linux/arch/sparc/kernel/traps_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
  21#include <linux/kallsyms.h>
  22#include <linux/kdebug.h>
  23#include <linux/ftrace.h>
  24#include <linux/reboot.h>
  25#include <linux/gfp.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/smp.h>
  29#include <asm/delay.h>
  30#include <asm/ptrace.h>
  31#include <asm/oplib.h>
  32#include <asm/page.h>
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60        struct {
  61                unsigned long tstate;
  62                unsigned long tpc;
  63                unsigned long tnpc;
  64                unsigned long tt;
  65        } trapstack[4];
  66        unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71        int i, limit;
  72
  73        printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74               "dumping track stack.\n", p->tl);
  75
  76        limit = (tlb_type == hypervisor) ? 2 : 4;
  77        for (i = 0; i < limit; i++) {
  78                printk(KERN_EMERG
  79                       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80                       "TNPC[%016lx] TT[%lx]\n",
  81                       i + 1,
  82                       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83                       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84                printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85        }
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90        char buffer[36];
  91
  92        if (notify_die(DIE_TRAP, "bad trap", regs,
  93                       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94                return;
  95
  96        if (lvl < 0x100) {
  97                sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98                die_if_kernel(buffer, regs);
  99        }
 100
 101        lvl -= 0x100;
 102        if (regs->tstate & TSTATE_PRIV) {
 103                sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104                die_if_kernel(buffer, regs);
 105        }
 106        if (test_thread_flag(TIF_32BIT)) {
 107                regs->tpc &= 0xffffffff;
 108                regs->tnpc &= 0xffffffff;
 109        }
 110        force_sig_fault(SIGILL, ILL_ILLTRP,
 111                        (void __user *)regs->tpc, lvl);
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116        char buffer[36];
 117        
 118        if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119                       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120                return;
 121
 122        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124        sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125        die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131        bust_spinlocks(1);
 132        printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142        unsigned long flags;
 143        int ret = -ENODEV;
 144
 145        spin_lock_irqsave(&dimm_handler_lock, flags);
 146        if (dimm_handler) {
 147                ret = dimm_handler(synd_code, paddr, buf, buflen);
 148        } else if (tlb_type == spitfire) {
 149                if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150                        ret = -EINVAL;
 151                else
 152                        ret = 0;
 153        } else
 154                ret = -ENODEV;
 155        spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157        return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162        unsigned long flags;
 163        int ret = 0;
 164
 165        spin_lock_irqsave(&dimm_handler_lock, flags);
 166        if (!dimm_handler)
 167                dimm_handler = func;
 168        else
 169                ret = -EEXIST;
 170        spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172        return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178        unsigned long flags;
 179
 180        spin_lock_irqsave(&dimm_handler_lock, flags);
 181        if (dimm_handler == func)
 182                dimm_handler = NULL;
 183        spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189        enum ctx_state prev_state = exception_enter();
 190
 191        if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193                goto out;
 194
 195        if (regs->tstate & TSTATE_PRIV) {
 196                printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197                       "SFAR[%016lx], going.\n", sfsr, sfar);
 198                die_if_kernel("Iax", regs);
 199        }
 200        if (test_thread_flag(TIF_32BIT)) {
 201                regs->tpc &= 0xffffffff;
 202                regs->tnpc &= 0xffffffff;
 203        }
 204        force_sig_fault(SIGSEGV, SEGV_MAPERR,
 205                        (void __user *)regs->tpc, 0);
 206out:
 207        exception_exit(prev_state);
 208}
 209
 210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 211{
 212        if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 213                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 214                return;
 215
 216        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 217        spitfire_insn_access_exception(regs, sfsr, sfar);
 218}
 219
 220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 221{
 222        unsigned short type = (type_ctx >> 16);
 223        unsigned short ctx  = (type_ctx & 0xffff);
 224
 225        if (notify_die(DIE_TRAP, "instruction access exception", regs,
 226                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 227                return;
 228
 229        if (regs->tstate & TSTATE_PRIV) {
 230                printk("sun4v_insn_access_exception: ADDR[%016lx] "
 231                       "CTX[%04x] TYPE[%04x], going.\n",
 232                       addr, ctx, type);
 233                die_if_kernel("Iax", regs);
 234        }
 235
 236        if (test_thread_flag(TIF_32BIT)) {
 237                regs->tpc &= 0xffffffff;
 238                regs->tnpc &= 0xffffffff;
 239        }
 240        force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0);
 241}
 242
 243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 244{
 245        if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 246                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 247                return;
 248
 249        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 250        sun4v_insn_access_exception(regs, addr, type_ctx);
 251}
 252
 253bool is_no_fault_exception(struct pt_regs *regs)
 254{
 255        unsigned char asi;
 256        u32 insn;
 257
 258        if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 259                return false;
 260
 261        /*
 262         * Must do a little instruction decoding here in order to
 263         * decide on a course of action. The bits of interest are:
 264         *  insn[31:30] = op, where 3 indicates the load/store group
 265         *  insn[24:19] = op3, which identifies individual opcodes
 266         *  insn[13] indicates an immediate offset
 267         *  op3[4]=1 identifies alternate space instructions
 268         *  op3[5:4]=3 identifies floating point instructions
 269         *  op3[2]=1 identifies stores
 270         * See "Opcode Maps" in the appendix of any Sparc V9
 271         * architecture spec for full details.
