linux/arch/s390/kernel/kprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright IBM Corp. 2002, 2006
   6 *
   7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
   8 */
   9
  10#include <linux/moduleloader.h>
  11#include <linux/kprobes.h>
  12#include <linux/ptrace.h>
  13#include <linux/preempt.h>
  14#include <linux/stop_machine.h>
  15#include <linux/kdebug.h>
  16#include <linux/uaccess.h>
  17#include <linux/extable.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/hardirq.h>
  21#include <linux/ftrace.h>
  22#include <asm/set_memory.h>
  23#include <asm/sections.h>
  24#include <asm/dis.h>
  25#include "entry.h"
  26
  27DEFINE_PER_CPU(struct kprobe *, current_kprobe);
  28DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  29
  30struct kretprobe_blackpoint kretprobe_blacklist[] = { };
  31
  32DEFINE_INSN_CACHE_OPS(s390_insn);
  33
  34static int insn_page_in_use;
  35
  36void *alloc_insn_page(void)
  37{
  38        void *page;
  39
  40        page = module_alloc(PAGE_SIZE);
  41        if (!page)
  42                return NULL;
  43        __set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
  44        return page;
  45}
  46
  47static void *alloc_s390_insn_page(void)
  48{
  49        if (xchg(&insn_page_in_use, 1) == 1)
  50                return NULL;
  51        return &kprobes_insn_page;
  52}
  53
  54static void free_s390_insn_page(void *page)
  55{
  56        xchg(&insn_page_in_use, 0);
  57}
  58
  59struct kprobe_insn_cache kprobe_s390_insn_slots = {
  60        .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
  61        .alloc = alloc_s390_insn_page,
  62        .free = free_s390_insn_page,
  63        .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
  64        .insn_size = MAX_INSN_SIZE,
  65};
  66
  67static void copy_instruction(struct kprobe *p)
  68{
  69        kprobe_opcode_t insn[MAX_INSN_SIZE];
  70        s64 disp, new_disp;
  71        u64 addr, new_addr;
  72        unsigned int len;
  73
  74        len = insn_length(*p->addr >> 8);
  75        memcpy(&insn, p->addr, len);
  76        p->opcode = insn[0];
  77        if (probe_is_insn_relative_long(&insn[0])) {
  78                /*
  79                 * For pc-relative instructions in RIL-b or RIL-c format patch
  80                 * the RI2 displacement field. We have already made sure that
  81                 * the insn slot for the patched instruction is within the same
  82                 * 2GB area as the original instruction (either kernel image or
  83                 * module area). Therefore the new displacement will always fit.
  84                 */
  85                disp = *(s32 *)&insn[1];
  86                addr = (u64)(unsigned long)p->addr;
  87                new_addr = (u64)(unsigned long)p->ainsn.insn;
  88                new_disp = ((addr + (disp * 2)) - new_addr) / 2;
  89                *(s32 *)&insn[1] = new_disp;
  90        }
  91        s390_kernel_write(p->ainsn.insn, &insn, len);
  92}
  93NOKPROBE_SYMBOL(copy_instruction);
  94
  95static int s390_get_insn_slot(struct kprobe *p)
  96{
  97        /*
  98         * Get an insn slot that is within the same 2GB area like the original
  99         * instruction. That way instructions with a 32bit signed displacement
 100         * field can be patched and executed within the insn slot.
