linux/arch/s390/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *               Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/memblock.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
  33#include <linux/irq_work.h>
  34#include <linux/cpu.h>
  35#include <linux/slab.h>
  36#include <linux/sched/hotplug.h>
  37#include <linux/sched/task_stack.h>
  38#include <linux/crash_dump.h>
  39#include <linux/kprobes.h>
  40#include <asm/asm-offsets.h>
  41#include <asm/diag.h>
  42#include <asm/switch_to.h>
  43#include <asm/facility.h>
  44#include <asm/ipl.h>
  45#include <asm/setup.h>
  46#include <asm/irq.h>
  47#include <asm/tlbflush.h>
  48#include <asm/vtimer.h>
  49#include <asm/lowcore.h>
  50#include <asm/sclp.h>
  51#include <asm/debug.h>
  52#include <asm/os_info.h>
  53#include <asm/sigp.h>
  54#include <asm/idle.h>
  55#include <asm/nmi.h>
  56#include <asm/stacktrace.h>
  57#include <asm/topology.h>
  58#include <asm/vdso.h>
  59#include "entry.h"
  60
  61enum {
  62        ec_schedule = 0,
  63        ec_call_function_single,
  64        ec_stop_cpu,
  65        ec_mcck_pending,
  66        ec_irq_work,
  67};
  68
  69enum {
  70        CPU_STATE_STANDBY,
  71        CPU_STATE_CONFIGURED,
  72};
  73
  74static DEFINE_PER_CPU(struct cpu *, cpu_device);
  75
  76struct pcpu {
  77        unsigned long ec_mask;          /* bit mask for ec_xxx functions */
  78        unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
  79        signed char state;              /* physical cpu state */
  80        signed char polarization;       /* physical polarization */
  81        u16 address;                    /* physical cpu address */
  82};
  83
  84static u8 boot_core_type;
  85static struct pcpu pcpu_devices[NR_CPUS];
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98
  99static int __init early_nosmt(char *s)
 100{
 101        smp_max_threads = 1;
 102        return 0;
 103}
 104early_param("nosmt", early_nosmt);
 105
 106static int __init early_smt(char *s)
 107{
 108        get_option(&s, &smp_max_threads);
 109        return 0;
 110}
 111early_param("smt", early_smt);
 112
 113/*
 114 * The smp_cpu_state_mutex must be held when changing the state or polarization
 115 * member of a pcpu data structure within the pcpu_devices arreay.
 116 */
 117DEFINE_MUTEX(smp_cpu_state_mutex);
 118
 119/*
 120 * Signal processor helper functions.
 121 */
 122static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 123{
 124        int cc;
 125
 126        while (1) {
 127                cc = __pcpu_sigp(addr, order, parm, NULL);
 128                if (cc != SIGP_CC_BUSY)
 129                        return cc;
 130                cpu_relax();
 131        }
 132}
 133
 134static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 135{
 136        int cc, retry;
 137
 138        for (retry = 0; ; retry++) {
 139                cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 140                if (cc != SIGP_CC_BUSY)
 141                        break;
 142                if (retry >= 3)
 143                        udelay(10);
 144        }
 145        return cc;
 146}
 147
 148static inline int pcpu_stopped(struct pcpu *pcpu)
 149{
 150        u32 status;
 151
 152        if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 153                        0, &status) != SIGP_CC_STATUS_STORED)
 154                return 0;
 155        return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 156}
 157
 158static inline int pcpu_running(struct pcpu *pcpu)
 159{
 160        if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 161                        0, NULL) != SIGP_CC_STATUS_STORED)
 162                return 1;
 163        /* Status stored condition code is equivalent to cpu not running. */
 164        return 0;
 165}
 166
 167/*
 168 * Find struct pcpu by cpu address.