 272         */
 273        if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 274                if (insn & 0x2000)                  /* immediate offset */
 275                        asi = (regs->tstate >> 24); /* saved %asi       */
 276                else
 277                        asi = (insn >> 5);          /* immediate asi    */
 278                if ((asi & 0xf6) == ASI_PNF) {
 279                        if (insn & 0x200000)        /* op3[2], stores   */
 280                                return false;
 281                        if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
 282                                handle_ldf_stq(insn, regs);
 283                        else
 284                                handle_ld_nf(insn, regs);
 285                        return true;
 286                }
 287        }
 288        return false;
 289}
 290
 291void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 292{
 293        enum ctx_state prev_state = exception_enter();
 294
 295        if (notify_die(DIE_TRAP, "data access exception", regs,
 296                       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 297                goto out;
 298
 299        if (regs->tstate & TSTATE_PRIV) {
 300                /* Test if this comes from uaccess places. */
 301                const struct exception_table_entry *entry;
 302
 303                entry = search_exception_tables(regs->tpc);
 304                if (entry) {
 305                        /* Ouch, somebody is trying VM hole tricks on us... */
 306#ifdef DEBUG_EXCEPTIONS
 307                        printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 308                        printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 309                               regs->tpc, entry->fixup);
 310#endif
 311                        regs->tpc = entry->fixup;
 312                        regs->tnpc = regs->tpc + 4;
 313                        goto out;
 314                }
 315                /* Shit... */
 316                printk("spitfire_data_access_exception: SFSR[%016lx] "
 317                       "SFAR[%016lx], going.\n", sfsr, sfar);
 318                die_if_kernel("Dax", regs);
 319        }
 320
 321        if (is_no_fault_exception(regs))
 322                return;
 323
 324        force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0);
 325out:
 326        exception_exit(prev_state);
 327}
 328
 329void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 330{
 331        if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 332                       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 333                return;
 334
 335        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 336        spitfire_data_access_exception(regs, sfsr, sfar);
 337}
 338
 339void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 340{
 341        unsigned short type = (type_ctx >> 16);
 342        unsigned short ctx  = (type_ctx & 0xffff);
 343
 344        if (notify_die(DIE_TRAP, "data access exception", regs,
 345                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 346                return;
 347
 348        if (regs->tstate & TSTATE_PRIV) {
 349                /* Test if this comes from uaccess places. */
 350                const struct exception_table_entry *entry;
 351
 352                entry = search_exception_tables(regs->tpc);
 353                if (entry) {
 354                        /* Ouch, somebody is trying VM hole tricks on us... */
 355#ifdef DEBUG_EXCEPTIONS
 356                        printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 357                        printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 358                               regs->tpc, entry->fixup);
 359#endif
 360                        regs->tpc = entry->fixup;
 361                        regs->tnpc = regs->tpc + 4;
 362                        return;
 363                }
 364                printk("sun4v_data_access_exception: ADDR[%016lx] "
 365                       "CTX[%04x] TYPE[%04x], going.\n",
 366                       addr, ctx, type);
 367                die_if_kernel("Dax", regs);
 368        }
 369
 370        if (test_thread_flag(TIF_32BIT)) {
 371                regs->tpc &= 0xffffffff;
 372                regs->tnpc &= 0xffffffff;
 373        }
 374        if (is_no_fault_exception(regs))
 375                return;
 376
 377        /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 378         * is vectored thorugh data access exception trap with fault type
 379         * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 380         * Accessing an address with invalid ASI for the address, for
 381         * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 382         * when TTE.mcd is not set for the VA, is also vectored into
 383         * kerbel by HV as data access exception with fault type set to
 384         * HV_FAULT_TYPE_INV_ASI.
 385         */
 386        switch (type) {
 387        case HV_FAULT_TYPE_INV_ASI:
 388                force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0);
 389                break;
 390        case HV_FAULT_TYPE_MCD_DIS:
 391                force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0);
 392                break;
 393        default:
 394                force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0);
 395                break;
 396        }
 397}
 398
 399void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 400{
 401        if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 402                       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 403                return;
 404
 405        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 406        sun4v_data_access_exception(regs, addr, type_ctx);
 407}
 408
 409#ifdef CONFIG_PCI
 410#include "pci_impl.h"
 411#endif
 412
 413/* When access exceptions happen, we must do this. */
 414static void spitfire_clean_and_reenable_l1_caches(void)
 415{
 416        unsigned long va;
 417
 418        if (tlb_type != spitfire)
 419                BUG();
 420
 421        /* Clean 'em. */
 422        for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 423                spitfire_put_icache_tag(va, 0x0);
 424                spitfire_put_dcache_tag(va, 0x0);
 425        }
 426
 427        /* Re-enable in LSU. */
 428        __asm__ __volatile__("flush %%g6\n\t"
 429                             "membar #Sync\n\t"
 430                             "stxa %0, [%%g0] %1\n\t"
 431                             "membar #Sync"
 432                             : /* no outputs */
 433                             : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 434                                    LSU_CONTROL_IM | LSU_CONTROL_DM),
 435                             "i" (ASI_LSU_CONTROL)
 436                             : "memory");
 437}
 438
 439static void spitfire_enable_estate_errors(void)
 440{
 441        __asm__ __volatile__("stxa      %0, [%%g0] %1\n\t"
 442                             "membar    #Sync"
 443                             : /* no outputs */
 444                             : "r" (ESTATE_ERR_ALL),
 445                               "i" (ASI_ESTATE_ERROR_EN));
 446}
 447
 448static char ecc_syndrome_table[] = {
 449        0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 450        0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 451        0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 452        0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 453        0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 454        0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 455        0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 456        0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 457        0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 458        0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 459        0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 460        0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 461        0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 462        0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 463        0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 464        0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 465        0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 466        0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 467        0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 468        0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 469        0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 470        0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 471        0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 472        0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 473        0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 474        0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 475        0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 476        0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 477        0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 478        0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 479        0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 480        0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 481};
 482
 483static char *syndrome_unknown = "<Unknown>";
 484
 485static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 486{
 487        unsigned short scode;
 488        char memmod_str[64], *p;
 489
 490        if (udbl & bit) {
 491                scode = ecc_syndrome_table[udbl & 0xff];
 492                if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 493                        p = syndrome_unknown;
 494                else
 495                        p = memmod_str;
 496                printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 497                       "Memory Module \"%s\"\n",
 498                       smp_processor_id(), scode, p);
 499        }
 500
 501        if (udbh & bit) {
 502                scode = ecc_syndrome_table[udbh & 0xff];
 503                if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 504                        p = syndrome_unknown;
 505                else
 506                        p = memmod_str;
 507                printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 508                       "Memory Module \"%s\"\n",
 509                       smp_processor_id(), scode, p);
 510        }
 511
 512}
 513
 514static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 515{
 516
 517        printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 518               "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 519               smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 520
 521        spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 522
 523        /* We always log it, even if someone is listening for this
 524         * trap.
 525         */
 526        notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 527                   0, TRAP_TYPE_CEE, SIGTRAP);
 528
 529        /* The Correctable ECC Error trap does not disable I/D caches.  So
 530         * we only have to restore the ESTATE Error Enable register.
 531         */
 532        spitfire_enable_estate_errors();
 533}
 534
 535static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 536{
 537        printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 538               "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 539               smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 540
 541        /* XXX add more human friendly logging of the error status
 542         * XXX as is implemented for cheetah
 543         */
 544
 545        spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 546
 547        /* We always log it, even if someone is listening for this
 548         * trap.
 549         */
 550        notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 551                   0, tt, SIGTRAP);
 552
 553        if (regs->tstate & TSTATE_PRIV) {
 554                if (tl1)
 555                        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 556                die_if_kernel("UE", regs);
 557        }
 558
 559        /* XXX need more intelligent processing here, such as is implemented
 560         * XXX for cheetah errors, in fact if the E-cache still holds the
 561         * XXX line with bad parity this will loop
 562         */
 563
 564        spitfire_clean_and_reenable_l1_caches();
 565        spitfire_enable_estate_errors();
 566
 567        if (test_thread_flag(TIF_32BIT)) {
 568                regs->tpc &= 0xffffffff;
 569                regs->tnpc &= 0xffffffff;
 570        }
 571        force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0);
 572}
 573
 574void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 575{
 576        unsigned long afsr, tt, udbh, udbl;
 577        int tl1;
 578
 579        afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 580        tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 581        tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 582        udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 583        udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 584
 585#ifdef CONFIG_PCI
 586        if (tt == TRAP_TYPE_DAE &&
 587            pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 588                spitfire_clean_and_reenable_l1_caches();
 589                spitfire_enable_estate_errors();
 590
 591                pci_poke_faulted = 1;
 592                regs->tnpc = regs->tpc + 4;
 593                return;
 594        }
 595#endif
 596
 597        if (afsr & SFAFSR_UE)
 598                spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 599
 600        if (tt == TRAP_TYPE_CEE) {
 601                /* Handle the case where we took a CEE trap, but ACK'd
 602                 * only the UE state in the UDB error registers.
