linux/arch/s390/kernel/vtime.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *    Virtual cpu timer based timer functions.
   4 *
   5 *    Copyright IBM Corp. 2004, 2012
   6 *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
   7 */
   8
   9#include <linux/kernel_stat.h>
  10#include <linux/sched/cputime.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/timex.h>
  14#include <linux/types.h>
  15#include <linux/time.h>
  16#include <asm/alternative.h>
  17#include <asm/vtimer.h>
  18#include <asm/vtime.h>
  19#include <asm/cpu_mf.h>
  20#include <asm/smp.h>
  21
  22#include "entry.h"
  23
  24static void virt_timer_expire(void);
  25
  26static LIST_HEAD(virt_timer_list);
  27static DEFINE_SPINLOCK(virt_timer_lock);
  28static atomic64_t virt_timer_current;
  29static atomic64_t virt_timer_elapsed;
  30
  31DEFINE_PER_CPU(u64, mt_cycles[8]);
  32static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
  33static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
  34static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
  35
  36static inline u64 get_vtimer(void)
  37{
  38        u64 timer;
  39
  40        asm volatile("stpt %0" : "=Q" (timer));
  41        return timer;
  42}
  43
  44static inline void set_vtimer(u64 expires)
  45{
  46        u64 timer;
  47
  48        asm volatile(
  49                "       stpt    %0\n"   /* Store current cpu timer value */
  50                "       spt     %1"     /* Set new value imm. afterwards */
  51                : "=Q" (timer) : "Q" (expires));
  52        S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
  53        S390_lowcore.last_update_timer = expires;
  54}
  55
  56static inline int virt_timer_forward(u64 elapsed)
  57{
  58        BUG_ON(!irqs_disabled());
  59
  60        if (list_empty(&virt_timer_list))
  61                return 0;
  62        elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
  63        return elapsed >= atomic64_read(&virt_timer_current);
  64}
  65
  66static void update_mt_scaling(void)
  67{
  68        u64 cycles_new[8], *cycles_old;
  69        u64 delta, fac, mult, div;
  70        int i;
  71
  72        stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
  73        cycles_old = this_cpu_ptr(mt_cycles);
  74        fac = 1;
  75        mult = div = 0;
  76        for (i = 0; i <= smp_cpu_mtid; i++) {
  77                delta = cycles_new[i] - cycles_old[i];
  78                div += delta;
  79                mult *= i + 1;
  80                mult += delta * fac;
  81                fac *= i + 1;
  82        }
  83        div *= fac;
  84        if (div > 0) {
  85                /* Update scaling factor */
  86                __this_cpu_write(mt_scaling_mult, mult);
  87                __this_cpu_write(mt_scaling_div, div);
  88                memcpy(cycles_old, cycles_new,
  89                       sizeof(u64) * (smp_cpu_mtid + 1));
  90        }
  91        __this_cpu_write(mt_scaling_jiffies, jiffies_64);
  92}
  93
  94static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
  95{
  96        u64 delta;
  97
  98        delta = new - *tsk_vtime;
  99        *tsk_vtime = new;
 100        return delta;
 101}
 102
 103
 104static inline u64 scale_vtime(u64 vtime)
 105{
 106        u64 mult = __this_cpu_read(mt_scaling_mult);
 107        u64 div = __this_cpu_read(mt_scaling_div);
 108
 109        if (smp_cpu_mtid)
 110                return vtime * mult / div;
 111        return vtime;
 112}
 113
 114static void account_system_index_scaled(struct task_struct *p, u64 cputime,
 115                                        enum cpu_usage_stat index)
 116{
 117        p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
 118        account_system_index_time(p, cputime_to_nsecs(cputime), index);
 119}
 120
 121/*
 122 * Update process times based on virtual cpu times stored by entry.S
 123 * to the lowcore fields user_timer, system_timer & steal_clock.
