linux/arch/s390/kernel/crash_dump.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * S390 kdump implementation
   4 *
   5 * Copyright IBM Corp. 2011
   6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
   7 */
   8
   9#include <linux/crash_dump.h>
  10#include <asm/lowcore.h>
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/mm.h>
  14#include <linux/gfp.h>
  15#include <linux/slab.h>
  16#include <linux/memblock.h>
  17#include <linux/elf.h>
  18#include <asm/asm-offsets.h>
  19#include <asm/os_info.h>
  20#include <asm/elf.h>
  21#include <asm/ipl.h>
  22#include <asm/sclp.h>
  23
  24#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
  25#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
  26#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
  27
  28static struct memblock_region oldmem_region;
  29
  30static struct memblock_type oldmem_type = {
  31        .cnt = 1,
  32        .max = 1,
  33        .total_size = 0,
  34        .regions = &oldmem_region,
  35        .name = "oldmem",
  36};
  37
  38struct save_area {
  39        struct list_head list;
  40        u64 psw[2];
  41        u64 ctrs[16];
  42        u64 gprs[16];
  43        u32 acrs[16];
  44        u64 fprs[16];
  45        u32 fpc;
  46        u32 prefix;
  47        u64 todpreg;
  48        u64 timer;
  49        u64 todcmp;
  50        u64 vxrs_low[16];
  51        __vector128 vxrs_high[16];
  52};
  53
  54static LIST_HEAD(dump_save_areas);
  55
  56/*
  57 * Allocate a save area
  58 */
  59struct save_area * __init save_area_alloc(bool is_boot_cpu)
  60{
  61        struct save_area *sa;
  62
  63        sa = (void *) memblock_phys_alloc(sizeof(*sa), 8);
  64        if (!sa)
  65                panic("Failed to allocate save area\n");
  66
  67        if (is_boot_cpu)
  68                list_add(&sa->list, &dump_save_areas);
  69        else
  70                list_add_tail(&sa->list, &dump_save_areas);
  71        return sa;
  72}
  73
  74/*
  75 * Return the address of the save area for the boot CPU
  76 */
  77struct save_area * __init save_area_boot_cpu(void)
  78{
  79        return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
  80}
  81
  82/*
  83 * Copy CPU registers into the save area
  84 */
  85void __init save_area_add_regs(struct save_area *sa, void *regs)
  86{
  87        struct lowcore *lc;
  88
  89        lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
  90        memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
  91        memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
  92        memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
  93        memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
  94        memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
  95        memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
  96        memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
  97        memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
  98        memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
  99        memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
 100}
 101
 102/*
 103 * Copy vector registers into the save area
 104 */
 105void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
 106{
 107        int i;
 108
 109        /* Copy lower halves of vector registers 0-15 */
 110        for (i = 0; i < 16; i++)
 111                memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
 112        /* Copy vector registers 16-31 */
 113        memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
 114}
 115
 116/*
 117 * Return physical address for virtual address
 118 */
 119static inline void *load_real_addr(void *addr)
 120{
 121        unsigned long real_addr;
 122
 123        asm volatile(
 124                   "    lra     %0,0(%1)\n"
 125                   "    jz      0f\n"
 126                   "    la      %0,0\n"
 127                   "0:"
 128                   : "=a" (real_addr) : "a" (addr) : "cc");
 129        return (void *)real_addr;
 130}
 131
 132/*
 133 * Copy memory of the old, dumped system to a kernel space virtual address
 134 */
 135int copy_oldmem_kernel(void *dst, void *src, size_t count)
 136{
 137        unsigned long from, len;
 138        void *ra;
 139        int rc;
 140
 141        while (count) {
 142                from = __pa(src);
 143                if (!OLDMEM_BASE && from < sclp.hsa_size) {
 144                        /* Copy from zfcp/nvme dump HSA area */
 145                        len = min(count, sclp.hsa_size - from);
 146                        rc = memcpy_hsa_kernel(dst, from, len);
 147                        if (rc)
 148                                return rc;
 149                } else {