 603                 */
 604                if (afsr & SFAFSR_UE) {
 605                        if (udbh & UDBE_CE) {
 606                                __asm__ __volatile__(
 607                                        "stxa   %0, [%1] %2\n\t"
 608                                        "membar #Sync"
 609                                        : /* no outputs */
 610                                        : "r" (udbh & UDBE_CE),
 611                                          "r" (0x0), "i" (ASI_UDB_ERROR_W));
 612                        }
 613                        if (udbl & UDBE_CE) {
 614                                __asm__ __volatile__(
 615                                        "stxa   %0, [%1] %2\n\t"
 616                                        "membar #Sync"
 617                                        : /* no outputs */
 618                                        : "r" (udbl & UDBE_CE),
 619                                          "r" (0x18), "i" (ASI_UDB_ERROR_W));
 620                        }
 621                }
 622
 623                spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 624        }
 625}
 626
 627int cheetah_pcache_forced_on;
 628
 629void cheetah_enable_pcache(void)
 630{
 631        unsigned long dcr;
 632
 633        printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 634               smp_processor_id());
 635
 636        __asm__ __volatile__("ldxa [%%g0] %1, %0"
 637                             : "=r" (dcr)
 638                             : "i" (ASI_DCU_CONTROL_REG));
 639        dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 640        __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 641                             "membar #Sync"
 642                             : /* no outputs */
 643                             : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 644}
 645
 646/* Cheetah error trap handling. */
 647static unsigned long ecache_flush_physbase;
 648static unsigned long ecache_flush_linesize;
 649static unsigned long ecache_flush_size;
 650
 651/* This table is ordered in priority of errors and matches the
 652 * AFAR overwrite policy as well.
 653 */
 654
 655struct afsr_error_table {
 656        unsigned long mask;
 657        const char *name;
 658};
 659
 660static const char CHAFSR_PERR_msg[] =
 661        "System interface protocol error";
 662static const char CHAFSR_IERR_msg[] =
 663        "Internal processor error";
 664static const char CHAFSR_ISAP_msg[] =
 665        "System request parity error on incoming address";
 666static const char CHAFSR_UCU_msg[] =
 667        "Uncorrectable E-cache ECC error for ifetch/data";
 668static const char CHAFSR_UCC_msg[] =
 669        "SW Correctable E-cache ECC error for ifetch/data";
 670static const char CHAFSR_UE_msg[] =
 671        "Uncorrectable system bus data ECC error for read";
 672static const char CHAFSR_EDU_msg[] =
 673        "Uncorrectable E-cache ECC error for stmerge/blkld";
 674static const char CHAFSR_EMU_msg[] =
 675        "Uncorrectable system bus MTAG error";
 676static const char CHAFSR_WDU_msg[] =
 677        "Uncorrectable E-cache ECC error for writeback";
 678static const char CHAFSR_CPU_msg[] =
 679        "Uncorrectable ECC error for copyout";
 680static const char CHAFSR_CE_msg[] =
 681        "HW corrected system bus data ECC error for read";
 682static const char CHAFSR_EDC_msg[] =
 683        "HW corrected E-cache ECC error for stmerge/blkld";
 684static const char CHAFSR_EMC_msg[] =
 685        "HW corrected system bus MTAG ECC error";
 686static const char CHAFSR_WDC_msg[] =
 687        "HW corrected E-cache ECC error for writeback";
 688static const char CHAFSR_CPC_msg[] =
 689        "HW corrected ECC error for copyout";
 690static const char CHAFSR_TO_msg[] =
 691        "Unmapped error from system bus";
 692static const char CHAFSR_BERR_msg[] =
 693        "Bus error response from system bus";
 694static const char CHAFSR_IVC_msg[] =
 695        "HW corrected system bus data ECC error for ivec read";
 696static const char CHAFSR_IVU_msg[] =
 697        "Uncorrectable system bus data ECC error for ivec read";
 698static struct afsr_error_table __cheetah_error_table[] = {
 699        {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
 700        {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
 701        {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
 702        {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
 703        {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
 704        {       CHAFSR_UE,      CHAFSR_UE_msg           },
 705        {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
 706        {       CHAFSR_EMU,     CHAFSR_EMU_msg          },
 707        {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
 708        {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
 709        {       CHAFSR_CE,      CHAFSR_CE_msg           },
 710        {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
 711        {       CHAFSR_EMC,     CHAFSR_EMC_msg          },
 712        {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
 713        {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
 714        {       CHAFSR_TO,      CHAFSR_TO_msg           },
 715        {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
 716        /* These two do not update the AFAR. */
 717        {       CHAFSR_IVC,     CHAFSR_IVC_msg          },
 718        {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
 719        {       0,              NULL                    },
 720};
 721static const char CHPAFSR_DTO_msg[] =
 722        "System bus unmapped error for prefetch/storequeue-read";
 723static const char CHPAFSR_DBERR_msg[] =
 724        "System bus error for prefetch/storequeue-read";
 725static const char CHPAFSR_THCE_msg[] =
 726        "Hardware corrected E-cache Tag ECC error";
 727static const char CHPAFSR_TSCE_msg[] =
 728        "SW handled correctable E-cache Tag ECC error";
 729static const char CHPAFSR_TUE_msg[] =
 730        "Uncorrectable E-cache Tag ECC error";
 731static const char CHPAFSR_DUE_msg[] =
 732        "System bus uncorrectable data ECC error due to prefetch/store-fill";
 733static struct afsr_error_table __cheetah_plus_error_table[] = {
 734        {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
 735        {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
 736        {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
 737        {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
 738        {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
 739        {       CHAFSR_UE,      CHAFSR_UE_msg           },
 740        {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
 741        {       CHAFSR_EMU,     CHAFSR_EMU_msg          },
 742        {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
 743        {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
 744        {       CHAFSR_CE,      CHAFSR_CE_msg           },
 745        {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
 746        {       CHAFSR_EMC,     CHAFSR_EMC_msg          },
 747        {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
 748        {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
 749        {       CHAFSR_TO,      CHAFSR_TO_msg           },
 750        {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
 751        {       CHPAFSR_DTO,    CHPAFSR_DTO_msg         },
