB_MODEL_PHB3) {
1257                /* Configure the bypass mode */
1258                s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1259                if (rc)
1260                        return false;
1261                /* 4GB offset bypasses 32-bit space */
1262                pdev->dev.archdata.dma_offset = (1ULL << 32);
1263                return true;
1264        }
1265
1266        return false;
1267}
1268
1269static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1270                                                     bool real_mode)
1271{
1272        return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1273                (phb->regs + 0x210);
1274}
1275
1276static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1277                unsigned long index, unsigned long npages, bool rm)
1278{
1279        struct iommu_table_group_link *tgl = list_first_entry_or_null(
1280                        &tbl->it_group_list, struct iommu_table_group_link,
1281                        next);
1282        struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1283                        struct pnv_ioda_pe, table_group);
1284        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1285        unsigned long start, end, inc;
1286
1287        start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1288        end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1289                        npages - 1);
1290
1291        /* p7ioc-style invalidation, 2 TCEs per write */
1292        start |= (1ull << 63);
1293        end |= (1ull << 63);
1294        inc = 16;
1295        end |= inc - 1; /* round up end to be different than start */
1296
1297        mb(); /* Ensure above stores are visible */
1298        while (start <= end) {
1299                if (rm)
1300                        __raw_rm_writeq_be(start, invalidate);
1301                else
1302                        __raw_writeq_be(start, invalidate);
1303
1304                start += inc;
1305        }
1306
1307        /*
1308         * The iommu layer will do another mb() for us on build()
1309         * and we don't care on free()
1310         */
1311}
1312
1313static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1314                long npages, unsigned long uaddr,
1315                enum dma_data_direction direction,
1316                unsigned long attrs)
1317{
1318        int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1319                        attrs);
1320
1321        if (!ret)
1322                pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1323
1324        return ret;
1325}
1326
1327#ifdef CONFIG_IOMMU_API
1328/* Common for IODA1 and IODA2 */
1329static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1330                unsigned long *hpa, enum dma_data_direction *direction,
1331                bool realmode)
1332{
1333        return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1334}
1335#endif
1336
1337static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1338                long npages)
1339{
1340        pnv_tce_free(tbl, index, npages);
1341
1342        pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1343}
1344
1345static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1346        .set = pnv_ioda1_tce_build,
1347#ifdef CONFIG_IOMMU_API
1348        .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1349        .tce_kill = pnv_pci_p7ioc_tce_invalidate,
1350        .useraddrptr = pnv_tce_useraddrptr,
1351#endif
1352        .clear = pnv_ioda1_tce_free,
1353        .get = pnv_tce_get,
1354};
1355
1356#define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1357#define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1358#define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1359
1360static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1361{
1362        /* 01xb - invalidate TCEs that match the specified PE# */
1363        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1364        unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1365
1366        mb(); /* Ensure above stores are visible */
1367        __raw_writeq_be(val, invalidate);
1368}
1369
1370static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1371                                        unsigned shift, unsigned long index,
1372                                        unsigned long npages)
1373{
1374        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1375        unsigned long start, end, inc;
1376
1377        /* We'll invalidate DMA address in PE scope */
1378        start = PHB3_TCE_KILL_INVAL_ONE;
1379        start |= (pe->pe_number & 0xFF);
1380        end = start;
1381
1382        /* Figure out the start, end and step */
1383        start |= (index << shift);
1384        end |= ((index + npages - 1) << shift);
1385        inc = (0x1ull << shift);
1386        mb();
1387
1388        while (start <= end) {
1389                if (rm)
1390                        __raw_rm_writeq_be(start, invalidate);
1391                else
1392                        __raw_writeq_be(start, invalidate);
1393                start += inc;
1394        }
1395}
1396
1397static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1398{
1399        struct pnv_phb *phb = pe->phb;
1400
1401        if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1402                pnv_pci_phb3_tce_invalidate_pe(pe);
1403        else
1404                opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1405                                  pe->pe_number, 0, 0, 0);
1406}
1407
1408static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1409                unsigned long index, unsigned long npages, bool rm)
1410{
1411        struct iommu_table_group_link *tgl;
1412
1413        list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1414                struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1415                                struct pnv_ioda_pe, table_group);
1416                struct pnv_phb *phb = pe->phb;
1417                unsigned int shift = tbl->it_page_shift;
1418
1419                if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1420                        pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1421                                                    index, npages);
1422                else
1423                        opal_pci_tce_kill(phb->opal_id,
1424                                          OPAL_PCI_TCE_KILL_PAGES,
1425                                          pe->pe_number, 1u << shift,
1426                                          index << shift, npages);
1427        }
1428}
1429
1430static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1431                long npages, unsigned long uaddr,
1432                enum dma_data_direction direction,
1433                unsigned long attrs)
1434{
1435        int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1436                        attrs);
1437
1438        if (!ret)
1439                pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1440
1441        return ret;
1442}
1443
1444static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1445                long npages)
1446{
1447        pnv_tce_free(tbl, index, npages);
1448
1449        pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1450}
1451
1452static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1453        .set = pnv_ioda2_tce_build,
1454#ifdef CONFIG_IOMMU_API
1455        .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1456        .tce_kill = pnv_pci_ioda2_tce_invalidate,
1457        .useraddrptr = pnv_tce_useraddrptr,
1458#endif
1459        .clear = pnv_ioda2_tce_free,
1460        .get = pnv_tce_get,
1461        .free = pnv_pci_ioda2_table_free_pages,
1462};
1463
1464static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1465{
1466        unsigned int *weight = (unsigned int *)data;
1467
1468        /* This is quite simplistic. The "base" weight of a device
1469         * is 10. 0 means no DMA is to be accounted for it.
1470         */
1471        if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1472                return 0;
1473
1474        if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1475            dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1476            dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1477                *weight += 3;
1478        else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1479                *weight += 15;
1480        else
1481                *weight += 10;
1482
1483        return 0;
1484}
1485
1486static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1487{
1488        unsigned int weight = 0;
1489
1490        /* SRIOV VF has same DMA32 weight as its PF */
1491#ifdef CONFIG_PCI_IOV
1492        if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1493                pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1494                return weight;
1495        }
1496#endif
1497
1498        if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1499                pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1500        } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1501                struct pci_dev *pdev;
1502
1503                list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1504                        pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1505        } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1506                pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1507        }
1508
1509        return weight;
1510}
1511
1512static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1513                                       struct pnv_ioda_pe *pe)
1514{
1515
1516        struct page *tce_mem = NULL;
1517        struct iommu_table *tbl;
1518        unsigned int weight, total_weight = 0;
1519        unsigned int tce32_segsz, base, segs, avail, i;
1520        int64_t rc;
1521        void *addr;
1522
1523        /* XXX FIXME: Handle 64-bit only DMA devices */
1524        /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1525        /* XXX FIXME: Allocate multi-level tables on PHB3 */
1526        weight = pnv_pci_ioda_pe_dma_weight(pe);
1527        if (!weight)
1528                return;
1529
1530        pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1531                     &total_weight);
1532        segs = (weight * phb->ioda.dma32_count) / total_weight;
1533        if (!segs)
1534                segs = 1;
1535
1536        /*
1537         * Allocate contiguous DMA32 segments. We begin with the expected
1538         * number of segments. With one more attempt, the number of DMA32
1539         * segments to be allocated is decreased by one until one segment
1540         * is allocated successfully.