 169 */
 170static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 171{
 172        int cpu;
 173
 174        for_each_cpu(cpu, mask)
 175                if (pcpu_devices[cpu].address == address)
 176                        return pcpu_devices + cpu;
 177        return NULL;
 178}
 179
 180static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 181{
 182        int order;
 183
 184        if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 185                return;
 186        order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 187        pcpu->ec_clk = get_tod_clock_fast();
 188        pcpu_sigp_retry(pcpu, order, 0);
 189}
 190
 191static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 192{
 193        unsigned long async_stack, nodat_stack, mcck_stack;
 194        struct lowcore *lc;
 195
 196        lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 197        nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 198        async_stack = stack_alloc();
 199        mcck_stack = stack_alloc();
 200        if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 201                goto out;
 202        memcpy(lc, &S390_lowcore, 512);
 203        memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 204        lc->async_stack = async_stack + STACK_INIT_OFFSET;
 205        lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 206        lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 207        lc->cpu_nr = cpu;
 208        lc->spinlock_lockval = arch_spin_lockval(cpu);
 209        lc->spinlock_index = 0;
 210        lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
 211        lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 212        lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 213        lc->preempt_count = PREEMPT_DISABLED;
 214        if (nmi_alloc_per_cpu(lc))
 215                goto out;
 216        lowcore_ptr[cpu] = lc;
 217        pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 218        return 0;
 219
 220out:
 221        stack_free(mcck_stack);
 222        stack_free(async_stack);
 223        free_pages(nodat_stack, THREAD_SIZE_ORDER);
 224        free_pages((unsigned long) lc, LC_ORDER);
 225        return -ENOMEM;
 226}
 227
 228static void pcpu_free_lowcore(struct pcpu *pcpu)
 229{
 230        unsigned long async_stack, nodat_stack, mcck_stack;
 231        struct lowcore *lc;
 232        int cpu;
 233
 234        cpu = pcpu - pcpu_devices;
 235        lc = lowcore_ptr[cpu];
 236        nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 237        async_stack = lc->async_stack - STACK_INIT_OFFSET;
 238        mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 239        pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 240        lowcore_ptr[cpu] = NULL;
 241        nmi_free_per_cpu(lc);
 242        stack_free(async_stack);
 243        stack_free(mcck_stack);
 244        free_pages(nodat_stack, THREAD_SIZE_ORDER);
 245        free_pages((unsigned long) lc, LC_ORDER);
 246}
 247
 248static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 249{
 250        struct lowcore *lc = lowcore_ptr[cpu];
 251
 252        cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 253        cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 254        lc->cpu_nr = cpu;
 255        lc->spinlock_lockval = arch_spin_lockval(cpu);
 256        lc->spinlock_index = 0;
 257        lc->percpu_offset = __per_cpu_offset[cpu];
 258        lc->kernel_asce = S390_lowcore.kernel_asce;
 259        lc->user_asce = s390_invalid_asce;
 260        lc->machine_flags = S390_lowcore.machine_flags;
 261        lc->user_timer = lc->system_timer =
 262                lc->steal_timer = lc->avg_steal_timer = 0;
 263        __ctl_store(lc->cregs_save_area, 0, 15);
 264        lc->cregs_save_area[1] = lc->kernel_asce;
 265        lc->cregs_save_area[7] = lc->user_asce;
 266        save_access_regs((unsigned int *) lc->access_regs_save_area);
 267        arch_spin_lock_setup(cpu);
 268}
 269
 270static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 271{
 272        struct lowcore *lc;
 273        int cpu;
 274
 275        cpu = pcpu - pcpu_devices;
 276        lc = lowcore_ptr[cpu];
 277        lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 278                + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 279        lc->current_task = (unsigned long) tsk;
 280        lc->lpp = LPP_MAGIC;
 281        lc->current_pid = tsk->pid;
 282        lc->user_timer = tsk->thread.user_timer;
 283        lc->guest_timer = tsk->thread.guest_timer;
 284        lc->system_timer = tsk->thread.system_timer;
 285        lc->hardirq_timer = tsk->thread.hardirq_timer;
 286        lc->softirq_timer = tsk->thread.softirq_timer;
 287        lc->steal_timer = 0;
 288}
 289
 290static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 291{
 292        struct lowcore *lc;
 293        int cpu;
 294
 295        cpu = pcpu - pcpu_devices;
 296        lc = lowcore_ptr[cpu];
 297        lc->restart_stack = lc->nodat_stack;
 298        lc->restart_fn = (unsigned long) func;
 299        lc->restart_data = (unsigned long) data;
 300        lc->restart_source = -1UL;
 301        pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 302}
 303
 304typedef void (pcpu_delegate_fn)(void *);
 305
 306/*
 307 * Call function via PSW restart on pcpu and stop the current cpu.
 308 */
 309static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 310{
 311        func(data);     /* should not return */
 312}
 313
 314static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
 315                                                pcpu_delegate_fn *func,
 316                                                void *data, unsigned long stack)
 317{
 318        struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 319        unsigned long source_cpu = stap();
 320
 321        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 322        if (pcpu->address == source_cpu) {
 323                call_on_stack(2, stack, void, __pcpu_delegate,
 324                              pcpu_delegate_fn *, func, void *, data);
 325        }
 326        /* Stop target cpu (if func returns this stops the current cpu). */
 327        pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 328        /* Restart func on the target cpu and stop the current cpu. */
 329        mem_assign_absolute(lc->restart_stack, stack);
 330        mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 331        mem_assign_absolute(lc->restart_data, (unsigned long) data);
 332        mem_assign_absolute(lc->restart_source, source_cpu);
 333        __bpon();
 334        asm volatile(
 335                "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
 336                "       brc     2,0b    # busy, try again\n"
 337                "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
 338                "       brc     2,1b    # busy, try again\n"
 339                : : "d" (pcpu->address), "d" (source_cpu),
 340                    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 341                : "0", "1", "cc");
 342        for (;;) ;
 343}
 344
 345/*
 346 * Enable additional logical cpus for multi-threading.