 752        {       CHPAFSR_DBERR,  CHPAFSR_DBERR_msg       },
 753        {       CHPAFSR_THCE,   CHPAFSR_THCE_msg        },
 754        {       CHPAFSR_TSCE,   CHPAFSR_TSCE_msg        },
 755        {       CHPAFSR_TUE,    CHPAFSR_TUE_msg         },
 756        {       CHPAFSR_DUE,    CHPAFSR_DUE_msg         },
 757        /* These two do not update the AFAR. */
 758        {       CHAFSR_IVC,     CHAFSR_IVC_msg          },
 759        {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
 760        {       0,              NULL                    },
 761};
 762static const char JPAFSR_JETO_msg[] =
 763        "System interface protocol error, hw timeout caused";
 764static const char JPAFSR_SCE_msg[] =
 765        "Parity error on system snoop results";
 766static const char JPAFSR_JEIC_msg[] =
 767        "System interface protocol error, illegal command detected";
 768static const char JPAFSR_JEIT_msg[] =
 769        "System interface protocol error, illegal ADTYPE detected";
 770static const char JPAFSR_OM_msg[] =
 771        "Out of range memory error has occurred";
 772static const char JPAFSR_ETP_msg[] =
 773        "Parity error on L2 cache tag SRAM";
 774static const char JPAFSR_UMS_msg[] =
 775        "Error due to unsupported store";
 776static const char JPAFSR_RUE_msg[] =
 777        "Uncorrectable ECC error from remote cache/memory";
 778static const char JPAFSR_RCE_msg[] =
 779        "Correctable ECC error from remote cache/memory";
 780static const char JPAFSR_BP_msg[] =
 781        "JBUS parity error on returned read data";
 782static const char JPAFSR_WBP_msg[] =
 783        "JBUS parity error on data for writeback or block store";
 784static const char JPAFSR_FRC_msg[] =
 785        "Foreign read to DRAM incurring correctable ECC error";
 786static const char JPAFSR_FRU_msg[] =
 787        "Foreign read to DRAM incurring uncorrectable ECC error";
 788static struct afsr_error_table __jalapeno_error_table[] = {
 789        {       JPAFSR_JETO,    JPAFSR_JETO_msg         },
 790        {       JPAFSR_SCE,     JPAFSR_SCE_msg          },
 791        {       JPAFSR_JEIC,    JPAFSR_JEIC_msg         },
 792        {       JPAFSR_JEIT,    JPAFSR_JEIT_msg         },
 793        {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
 794        {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
 795        {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
 796        {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
 797        {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
 798        {       CHAFSR_UE,      CHAFSR_UE_msg           },
 799        {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
 800        {       JPAFSR_OM,      JPAFSR_OM_msg           },
 801        {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
 802        {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
 803        {       CHAFSR_CE,      CHAFSR_CE_msg           },
 804        {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
 805        {       JPAFSR_ETP,     JPAFSR_ETP_msg          },
 806        {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
 807        {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
 808        {       CHAFSR_TO,      CHAFSR_TO_msg           },
 809        {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
 810        {       JPAFSR_UMS,     JPAFSR_UMS_msg          },
 811        {       JPAFSR_RUE,     JPAFSR_RUE_msg          },
 812        {       JPAFSR_RCE,     JPAFSR_RCE_msg          },
 813        {       JPAFSR_BP,      JPAFSR_BP_msg           },
 814        {       JPAFSR_WBP,     JPAFSR_WBP_msg          },
 815        {       JPAFSR_FRC,     JPAFSR_FRC_msg          },
 816        {       JPAFSR_FRU,     JPAFSR_FRU_msg          },
 817        /* These two do not update the AFAR. */
 818        {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
 819        {       0,              NULL                    },
 820};
 821static struct afsr_error_table *cheetah_error_table;
 822static unsigned long cheetah_afsr_errors;
 823
 824struct cheetah_err_info *cheetah_error_log;
 825
 826static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 827{
 828        struct cheetah_err_info *p;
 829        int cpu = smp_processor_id();
 830
 831        if (!cheetah_error_log)
 832                return NULL;
 833
 834        p = cheetah_error_log + (cpu * 2);
 835        if ((afsr & CHAFSR_TL1) != 0UL)
 836                p++;
 837
 838        return p;
 839}
 840
 841extern unsigned int tl0_icpe[], tl1_icpe[];
 842extern unsigned int tl0_dcpe[], tl1_dcpe[];
 843extern unsigned int tl0_fecc[], tl1_fecc[];
 844extern unsigned int tl0_cee[], tl1_cee[];
 845extern unsigned int tl0_iae[], tl1_iae[];
 846extern unsigned int tl0_dae[], tl1_dae[];
 847extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 848extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 849extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 850extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 851extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 852
 853void __init cheetah_ecache_flush_init(void)
 854{
 855        unsigned long largest_size, smallest_linesize, order, ver;
 856        int i, sz;
 857
 858        /* Scan all cpu device tree nodes, note two values:
 859         * 1) largest E-cache size
 860         * 2) smallest E-cache line size
 861         */
 862        largest_size = 0UL;
 863        smallest_linesize = ~0UL;
 864
 865        for (i = 0; i < NR_CPUS; i++) {
 866                unsigned long val;
 867
 868                val = cpu_data(i).ecache_size;
 869                if (!val)
 870                        continue;
 871
 872                if (val > largest_size)
 873                        largest_size = val;
 874
 875                val = cpu_data(i).ecache_line_size;
 876                if (val < smallest_linesize)
 877                        smallest_linesize = val;
 878
 879        }
 880
 881        if (largest_size == 0UL || smallest_linesize == ~0UL) {
 882                prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 883                            "parameters.\n");
 884                prom_halt();
 885        }
 886
 887        ecache_flush_size = (2 * largest_size);
 888        ecache_flush_linesize = smallest_linesize;
 889
 890        ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 891
 892        if (ecache_flush_physbase == ~0UL) {
 893                prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 894                            "contiguous physical memory.\n",
 895                            ecache_flush_size);
 896                prom_halt();
 897        }
 898
 899        /* Now allocate error trap reporting scoreboard. */
 900        sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 901        for (order = 0; order < MAX_ORDER; order++) {
 902                if ((PAGE_SIZE << order) >= sz)
 903                        break;
 904        }
 905        cheetah_error_log = (struct cheetah_err_info *)
 906                __get_free_pages(GFP_KERNEL, order);
 907        if (!cheetah_error_log) {
 908                prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 909                            "error logging scoreboard (%d bytes).\n", sz);
 910                prom_halt();
 911        }
 912        memset(cheetah_error_log, 0, PAGE_SIZE << order);
 913
 914        /* Mark all AFSRs as invalid so that the trap handler will
 915         * log new new information there.