 150                        /* Check for swapped kdump oldmem areas */
 151                        if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
 152                                from -= OLDMEM_BASE;
 153                                len = min(count, OLDMEM_SIZE - from);
 154                        } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
 155                                len = min(count, OLDMEM_SIZE - from);
 156                                from += OLDMEM_BASE;
 157                        } else {
 158                                len = count;
 159                        }
 160                        if (is_vmalloc_or_module_addr(dst)) {
 161                                ra = load_real_addr(dst);
 162                                len = min(PAGE_SIZE - offset_in_page(ra), len);
 163                        } else {
 164                                ra = dst;
 165                        }
 166                        if (memcpy_real(ra, (void *) from, len))
 167                                return -EFAULT;
 168                }
 169                dst += len;
 170                src += len;
 171                count -= len;
 172        }
 173        return 0;
 174}
 175
 176/*
 177 * Copy memory of the old, dumped system to a user space virtual address
 178 */
 179static int copy_oldmem_user(void __user *dst, void *src, size_t count)
 180{
 181        unsigned long from, len;
 182        int rc;
 183
 184        while (count) {
 185                from = __pa(src);
 186                if (!OLDMEM_BASE && from < sclp.hsa_size) {
 187                        /* Copy from zfcp/nvme dump HSA area */
 188                        len = min(count, sclp.hsa_size - from);
 189                        rc = memcpy_hsa_user(dst, from, len);
 190                        if (rc)
 191                                return rc;
 192                } else {
 193                        /* Check for swapped kdump oldmem areas */
 194                        if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
 195                                from -= OLDMEM_BASE;
 196                                len = min(count, OLDMEM_SIZE - from);
 197                        } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
 198                                len = min(count, OLDMEM_SIZE - from);
 199                                from += OLDMEM_BASE;
 200                        } else {
 201                                len = count;
 202                        }
 203                        rc = copy_to_user_real(dst, (void *) from, count);
 204                        if (rc)
 205                                return rc;
 206                }
 207                dst += len;
 208                src += len;
 209                count -= len;
 210        }
 211        return 0;
 212}
 213
 214/*
 215 * Copy one page from "oldmem"
 216 */
 217ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
 218                         unsigned long offset, int userbuf)
 219{
 220        void *src;
 221        int rc;
 222
 223        if (!csize)
 224                return 0;
 225        src = (void *) (pfn << PAGE_SHIFT) + offset;
 226        if (userbuf)
 227                rc = copy_oldmem_user((void __force __user *) buf, src, csize);
 228        else
 229                rc = copy_oldmem_kernel((void *) buf, src, csize);
 230        return rc;
 231}
 232
 233/*
 234 * Remap "oldmem" for kdump
 235 *
 236 * For the kdump reserved memory this functions performs a swap operation:
 237 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
 238 */
 239static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
 240                                        unsigned long from, unsigned long pfn,
 241                                        unsigned long size, pgprot_t prot)
 242{
 243        unsigned long size_old;
 244        int rc;
 245
 246        if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
 247                size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
 248                rc = remap_pfn_range(vma, from,
 249                                     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
 250                                     size_old, prot);
 251                if (rc || size == size_old)
 252                        return rc;
 253                size -= size_old;
 254                from += size_old;
 255                pfn += size_old >> PAGE_SHIFT;
 256        }
 257        return remap_pfn_range(vma, from, pfn, size, prot);
 258}
 259
 260/*
 261 * Remap "oldmem" for zfcp/nvme dump
 262 *
 263 * We only map available memory above HSA size. Memory below HSA size
 264 * is read on demand using the copy_oldmem_page() function.