 347 */
 348static int pcpu_set_smt(unsigned int mtid)
 349{
 350        int cc;
 351
 352        if (smp_cpu_mtid == mtid)
 353                return 0;
 354        cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 355        if (cc == 0) {
 356                smp_cpu_mtid = mtid;
 357                smp_cpu_mt_shift = 0;
 358                while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 359                        smp_cpu_mt_shift++;
 360                pcpu_devices[0].address = stap();
 361        }
 362        return cc;
 363}
 364
 365/*
 366 * Call function on an online CPU.
 367 */
 368void smp_call_online_cpu(void (*func)(void *), void *data)
 369{
 370        struct pcpu *pcpu;
 371
 372        /* Use the current cpu if it is online. */
 373        pcpu = pcpu_find_address(cpu_online_mask, stap());
 374        if (!pcpu)
 375                /* Use the first online cpu. */
 376                pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 377        pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 378}
 379
 380/*
 381 * Call function on the ipl CPU.
 382 */
 383void smp_call_ipl_cpu(void (*func)(void *), void *data)
 384{
 385        struct lowcore *lc = lowcore_ptr[0];
 386
 387        if (pcpu_devices[0].address == stap())
 388                lc = &S390_lowcore;
 389
 390        pcpu_delegate(&pcpu_devices[0], func, data,
 391                      lc->nodat_stack);
 392}
 393
 394int smp_find_processor_id(u16 address)
 395{
 396        int cpu;
 397
 398        for_each_present_cpu(cpu)
 399                if (pcpu_devices[cpu].address == address)
 400                        return cpu;
 401        return -1;
 402}
 403
 404void schedule_mcck_handler(void)
 405{
 406        pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 407}
 408
 409bool notrace arch_vcpu_is_preempted(int cpu)
 410{
 411        if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 412                return false;
 413        if (pcpu_running(pcpu_devices + cpu))
 414                return false;
 415        return true;
 416}
 417EXPORT_SYMBOL(arch_vcpu_is_preempted);
 418
 419void notrace smp_yield_cpu(int cpu)
 420{
 421        if (!MACHINE_HAS_DIAG9C)
 422                return;
 423        diag_stat_inc_norecursion(DIAG_STAT_X09C);
 424        asm volatile("diag %0,0,0x9c"
 425                     : : "d" (pcpu_devices[cpu].address));
 426}
 427EXPORT_SYMBOL_GPL(smp_yield_cpu);
 428
 429/*
 430 * Send cpus emergency shutdown signal. This gives the cpus the
 431 * opportunity to complete outstanding interrupts.
 432 */
 433void notrace smp_emergency_stop(void)
 434{
 435        static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 436        static cpumask_t cpumask;
 437        u64 end;
 438        int cpu;
 439
 440        arch_spin_lock(&lock);
 441        cpumask_copy(&cpumask, cpu_online_mask);
 442        cpumask_clear_cpu(smp_processor_id(), &cpumask);
 443
 444        end = get_tod_clock() + (1000000UL << 12);
 445        for_each_cpu(cpu, &cpumask) {
 446                struct pcpu *pcpu = pcpu_devices + cpu;
 447                set_bit(ec_stop_cpu, &pcpu->ec_mask);
 448                while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 449                                   0, NULL) == SIGP_CC_BUSY &&
 450                       get_tod_clock() < end)
 451                        cpu_relax();
 452        }
 453        while (get_tod_clock() < end) {
 454                for_each_cpu(cpu, &cpumask)
 455                        if (pcpu_stopped(pcpu_devices + cpu))
 456                                cpumask_clear_cpu(cpu, &cpumask);
 457                if (cpumask_empty(&cpumask))
 458                        break;
 459                cpu_relax();
 460        }
 461        arch_spin_unlock(&lock);
 462}
 463NOKPROBE_SYMBOL(smp_emergency_stop);
 464
 465/*
 466 * Stop all cpus but the current one.
 467 */
 468void smp_send_stop(void)
 469{
 470        int cpu;
 471
 472        /* Disable all interrupts/machine checks */
 473        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 474        trace_hardirqs_off();
 475
 476        debug_set_critical();
 477
 478        if (oops_in_progress)
 479                smp_emergency_stop();
 480
 481        /* stop all processors */
 482        for_each_online_cpu(cpu) {
 483                if (cpu == smp_processor_id())
 484                        continue;
 485                pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 486                while (!pcpu_stopped(pcpu_devices + cpu))
 487                        cpu_relax();
 488        }
 489}
 490
 491/*
 492 * This is the main routine where commands issued by other
 493 * cpus are handled.