 124 */
 125static int do_account_vtime(struct task_struct *tsk)
 126{
 127        u64 timer, clock, user, guest, system, hardirq, softirq;
 128
 129        timer = S390_lowcore.last_update_timer;
 130        clock = S390_lowcore.last_update_clock;
 131        /* Use STORE CLOCK by default, STORE CLOCK FAST if available. */
 132        alternative_io("stpt %0\n .insn s,0xb2050000,%1\n",
 133                       "stpt %0\n .insn s,0xb27c0000,%1\n",
 134                       25,
 135                       ASM_OUTPUT2("=Q" (S390_lowcore.last_update_timer),
 136                                   "=Q" (S390_lowcore.last_update_clock)),
 137                       ASM_NO_INPUT_CLOBBER("cc"));
 138        clock = S390_lowcore.last_update_clock - clock;
 139        timer -= S390_lowcore.last_update_timer;
 140
 141        if (hardirq_count())
 142                S390_lowcore.hardirq_timer += timer;
 143        else
 144                S390_lowcore.system_timer += timer;
 145
 146        /* Update MT utilization calculation */
 147        if (smp_cpu_mtid &&
 148            time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
 149                update_mt_scaling();
 150
 151        /* Calculate cputime delta */
 152        user = update_tsk_timer(&tsk->thread.user_timer,
 153                                READ_ONCE(S390_lowcore.user_timer));
 154        guest = update_tsk_timer(&tsk->thread.guest_timer,
 155                                 READ_ONCE(S390_lowcore.guest_timer));
 156        system = update_tsk_timer(&tsk->thread.system_timer,
 157                                  READ_ONCE(S390_lowcore.system_timer));
 158        hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
 159                                   READ_ONCE(S390_lowcore.hardirq_timer));
 160        softirq = update_tsk_timer(&tsk->thread.softirq_timer,
 161                                   READ_ONCE(S390_lowcore.softirq_timer));
 162        S390_lowcore.steal_timer +=
 163                clock - user - guest - system - hardirq - softirq;
 164
 165        /* Push account value */
 166        if (user) {
 167                account_user_time(tsk, cputime_to_nsecs(user));
 168                tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
 169        }
 170
 171        if (guest) {
 172                account_guest_time(tsk, cputime_to_nsecs(guest));
 173                tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
 174        }
 175
 176        if (system)
 177                account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
 178        if (hardirq)
 179                account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
 180        if (softirq)
 181                account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
 182
 183        return virt_timer_forward(user + guest + system + hardirq + softirq);
 184}
 185
 186void vtime_task_switch(struct task_struct *prev)
 187{
 188        do_account_vtime(prev);
 189        prev->thread.user_timer = S390_lowcore.user_timer;
 190        prev->thread.guest_timer = S390_lowcore.guest_timer;
 191        prev->thread.system_timer = S390_lowcore.system_timer;
 192        prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
 193        prev->thread.softirq_timer = S390_lowcore.softirq_timer;
 194        S390_lowcore.user_timer = current->thread.user_timer;
 195        S390_lowcore.guest_timer = current->thread.guest_timer;
 196        S390_lowcore.system_timer = current->thread.system_timer;
 197        S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
 198        S390_lowcore.softirq_timer = current->thread.softirq_timer;
 199}
 200
 201/*
 202 * In s390, accounting pending user time also implies
 203 * accounting system time in order to correctly compute
 204 * the stolen time accounting.
 205 */
 206void vtime_flush(struct task_struct *tsk)
 207{
 208        u64 steal, avg_steal;
 209
 210        if (do_account_vtime(tsk))
 211                virt_timer_expire();
 212
 213        steal = S390_lowcore.steal_timer;
 214        avg_steal = S390_lowcore.avg_steal_timer / 2;
 215        if ((s64) steal > 0) {
 216                S390_lowcore.steal_timer = 0;
 217                account_steal_time(cputime_to_nsecs(steal));
 218                avg_steal += steal;
 219        }
 220        S390_lowcore.avg_steal_timer = avg_steal;
 221}
 222
 223static u64 vtime_delta(void)
 224{
 225        u64 timer = S390_lowcore.last_update_timer;
 226
 227        S390_lowcore.last_update_timer = get_vtimer();
 228
 229        return timer - S390_lowcore.last_update_timer;
 230}
 231
 232/*
 233 * Update process times based on virtual cpu times stored by entry.S
 234 * to the lowcore fields user_timer, system_timer & steal_clock.