 101         */
 102        p->ainsn.insn = NULL;
 103        if (is_kernel((unsigned long)p->addr))
 104                p->ainsn.insn = get_s390_insn_slot();
 105        else if (is_module_addr(p->addr))
 106                p->ainsn.insn = get_insn_slot();
 107        return p->ainsn.insn ? 0 : -ENOMEM;
 108}
 109NOKPROBE_SYMBOL(s390_get_insn_slot);
 110
 111static void s390_free_insn_slot(struct kprobe *p)
 112{
 113        if (!p->ainsn.insn)
 114                return;
 115        if (is_kernel((unsigned long)p->addr))
 116                free_s390_insn_slot(p->ainsn.insn, 0);
 117        else
 118                free_insn_slot(p->ainsn.insn, 0);
 119        p->ainsn.insn = NULL;
 120}
 121NOKPROBE_SYMBOL(s390_free_insn_slot);
 122
 123int arch_prepare_kprobe(struct kprobe *p)
 124{
 125        if ((unsigned long) p->addr & 0x01)
 126                return -EINVAL;
 127        /* Make sure the probe isn't going on a difficult instruction */
 128        if (probe_is_prohibited_opcode(p->addr))
 129                return -EINVAL;
 130        if (s390_get_insn_slot(p))
 131                return -ENOMEM;
 132        copy_instruction(p);
 133        return 0;
 134}
 135NOKPROBE_SYMBOL(arch_prepare_kprobe);
 136
 137struct swap_insn_args {
 138        struct kprobe *p;
 139        unsigned int arm_kprobe : 1;
 140};
 141
 142static int swap_instruction(void *data)
 143{
 144        struct swap_insn_args *args = data;
 145        struct kprobe *p = args->p;
 146        u16 opc;
 147
 148        opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
 149        s390_kernel_write(p->addr, &opc, sizeof(opc));
 150        return 0;
 151}
 152NOKPROBE_SYMBOL(swap_instruction);
 153
 154void arch_arm_kprobe(struct kprobe *p)
 155{
 156        struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
 157
 158        stop_machine_cpuslocked(swap_instruction, &args, NULL);
 159}
 160NOKPROBE_SYMBOL(arch_arm_kprobe);
 161
 162void arch_disarm_kprobe(struct kprobe *p)
 163{
 164        struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
 165
 166        stop_machine_cpuslocked(swap_instruction, &args, NULL);
 167}
 168NOKPROBE_SYMBOL(arch_disarm_kprobe);
 169
 170void arch_remove_kprobe(struct kprobe *p)
 171{
 172        s390_free_insn_slot(p);
 173}
 174NOKPROBE_SYMBOL(arch_remove_kprobe);
 175
 176static void enable_singlestep(struct kprobe_ctlblk *kcb,
 177                              struct pt_regs *regs,
 178                              unsigned long ip)
 179{
 180        struct per_regs per_kprobe;
 181
 182        /* Set up the PER control registers %cr9-%cr11 */
 183        per_kprobe.control = PER_EVENT_IFETCH;
 184        per_kprobe.start = ip;
 185        per_kprobe.end = ip;
 186
 187        /* Save control regs and psw mask */
 188        __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 189        kcb->kprobe_saved_imask = regs->psw.mask &
 190                (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
 191
 192        /* Set PER control regs, turns on single step for the given address */
 193        __ctl_load(per_kprobe, 9, 11);
 194        regs->psw.mask |= PSW_MASK_PER;
 195        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 196        regs->psw.addr = ip;
 197}
 198NOKPROBE_SYMBOL(enable_singlestep);
 199
 200static void disable_singlestep(struct kprobe_ctlblk *kcb,
 201                               struct pt_regs *regs,
 202                               unsigned long ip)
 203{
 204        /* Restore control regs and psw mask, set new psw address */
 205        __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 206        regs->psw.mask &= ~PSW_MASK_PER;
 207        regs->psw.mask |= kcb->kprobe_saved_imask;
 208        regs->psw.addr = ip;
 209}
 210NOKPROBE_SYMBOL(disable_singlestep);
 211
 212/*
 213 * Activate a kprobe by storing its pointer to current_kprobe. The
 214 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
 215 * two kprobes can be active, see KPROBE_REENTER.
 216 */
 217static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
 218{
 219        kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
 220        kcb->prev_kprobe.status = kcb->kprobe_status;
 221        __this_cpu_write(current_kprobe, p);
 222}
 223NOKPROBE_SYMBOL(push_kprobe);
 224
 225/*
 226 * Deactivate a kprobe by backing up to the previous state. If the
 227 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
 228 * for any other state prev_kprobe.kp will be NULL.
 229 */
 230static void pop_kprobe(struct kprobe_ctlblk *kcb)
 231{
 232        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 233        kcb->kprobe_status = kcb->prev_kprobe.status;
 234}
 235NOKPROBE_SYMBOL(pop_kprobe);
 236
 237void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 238{
 239        ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 240        ri->fp = NULL;
 241
 242        /* Replace the return addr with trampoline addr */
 243        regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
 244}
 245NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 246
 247static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 248{
 249        switch (kcb->kprobe_status) {
 250        case KPROBE_HIT_SSDONE:
 251        case KPROBE_HIT_ACTIVE:
 252                kprobes_inc_nmissed_count(p);
 253                break;
 254        case KPROBE_HIT_SS:
 255        case KPROBE_REENTER:
 256        default:
 257                /*
 258                 * A kprobe on the code path to single step an instruction
 259                 * is a BUG. The code path resides in the .kprobes.text
 260                 * section and is executed with interrupts disabled.