 916         */
 917        for (i = 0; i < 2 * NR_CPUS; i++)
 918                cheetah_error_log[i].afsr = CHAFSR_INVALID;
 919
 920        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 921        if ((ver >> 32) == __JALAPENO_ID ||
 922            (ver >> 32) == __SERRANO_ID) {
 923                cheetah_error_table = &__jalapeno_error_table[0];
 924                cheetah_afsr_errors = JPAFSR_ERRORS;
 925        } else if ((ver >> 32) == 0x003e0015) {
 926                cheetah_error_table = &__cheetah_plus_error_table[0];
 927                cheetah_afsr_errors = CHPAFSR_ERRORS;
 928        } else {
 929                cheetah_error_table = &__cheetah_error_table[0];
 930                cheetah_afsr_errors = CHAFSR_ERRORS;
 931        }
 932
 933        /* Now patch trap tables. */
 934        memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 935        memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 936        memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 937        memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 938        memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 939        memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 940        memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 941        memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 942        if (tlb_type == cheetah_plus) {
 943                memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 944                memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 945                memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 946                memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 947        }
 948        flushi(PAGE_OFFSET);
 949}
 950
 951static void cheetah_flush_ecache(void)
 952{
 953        unsigned long flush_base = ecache_flush_physbase;
 954        unsigned long flush_linesize = ecache_flush_linesize;
 955        unsigned long flush_size = ecache_flush_size;
 956
 957        __asm__ __volatile__("1: subcc  %0, %4, %0\n\t"
 958                             "   bne,pt %%xcc, 1b\n\t"
 959                             "    ldxa  [%2 + %0] %3, %%g0\n\t"
 960                             : "=&r" (flush_size)
 961                             : "0" (flush_size), "r" (flush_base),
 962                               "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 963}
 964
 965static void cheetah_flush_ecache_line(unsigned long physaddr)
 966{
 967        unsigned long alias;
 968
 969        physaddr &= ~(8UL - 1UL);
 970        physaddr = (ecache_flush_physbase +
 971                    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 972        alias = physaddr + (ecache_flush_size >> 1UL);
 973        __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 974                             "ldxa [%1] %2, %%g0\n\t"
 975                             "membar #Sync"
 976                             : /* no outputs */
 977                             : "r" (physaddr), "r" (alias),
 978                               "i" (ASI_PHYS_USE_EC));
 979}
 980
 981/* Unfortunately, the diagnostic access to the I-cache tags we need to
 982 * use to clear the thing interferes with I-cache coherency transactions.
 983 *
 984 * So we must only flush the I-cache when it is disabled.
 985 */
 986static void __cheetah_flush_icache(void)
 987{
 988        unsigned int icache_size, icache_line_size;
 989        unsigned long addr;
 990
 991        icache_size = local_cpu_data().icache_size;
 992        icache_line_size = local_cpu_data().icache_line_size;
 993
 994        /* Clear the valid bits in all the tags. */
 995        for (addr = 0; addr < icache_size; addr += icache_line_size) {
 996                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 997                                     "membar #Sync"
 998                                     : /* no outputs */
 999                                     : "r" (addr | (2 << 3)),
1000                                       "i" (ASI_IC_TAG));
1001        }
1002}
1003
1004static void cheetah_flush_icache(void)
1005{
1006        unsigned long dcu_save;
1007
1008        /* Save current DCU, disable I-cache. */
1009        __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1010                             "or %0, %2, %%g1\n\t"
1011                             "stxa %%g1, [%%g0] %1\n\t"
1012                             "membar #Sync"
1013                             : "=r" (dcu_save)
1014                             : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1015                             : "g1");
1016
1017        __cheetah_flush_icache();
1018
1019        /* Restore DCU register */
1020        __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1021                             "membar #Sync"
1022                             : /* no outputs */
1023                             : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1024}
1025
1026static void cheetah_flush_dcache(void)
1027{
1028        unsigned int dcache_size, dcache_line_size;
1029        unsigned long addr;
1030
1031        dcache_size = local_cpu_data().dcache_size;
1032        dcache_line_size = local_cpu_data().dcache_line_size;
1033
1034        for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1035                __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1036                                     "membar #Sync"
1037                                     : /* no outputs */
1038                                     : "r" (addr), "i" (ASI_DCACHE_TAG));
1039        }
1040}
1041
1042/* In order to make the even parity correct we must do two things.
1043 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1044 * Next, we clear out all 32-bytes of data for that line.  Data of
1045 * all-zero + tag parity value of zero == correct parity.
1046 */
1047static void cheetah_plus_zap_dcache_parity(void)
1048{
1049        unsigned int dcache_size, dcache_line_size;
1050        unsigned long addr;
1051
1052        dcache_size = local_cpu_data().dcache_size;
1053        dcache_line_size = local_cpu_data().dcache_line_size;
1054
1055        for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1056                unsigned long tag = (addr >> 14);
1057                unsigned long line;
1058
1059                __asm__ __volatile__("membar    #Sync\n\t"
1060                                     "stxa      %0, [%1] %2\n\t"
1061                                     "membar    #Sync"
1062                                     : /* no outputs */
1063                                     : "r" (tag), "r" (addr),
1064                                       "i" (ASI_DCACHE_UTAG));
1065                for (line = addr; line < addr + dcache_line_size; line += 8)
1066                        __asm__ __volatile__("membar    #Sync\n\t"
1067                                             "stxa      %%g0, [%0] %1\n\t"
1068                                             "membar    #Sync"
1069                                             : /* no outputs */
1070                                             : "r" (line),
1071                                               "i" (ASI_DCACHE_DATA));
1072        }
1073}
1074
1075/* Conversion tables used to frob Cheetah AFSR syndrome values into
1076 * something palatable to the memory controller driver get_unumber
1077 * routine.