1541         */
1542        do {
1543                for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1544                        for (avail = 0, i = base; i < base + segs; i++) {
1545                                if (phb->ioda.dma32_segmap[i] ==
1546                                    IODA_INVALID_PE)
1547                                        avail++;
1548                        }
1549
1550                        if (avail == segs)
1551                                goto found;
1552                }
1553        } while (--segs);
1554
1555        if (!segs) {
1556                pe_warn(pe, "No available DMA32 segments\n");
1557                return;
1558        }
1559
1560found:
1561        tbl = pnv_pci_table_alloc(phb->hose->node);
1562        if (WARN_ON(!tbl))
1563                return;
1564
1565        iommu_register_group(&pe->table_group, phb->hose->global_number,
1566                        pe->pe_number);
1567        pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1568
1569        /* Grab a 32-bit TCE table */
1570        pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1571                weight, total_weight, base, segs);
1572        pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1573                base * PNV_IODA1_DMA32_SEGSIZE,
1574                (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1575
1576        /* XXX Currently, we allocate one big contiguous table for the
1577         * TCEs. We only really need one chunk per 256M of TCE space
1578         * (ie per segment) but that's an optimization for later, it
1579         * requires some added smarts with our get/put_tce implementation
1580         *
1581         * Each TCE page is 4KB in size and each TCE entry occupies 8
1582         * bytes
1583         */
1584        tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1585        tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1586                                   get_order(tce32_segsz * segs));
1587        if (!tce_mem) {
1588                pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1589                goto fail;
1590        }
1591        addr = page_address(tce_mem);
1592        memset(addr, 0, tce32_segsz * segs);
1593
1594        /* Configure HW */
1595        for (i = 0; i < segs; i++) {
1596                rc = opal_pci_map_pe_dma_window(phb->opal_id,
1597                                              pe->pe_number,
1598                                              base + i, 1,
1599                                              __pa(addr) + tce32_segsz * i,
1600                                              tce32_segsz, IOMMU_PAGE_SIZE_4K);
1601                if (rc) {
1602                        pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1603                               rc);
1604                        goto fail;
1605                }
1606        }
1607
1608        /* Setup DMA32 segment mapping */
1609        for (i = base; i < base + segs; i++)
1610                phb->ioda.dma32_segmap[i] = pe->pe_number;
1611
1612        /* Setup linux iommu table */
1613        pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1614                                  base * PNV_IODA1_DMA32_SEGSIZE,
1615                                  IOMMU_PAGE_SHIFT_4K);
1616
1617        tbl->it_ops = &pnv_ioda1_iommu_ops;
1618        pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1619        pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1620        if (!iommu_init_table(tbl, phb->hose->node, 0, 0))
1621                panic("Failed to initialize iommu table");
1622
1623        pe->dma_setup_done = true;
1624        return;
1625 fail:
1626        /* XXX Failure: Try to fallback to 64-bit only ? */
1627        if (tce_mem)
1628                __free_pages(tce_mem, get_order(tce32_segsz * segs));
1629        if (tbl) {
1630                pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1631                iommu_tce_table_put(tbl);
1632        }
1633}
1634
1635static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1636                int num, struct iommu_table *tbl)
1637{
1638        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1639                        table_group);
1640        struct pnv_phb *phb = pe->phb;
1641        int64_t rc;
1642        const unsigned long size = tbl->it_indirect_levels ?
1643                        tbl->it_level_size : tbl->it_size;
1644        const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1645        const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1646
1647        pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1648                num, start_addr, start_addr + win_size - 1,
1649                IOMMU_PAGE_SIZE(tbl));
1650
1651        /*
1652         * Map TCE table through TVT. The TVE index is the PE number
1653         * shifted by 1 bit for 32-bits DMA space.
1654         */
1655        rc = opal_pci_map_pe_dma_window(phb->opal_id,
1656                        pe->pe_number,
1657                        (pe->pe_number << 1) + num,
1658                        tbl->it_indirect_levels + 1,
1659                        __pa(tbl->it_base),
1660                        size << 3,
1661                        IOMMU_PAGE_SIZE(tbl));
1662        if (rc) {
1663                pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1664                return rc;
1665        }
1666
1667        pnv_pci_link_table_and_group(phb->hose->node, num,
1668                        tbl, &pe->table_group);
1669        pnv_pci_ioda2_tce_invalidate_pe(pe);
1670
1671        return 0;
1672}
1673
1674static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1675{
1676        uint16_t window_id = (pe->pe_number << 1 ) + 1;
1677        int64_t rc;
1678
1679        pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1680        if (enable) {
1681                phys_addr_t top = memblock_end_of_DRAM();
1682
1683                top = roundup_pow_of_two(top);
1684                rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1685                                                     pe->pe_number,
1686                                                     window_id,
1687                                                     pe->tce_bypass_base,
1688                                                     top);
1689        } else {
1690                rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1691                                                     pe->pe_number,
1692                                                     window_id,
1693                                                     pe->tce_bypass_base,
1694                                                     0);
1695        }
1696        if (rc)
1697                pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1698        else
1699                pe->tce_bypass_enabled = enable;
1700}
1701
1702static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1703                int num, __u32 page_shift, __u64 window_size, __u32 levels,
1704                bool alloc_userspace_copy, struct iommu_table **ptbl)
1705{
1706        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1707                        table_group);
1708        int nid = pe->phb->hose->node;
1709        __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1710        long ret;
1711        struct iommu_table *tbl;
1712
1713        tbl = pnv_pci_table_alloc(nid);
1714        if (!tbl)
1715                return -ENOMEM;
1716
1717        tbl->it_ops = &pnv_ioda2_iommu_ops;
1718
1719        ret = pnv_pci_ioda2_table_alloc_pages(nid,
1720                        bus_offset, page_shift, window_size,
1721                        levels, alloc_userspace_copy, tbl);
1722        if (ret) {
1723                iommu_tce_table_put(tbl);
1724                return ret;
1725        }
1726
1727        *ptbl = tbl;
1728
1729        return 0;
1730}
1731
1732static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1733{
1734        struct iommu_table *tbl = NULL;
1735        long rc;
1736        unsigned long res_start, res_end;
1737
1738        /*
1739         * crashkernel= specifies the kdump kernel's maximum memory at
1740         * some offset and there is no guaranteed the result is a power
1741         * of 2, which will cause errors later.