 261                 */
 262                pr_err("Invalid kprobe detected.\n");
 263                dump_kprobe(p);
 264                BUG();
 265        }
 266}
 267NOKPROBE_SYMBOL(kprobe_reenter_check);
 268
 269static int kprobe_handler(struct pt_regs *regs)
 270{
 271        struct kprobe_ctlblk *kcb;
 272        struct kprobe *p;
 273
 274        /*
 275         * We want to disable preemption for the entire duration of kprobe
 276         * processing. That includes the calls to the pre/post handlers
 277         * and single stepping the kprobe instruction.
 278         */
 279        preempt_disable();
 280        kcb = get_kprobe_ctlblk();
 281        p = get_kprobe((void *)(regs->psw.addr - 2));
 282
 283        if (p) {
 284                if (kprobe_running()) {
 285                        /*
 286                         * We have hit a kprobe while another is still
 287                         * active. This can happen in the pre and post
 288                         * handler. Single step the instruction of the
 289                         * new probe but do not call any handler function
 290                         * of this secondary kprobe.
 291                         * push_kprobe and pop_kprobe saves and restores
 292                         * the currently active kprobe.
 293                         */
 294                        kprobe_reenter_check(kcb, p);
 295                        push_kprobe(kcb, p);
 296                        kcb->kprobe_status = KPROBE_REENTER;
 297                } else {
 298                        /*
 299                         * If we have no pre-handler or it returned 0, we
 300                         * continue with single stepping. If we have a
 301                         * pre-handler and it returned non-zero, it prepped
 302                         * for changing execution path, so get out doing
 303                         * nothing more here.
 304                         */
 305                        push_kprobe(kcb, p);
 306                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 307                        if (p->pre_handler && p->pre_handler(p, regs)) {
 308                                pop_kprobe(kcb);
 309                                preempt_enable_no_resched();
 310                                return 1;
 311                        }
 312                        kcb->kprobe_status = KPROBE_HIT_SS;
 313                }
 314                enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
 315                return 1;
 316        } /* else:
 317           * No kprobe at this address and no active kprobe. The trap has
 318           * not been caused by a kprobe breakpoint. The race of breakpoint
 319           * vs. kprobe remove does not exist because on s390 as we use
 320           * stop_machine to arm/disarm the breakpoints.
 321           */
 322        preempt_enable_no_resched();
 323        return 0;
 324}
 325NOKPROBE_SYMBOL(kprobe_handler);
 326
 327/*
 328 * Function return probe trampoline:
 329 *      - init_kprobes() establishes a probepoint here
 330 *      - When the probed function returns, this probe
 331 *              causes the handlers to fire
 332 */
 333static void __used kretprobe_trampoline_holder(void)
 334{
 335        asm volatile(".global kretprobe_trampoline\n"
 336                     "kretprobe_trampoline: bcr 0,0\n");
 337}
 338
 339/*
 340 * Called when the probe at kretprobe trampoline is hit
 341 */
 342static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 343{
 344        regs->psw.addr = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
 345        /*
 346         * By returning a non-zero value, we are telling
 347         * kprobe_handler() that we don't want the post_handler
 348         * to run (and have re-enabled preemption)
 349         */
 350        return 1;
 351}
 352NOKPROBE_SYMBOL(trampoline_probe_handler);
 353
 354/*
 355 * Called after single-stepping.  p->addr is the address of the
 356 * instruction whose first byte has been replaced by the "breakpoint"
 357 * instruction.  To avoid the SMP problems that can occur when we
 358 * temporarily put back the original opcode to single-step, we
 359 * single-stepped a copy of the instruction.  The address of this
 360 * copy is p->ainsn.insn.