 494 */
 495static void smp_handle_ext_call(void)
 496{
 497        unsigned long bits;
 498
 499        /* handle bit signal external calls */
 500        bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 501        if (test_bit(ec_stop_cpu, &bits))
 502                smp_stop_cpu();
 503        if (test_bit(ec_schedule, &bits))
 504                scheduler_ipi();
 505        if (test_bit(ec_call_function_single, &bits))
 506                generic_smp_call_function_single_interrupt();
 507        if (test_bit(ec_mcck_pending, &bits))
 508                __s390_handle_mcck();
 509        if (test_bit(ec_irq_work, &bits))
 510                irq_work_run();
 511}
 512
 513static void do_ext_call_interrupt(struct ext_code ext_code,
 514                                  unsigned int param32, unsigned long param64)
 515{
 516        inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 517        smp_handle_ext_call();
 518}
 519
 520void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 521{
 522        int cpu;
 523
 524        for_each_cpu(cpu, mask)
 525                pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 526}
 527
 528void arch_send_call_function_single_ipi(int cpu)
 529{
 530        pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 531}
 532
 533/*
 534 * this function sends a 'reschedule' IPI to another CPU.
 535 * it goes straight through and wastes no time serializing
 536 * anything. Worst case is that we lose a reschedule ...
 537 */
 538void smp_send_reschedule(int cpu)
 539{
 540        pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 541}
 542
 543#ifdef CONFIG_IRQ_WORK
 544void arch_irq_work_raise(void)
 545{
 546        pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 547}
 548#endif
 549
 550/*
 551 * parameter area for the set/clear control bit callbacks
 552 */
 553struct ec_creg_mask_parms {
 554        unsigned long orval;
 555        unsigned long andval;
 556        int cr;
 557};
 558
 559/*
 560 * callback for setting/clearing control bits
 561 */
 562static void smp_ctl_bit_callback(void *info)
 563{
 564        struct ec_creg_mask_parms *pp = info;
 565        unsigned long cregs[16];
 566
 567        __ctl_store(cregs, 0, 15);
 568        cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 569        __ctl_load(cregs, 0, 15);
 570}
 571
 572/*
 573 * Set a bit in a control register of all cpus
 574 */
 575void smp_ctl_set_bit(int cr, int bit)
 576{
 577        struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 578
 579        on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 580}
 581EXPORT_SYMBOL(smp_ctl_set_bit);
 582
 583/*
 584 * Clear a bit in a control register of all cpus
 585 */
 586void smp_ctl_clear_bit(int cr, int bit)
 587{
 588        struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 589
 590        on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 591}
 592EXPORT_SYMBOL(smp_ctl_clear_bit);
 593
 594#ifdef CONFIG_CRASH_DUMP
 595
 596int smp_store_status(int cpu)
 597{
 598        struct lowcore *lc;
 599        struct pcpu *pcpu;
 600        unsigned long pa;
 601
 602        pcpu = pcpu_devices + cpu;
 603        lc = lowcore_ptr[cpu];
 604        pa = __pa(&lc->floating_pt_save_area);
 605        if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 606                              pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 607                return -EIO;
 608        if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 609                return 0;
 610        pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
 611        if (MACHINE_HAS_GS)
 612                pa |= lc->mcesad & MCESA_LC_MASK;
 613        if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 614                              pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 615                return -EIO;
 616        return 0;
 617}
 618
 619/*
 620 * Collect CPU state of the previous, crashed system.
 621 * There are four cases:
 622 * 1) standard zfcp/nvme dump
 623 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 624 *    The state for all CPUs except the boot CPU needs to be collected
 625 *    with sigp stop-and-store-status. The boot CPU state is located in
 626 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 627 *    will copy the boot CPU state from the HSA.
 628 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 629 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 630 *    The state for all CPUs except the boot CPU needs to be collected
 631 *    with sigp stop-and-store-status. The firmware or the boot-loader
 632 *    stored the registers of the boot CPU in the absolute lowcore in the
 633 *    memory of the old system.
 634 * 3) kdump and the old kernel did not store the CPU state,
 635 *    or stand-alone kdump for DASD
 636 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 637 *    The state for all CPUs except the boot CPU needs to be collected
 638 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 639 *    stored the registers of the boot CPU in the memory of the old system.