1742         */
1743        const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1744
1745        /*
1746         * In memory constrained environments, e.g. kdump kernel, the
1747         * DMA window can be larger than available memory, which will
1748         * cause errors later.
1749         */
1750        const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1751
1752        /*
1753         * We create the default window as big as we can. The constraint is
1754         * the max order of allocation possible. The TCE table is likely to
1755         * end up being multilevel and with on-demand allocation in place,
1756         * the initial use is not going to be huge as the default window aims
1757         * to support crippled devices (i.e. not fully 64bit DMAble) only.
1758         */
1759        /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1760        const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1761        /* Each TCE level cannot exceed maxblock so go multilevel if needed */
1762        unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1763        unsigned long tcelevel_order = ilog2(maxblock >> 3);
1764        unsigned int levels = tces_order / tcelevel_order;
1765
1766        if (tces_order % tcelevel_order)
1767                levels += 1;
1768        /*
1769         * We try to stick to default levels (which is >1 at the moment) in
1770         * order to save memory by relying on on-demain TCE level allocation.
1771         */
1772        levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1773
1774        rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1775                        window_size, levels, false, &tbl);
1776        if (rc) {
1777                pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1778                                rc);
1779                return rc;
1780        }
1781
1782        /* We use top part of 32bit space for MMIO so exclude it from DMA */
1783        res_start = 0;
1784        res_end = 0;
1785        if (window_size > pe->phb->ioda.m32_pci_base) {
1786                res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1787                res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1788        }
1789
1790        if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1791                rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1792        else
1793                rc = -ENOMEM;
1794        if (rc) {
1795                pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1796                iommu_tce_table_put(tbl);
1797                tbl = NULL; /* This clears iommu_table_base below */
1798        }
1799        if (!pnv_iommu_bypass_disabled)
1800                pnv_pci_ioda2_set_bypass(pe, true);
1801
1802        /*
1803         * Set table base for the case of IOMMU DMA use. Usually this is done
1804         * from dma_dev_setup() which is not called when a device is returned
1805         * from VFIO so do it here.
1806         */
1807        if (pe->pdev)
1808                set_iommu_table_base(&pe->pdev->dev, tbl);
1809
1810        return 0;
1811}
1812
1813static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1814                int num)
1815{
1816        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1817                        table_group);
1818        struct pnv_phb *phb = pe->phb;
1819        long ret;
1820
1821        pe_info(pe, "Removing DMA window #%d\n", num);
1822
1823        ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1824                        (pe->pe_number << 1) + num,
1825                        0/* levels */, 0/* table address */,
1826                        0/* table size */, 0/* page size */);
1827        if (ret)
1828                pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1829        else
1830                pnv_pci_ioda2_tce_invalidate_pe(pe);
1831
1832        pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1833
1834        return ret;
1835}
1836
1837#ifdef CONFIG_IOMMU_API
1838unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1839                __u64 window_size, __u32 levels)
1840{
1841        unsigned long bytes = 0;
1842        const unsigned window_shift = ilog2(window_size);
1843        unsigned entries_shift = window_shift - page_shift;
1844        unsigned table_shift = entries_shift + 3;
1845        unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1846        unsigned long direct_table_size;
1847
1848        if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1849                        !is_power_of_2(window_size))
1850                return 0;
1851
1852        /* Calculate a direct table size from window_size and levels */
1853        entries_shift = (entries_shift + levels - 1) / levels;
1854        table_shift = entries_shift + 3;
1855        table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1856        direct_table_size =  1UL << table_shift;
1857
1858        for ( ; levels; --levels) {
1859                bytes += ALIGN(tce_table_size, direct_table_size);
1860
1861                tce_table_size /= direct_table_size;
1862                tce_table_size <<= 3;
1863                tce_table_size = max_t(unsigned long,
1864                                tce_table_size, direct_table_size);
1865        }
1866
1867        return bytes + bytes; /* one for HW table, one for userspace copy */
1868}
1869
1870static long pnv_pci_ioda2_create_table_userspace(
1871                struct iommu_table_group *table_group,
1872                int num, __u32 page_shift, __u64 window_size, __u32 levels,
1873                struct iommu_table **ptbl)
1874{
1875        long ret = pnv_pci_ioda2_create_table(table_group,
1876                        num, page_shift, window_size, levels, true, ptbl);
1877
1878        if (!ret)
1879                (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1880                                page_shift, window_size, levels);
1881        return ret;
1882}
1883
1884static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1885{
1886        struct pci_dev *dev;
1887
1888        list_for_each_entry(dev, &bus->devices, bus_list) {
1889                set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1890                dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1891
1892                if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1893                        pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1894        }
1895}
1896
1897static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1898{
1899        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1900                                                table_group);
1901        /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1902        struct iommu_table *tbl = pe->table_group.tables[0];
1903
1904        pnv_pci_ioda2_set_bypass(pe, false);
1905        pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1906        if (pe->pbus)
1907                pnv_ioda_setup_bus_dma(pe, pe->pbus);
1908        else if (pe->pdev)
1909                set_iommu_table_base(&pe->pdev->dev, NULL);
1910        iommu_tce_table_put(tbl);
1911}
1912
1913static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1914{
1915        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1916                                                table_group);
1917
1918        pnv_pci_ioda2_setup_default_config(pe);
1919        if (pe->pbus)
1920                pnv_ioda_setup_bus_dma(pe, pe->pbus);
1921}
1922
1923static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1924        .get_table_size = pnv_pci_ioda2_get_table_size,
1925        .create_table = pnv_pci_ioda2_create_table_userspace,
1926        .set_window = pnv_pci_ioda2_set_window,
1927        .unset_window = pnv_pci_ioda2_unset_window,
1928        .take_ownership = pnv_ioda2_take_ownership,
1929        .release_ownership = pnv_ioda2_release_ownership,
1930};
1931#endif
1932
1933void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1934                                struct pnv_ioda_pe *pe)
1935{
1936        int64_t rc;
1937
1938        /* TVE #1 is selected by PCI address bit 59 */
1939        pe->tce_bypass_base = 1ull << 59;
1940
1941        /* The PE will reserve all possible 32-bits space */
1942        pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1943                phb->ioda.m32_pci_base);
1944
1945        /* Setup linux iommu table */
1946        pe->table_group.tce32_start = 0;
1947        pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1948        pe->table_group.max_dynamic_windows_supported =
1949                        IOMMU_TABLE_GROUP_MAX_TABLES;
1950        pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1951        pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1952
1953        rc = pnv_pci_ioda2_setup_default_config(pe);
1954        if (rc)
1955                return;
1956
1957#ifdef CONFIG_IOMMU_API
1958        pe->table_group.ops = &pnv_pci_ioda2_ops;
1959        iommu_register_group(&pe->table_group, phb->hose->global_number,
1960                             pe->pe_number);
1961#endif
1962        pe->dma_setup_done = true;
1963}
1964
1965int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
1966{
1967        struct pnv_phb *phb = container_of(chip, struct pnv_phb,
1968                                           ioda.irq_chip);
1969
1970        return opal_pci_msi_eoi(phb->opal_id, hw_irq);
1971}
1972
1973static void pnv_ioda2_msi_eoi(struct irq_data *d)
1974{
1975        int64_t rc;
1976        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1977        struct irq_chip *chip = irq_data_get_irq_chip(d);
1978
1979        rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
1980        WARN_ON_ONCE(rc);
1981
1982        icp_native_eoi(d);
1983}
1984
1985
1986void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1987{
1988        struct irq_data *idata;
1989        struct irq_chip *ichip;
1990
1991        /* The MSI EOI OPAL call is only needed on PHB3 */
1992        if (phb->model != PNV_PHB_MODEL_PHB3)
1993                return;
1994
1995        if (!phb->ioda.irq_chip_init) {
1996                /*
1997                 * First time we setup an MSI IRQ, we need to setup the
1998                 * corresponding IRQ chip to route correctly.