 265 */
 266static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
 267                                           unsigned long from,
 268                                           unsigned long pfn,
 269                                           unsigned long size, pgprot_t prot)
 270{
 271        unsigned long hsa_end = sclp.hsa_size;
 272        unsigned long size_hsa;
 273
 274        if (pfn < hsa_end >> PAGE_SHIFT) {
 275                size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
 276                if (size == size_hsa)
 277                        return 0;
 278                size -= size_hsa;
 279                from += size_hsa;
 280                pfn += size_hsa >> PAGE_SHIFT;
 281        }
 282        return remap_pfn_range(vma, from, pfn, size, prot);
 283}
 284
 285/*
 286 * Remap "oldmem" for kdump or zfcp/nvme dump
 287 */
 288int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
 289                           unsigned long pfn, unsigned long size, pgprot_t prot)
 290{
 291        if (OLDMEM_BASE)
 292                return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
 293        else
 294                return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
 295                                                       prot);
 296}
 297
 298static const char *nt_name(Elf64_Word type)
 299{
 300        const char *name = "LINUX";
 301
 302        if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
 303                name = KEXEC_CORE_NOTE_NAME;
 304        return name;
 305}
 306
 307/*
 308 * Initialize ELF note
 309 */
 310static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
 311                          const char *name)
 312{
 313        Elf64_Nhdr *note;
 314        u64 len;
 315
 316        note = (Elf64_Nhdr *)buf;
 317        note->n_namesz = strlen(name) + 1;
 318        note->n_descsz = d_len;
 319        note->n_type = type;
 320        len = sizeof(Elf64_Nhdr);
 321
 322        memcpy(buf + len, name, note->n_namesz);
 323        len = roundup(len + note->n_namesz, 4);
 324
 325        memcpy(buf + len, desc, note->n_descsz);
 326        len = roundup(len + note->n_descsz, 4);
 327
 328        return PTR_ADD(buf, len);
 329}
 330
 331static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
 332{
 333        return nt_init_name(buf, type, desc, d_len, nt_name(type));
 334}
 335
 336/*
 337 * Calculate the size of ELF note
 338 */
 339static size_t nt_size_name(int d_len, const char *name)
 340{
 341        size_t size;
 342
 343        size = sizeof(Elf64_Nhdr);
 344        size += roundup(strlen(name) + 1, 4);
 345        size += roundup(d_len, 4);
 346
 347        return size;
 348}
 349
 350static inline size_t nt_size(Elf64_Word type, int d_len)
 351{
 352        return nt_size_name(d_len, nt_name(type));
 353}
 354
 355/*
 356 * Fill ELF notes for one CPU with save area registers
 357 */
 358static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
 359{
 360        struct elf_prstatus nt_prstatus;
 361        elf_fpregset_t nt_fpregset;
 362
 363        /* Prepare prstatus note */
 364        memset(&nt_prstatus, 0, sizeof(nt_prstatus));
 365        memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
 366        memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
 367        memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
 368        nt_prstatus.common.pr_pid = cpu;
 369        /* Prepare fpregset (floating point) note */
 370        memset(&nt_fpregset, 0, sizeof(nt_fpregset));
 371        memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
 372        memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
 373        /* Create ELF notes for the CPU */
 374        ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
 375        ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
 376        ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
 377        ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
 378        ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
 379        ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
 380        ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
 381        if (MACHINE_HAS_VX) {
 382                ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
 383                              &sa->vxrs_high, sizeof(sa->vxrs_high));
 384                ptr = nt_init(ptr, NT_S390_VXRS_LOW,
 385                              &sa->vxrs_low, sizeof(sa->vxrs_low));
 386        }
 387        return ptr;
 388}
 389
 390/*
 391 * Calculate size of ELF notes per cpu
 392 */
 393static size_t get_cpu_elf_notes_size(void)
 394{
 395        struct save_area *sa = NULL;
 396        size_t size;
 397
 398        size =  nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
 399        size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
 400        size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
 401        size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