 640 * 4) kdump and the old kernel stored the CPU state
 641 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 642 *    This case does not exist for s390 anymore, setup_arch explicitly
 643 *    deactivates the elfcorehdr= kernel parameter
 644 */
 645static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 646                                     bool is_boot_cpu, unsigned long page)
 647{
 648        __vector128 *vxrs = (__vector128 *) page;
 649
 650        if (is_boot_cpu)
 651                vxrs = boot_cpu_vector_save_area;
 652        else
 653                __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 654        save_area_add_vxrs(sa, vxrs);
 655}
 656
 657static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 658                                     bool is_boot_cpu, unsigned long page)
 659{
 660        void *regs = (void *) page;
 661
 662        if (is_boot_cpu)
 663                copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 664        else
 665                __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 666        save_area_add_regs(sa, regs);
 667}
 668
 669void __init smp_save_dump_cpus(void)
 670{
 671        int addr, boot_cpu_addr, max_cpu_addr;
 672        struct save_area *sa;
 673        unsigned long page;
 674        bool is_boot_cpu;
 675
 676        if (!(OLDMEM_BASE || is_ipl_type_dump()))
 677                /* No previous system present, normal boot. */
 678                return;
 679        /* Allocate a page as dumping area for the store status sigps */
 680        page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
 681        if (!page)
 682                panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 683                      PAGE_SIZE, 1UL << 31);
 684
 685        /* Set multi-threading state to the previous system. */
 686        pcpu_set_smt(sclp.mtid_prev);
 687        boot_cpu_addr = stap();
 688        max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 689        for (addr = 0; addr <= max_cpu_addr; addr++) {
 690                if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 691                    SIGP_CC_NOT_OPERATIONAL)
 692                        continue;
 693                is_boot_cpu = (addr == boot_cpu_addr);
 694                /* Allocate save area */
 695                sa = save_area_alloc(is_boot_cpu);
 696                if (!sa)
 697                        panic("could not allocate memory for save area\n");
 698                if (MACHINE_HAS_VX)
 699                        /* Get the vector registers */
 700                        smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 701                /*
 702                 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
 703                 * of the boot CPU are stored in the HSA. To retrieve
 704                 * these registers an SCLP request is required which is
 705                 * done by drivers/s390/char/zcore.c:init_cpu_info()
 706                 */
 707                if (!is_boot_cpu || OLDMEM_BASE)
 708                        /* Get the CPU registers */
 709                        smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 710        }
 711        memblock_free(page, PAGE_SIZE);
 712        diag_dma_ops.diag308_reset();
 713        pcpu_set_smt(0);
 714}
 715#endif /* CONFIG_CRASH_DUMP */
 716
 717void smp_cpu_set_polarization(int cpu, int val)
 718{
 719        pcpu_devices[cpu].polarization = val;
 720}
 721
 722int smp_cpu_get_polarization(int cpu)
 723{
 724        return pcpu_devices[cpu].polarization;
 725}
 726
 727int smp_cpu_get_cpu_address(int cpu)
 728{
 729        return pcpu_devices[cpu].address;
 730}
 731
 732static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 733{
 734        static int use_sigp_detection;
 735        int address;
 736
 737        if (use_sigp_detection || sclp_get_core_info(info, early)) {
 738                use_sigp_detection = 1;
 739                for (address = 0;
 740                     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 741                     address += (1U << smp_cpu_mt_shift)) {
 742                        if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 743                            SIGP_CC_NOT_OPERATIONAL)
 744                                continue;
 745                        info->core[info->configured].core_id =
 746                                address >> smp_cpu_mt_shift;
 747                        info->configured++;
 748                }
 749                info->combined = info->configured;
 750        }
 751}
 752
 753static int smp_add_present_cpu(int cpu);
 754
 755static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 756                        bool configured, bool early)
 757{
 758        struct pcpu *pcpu;
 759        int cpu, nr, i;
 760        u16 address;
 761
 762        nr = 0;
 763        if (sclp.has_core_type && core->type != boot_core_type)
 764                return nr;
 765        cpu = cpumask_first(avail);
 766        address = core->core_id << smp_cpu_mt_shift;
 767        for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 768                if (pcpu_find_address(cpu_present_mask, address + i))
 769                        continue;
 770                pcpu = pcpu_devices + cpu;
 771                pcpu->address = address + i;
 772                if (configured)
 773                        pcpu->state = CPU_STATE_CONFIGURED;
 774                else
 775                        pcpu->state = CPU_STATE_STANDBY;
 776                smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 777                set_cpu_present(cpu, true);
 778                if (!early && smp_add_present_cpu(cpu) != 0)
 779                        set_cpu_present(cpu, false);
 780                else
 781                        nr++;
 782                cpumask_clear_cpu(cpu, avail);
 783                cpu = cpumask_next(cpu, avail);
 784        }
 785        return nr;
 786}
 787
 788static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 789{
 790        struct sclp_core_entry *core;
 791        static cpumask_t avail;
 792        bool configured;
 793        u16 core_id;
 794        int nr, i;
 795
 796        get_online_cpus();
 797        mutex_lock(&smp_cpu_state_mutex);
 798        nr = 0;
 799        cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 800        /*
 801         * Add IPL core first (which got logical CPU number 0) to make sure
 802         * that all SMT threads get subsequent logical CPU numbers.