1999                 */
2000                idata = irq_get_irq_data(virq);
2001                ichip = irq_data_get_irq_chip(idata);
2002                phb->ioda.irq_chip_init = 1;
2003                phb->ioda.irq_chip = *ichip;
2004                phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2005        }
2006        irq_set_chip(virq, &phb->ioda.irq_chip);
2007}
2008
2009/*
2010 * Returns true iff chip is something that we could call
2011 * pnv_opal_pci_msi_eoi for.
2012 */
2013bool is_pnv_opal_msi(struct irq_chip *chip)
2014{
2015        return chip->irq_eoi == pnv_ioda2_msi_eoi;
2016}
2017EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2018
2019static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2020                                  unsigned int hwirq, unsigned int virq,
2021                                  unsigned int is_64, struct msi_msg *msg)
2022{
2023        struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2024        unsigned int xive_num = hwirq - phb->msi_base;
2025        __be32 data;
2026        int rc;
2027
2028        /* No PE assigned ? bail out ... no MSI for you ! */
2029        if (pe == NULL)
2030                return -ENXIO;
2031
2032        /* Check if we have an MVE */
2033        if (pe->mve_number < 0)
2034                return -ENXIO;
2035
2036        /* Force 32-bit MSI on some broken devices */
2037        if (dev->no_64bit_msi)
2038                is_64 = 0;
2039
2040        /* Assign XIVE to PE */
2041        rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2042        if (rc) {
2043                pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2044                        pci_name(dev), rc, xive_num);
2045                return -EIO;
2046        }
2047
2048        if (is_64) {
2049                __be64 addr64;
2050
2051                rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2052                                     &addr64, &data);
2053                if (rc) {
2054                        pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2055                                pci_name(dev), rc);
2056                        return -EIO;
2057                }
2058                msg->address_hi = be64_to_cpu(addr64) >> 32;
2059                msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2060        } else {
2061                __be32 addr32;
2062
2063                rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2064                                     &addr32, &data);
2065                if (rc) {
2066                        pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2067                                pci_name(dev), rc);
2068                        return -EIO;
2069                }
2070                msg->address_hi = 0;
2071                msg->address_lo = be32_to_cpu(addr32);
2072        }
2073        msg->data = be32_to_cpu(data);
2074
2075        pnv_set_msi_irq_chip(phb, virq);
2076
2077        pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2078                 " address=%x_%08x data=%x PE# %x\n",
2079                 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2080                 msg->address_hi, msg->address_lo, data, pe->pe_number);
2081
2082        return 0;
2083}
2084
2085static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2086{
2087        unsigned int count;
2088        const __be32 *prop = of_get_property(phb->hose->dn,
2089                                             "ibm,opal-msi-ranges", NULL);
2090        if (!prop) {
2091                /* BML Fallback */
2092                prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2093        }
2094        if (!prop)
2095                return;
2096
2097        phb->msi_base = be32_to_cpup(prop);
2098        count = be32_to_cpup(prop + 1);
2099        if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2100                pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2101                       phb->hose->global_number);
2102                return;
2103        }
2104
2105        phb->msi_setup = pnv_pci_ioda_msi_setup;
2106        phb->msi32_support = 1;
2107        pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2108                count, phb->msi_base);
2109}
2110
2111static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2112                                  struct resource *res)
2113{
2114        struct pnv_phb *phb = pe->phb;
2115        struct pci_bus_region region;
2116        int index;
2117        int64_t rc;
2118
2119        if (!res || !res->flags || res->start > res->end)
2120                return;
2121
2122        if (res->flags & IORESOURCE_IO) {
2123                region.start = res->start - phb->ioda.io_pci_base;
2124                region.end   = res->end - phb->ioda.io_pci_base;
2125                index = region.start / phb->ioda.io_segsize;
2126
2127                while (index < phb->ioda.total_pe_num &&
2128                       region.start <= region.end) {
2129                        phb->ioda.io_segmap[index] = pe->pe_number;
2130                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2131                                pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2132                        if (rc != OPAL_SUCCESS) {
2133                                pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2134                                       __func__, rc, index, pe->pe_number);
2135                                break;
2136                        }
2137
2138                        region.start += phb->ioda.io_segsize;
2139                        index++;
2140                }
2141        } else if ((res->flags & IORESOURCE_MEM) &&
2142                   !pnv_pci_is_m64(phb, res)) {
2143                region.start = res->start -
2144                               phb->hose->mem_offset[0] -
2145                               phb->ioda.m32_pci_base;
2146                region.end   = res->end -
2147                               phb->hose->mem_offset[0] -
2148                               phb->ioda.m32_pci_base;
2149                index = region.start / phb->ioda.m32_segsize;
2150
2151                while (index < phb->ioda.total_pe_num &&
2152                       region.start <= region.end) {
2153                        phb->ioda.m32_segmap[index] = pe->pe_number;
2154                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2155                                pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2156                        if (rc != OPAL_SUCCESS) {
2157                                pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2158                                       __func__, rc, index, pe->pe_number);
2159                                break;
2160                        }
2161
2162                        region.start += phb->ioda.m32_segsize;
2163                        index++;
2164                }
2165        }
2166}
2167
2168/*
2169 * This function is supposed to be called on basis of PE from top
2170 * to bottom style. So the the I/O or MMIO segment assigned to
2171 * parent PE could be overridden by its child PEs if necessary.