 402        size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
 403        size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
 404        size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
 405        if (MACHINE_HAS_VX) {
 406                size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
 407                size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
 408        }
 409
 410        return size;
 411}
 412
 413/*
 414 * Initialize prpsinfo note (new kernel)
 415 */
 416static void *nt_prpsinfo(void *ptr)
 417{
 418        struct elf_prpsinfo prpsinfo;
 419
 420        memset(&prpsinfo, 0, sizeof(prpsinfo));
 421        prpsinfo.pr_sname = 'R';
 422        strcpy(prpsinfo.pr_fname, "vmlinux");
 423        return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
 424}
 425
 426/*
 427 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
 428 */
 429static void *get_vmcoreinfo_old(unsigned long *size)
 430{
 431        char nt_name[11], *vmcoreinfo;
 432        Elf64_Nhdr note;
 433        void *addr;
 434
 435        if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
 436                return NULL;
 437        memset(nt_name, 0, sizeof(nt_name));
 438        if (copy_oldmem_kernel(&note, addr, sizeof(note)))
 439                return NULL;
 440        if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
 441                               sizeof(nt_name) - 1))
 442                return NULL;
 443        if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
 444                return NULL;
 445        vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
 446        if (!vmcoreinfo)
 447                return NULL;
 448        if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
 449                kfree(vmcoreinfo);
 450                return NULL;
 451        }
 452        *size = note.n_descsz;
 453        return vmcoreinfo;
 454}
 455
 456/*
 457 * Initialize vmcoreinfo note (new kernel)
 458 */
 459static void *nt_vmcoreinfo(void *ptr)
 460{
 461        const char *name = VMCOREINFO_NOTE_NAME;
 462        unsigned long size;
 463        void *vmcoreinfo;
 464
 465        vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
 466        if (vmcoreinfo)
 467                return nt_init_name(ptr, 0, vmcoreinfo, size, name);
 468
 469        vmcoreinfo = get_vmcoreinfo_old(&size);
 470        if (!vmcoreinfo)
 471                return ptr;
 472        ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
 473        kfree(vmcoreinfo);
 474        return ptr;
 475}
 476
 477static size_t nt_vmcoreinfo_size(void)
 478{
 479        const char *name = VMCOREINFO_NOTE_NAME;
 480        unsigned long size;
 481        void *vmcoreinfo;
 482
 483        vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
 484        if (vmcoreinfo)
 485                return nt_size_name(size, name);
 486
 487        vmcoreinfo = get_vmcoreinfo_old(&size);
 488        if (!vmcoreinfo)
 489                return 0;
 490
 491        kfree(vmcoreinfo);
 492        return nt_size_name(size, name);
 493}
 494
 495/*
 496 * Initialize final note (needed for /proc/vmcore code)
 497 */
 498static void *nt_final(void *ptr)
 499{
 500        Elf64_Nhdr *note;
 501
 502        note = (Elf64_Nhdr *) ptr;
 503        note->n_namesz = 0;
 504        note->n_descsz = 0;
 505        note->n_type = 0;
 506        return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
 507}
 508
 509/*
 510 * Initialize ELF header (new kernel)
 511 */
 512static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
 513{
 514        memset(ehdr, 0, sizeof(*ehdr));
 515        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
 516        ehdr->e_ident[EI_CLASS] = ELFCLASS64;
 517        ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
 518        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 519        memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
 520        ehdr->e_type = ET_CORE;
 521        ehdr->e_machine = EM_S390;
 522        ehdr->e_version = EV_CURRENT;
 523        ehdr->e_phoff = sizeof(Elf64_Ehdr);
 524        ehdr->e_ehsize = sizeof(Elf64_Ehdr);
 525        ehdr->e_phentsize = sizeof(Elf64_Phdr);
 526        ehdr->e_phnum = mem_chunk_cnt + 1;
 527        return ehdr + 1;
 528}
 529
 530/*
 531 * Return CPU count for ELF header (new kernel)
 532 */
 533static int get_cpu_cnt(void)
 534{
 535        struct save_area *sa;
 536        int cpus = 0;
 537
 538        list_for_each_entry(sa, &dump_save_areas, list)
 539                if (sa->prefix != 0)
 540                        cpus++;
 541        return cpus;
 542}
 543
 544/*
 545 * Return memory chunk count for ELF header (new kernel)
 546 */
 547static int get_mem_chunk_cnt(void)
 548{
 549        int cnt = 0;
 550        u64 idx;
 551
 552        for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
 553                cnt++;
 554        return cnt;
 555}
 556