 361 */
 362static void resume_execution(struct kprobe *p, struct pt_regs *regs)
 363{
 364        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 365        unsigned long ip = regs->psw.addr;
 366        int fixup = probe_get_fixup_type(p->ainsn.insn);
 367
 368        if (fixup & FIXUP_PSW_NORMAL)
 369                ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
 370
 371        if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
 372                int ilen = insn_length(p->ainsn.insn[0] >> 8);
 373                if (ip - (unsigned long) p->ainsn.insn == ilen)
 374                        ip = (unsigned long) p->addr + ilen;
 375        }
 376
 377        if (fixup & FIXUP_RETURN_REGISTER) {
 378                int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
 379                regs->gprs[reg] += (unsigned long) p->addr -
 380                                   (unsigned long) p->ainsn.insn;
 381        }
 382
 383        disable_singlestep(kcb, regs, ip);
 384}
 385NOKPROBE_SYMBOL(resume_execution);
 386
 387static int post_kprobe_handler(struct pt_regs *regs)
 388{
 389        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 390        struct kprobe *p = kprobe_running();
 391
 392        if (!p)
 393                return 0;
 394
 395        if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
 396                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 397                p->post_handler(p, regs, 0);
 398        }
 399
 400        resume_execution(p, regs);
 401        pop_kprobe(kcb);
 402        preempt_enable_no_resched();
 403
 404        /*
 405         * if somebody else is singlestepping across a probe point, psw mask
 406         * will have PER set, in which case, continue the remaining processing
 407         * of do_single_step, as if this is not a probe hit.
 408         */
 409        if (regs->psw.mask & PSW_MASK_PER)
 410                return 0;
 411
 412        return 1;
 413}
 414NOKPROBE_SYMBOL(post_kprobe_handler);
 415
 416static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
 417{
 418        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 419        struct kprobe *p = kprobe_running();
 420        const struct exception_table_entry *entry;
 421
 422        switch(kcb->kprobe_status) {
 423        case KPROBE_HIT_SS:
 424        case KPROBE_REENTER:
 425                /*
 426                 * We are here because the instruction being single
 427                 * stepped caused a page fault. We reset the current
 428                 * kprobe and the nip points back to the probe address
 429                 * and allow the page fault handler to continue as a
 430                 * normal page fault.
 431                 */
 432                disable_singlestep(kcb, regs, (unsigned long) p->addr);
 433                pop_kprobe(kcb);
 434                preempt_enable_no_resched();
 435                break;
 436        case KPROBE_HIT_ACTIVE:
 437        case KPROBE_HIT_SSDONE:
 438                /*
 439                 * In case the user-specified fault handler returned
 440                 * zero, try to fix up.
 441                 */
 442                entry = s390_search_extables(regs->psw.addr);
 443                if (entry && ex_handle(entry, regs))
 444                        return 1;
 445
 446                /*
 447                 * fixup_exception() could not handle it,
 448                 * Let do_page_fault() fix it.
 449                 */
 450                break;
 451        default:
 452                break;
 453        }
 454        return 0;
 455}
 456NOKPROBE_SYMBOL(kprobe_trap_handler);
 457
 458int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 459{
 460        int ret;
 461
 462        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 463                local_irq_disable();
 464        ret = kprobe_trap_handler(regs, trapnr);
 465        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 466                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 467        return ret;
 468}
 469NOKPROBE_SYMBOL(kprobe_fault_handler);
 470
 471/*
 472 * Wrapper routine to for handling exceptions.
 473 */
 474int kprobe_exceptions_notify(struct notifier_block *self,
 475                             unsigned long val, void *data)
 476{
 477        struct die_args *args = (struct die_args *) data;
 478        struct pt_regs *regs = args->regs;
 479        int ret = NOTIFY_DONE;
 480
 481        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 482                local_irq_disable();
 483
 484        switch (val) {
 485        case DIE_BPT:
 486                if (kprobe_handler(regs))
 487                        ret = NOTIFY_STOP;
 488                break;
 489        case DIE_SSTEP:
 490                if (post_kprobe_handler(regs))
 491                        ret = NOTIFY_STOP;
 492                break;
 493        case DIE_TRAP:
 494                if (!preemptible() && kprobe_running() &&
 495                    kprobe_trap_handler(regs, args->trapnr))
 496                        ret = NOTIFY_STOP;
 497                break;
 498        default:
 499                break;
 500        }
 501
 502        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 503                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 504
 505        return ret;
 506}
 507NOKPROBE_SYMBOL(kprobe_exceptions_notify);
 508
 509static struct kprobe trampoline = {
 510        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 511        .pre_handler = trampoline_probe_handler
 512};
 513
 514int __init arch_init_kprobes(void)
 515{
 516        return register_kprobe(&trampoline);
 517}
 518
 519int arch_trampoline_kprobe(struct kprobe *p)
 520{
 521        return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
 522}
 523NOKPROBE_SYMBOL(arch_trampoline_kprobe);
 524