2172 */
2173static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2174{
2175        struct pci_dev *pdev;
2176        int i;
2177
2178        /*
2179         * NOTE: We only care PCI bus based PE for now. For PCI
2180         * device based PE, for example SRIOV sensitive VF should
2181         * be figured out later.
2182         */
2183        BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2184
2185        list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2186                for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2187                        pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2188
2189                /*
2190                 * If the PE contains all subordinate PCI buses, the
2191                 * windows of the child bridges should be mapped to
2192                 * the PE as well.
2193                 */
2194                if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2195                        continue;
2196                for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2197                        pnv_ioda_setup_pe_res(pe,
2198                                &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2199        }
2200}
2201
2202#ifdef CONFIG_DEBUG_FS
2203static int pnv_pci_diag_data_set(void *data, u64 val)
2204{
2205        struct pnv_phb *phb = data;
2206        s64 ret;
2207
2208        /* Retrieve the diag data from firmware */
2209        ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2210                                          phb->diag_data_size);
2211        if (ret != OPAL_SUCCESS)
2212                return -EIO;
2213
2214        /* Print the diag data to the kernel log */
2215        pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2216        return 0;
2217}
2218
2219DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2220                         "%llu\n");
2221
2222static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2223{
2224        struct pnv_phb *phb = data;
2225        int pe_num;
2226
2227        for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2228                struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2229
2230                if (!test_bit(pe_num, phb->ioda.pe_alloc))
2231                        continue;
2232
2233                pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2234                        pe->rid, pe->device_count,
2235                        (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2236                        (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2237                        (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2238                        (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2239                        (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2240                        (pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2241        }
2242
2243        return 0;
2244}
2245
2246DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2247                         pnv_pci_ioda_pe_dump, "%llu\n");
2248
2249#endif /* CONFIG_DEBUG_FS */
2250
2251static void pnv_pci_ioda_create_dbgfs(void)
2252{
2253#ifdef CONFIG_DEBUG_FS
2254        struct pci_controller *hose, *tmp;
2255        struct pnv_phb *phb;
2256        char name[16];
2257
2258        list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2259                phb = hose->private_data;
2260
2261                sprintf(name, "PCI%04x", hose->global_number);
2262                phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2263
2264                debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2265                                           phb, &pnv_pci_diag_data_fops);
2266                debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2267                                           phb, &pnv_pci_ioda_pe_dump_fops);
2268        }
2269#endif /* CONFIG_DEBUG_FS */
2270}
2271
2272static void pnv_pci_enable_bridge(struct pci_bus *bus)
2273{
2274        struct pci_dev *dev = bus->self;
2275        struct pci_bus *child;
2276
2277        /* Empty bus ? bail */
2278        if (list_empty(&bus->devices))
2279                return;
2280
2281        /*
2282         * If there's a bridge associated with that bus enable it. This works
2283         * around races in the generic code if the enabling is done during
2284         * parallel probing. This can be removed once those races have been
2285         * fixed.
2286         */
2287        if (dev) {
2288                int rc = pci_enable_device(dev);
2289                if (rc)
2290                        pci_err(dev, "Error enabling bridge (%d)\n", rc);
2291                pci_set_master(dev);
2292        }
2293
2294        /* Perform the same to child busses */
2295        list_for_each_entry(child, &bus->children, node)
2296                pnv_pci_enable_bridge(child);
2297}
2298
2299static void pnv_pci_enable_bridges(void)
2300{
2301        struct pci_controller *hose;
2302
2303        list_for_each_entry(hose, &hose_list, list_node)
2304                pnv_pci_enable_bridge(hose->bus);
2305}
2306
2307static void pnv_pci_ioda_fixup(void)
2308{
2309        pnv_pci_ioda_create_dbgfs();
2310
2311        pnv_pci_enable_bridges();
2312
2313#ifdef CONFIG_EEH
2314        pnv_eeh_post_init();
2315#endif
2316}
2317
2318/*
2319 * Returns the alignment for I/O or memory windows for P2P
2320 * bridges. That actually depends on how PEs are segmented.
2321 * For now, we return I/O or M32 segment size for PE sensitive
2322 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2323 * 1MiB for memory) will be returned.
2324 *
2325 * The current PCI bus might be put into one PE, which was
2326 * create against the parent PCI bridge. For that case, we
2327 * needn't enlarge the alignment so that we can save some
2328 * resources.
2329 */
2330static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2331                                                unsigned long type)
2332{
2333        struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2334        int num_pci_bridges = 0;
2335        struct pci_dev *bridge;
2336
2337        bridge = bus->self;
2338        while (bridge) {
2339                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2340                        num_pci_bridges++;
2341                        if (num_pci_bridges >= 2)
2342                                return 1;
2343                }
2344
2345                bridge = bridge->bus->self;
2346        }
2347
2348        /*
2349         * We fall back to M32 if M64 isn't supported. We enforce the M64
2350         * alignment for any 64-bit resource, PCIe doesn't care and
2351         * bridges only do 64-bit prefetchable anyway.
2352         */
2353        if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2354                return phb->ioda.m64_segsize;
2355        if (type & IORESOURCE_MEM)
2356                return phb->ioda.m32_segsize;
2357
2358        return phb->ioda.io_segsize;
2359}
2360
2361/*
2362 * We are updating root port or the upstream port of the
2363 * bridge behind the root port with PHB's windows in order
2364 * to accommodate the changes on required resources during
2365 * PCI (slot) hotplug, which is connected to either root
2366 * port or the downstream ports of PCIe switch behind the
2367 * root port.
2368 */
2369static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2370                                           unsigned long type)
2371{
2372        struct pci_controller *hose = pci_bus_to_host(bus);
2373        struct pnv_phb *phb = hose->private_data;
2374        struct pci_dev *bridge = bus->self;
2375        struct resource *r, *w;
2376        bool msi_region = false;
2377        int i;
2378
2379        /* Check if we need apply fixup to the bridge's windows */
2380        if (!pci_is_root_bus(bridge->bus) &&
2381            !pci_is_root_bus(bridge->bus->self->bus))
2382                return;
2383
2384        /* Fixup the resources */
2385        for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2386                r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2387                if (!r->flags || !r->parent)
2388                        continue;
2389
2390                w = NULL;
2391                if (r->flags & type & IORESOURCE_IO)
2392                        w = &hose->io_resource;
2393                else if (pnv_pci_is_m64(phb, r) &&
2394                         (type & IORESOURCE_PREFETCH) &&
2395                         phb->ioda.m64_segsize)
2396                        w = &hose->mem_resources[1];
2397                else if (r->flags & type & IORESOURCE_MEM) {
2398                        w = &hose->mem_resources[0];
2399                        msi_region = true;
2400                }
2401
2402                r->start = w->start;
2403                r->end = w->end;
2404
2405                /* The 64KB 32-bits MSI region shouldn't be included in
2406                 * the 32-bits bridge window. Otherwise, we can see strange
2407                 * issues. One of them is EEH error observed on Garrison.