1078 */
1079#define MT0     137
1080#define MT1     138
1081#define MT2     139
1082#define NONE    254
1083#define MTC0    140
1084#define MTC1    141
1085#define MTC2    142
1086#define MTC3    143
1087#define C0      128
1088#define C1      129
1089#define C2      130
1090#define C3      131
1091#define C4      132
1092#define C5      133
1093#define C6      134
1094#define C7      135
1095#define C8      136
1096#define M2      144
1097#define M3      145
1098#define M4      146
1099#define M       147
1100static unsigned char cheetah_ecc_syntab[] = {
1101/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1102/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1103/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1104/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1105/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1106/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1107/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1108/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1109/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1110/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1111/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1112/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1113/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1114/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1115/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1116/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1117/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1118/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1119/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1120/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1121/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1122/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1123/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1124/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1125/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1126/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1127/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1128/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1129/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1130/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1131/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1132/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1133};
1134static unsigned char cheetah_mtag_syntab[] = {
1135       NONE, MTC0,
1136       MTC1, NONE,
1137       MTC2, NONE,
1138       NONE, MT0,
1139       MTC3, NONE,
1140       NONE, MT1,
1141       NONE, MT2,
1142       NONE, NONE
1143};
1144
1145/* Return the highest priority error conditon mentioned. */
1146static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1147{
1148        unsigned long tmp = 0;
1149        int i;
1150
1151        for (i = 0; cheetah_error_table[i].mask; i++) {
1152                if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1153                        return tmp;
1154        }
1155        return tmp;
1156}
1157
1158static const char *cheetah_get_string(unsigned long bit)
1159{
1160        int i;
1161
1162        for (i = 0; cheetah_error_table[i].mask; i++) {
1163                if ((bit & cheetah_error_table[i].mask) != 0UL)
1164                        return cheetah_error_table[i].name;
1165        }
1166        return "???";
1167}
1168
1169static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1170                               unsigned long afsr, unsigned long afar, int recoverable)
1171{
1172        unsigned long hipri;
1173        char unum[256];
1174
1175        printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1176               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1177               afsr, afar,
1178               (afsr & CHAFSR_TL1) ? 1 : 0);
1179        printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1180               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1181               regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1182        printk("%s" "ERROR(%d): ",
1183               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1184        printk("TPC<%pS>\n", (void *) regs->tpc);
1185        printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1186               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1187               (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1188               (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1189               (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1190               (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1191        hipri = cheetah_get_hipri(afsr);
1192        printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1193               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1194               hipri, cheetah_get_string(hipri));
1195
1196        /* Try to get unumber if relevant. */
1197#define ESYND_ERRORS    (CHAFSR_IVC | CHAFSR_IVU | \
1198                         CHAFSR_CPC | CHAFSR_CPU | \
1199                         CHAFSR_UE  | CHAFSR_CE  | \
1200                         CHAFSR_EDC | CHAFSR_EDU  | \
1201                         CHAFSR_UCC | CHAFSR_UCU  | \
1202                         CHAFSR_WDU | CHAFSR_WDC)
1203#define MSYND_ERRORS    (CHAFSR_EMC | CHAFSR_EMU)
1204        if (afsr & ESYND_ERRORS) {
1205                int syndrome;
1206                int ret;
1207
1208                syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1209                syndrome = cheetah_ecc_syntab[syndrome];
1210                ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1211                if (ret != -1)
1212                        printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1213                               (recoverable ? KERN_WARNING : KERN_CRIT),
1214                               smp_processor_id(), unum);
1215        } else if (afsr & MSYND_ERRORS) {
1216                int syndrome;
1217                int ret;
1218
1219                syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1220                syndrome = cheetah_mtag_syntab[syndrome];
1221                ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1222                if (ret != -1)
1223                        printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1224                               (recoverable ? KERN_WARNING : KERN_CRIT),
1225                               smp_processor_id(), unum);
1226        }
1227
1228        /* Now dump the cache snapshots. */
1229        printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1230               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1231               (int) info->dcache_index,
1232               info->dcache_tag,
1233               info->dcache_utag,
1234               info->dcache_stag);
1235        printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237               info->dcache_data[0],
1238               info->dcache_data[1],
1239               info->dcache_data[2],
1240               info->dcache_data[3]);
1241        printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1242               "u[%016llx] l[%016llx]\n",
1243               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1244               (int) info->icache_index,
1245               info->icache_tag,
1246               info->icache_utag,
1247               info->icache_stag,
1248               info->icache_upper,
1249               info->icache_lower);
1250        printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1251               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1252               info->icache_data[0],
1253               info->icache_data[1],
1254               info->icache_data[2],
1255               info->icache_data[3]);
1256        printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1257               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1258               info->icache_data[4],
1259               info->icache_data[5],
1260               info->icache_data[6],
1261               info->icache_data[7]);
1262        printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1263               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1264               (int) info->ecache_index, info->ecache_tag);
1265        printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1266               (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1267               info->ecache_data[0],
1268               info->ecache_data[1],
1269               info->ecache_data[2],
1270               info->ecache_data[3]);
1271
1272        afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1273        while (afsr != 0UL) {
1274                unsigned long bit = cheetah_get_hipri(afsr);
1275
1276                printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1277                       (recoverable ? KERN_WARNING : KERN_CRIT),
1278                       bit, cheetah_get_string(bit));
1279
1280                afsr &= ~bit;
1281        }
1282
1283        if (!recoverable)
1284                printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1285}
1286
1287static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1288{
1289        unsigned long afsr, afar;
1290        int ret = 0;
1291
1292        __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1293                             : "=r" (afsr)
1294                             : "i" (ASI_AFSR));
1295        if ((afsr & cheetah_afsr_errors) != 0) {
1296                if (logp != NULL) {
1297                        __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1298                                             : "=r" (afar)
1299                                             : "i" (ASI_AFAR));
1300                        logp->afsr = afsr;
1301                        logp->afar = afar;
1302                }
1303                ret = 1;
1304        }
1305        __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1306                             "membar #Sync\n\t"
1307                             : : "r" (afsr), "i" (ASI_AFSR));
1308
1309        return ret;
1310}
1311
1312void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1313{
1314        struct cheetah_err_info local_snapshot, *p;
1315        int recoverable;
1316
1317        /* Flush E-cache */
1318        cheetah_flush_ecache();
1319
1320        p = cheetah_get_error_log(afsr);
1321        if (!p) {
1322                prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1323                            afsr, afar);
1324                prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1325                            smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1326                prom_halt();
1327        }
1328
1329        /* Grab snapshot of logged error. */
1330        memcpy(&local_snapshot, p, sizeof(local_snapshot));
1331
1332        /* If the current trap snapshot does not match what the
1333         * trap handler passed along into our args, big trouble.
1334         * In such a case, mark the local copy as invalid.
1335         *
1336         * Else, it matches and we mark the afsr in the non-local
1337         * copy as invalid so we may log new error traps there.
1338         */
1339        if (p->afsr != afsr || p->afar != afar)
1340                local_snapshot.afsr = CHAFSR_INVALID;
1341        else
1342                p->afsr = CHAFSR_INVALID;
1343
1344        cheetah_flush_icache();
1345        cheetah_flush_dcache();
1346
1347        /* Re-enable I-cache/D-cache */
1348        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1349                             "or %%g1, %1, %%g1\n\t"
1350                             "stxa %%g1, [%%g0] %0\n\t"
1351                             "membar #Sync"
1352                             : /* no outputs */
1353                             : "i" (ASI_DCU_CONTROL_REG),
1354                               "i" (DCU_DC | DCU_IC)
1355                             : "g1");
1356
1357        /* Re-enable error reporting */
1358        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1359                             "or %%g1, %1, %%g1\n\t"
1360                             "stxa %%g1, [%%g0] %0\n\t"
1361                             "membar #Sync"
1362                             : /* no outputs */
1363                             : "i" (ASI_ESTATE_ERROR_EN),
1364                               "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1365                             : "g1");
1366
1367        /* Decide if we can continue after handling this trap and
1368         * logging the error.