 557/*
 558 * Initialize ELF loads (new kernel)
 559 */
 560static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
 561{
 562        phys_addr_t start, end;
 563        u64 idx;
 564
 565        for_each_physmem_range(idx, &oldmem_type, &start, &end) {
 566                phdr->p_filesz = end - start;
 567                phdr->p_type = PT_LOAD;
 568                phdr->p_offset = start;
 569                phdr->p_vaddr = start;
 570                phdr->p_paddr = start;
 571                phdr->p_memsz = end - start;
 572                phdr->p_flags = PF_R | PF_W | PF_X;
 573                phdr->p_align = PAGE_SIZE;
 574                phdr++;
 575        }
 576}
 577
 578/*
 579 * Initialize notes (new kernel)
 580 */
 581static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
 582{
 583        struct save_area *sa;
 584        void *ptr_start = ptr;
 585        int cpu;
 586
 587        ptr = nt_prpsinfo(ptr);
 588
 589        cpu = 1;
 590        list_for_each_entry(sa, &dump_save_areas, list)
 591                if (sa->prefix != 0)
 592                        ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
 593        ptr = nt_vmcoreinfo(ptr);
 594        ptr = nt_final(ptr);
 595        memset(phdr, 0, sizeof(*phdr));
 596        phdr->p_type = PT_NOTE;
 597        phdr->p_offset = notes_offset;
 598        phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
 599        phdr->p_memsz = phdr->p_filesz;
 600        return ptr;
 601}
 602
 603static size_t get_elfcorehdr_size(int mem_chunk_cnt)
 604{
 605        size_t size;
 606
 607        size = sizeof(Elf64_Ehdr);
 608        /* PT_NOTES */
 609        size += sizeof(Elf64_Phdr);
 610        /* nt_prpsinfo */
 611        size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
 612        /* regsets */
 613        size += get_cpu_cnt() * get_cpu_elf_notes_size();
 614        /* nt_vmcoreinfo */
 615        size += nt_vmcoreinfo_size();
 616        /* nt_final */
 617        size += sizeof(Elf64_Nhdr);
 618        /* PT_LOADS */
 619        size += mem_chunk_cnt * sizeof(Elf64_Phdr);
 620
 621        return size;
 622}
 623
 624/*
 625 * Create ELF core header (new kernel)
 626 */
 627int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
 628{
 629        Elf64_Phdr *phdr_notes, *phdr_loads;
 630        int mem_chunk_cnt;
 631        void *ptr, *hdr;
 632        u32 alloc_size;
 633        u64 hdr_off;
 634
 635        /* If we are not in kdump or zfcp/nvme dump mode return */
 636        if (!OLDMEM_BASE && !is_ipl_type_dump())
 637                return 0;
 638        /* If we cannot get HSA size for zfcp/nvme dump return error */
 639        if (is_ipl_type_dump() && !sclp.hsa_size)
 640                return -ENODEV;
 641
 642        /* For kdump, exclude previous crashkernel memory */
 643        if (OLDMEM_BASE) {
 644                oldmem_region.base = OLDMEM_BASE;
 645                oldmem_region.size = OLDMEM_SIZE;
 646                oldmem_type.total_size = OLDMEM_SIZE;
 647        }
 648
 649        mem_chunk_cnt = get_mem_chunk_cnt();
 650
 651        alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
 652
 653        hdr = kzalloc(alloc_size, GFP_KERNEL);
 654
 655        /* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
 656         * a dump with this crash kernel will fail. Panic now to allow other
 657         * dump mechanisms to take over.
 658         */
 659        if (!hdr)
 660                panic("s390 kdump allocating elfcorehdr failed");
 661
 662        /* Init elf header */
 663        ptr = ehdr_init(hdr, mem_chunk_cnt);
 664        /* Init program headers */
 665        phdr_notes = ptr;
 666        ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
 667        phdr_loads = ptr;
 668        ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
 669        /* Init notes */
 670        hdr_off = PTR_DIFF(ptr, hdr);
 671        ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
 672        /* Init loads */
 673        hdr_off = PTR_DIFF(ptr, hdr);
 674        loads_init(phdr_loads, hdr_off);
 675        *addr = (unsigned long long) hdr;
 676        *size = (unsigned long long) hdr_off;
 677        BUG_ON(elfcorehdr_size > alloc_size);
 678        return 0;
 679}
 680
 681/*
 682 * Free ELF core header (new kernel)
 683 */
 684void elfcorehdr_free(unsigned long long addr)
 685{
 686        kfree((void *)(unsigned long)addr);
 687}
 688
 689/*
 690 * Read from ELF header
 691 */
 692ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
 693{
 694        void *src = (void *)(unsigned long)*ppos;
 695
 696        memcpy(buf, src, count);
 697        *ppos += count;
 698        return count;
 699}
 700
 701/*
 702 * Read from ELF notes data
 703 */
 704ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
 705{
 706        void *src = (void *)(unsigned long)*ppos;
 707
 708        memcpy(buf, src, count);
 709        *ppos += count;
 710        return count;
 711}
 712