2408                 *
2409                 * Exclude top 1MB region which is the minimal alignment of
2410                 * 32-bits bridge window.
2411                 */
2412                if (msi_region) {
2413                        r->end += 0x10000;
2414                        r->end -= 0x100000;
2415                }
2416        }
2417}
2418
2419static void pnv_pci_configure_bus(struct pci_bus *bus)
2420{
2421        struct pci_dev *bridge = bus->self;
2422        struct pnv_ioda_pe *pe;
2423        bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2424
2425        dev_info(&bus->dev, "Configuring PE for bus\n");
2426
2427        /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2428        if (WARN_ON(list_empty(&bus->devices)))
2429                return;
2430
2431        /* Reserve PEs according to used M64 resources */
2432        pnv_ioda_reserve_m64_pe(bus, NULL, all);
2433
2434        /*
2435         * Assign PE. We might run here because of partial hotplug.
2436         * For the case, we just pick up the existing PE and should
2437         * not allocate resources again.
2438         */
2439        pe = pnv_ioda_setup_bus_PE(bus, all);
2440        if (!pe)
2441                return;
2442
2443        pnv_ioda_setup_pe_seg(pe);
2444}
2445
2446static resource_size_t pnv_pci_default_alignment(void)
2447{
2448        return PAGE_SIZE;
2449}
2450
2451/* Prevent enabling devices for which we couldn't properly
2452 * assign a PE
2453 */
2454static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2455{
2456        struct pci_dn *pdn;
2457
2458        pdn = pci_get_pdn(dev);
2459        if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2460                pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2461                return false;
2462        }
2463
2464        return true;
2465}
2466
2467static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2468{
2469        struct pci_dn *pdn;
2470        struct pnv_ioda_pe *pe;
2471
2472        pdn = pci_get_pdn(dev);
2473        if (!pdn)
2474                return false;
2475
2476        if (pdn->pe_number == IODA_INVALID_PE) {
2477                pe = pnv_ioda_setup_dev_PE(dev);
2478                if (!pe)
2479                        return false;
2480        }
2481        return true;
2482}
2483
2484static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2485                                       int num)
2486{
2487        struct pnv_ioda_pe *pe = container_of(table_group,
2488                                              struct pnv_ioda_pe, table_group);
2489        struct pnv_phb *phb = pe->phb;
2490        unsigned int idx;
2491        long rc;
2492
2493        pe_info(pe, "Removing DMA window #%d\n", num);
2494        for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2495                if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2496                        continue;
2497
2498                rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2499                                                idx, 0, 0ul, 0ul, 0ul);
2500                if (rc != OPAL_SUCCESS) {
2501                        pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2502                                rc, idx);
2503                        return rc;
2504                }
2505
2506                phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2507        }
2508
2509        pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2510        return OPAL_SUCCESS;
2511}
2512
2513static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2514{
2515        struct iommu_table *tbl = pe->table_group.tables[0];
2516        int64_t rc;
2517
2518        if (!pe->dma_setup_done)
2519                return;
2520
2521        rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2522        if (rc != OPAL_SUCCESS)
2523                return;
2524
2525        pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
2526        if (pe->table_group.group) {
2527                iommu_group_put(pe->table_group.group);
2528                WARN_ON(pe->table_group.group);
2529        }
2530
2531        free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2532        iommu_tce_table_put(tbl);
2533}
2534
2535void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2536{
2537        struct iommu_table *tbl = pe->table_group.tables[0];
2538        int64_t rc;
2539
2540        if (!pe->dma_setup_done)
2541                return;
2542
2543        rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2544        if (rc)
2545                pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2546
2547        pnv_pci_ioda2_set_bypass(pe, false);
2548        if (pe->table_group.group) {
2549                iommu_group_put(pe->table_group.group);
2550                WARN_ON(pe->table_group.group);
2551        }
2552
2553        iommu_tce_table_put(tbl);
2554}
2555
2556static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2557                                 unsigned short win,
2558                                 unsigned int *map)
2559{
2560        struct pnv_phb *phb = pe->phb;
2561        int idx;
2562        int64_t rc;
2563
2564        for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2565                if (map[idx] != pe->pe_number)
2566                        continue;
2567
2568                rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2569                                phb->ioda.reserved_pe_idx, win, 0, idx);
2570
2571                if (rc != OPAL_SUCCESS)
2572                        pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2573                                rc, win, idx);
2574
2575                map[idx] = IODA_INVALID_PE;
2576        }
2577}
2578
2579static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2580{
2581        struct pnv_phb *phb = pe->phb;
2582
2583        if (phb->type == PNV_PHB_IODA1) {
2584                pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2585                                     phb->ioda.io_segmap);
2586                pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2587                                     phb->ioda.m32_segmap);
2588                /* M64 is pre-configured by pnv_ioda1_init_m64() */
2589        } else if (phb->type == PNV_PHB_IODA2) {
2590                pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2591                                     phb->ioda.m32_segmap);
2592        }
2593}
2594
2595static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2596{
2597        struct pnv_phb *phb = pe->phb;
2598        struct pnv_ioda_pe *slave, *tmp;
2599
2600        pe_info(pe, "Releasing PE\n");
2601
2602        mutex_lock(&phb->ioda.pe_list_mutex);
2603        list_del(&pe->list);
2604        mutex_unlock(&phb->ioda.pe_list_mutex);
2605
2606        switch (phb->type) {
2607        case PNV_PHB_IODA1:
2608                pnv_pci_ioda1_release_pe_dma(pe);
2609                break;
2610        case PNV_PHB_IODA2:
2611                pnv_pci_ioda2_release_pe_dma(pe);
2612                break;
2613        case PNV_PHB_NPU_OCAPI:
2614                break;
2615        default:
2616                WARN_ON(1);
2617        }
2618
2619        pnv_ioda_release_pe_seg(pe);
2620        pnv_ioda_deconfigure_pe(pe->phb, pe);
2621
2622        /* Release slave PEs in the compound PE */
2623        if (pe->flags & PNV_IODA_PE_MASTER) {
2624                list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2625                        list_del(&slave->list);
2626                        pnv_ioda_free_pe(slave);
2627                }
2628        }
2629
2630        /*
2631         * The PE for root bus can be removed because of hotplug in EEH
2632         * recovery for fenced PHB error. We need to mark the PE dead so
2633         * that it can be populated again in PCI hot add path. The PE
2634         * shouldn't be destroyed as it's the global reserved resource.