1369         */
1370        recoverable = 1;
1371        if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1372                recoverable = 0;
1373
1374        /* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1375         * error was logged while we had error reporting traps disabled.
1376         */
1377        if (cheetah_recheck_errors(&local_snapshot)) {
1378                unsigned long new_afsr = local_snapshot.afsr;
1379
1380                /* If we got a new asynchronous error, die... */
1381                if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1382                                CHAFSR_WDU | CHAFSR_CPU |
1383                                CHAFSR_IVU | CHAFSR_UE |
1384                                CHAFSR_BERR | CHAFSR_TO))
1385                        recoverable = 0;
1386        }
1387
1388        /* Log errors. */
1389        cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1390
1391        if (!recoverable)
1392                panic("Irrecoverable Fast-ECC error trap.\n");
1393
1394        /* Flush E-cache to kick the error trap handlers out. */
1395        cheetah_flush_ecache();
1396}
1397
1398/* Try to fix a correctable error by pushing the line out from
1399 * the E-cache.  Recheck error reporting registers to see if the
1400 * problem is intermittent.
1401 */
1402static int cheetah_fix_ce(unsigned long physaddr)
1403{
1404        unsigned long orig_estate;
1405        unsigned long alias1, alias2;
1406        int ret;
1407
1408        /* Make sure correctable error traps are disabled. */
1409        __asm__ __volatile__("ldxa      [%%g0] %2, %0\n\t"
1410                             "andn      %0, %1, %%g1\n\t"
1411                             "stxa      %%g1, [%%g0] %2\n\t"
1412                             "membar    #Sync"
1413                             : "=&r" (orig_estate)
1414                             : "i" (ESTATE_ERROR_CEEN),
1415                               "i" (ASI_ESTATE_ERROR_EN)
1416                             : "g1");
1417
1418        /* We calculate alias addresses that will force the
1419         * cache line in question out of the E-cache.  Then
1420         * we bring it back in with an atomic instruction so
1421         * that we get it in some modified/exclusive state,
1422         * then we displace it again to try and get proper ECC
1423         * pushed back into the system.
1424         */
1425        physaddr &= ~(8UL - 1UL);
1426        alias1 = (ecache_flush_physbase +
1427                  (physaddr & ((ecache_flush_size >> 1) - 1)));
1428        alias2 = alias1 + (ecache_flush_size >> 1);
1429        __asm__ __volatile__("ldxa      [%0] %3, %%g0\n\t"
1430                             "ldxa      [%1] %3, %%g0\n\t"
1431                             "casxa     [%2] %3, %%g0, %%g0\n\t"
1432                             "ldxa      [%0] %3, %%g0\n\t"
1433                             "ldxa      [%1] %3, %%g0\n\t"
1434                             "membar    #Sync"
1435                             : /* no outputs */
1436                             : "r" (alias1), "r" (alias2),
1437                               "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1438
1439        /* Did that trigger another error? */
1440        if (cheetah_recheck_errors(NULL)) {
1441                /* Try one more time. */
1442                __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1443                                     "membar #Sync"
1444                                     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1445                if (cheetah_recheck_errors(NULL))
1446                        ret = 2;
1447                else
1448                        ret = 1;
1449        } else {
1450                /* No new error, intermittent problem. */
1451                ret = 0;
1452        }
1453
1454        /* Restore error enables. */
1455        __asm__ __volatile__("stxa      %0, [%%g0] %1\n\t"
1456                             "membar    #Sync"
1457                             : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1458
1459        return ret;
1460}
1461
1462/* Return non-zero if PADDR is a valid physical memory address. */
1463static int cheetah_check_main_memory(unsigned long paddr)
1464{
1465        unsigned long vaddr = PAGE_OFFSET + paddr;
1466
1467        if (vaddr > (unsigned long) high_memory)
1468                return 0;
1469
1470        return kern_addr_valid(vaddr);
1471}
1472
1473void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1474{
1475        struct cheetah_err_info local_snapshot, *p;
1476        int recoverable, is_memory;
1477
1478        p = cheetah_get_error_log(afsr);
1479        if (!p) {
1480                prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1481                            afsr, afar);
1482                prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1483                            smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1484                prom_halt();
1485        }
1486
1487        /* Grab snapshot of logged error. */
1488        memcpy(&local_snapshot, p, sizeof(local_snapshot));
1489
1490        /* If the current trap snapshot does not match what the
1491         * trap handler passed along into our args, big trouble.
1492         * In such a case, mark the local copy as invalid.
1493         *
1494         * Else, it matches and we mark the afsr in the non-local
1495         * copy as invalid so we may log new error traps there.
1496         */
1497        if (p->afsr != afsr || p->afar != afar)
1498                local_snapshot.afsr = CHAFSR_INVALID;
1499        else
1500                p->afsr = CHAFSR_INVALID;
1501
1502        is_memory = cheetah_check_main_memory(afar);
1503
1504        if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1505                /* XXX Might want to log the results of this operation
1506                 * XXX somewhere... -DaveM
1507                 */
1508                cheetah_fix_ce(afar);
1509        }
1510
1511        {
1512                int flush_all, flush_line;
1513
1514                flush_all = flush_line = 0;
1515                if ((afsr & CHAFSR_EDC) != 0UL) {
1516                        if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1517                                flush_line = 1;
1518                        else
1519                                flush_all = 1;
1520                } else if ((afsr & CHAFSR_CPC) != 0UL) {
1521                        if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1522                                flush_line = 1;
1523                        else
1524                                flush_all = 1;
1525                }
1526
1527                /* Trap handler only disabled I-cache, flush it. */
1528                cheetah_flush_icache();
1529
1530                /* Re-enable I-cache */
1531                __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1532                                     "or %%g1, %1, %%g1\n\t"
1533                                     "stxa %%g1, [%%g0] %0\n\t"
1534                                     "membar #Sync"
1535                                     : /* no outputs */
1536                                     : "i" (ASI_DCU_CONTROL_REG),
1537                                     "i" (DCU_IC)
1538                                     : "g1");
1539
1540                if (flush_all)
1541                        cheetah_flush_ecache();
1542                else if (flush_line)
1543                        cheetah_flush_ecache_line(afar);
1544        }
1545
1546        /* Re-enable error reporting */
1547        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548                             "or %%g1, %1, %%g1\n\t"
1549                             "stxa %%g1, [%%g0] %0\n\t"
1550                             "membar #Sync"
1551                             : /* no outputs */
1552                             : "i" (ASI_ESTATE_ERROR_EN),
1553                               "i" (ESTATE_ERROR_CEEN)
1554                             : "g1");
1555
1556        /* Decide if we can continue after handling this trap and
1557         * logging the error.