 235 */
 236void vtime_account_kernel(struct task_struct *tsk)
 237{
 238        u64 delta = vtime_delta();
 239
 240        if (tsk->flags & PF_VCPU)
 241                S390_lowcore.guest_timer += delta;
 242        else
 243                S390_lowcore.system_timer += delta;
 244
 245        virt_timer_forward(delta);
 246}
 247EXPORT_SYMBOL_GPL(vtime_account_kernel);
 248
 249void vtime_account_softirq(struct task_struct *tsk)
 250{
 251        u64 delta = vtime_delta();
 252
 253        S390_lowcore.softirq_timer += delta;
 254
 255        virt_timer_forward(delta);
 256}
 257
 258void vtime_account_hardirq(struct task_struct *tsk)
 259{
 260        u64 delta = vtime_delta();
 261
 262        S390_lowcore.hardirq_timer += delta;
 263
 264        virt_timer_forward(delta);
 265}
 266
 267/*
 268 * Sorted add to a list. List is linear searched until first bigger
 269 * element is found.
 270 */
 271static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
 272{
 273        struct vtimer_list *tmp;
 274
 275        list_for_each_entry(tmp, head, entry) {
 276                if (tmp->expires > timer->expires) {
 277                        list_add_tail(&timer->entry, &tmp->entry);
 278                        return;
 279                }
 280        }
 281        list_add_tail(&timer->entry, head);
 282}
 283
 284/*
 285 * Handler for expired virtual CPU timer.
 286 */
 287static void virt_timer_expire(void)
 288{
 289        struct vtimer_list *timer, *tmp;
 290        unsigned long elapsed;
 291        LIST_HEAD(cb_list);
 292
 293        /* walk timer list, fire all expired timers */
 294        spin_lock(&virt_timer_lock);
 295        elapsed = atomic64_read(&virt_timer_elapsed);
 296        list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
 297                if (timer->expires < elapsed)
 298                        /* move expired timer to the callback queue */
 299                        list_move_tail(&timer->entry, &cb_list);
 300                else
 301                        timer->expires -= elapsed;
 302        }
 303        if (!list_empty(&virt_timer_list)) {
 304                timer = list_first_entry(&virt_timer_list,
 305                                         struct vtimer_list, entry);
 306                atomic64_set(&virt_timer_current, timer->expires);
 307        }
 308        atomic64_sub(elapsed, &virt_timer_elapsed);
 309        spin_unlock(&virt_timer_lock);
 310
 311        /* Do callbacks and recharge periodic timers */
 312        list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
 313                list_del_init(&timer->entry);
 314                timer->function(timer->data);
 315                if (timer->interval) {
 316                        /* Recharge interval timer */
 317                        timer->expires = timer->interval +
 318                                atomic64_read(&virt_timer_elapsed);
 319                        spin_lock(&virt_timer_lock);
 320                        list_add_sorted(timer, &virt_timer_list);
 321                        spin_unlock(&virt_timer_lock);
 322                }
 323        }
 324}
 325
 326void init_virt_timer(struct vtimer_list *timer)
 327{
 328        timer->function = NULL;
 329        INIT_LIST_HEAD(&timer->entry);
 330}
 331EXPORT_SYMBOL(init_virt_timer);
 332
 333static inline int vtimer_pending(struct vtimer_list *timer)
 334{
 335        return !list_empty(&timer->entry);
 336}
 337
 338static void internal_add_vtimer(struct vtimer_list *timer)
 339{
 340        if (list_empty(&virt_timer_list)) {
 341                /* First timer, just program it. */
 342                atomic64_set(&virt_timer_current, timer->expires);