2635         */
2636        if (phb->ioda.root_pe_idx == pe->pe_number)
2637                return;
2638
2639        pnv_ioda_free_pe(pe);
2640}
2641
2642static void pnv_pci_release_device(struct pci_dev *pdev)
2643{
2644        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2645        struct pci_dn *pdn = pci_get_pdn(pdev);
2646        struct pnv_ioda_pe *pe;
2647
2648        /* The VF PE state is torn down when sriov_disable() is called */
2649        if (pdev->is_virtfn)
2650                return;
2651
2652        if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2653                return;
2654
2655#ifdef CONFIG_PCI_IOV
2656        /*
2657         * FIXME: Try move this to sriov_disable(). It's here since we allocate
2658         * the iov state at probe time since we need to fiddle with the IOV
2659         * resources.
2660         */
2661        if (pdev->is_physfn)
2662                kfree(pdev->dev.archdata.iov_data);
2663#endif
2664
2665        /*
2666         * PCI hotplug can happen as part of EEH error recovery. The @pdn
2667         * isn't removed and added afterwards in this scenario. We should
2668         * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2669         * device count is decreased on removing devices while failing to
2670         * be increased on adding devices. It leads to unbalanced PE's device
2671         * count and eventually make normal PCI hotplug path broken.
2672         */
2673        pe = &phb->ioda.pe_array[pdn->pe_number];
2674        pdn->pe_number = IODA_INVALID_PE;
2675
2676        WARN_ON(--pe->device_count < 0);
2677        if (pe->device_count == 0)
2678                pnv_ioda_release_pe(pe);
2679}
2680
2681static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2682{
2683        struct pnv_phb *phb = hose->private_data;
2684
2685        opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2686                       OPAL_ASSERT_RESET);
2687}
2688
2689static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2690{
2691        struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2692        struct pnv_ioda_pe *pe;
2693
2694        list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2695                if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2696                        continue;
2697
2698                if (!pe->pbus)
2699                        continue;
2700
2701                if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2702                        pe->pbus = bus;
2703                        break;
2704                }
2705        }
2706}
2707
2708static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2709        .dma_dev_setup          = pnv_pci_ioda_dma_dev_setup,
2710        .dma_bus_setup          = pnv_pci_ioda_dma_bus_setup,
2711        .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
2712        .setup_msi_irqs         = pnv_setup_msi_irqs,
2713        .teardown_msi_irqs      = pnv_teardown_msi_irqs,
2714        .enable_device_hook     = pnv_pci_enable_device_hook,
2715        .release_device         = pnv_pci_release_device,
2716        .window_alignment       = pnv_pci_window_alignment,
2717        .setup_bridge           = pnv_pci_fixup_bridge_resources,
2718        .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2719        .shutdown               = pnv_pci_ioda_shutdown,
2720};
2721
2722static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2723        .enable_device_hook     = pnv_ocapi_enable_device_hook,
2724        .release_device         = pnv_pci_release_device,
2725        .window_alignment       = pnv_pci_window_alignment,
2726        .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2727        .shutdown               = pnv_pci_ioda_shutdown,
2728};
2729
2730static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2731                                         u64 hub_id, int ioda_type)
2732{
2733        struct pci_controller *hose;
2734        struct pnv_phb *phb;
2735        unsigned long size, m64map_off, m32map_off, pemap_off;
2736        unsigned long iomap_off = 0, dma32map_off = 0;
2737        struct pnv_ioda_pe *root_pe;
2738        struct resource r;
2739        const __be64 *prop64;
2740        const __be32 *prop32;
2741        int len;
2742        unsigned int segno;
2743        u64 phb_id;
2744        void *aux;
2745        long rc;
2746
2747        if (!of_device_is_available(np))
2748                return;
2749
2750        pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
2751
2752        prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2753        if (!prop64) {
2754                pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2755                return;
2756        }
2757        phb_id = be64_to_cpup(prop64);
2758        pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2759
2760        phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2761        if (!phb)
2762                panic("%s: Failed to allocate %zu bytes\n", __func__,
2763                      sizeof(*phb));
2764
2765        /* Allocate PCI controller */
2766        phb->hose = hose = pcibios_alloc_controller(np);
2767        if (!phb->hose) {
2768                pr_err("  Can't allocate PCI controller for %pOF\n",
2769                       np);
2770                memblock_free(__pa(phb), sizeof(struct pnv_phb));
2771                return;
2772        }
2773
2774        spin_lock_init(&phb->lock);
2775        prop32 = of_get_property(np, "bus-range", &len);
2776        if (prop32 && len == 8) {
2777                hose->first_busno = be32_to_cpu(prop32[0]);
2778                hose->last_busno = be32_to_cpu(prop32[1]);
2779        } else {
2780                pr_warn("  Broken <bus-range> on %pOF\n", np);
2781                hose->first_busno = 0;
2782                hose->last_busno = 0xff;
2783        }
2784        hose->private_data = phb;
2785        phb->hub_id = hub_id;
2786        phb->opal_id = phb_id;
2787        phb->type = ioda_type;
2788        mutex_init(&phb->ioda.pe_alloc_mutex);
2789
2790        /* Detect specific models for error handling */
2791        if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2792                phb->model = PNV_PHB_MODEL_P7IOC;
2793        else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2794                phb->model = PNV_PHB_MODEL_PHB3;
2795        else
2796                phb->model = PNV_PHB_MODEL_UNKNOWN;
2797
2798        /* Initialize diagnostic data buffer */
2799        prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2800        if (prop32)
2801                phb->diag_data_size = be32_to_cpup(prop32);
2802        else
2803                phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2804
2805        phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
2806        if (!phb->diag_data)
2807                panic("%s: Failed to allocate %u bytes\n", __func__,
2808                      phb->diag_data_size);
2809
2810        /* Parse 32-bit and IO ranges (if any) */
2811        pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2812
2813        /* Get registers */
2814        if (!of_address_to_resource(np, 0, &r)) {
2815                phb->regs_phys = r.start;
2816                phb->regs = ioremap(r.start, resource_size(&r));
2817                if (phb->regs == NULL)
2818                        pr_err("  Failed to map registers !\n");
2819        }
2820
2821        /* Initialize more IODA stuff */
2822        phb->ioda.total_pe_num = 1;
2823        prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2824        if (prop32)
2825                phb->ioda.total_pe_num = be32_to_cpup(prop32);
2826        prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2827        if (prop32)
2828                phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
2829
2830        /* Invalidate RID to PE# mapping */
2831        for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
2832                phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
2833
2834        /* Parse 64-bit MMIO range */
2835        pnv_ioda_parse_m64_window(phb);
2836
2837        phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2838        /* FW Has already off top 64k of M32 space (MSI space) */
2839        phb->ioda.m32_size += 0x10000;
2840
2841        phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
2842        phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2843        phb->ioda.io_size = hose->pci_io_size;
2844        phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
2845        phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2846
2847        /* Calculate how many 32-bit TCE segments we have */