 803         */
 804        if (early) {
 805                core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 806                for (i = 0; i < info->configured; i++) {
 807                        core = &info->core[i];
 808                        if (core->core_id == core_id) {
 809                                nr += smp_add_core(core, &avail, true, early);
 810                                break;
 811                        }
 812                }
 813        }
 814        for (i = 0; i < info->combined; i++) {
 815                configured = i < info->configured;
 816                nr += smp_add_core(&info->core[i], &avail, configured, early);
 817        }
 818        mutex_unlock(&smp_cpu_state_mutex);
 819        put_online_cpus();
 820        return nr;
 821}
 822
 823void __init smp_detect_cpus(void)
 824{
 825        unsigned int cpu, mtid, c_cpus, s_cpus;
 826        struct sclp_core_info *info;
 827        u16 address;
 828
 829        /* Get CPU information */
 830        info = memblock_alloc(sizeof(*info), 8);
 831        if (!info)
 832                panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 833                      __func__, sizeof(*info), 8);
 834        smp_get_core_info(info, 1);
 835        /* Find boot CPU type */
 836        if (sclp.has_core_type) {
 837                address = stap();
 838                for (cpu = 0; cpu < info->combined; cpu++)
 839                        if (info->core[cpu].core_id == address) {
 840                                /* The boot cpu dictates the cpu type. */
 841                                boot_core_type = info->core[cpu].type;
 842                                break;
 843                        }
 844                if (cpu >= info->combined)
 845                        panic("Could not find boot CPU type");
 846        }
 847
 848        /* Set multi-threading state for the current system */
 849        mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 850        mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 851        pcpu_set_smt(mtid);
 852
 853        /* Print number of CPUs */
 854        c_cpus = s_cpus = 0;
 855        for (cpu = 0; cpu < info->combined; cpu++) {
 856                if (sclp.has_core_type &&
 857                    info->core[cpu].type != boot_core_type)
 858                        continue;
 859                if (cpu < info->configured)
 860                        c_cpus += smp_cpu_mtid + 1;
 861                else
 862                        s_cpus += smp_cpu_mtid + 1;
 863        }
 864        pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 865
 866        /* Add CPUs present at boot */
 867        __smp_rescan_cpus(info, true);
 868        memblock_free_early((unsigned long)info, sizeof(*info));
 869}
 870
 871static void smp_init_secondary(void)
 872{
 873        int cpu = raw_smp_processor_id();
 874
 875        S390_lowcore.last_update_clock = get_tod_clock();
 876        restore_access_regs(S390_lowcore.access_regs_save_area);
 877        cpu_init();
 878        rcu_cpu_starting(cpu);
 879        init_cpu_timer();
 880        vtime_init();
 881        vdso_getcpu_init();
 882        pfault_init();
 883        notify_cpu_starting(cpu);
 884        if (topology_cpu_dedicated(cpu))
 885                set_cpu_flag(CIF_DEDICATED_CPU);
 886        else
 887                clear_cpu_flag(CIF_DEDICATED_CPU);
 888        set_cpu_online(cpu, true);
 889        update_cpu_masks();
 890        inc_irq_stat(CPU_RST);
 891        local_irq_enable();
 892        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 893}
 894
 895/*
 896 *      Activate a secondary processor.
 897 */
 898static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
 899{
 900        S390_lowcore.restart_stack = (unsigned long) restart_stack;
 901        S390_lowcore.restart_fn = (unsigned long) do_restart;
 902        S390_lowcore.restart_data = 0;
 903        S390_lowcore.restart_source = -1UL;
 904        __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 905        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 906        call_on_stack_noreturn(smp_init_secondary, S390_lowcore.kernel_stack);
 907}
 908
 909/* Upping and downing of CPUs */
 910int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 911{
 912        struct pcpu *pcpu = pcpu_devices + cpu;
 913        int rc;
 914
 915        if (pcpu->state != CPU_STATE_CONFIGURED)
 916                return -EIO;
 917        if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 918            SIGP_CC_ORDER_CODE_ACCEPTED)
 919                return -EIO;
 920
 921        rc = pcpu_alloc_lowcore(pcpu, cpu);
 922        if (rc)
 923                return rc;
 924        pcpu_prepare_secondary(pcpu, cpu);
 925        pcpu_attach_task(pcpu, tidle);
 926        pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 927        /* Wait until cpu puts itself in the online & active maps */
 928        while (!cpu_online(cpu))
 929                cpu_relax();
 930        return 0;
 931}
 932
 933static unsigned int setup_possible_cpus __initdata;
 934
 935static int __init _setup_possible_cpus(char *s)
 936{
 937        get_option(&s, &setup_possible_cpus);
 938        return 0;
 939}
 940early_param("possible_cpus", _setup_possible_cpus);
 941
 942int __cpu_disable(void)
 943{
 944        unsigned long cregs[16];
 945
 946        /* Handle possible pending IPIs */
 947        smp_handle_ext_call();
 948        set_cpu_online(smp_processor_id(), false);
 949        update_cpu_masks();
 950        /* Disable pseudo page faults on this cpu. */
 951        pfault_fini();
 952        /* Disable interrupt sources via control register. */
 953        __ctl_store(cregs, 0, 15);