 343                atomic64_set(&virt_timer_elapsed, 0);
 344                list_add(&timer->entry, &virt_timer_list);
 345        } else {
 346                /* Update timer against current base. */
 347                timer->expires += atomic64_read(&virt_timer_elapsed);
 348                if (likely((s64) timer->expires <
 349                           (s64) atomic64_read(&virt_timer_current)))
 350                        /* The new timer expires before the current timer. */
 351                        atomic64_set(&virt_timer_current, timer->expires);
 352                /* Insert new timer into the list. */
 353                list_add_sorted(timer, &virt_timer_list);
 354        }
 355}
 356
 357static void __add_vtimer(struct vtimer_list *timer, int periodic)
 358{
 359        unsigned long flags;
 360
 361        timer->interval = periodic ? timer->expires : 0;
 362        spin_lock_irqsave(&virt_timer_lock, flags);
 363        internal_add_vtimer(timer);
 364        spin_unlock_irqrestore(&virt_timer_lock, flags);
 365}
 366
 367/*
 368 * add_virt_timer - add a oneshot virtual CPU timer
 369 */
 370void add_virt_timer(struct vtimer_list *timer)
 371{
 372        __add_vtimer(timer, 0);
 373}
 374EXPORT_SYMBOL(add_virt_timer);
 375
 376/*
 377 * add_virt_timer_int - add an interval virtual CPU timer
 378 */
 379void add_virt_timer_periodic(struct vtimer_list *timer)
 380{
 381        __add_vtimer(timer, 1);
 382}
 383EXPORT_SYMBOL(add_virt_timer_periodic);
 384
 385static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
 386{
 387        unsigned long flags;
 388        int rc;
 389
 390        BUG_ON(!timer->function);
 391
 392        if (timer->expires == expires && vtimer_pending(timer))
 393                return 1;
 394        spin_lock_irqsave(&virt_timer_lock, flags);
 395        rc = vtimer_pending(timer);
 396        if (rc)
 397                list_del_init(&timer->entry);
 398        timer->interval = periodic ? expires : 0;
 399        timer->expires = expires;
 400        internal_add_vtimer(timer);
 401        spin_unlock_irqrestore(&virt_timer_lock, flags);
 402        return rc;
 403}
 404
 405/*
 406 * returns whether it has modified a pending timer (1) or not (0)
 407 */
 408int mod_virt_timer(struct vtimer_list *timer, u64 expires)
 409{
 410        return __mod_vtimer(timer, expires, 0);
 411}
 412EXPORT_SYMBOL(mod_virt_timer);
 413
 414/*
 415 * returns whether it has modified a pending timer (1) or not (0)
 416 */
 417int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
 418{
 419        return __mod_vtimer(timer, expires, 1);
 420}
 421EXPORT_SYMBOL(mod_virt_timer_periodic);
 422
 423/*
 424 * Delete a virtual timer.
 425 *
 426 * returns whether the deleted timer was pending (1) or not (0)
 427 */
 428int del_virt_timer(struct vtimer_list *timer)
 429{
 430        unsigned long flags;
 431
 432        if (!vtimer_pending(timer))
 433                return 0;
 434        spin_lock_irqsave(&virt_timer_lock, flags);
 435        list_del_init(&timer->entry);
 436        spin_unlock_irqrestore(&virt_timer_lock, flags);
 437        return 1;
 438}
 439EXPORT_SYMBOL(del_virt_timer);
 440
 441/*
 442 * Start the virtual CPU timer on the current CPU.
 443 */
 444void vtime_init(void)
 445{
 446        /* set initial cpu timer */
 447        set_vtimer(VTIMER_MAX_SLICE);
 448        /* Setup initial MT scaling values */
 449        if (smp_cpu_mtid) {
 450                __this_cpu_write(mt_scaling_jiffies, jiffies);
 451                __this_cpu_write(mt_scaling_mult, 1);
 452                __this_cpu_write(mt_scaling_div, 1);
 453                stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
 454        }
 455}
 456