2848        phb->ioda.dma32_count = phb->ioda.m32_pci_base /
2849                                PNV_IODA1_DMA32_SEGSIZE;
2850
2851        /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2852        size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
2853                        sizeof(unsigned long));
2854        m64map_off = size;
2855        size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
2856        m32map_off = size;
2857        size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
2858        if (phb->type == PNV_PHB_IODA1) {
2859                iomap_off = size;
2860                size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
2861                dma32map_off = size;
2862                size += phb->ioda.dma32_count *
2863                        sizeof(phb->ioda.dma32_segmap[0]);
2864        }
2865        pemap_off = size;
2866        size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
2867        aux = kzalloc(size, GFP_KERNEL);
2868        if (!aux)
2869                panic("%s: Failed to allocate %lu bytes\n", __func__, size);
2870
2871        phb->ioda.pe_alloc = aux;
2872        phb->ioda.m64_segmap = aux + m64map_off;
2873        phb->ioda.m32_segmap = aux + m32map_off;
2874        for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
2875                phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
2876                phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
2877        }
2878        if (phb->type == PNV_PHB_IODA1) {
2879                phb->ioda.io_segmap = aux + iomap_off;
2880                for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
2881                        phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
2882
2883                phb->ioda.dma32_segmap = aux + dma32map_off;
2884                for (segno = 0; segno < phb->ioda.dma32_count; segno++)
2885                        phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
2886        }
2887        phb->ioda.pe_array = aux + pemap_off;
2888
2889        /*
2890         * Choose PE number for root bus, which shouldn't have
2891         * M64 resources consumed by its child devices. To pick
2892         * the PE number adjacent to the reserved one if possible.
2893         */
2894        pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
2895        if (phb->ioda.reserved_pe_idx == 0) {
2896                phb->ioda.root_pe_idx = 1;
2897                pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2898        } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
2899                phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
2900                pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
2901        } else {
2902                /* otherwise just allocate one */
2903                root_pe = pnv_ioda_alloc_pe(phb, 1);
2904                phb->ioda.root_pe_idx = root_pe->pe_number;
2905        }
2906
2907        INIT_LIST_HEAD(&phb->ioda.pe_list);
2908        mutex_init(&phb->ioda.pe_list_mutex);
2909
2910        /* Calculate how many 32-bit TCE segments we have */
2911        phb->ioda.dma32_count = phb->ioda.m32_pci_base /
2912                                PNV_IODA1_DMA32_SEGSIZE;
2913
2914#if 0 /* We should really do that ... */
2915        rc = opal_pci_set_phb_mem_window(opal->phb_id,
2916                                         window_type,
2917                                         window_num,
2918                                         starting_real_address,
2919                                         starting_pci_address,
2920                                         segment_size);
2921#endif
2922
2923        pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2924                phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
2925                phb->ioda.m32_size, phb->ioda.m32_segsize);
2926        if (phb->ioda.m64_size)
2927                pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2928                        phb->ioda.m64_size, phb->ioda.m64_segsize);
2929        if (phb->ioda.io_size)
2930                pr_info("                  IO: 0x%x [segment=0x%x]\n",
2931                        phb->ioda.io_size, phb->ioda.io_segsize);
2932
2933
2934        phb->hose->ops = &pnv_pci_ops;
2935        phb->get_pe_state = pnv_ioda_get_pe_state;
2936        phb->freeze_pe = pnv_ioda_freeze_pe;
2937        phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2938
2939        /* Setup MSI support */
2940        pnv_pci_init_ioda_msis(phb);
2941
2942        /*
2943         * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2944         * to let the PCI core do resource assignment. It's supposed
2945         * that the PCI core will do correct I/O and MMIO alignment
2946         * for the P2P bridge bars so that each PCI bus (excluding
2947         * the child P2P bridges) can form individual PE.
2948         */
2949        ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2950
2951        switch (phb->type) {
2952        case PNV_PHB_NPU_OCAPI:
2953                hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
2954                break;
2955        default:
2956                hose->controller_ops = pnv_pci_ioda_controller_ops;
2957        }
2958
2959        ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
2960
2961#ifdef CONFIG_PCI_IOV
2962        ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
2963        ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2964        ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
2965        ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
2966#endif
2967
2968        pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2969
2970        /* Reset IODA tables to a clean state */
2971        rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2972        if (rc)
2973                pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
2974
2975        /*
2976         * If we're running in kdump kernel, the previous kernel never
2977         * shutdown PCI devices correctly. We already got IODA table
2978         * cleaned out. So we have to issue PHB reset to stop all PCI
2979         * transactions from previous kernel. The ppc_pci_reset_phbs
2980         * kernel parameter will force this reset too. Additionally,
2981         * if the IODA reset above failed then use a bigger hammer.
2982         * This can happen if we get a PHB fatal error in very early
2983         * boot.
2984         */
2985        if (is_kdump_kernel() || pci_reset_phbs || rc) {
2986                pr_info("  Issue PHB reset ...\n");
2987                pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2988                pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2989        }
2990
2991        /* Remove M64 resource if we can't configure it successfully */
2992        if (!phb->init_m64 || phb->init_m64(phb))
2993                hose->mem_resources[1].flags = 0;
2994
2995        /* create pci_dn's for DT nodes under this PHB */
2996        pci_devs_phb_init_dynamic(hose);
2997}
2998
2999void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3000{
3001        pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3002}
3003
3004void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3005{
3006        pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3007}
3008
3009static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3010{
3011        struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3012
3013        if (!machine_is(powernv))
3014                return;
3015
3016        if (phb->type == PNV_PHB_NPU_OCAPI)
3017                dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3018}
3019DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3020
3021void __init pnv_pci_init_ioda_hub(struct device_node *np)
3022{
3023        struct device_node *phbn;
3024        const __be64 *prop64;
3025        u64 hub_id;
3026
3027        pr_info("Probing IODA IO-Hub %pOF\n", np);
3028
3029        prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3030        if (!prop64) {
3031                pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3032                return;
3033        }
3034        hub_id = be64_to_cpup(prop64);
3035        pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3036
3037        /* Count child PHBs */
3038        for_each_child_of_node(np, phbn) {
3039                /* Look for IODA1 PHBs */
3040                if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3041                        pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3042        }
3043}
3044