 954        cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
 955        cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
 956        cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
 957        __ctl_load(cregs, 0, 15);
 958        clear_cpu_flag(CIF_NOHZ_DELAY);
 959        return 0;
 960}
 961
 962void __cpu_die(unsigned int cpu)
 963{
 964        struct pcpu *pcpu;
 965
 966        /* Wait until target cpu is down */
 967        pcpu = pcpu_devices + cpu;
 968        while (!pcpu_stopped(pcpu))
 969                cpu_relax();
 970        pcpu_free_lowcore(pcpu);
 971        cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 972        cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 973}
 974
 975void __noreturn cpu_die(void)
 976{
 977        idle_task_exit();
 978        __bpon();
 979        pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 980        for (;;) ;
 981}
 982
 983void __init smp_fill_possible_mask(void)
 984{
 985        unsigned int possible, sclp_max, cpu;
 986
 987        sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 988        sclp_max = min(smp_max_threads, sclp_max);
 989        sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 990        possible = setup_possible_cpus ?: nr_cpu_ids;
 991        possible = min(possible, sclp_max);
 992        for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 993                set_cpu_possible(cpu, true);
 994}
 995
 996void __init smp_prepare_cpus(unsigned int max_cpus)
 997{
 998        /* request the 0x1201 emergency signal external interrupt */
 999        if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1000                panic("Couldn't request external interrupt 0x1201");
1001        /* request the 0x1202 external call external interrupt */
1002        if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1003                panic("Couldn't request external interrupt 0x1202");
1004}
1005
1006void __init smp_prepare_boot_cpu(void)
1007{
1008        struct pcpu *pcpu = pcpu_devices;
1009
1010        WARN_ON(!cpu_present(0) || !cpu_online(0));
1011        pcpu->state = CPU_STATE_CONFIGURED;
1012        S390_lowcore.percpu_offset = __per_cpu_offset[0];
1013        smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1014}
1015
1016void __init smp_setup_processor_id(void)
1017{
1018        pcpu_devices[0].address = stap();
1019        S390_lowcore.cpu_nr = 0;
1020        S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1021        S390_lowcore.spinlock_index = 0;
1022}
1023
1024/*
1025 * the frequency of the profiling timer can be changed
1026 * by writing a multiplier value into /proc/profile.
1027 *
1028 * usually you want to run this on all CPUs ;)
1029 */
1030int setup_profiling_timer(unsigned int multiplier)
1031{
1032        return 0;
1033}
1034
1035static ssize_t cpu_configure_show(struct device *dev,
1036                                  struct device_attribute *attr, char *buf)
1037{
1038        ssize_t count;
1039
1040        mutex_lock(&smp_cpu_state_mutex);
1041        count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1042        mutex_unlock(&smp_cpu_state_mutex);
1043        return count;
1044}
1045
1046static ssize_t cpu_configure_store(struct device *dev,
1047                                   struct device_attribute *attr,
1048                                   const char *buf, size_t count)
1049{
1050        struct pcpu *pcpu;
1051        int cpu, val, rc, i;
1052        char delim;
1053
1054        if (sscanf(buf, "%d %c", &val, &delim) != 1)
1055                return -EINVAL;
1056        if (val != 0 && val != 1)
1057                return -EINVAL;
1058        get_online_cpus();
1059        mutex_lock(&smp_cpu_state_mutex);
1060        rc = -EBUSY;
1061        /* disallow configuration changes of online cpus and cpu 0 */
1062        cpu = dev->id;
1063        cpu = smp_get_base_cpu(cpu);
1064        if (cpu == 0)
1065                goto out;
1066        for (i = 0; i <= smp_cpu_mtid; i++)
1067                if (cpu_online(cpu + i))
1068                        goto out;
1069        pcpu = pcpu_devices + cpu;
1070        rc = 0;
1071        switch (val) {
1072        case 0:
1073                if (pcpu->state != CPU_STATE_CONFIGURED)
1074                        break;
1075                rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1076                if (rc)
1077                        break;
1078                for (i = 0; i <= smp_cpu_mtid; i++) {
1079                        if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1080                                continue;
1081                        pcpu[i].state = CPU_STATE_STANDBY;
1082                        smp_cpu_set_polarization(cpu + i,
1083                                                 POLARIZATION_UNKNOWN);
1084                }
1085                topology_expect_change();
1086                break;
1087        case 1:
1088                if (pcpu->state != CPU_STATE_STANDBY)
1089                        break;
1090                rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1091                if (rc)
1092                        break;
1093                for (i = 0; i <= smp_cpu_mtid; i++) {
1094                        if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1095                                continue;
1096                        pcpu[i].state = CPU_STATE_CONFIGURED;
1097                        smp_cpu_set_polarization(cpu + i,
1098                                                 POLARIZATION_UNKNOWN);
1099                }
1100                topology_expect_change();
1101                break;
1102        default:
1103                break;
1104        }
1105out:
1106        mutex_unlock(&smp_cpu_state_mutex);
1107        put_online_cpus();
1108        return rc ? rc : count;
1109}
1110static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1111
1112static ssize_t show_cpu_address(struct device *dev,
1113                                struct device_attribute *attr, char *buf)
1114{
1115        return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1116}
1117static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1118
1119static struct attribute *cpu_common_attrs[] = {
1120        &dev_attr_configure.attr,
1121        &dev_attr_address.attr,
1122        NULL,
1123};
1124
1125static struct attribute_group cpu_common_attr_group = {
1126        .attrs = cpu_common_attrs,
1127};
1128
1129static struct attribute *cpu_online_attrs[] = {
1130        &dev_attr_idle_count.attr,
1131        &dev_attr_idle_time_us.attr,
1132        NULL,
1133};
1134
1135static struct attribute_group cpu_online_attr_group = {
1136        .attrs = cpu_online_attrs,
1137};
1138
1139static int smp_cpu_online(unsigned int cpu)
1140{
1141        struct device *s = &per_cpu(cpu_device, cpu)->dev;
1142
1143        return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1144}
1145
1146static int smp_cpu_pre_down(unsigned int cpu)
1147{
1148        struct device *s = &per_cpu(cpu_device, cpu)->dev;
1149
1150        sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1151        return 0;
1152}
1153
1154static int smp_add_present_cpu(int cpu)
1155{
1156        struct device *s;
1157        struct cpu *c;
1158        int rc;
1159
1160        c = kzalloc(sizeof(*c), GFP_KERNEL);
1161        if (!c)
1162                return -ENOMEM;
1163        per_cpu(cpu_device, cpu) = c;
1164        s = &c->dev;
1165        c->hotpluggable = 1;
1166        rc = register_cpu(c, cpu);
1167        if (rc)
1168                goto out;
1169        rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1170        if (rc)
1171                goto out_cpu;
1172        rc = topology_cpu_init(c);
1173        if (rc)
1174                goto out_topology;
1175        return 0;
1176
1177out_topology:
1178        sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1179out_cpu:
1180        unregister_cpu(c);
1181out:
1182        return rc;
1183}
1184
1185int __ref smp_rescan_cpus(void)
1186{
1187        struct sclp_core_info *info;
1188        int nr;
1189
1190        info = kzalloc(sizeof(*info), GFP_KERNEL);
1191        if (!info)
1192                return -ENOMEM;
1193        smp_get_core_info(info, 0);
1194        nr = __smp_rescan_cpus(info, false);
1195        kfree(info);
1196        if (nr)
1197                topology_schedule_update();
1198        return 0;
1199}
1200
1201static ssize_t __ref rescan_store(struct device *dev,
1202                                  struct device_attribute *attr,
1203                                  const char *buf,
1204                                  size_t count)
1205{
1206        int rc;
1207
1208        rc = lock_device_hotplug_sysfs();
1209        if (rc)
1210                return rc;
1211        rc = smp_rescan_cpus();
1212        unlock_device_hotplug();
1213        return rc ? rc : count;
1214}
1215static DEVICE_ATTR_WO(rescan);
1216
1217static int __init s390_smp_init(void)
1218{
1219        int cpu, rc = 0;
1220
1221        rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1222        if (rc)
1223                return rc;
1224        for_each_present_cpu(cpu) {
1225                rc = smp_add_present_cpu(cpu);
1226                if (rc)
1227                        goto out;
1228        }
1229
1230        rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1231                               smp_cpu_online, smp_cpu_pre_down);
1232        rc = rc <= 0 ? rc : 0;
1233out:
1234        return rc;
1235}
1236subsys_initcall(s390_smp_init);
1237
1238static __always_inline void set_new_lowcore(struct lowcore *lc)
1239{
1240        union register_pair dst, src;
1241        u32 pfx;
1242
1243        src.even = (unsigned long) &S390_lowcore;
1244        src.odd  = sizeof(S390_lowcore);
1245        dst.even = (unsigned long) lc;
1246        dst.odd  = sizeof(*lc);
1247        pfx = (unsigned long) lc;
1248
1249        asm volatile(
1250                "       mvcl    %[dst],%[src]\n"
1251                "       spx     %[pfx]\n"
1252                : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1253                : [pfx] "Q" (pfx)
1254                : "memory", "cc");
1255}
1256
1257static int __init smp_reinit_ipl_cpu(void)
1258{
1259        unsigned long async_stack, nodat_stack, mcck_stack;
1260        struct lowcore *lc, *lc_ipl;
1261        unsigned long flags;
1262
1263        lc_ipl = lowcore_ptr[0];
1264        lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1265        nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1266        async_stack = stack_alloc();
1267        mcck_stack = stack_alloc();
1268        if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1269                panic("Couldn't allocate memory");
1270
1271        local_irq_save(flags);
1272        local_mcck_disable();
1273        set_new_lowcore(lc);
1274        S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1275        S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1276        S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1277        lowcore_ptr[0] = lc;
1278        local_mcck_enable();
1279        local_irq_restore(flags);
1280
1281        free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1282        memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1283        memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1284
1285        return 0;
1286}
1287early_initcall(smp_reinit_ipl_cpu);
1288