1558         */
1559        recoverable = 1;
1560        if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1561                recoverable = 0;
1562
1563        /* Re-check AFSR/AFAR */
1564        (void) cheetah_recheck_errors(&local_snapshot);
1565
1566        /* Log errors. */
1567        cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1568
1569        if (!recoverable)
1570                panic("Irrecoverable Correctable-ECC error trap.\n");
1571}
1572
1573void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1574{
1575        struct cheetah_err_info local_snapshot, *p;
1576        int recoverable, is_memory;
1577
1578#ifdef CONFIG_PCI
1579        /* Check for the special PCI poke sequence. */
1580        if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1581                cheetah_flush_icache();
1582                cheetah_flush_dcache();
1583
1584                /* Re-enable I-cache/D-cache */
1585                __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1586                                     "or %%g1, %1, %%g1\n\t"
1587                                     "stxa %%g1, [%%g0] %0\n\t"
1588                                     "membar #Sync"
1589                                     : /* no outputs */
1590                                     : "i" (ASI_DCU_CONTROL_REG),
1591                                       "i" (DCU_DC | DCU_IC)
1592                                     : "g1");
1593
1594                /* Re-enable error reporting */
1595                __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1596                                     "or %%g1, %1, %%g1\n\t"
1597                                     "stxa %%g1, [%%g0] %0\n\t"
1598                                     "membar #Sync"
1599                                     : /* no outputs */
1600                                     : "i" (ASI_ESTATE_ERROR_EN),
1601                                       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1602                                     : "g1");
1603
1604                (void) cheetah_recheck_errors(NULL);
1605
1606                pci_poke_faulted = 1;
1607                regs->tpc += 4;
1608                regs->tnpc = regs->tpc + 4;
1609                return;
1610        }
1611#endif
1612
1613        p = cheetah_get_error_log(afsr);
1614        if (!p) {
1615                prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1616                            afsr, afar);
1617                prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1618                            smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1619                prom_halt();
1620        }
1621
1622        /* Grab snapshot of logged error. */
1623        memcpy(&local_snapshot, p, sizeof(local_snapshot));
1624
1625        /* If the current trap snapshot does not match what the
1626         * trap handler passed along into our args, big trouble.
1627         * In such a case, mark the local copy as invalid.
1628         *
1629         * Else, it matches and we mark the afsr in the non-local
1630         * copy as invalid so we may log new error traps there.
1631         */
1632        if (p->afsr != afsr || p->afar != afar)
1633                local_snapshot.afsr = CHAFSR_INVALID;
1634        else
1635                p->afsr = CHAFSR_INVALID;
1636
1637        is_memory = cheetah_check_main_memory(afar);
1638
1639        {
1640                int flush_all, flush_line;
1641
1642                flush_all = flush_line = 0;
1643                if ((afsr & CHAFSR_EDU) != 0UL) {
1644                        if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1645                                flush_line = 1;
1646                        else
1647                                flush_all = 1;
1648                } else if ((afsr & CHAFSR_BERR) != 0UL) {
1649                        if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1650                                flush_line = 1;
1651                        else
1652                                flush_all = 1;
1653                }
1654
1655                cheetah_flush_icache();
1656                cheetah_flush_dcache();
1657
1658                /* Re-enable I/D caches */
1659                __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1660                                     "or %%g1, %1, %%g1\n\t"
1661                                     "stxa %%g1, [%%g0] %0\n\t"
1662                                     "membar #Sync"
1663                                     : /* no outputs */
1664                                     : "i" (ASI_DCU_CONTROL_REG),
1665                                     "i" (DCU_IC | DCU_DC)
1666                                     : "g1");
1667
1668                if (flush_all)
1669                        cheetah_flush_ecache();
1670                else if (flush_line)
1671                        cheetah_flush_ecache_line(afar);
1672        }
1673
1674        /* Re-enable error reporting */
1675        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1676                             "or %%g1, %1, %%g1\n\t"
1677                             "stxa %%g1, [%%g0] %0\n\t"
1678                             "membar #Sync"
1679                             : /* no outputs */
1680                             : "i" (ASI_ESTATE_ERROR_EN),
1681                             "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1682                             : "g1");
1683
1684        /* Decide if we can continue after handling this trap and
1685         * logging the error.
1686         */
1687        recoverable = 1;
1688        if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1689                recoverable = 0;
1690
1691        /* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1692         * error was logged while we had error reporting traps disabled.
1693         */
1694        if (cheetah_recheck_errors(&local_snapshot)) {
1695                unsigned long new_afsr = local_snapshot.afsr;
1696
1697                /* If we got a new asynchronous error, die... */
1698                if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1699                                CHAFSR_WDU | CHAFSR_CPU |
1700                                CHAFSR_IVU | CHAFSR_UE |
1701                                CHAFSR_BERR | CHAFSR_TO))
1702                        recoverable = 0;
1703        }
1704
1705        /* Log errors. */
1706        cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1707
1708        /* "Recoverable" here means we try to yank the page from ever
1709         * being newly used again.  This depends upon a few things:
1710         * 1) Must be main memory, and AFAR must be valid.
1711         * 2) If we trapped from user, OK.
1712         * 3) Else, if we trapped from kernel we must find exception
1713         *    table entry (ie. we have to have been accessing user
1714         *    space).
1715         *
1716         * If AFAR is not in main memory, or we trapped from kernel
1717         * and cannot find an exception table entry, it is unacceptable
1718         * to try and continue.
1719         */
1720        if (recoverable && is_memory) {
1721                if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1722                        /* OK, usermode access. */
1723                        recoverable = 1;
1724                } else {
1725                        const struct exception_table_entry *entry;
1726
1727                        entry = search_exception_tables(regs->tpc);
1728                        if (entry) {
1729                                /* OK, kernel access to userspace. */
1730                                recoverable = 1;
1731
1732                        } else {
1733                                /* BAD, privileged state is corrupted. */
1734                                recoverable = 0;
1735                        }
1736
1737                        if (recoverable) {
1738                                if (pfn_valid(afar >> PAGE_SHIFT))
1739                                        get_page(pfn_to_page(afar >> PAGE_SHIFT));
1740                                else
1741                                        recoverable = 0;
1742
1743                                /* Only perform fixup if we still have a
1744                                 * recoverable condition.
1745                                 */
1746                                if (recoverable) {
1747                                        regs->tpc = entry->fixup;
1748                                        regs->tnpc = regs->tpc + 4;
1749                                }
1750                        }
1751                }
1752        } else {
1753                recoverable = 0;
1754        }
1755
1756        if (!recoverable)
1757                panic("Irrecoverable deferred error trap.\n");
1758}
1759
1760/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1761 *
1762 * Bit0:        0=dcache,1=icache
1763 * Bit1:        0=recoverable,1=unrecoverable
1764 *
1765 * The hardware has disabled both the I-cache and D-cache in
1766 * the %dcr register.  
1767 */
1768void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1769{
1770        if (type & 0x1)
1771                __cheetah_flush_icache();
1772        else
1773                cheetah_plus_zap_dcache_parity();
1774        cheetah_flush_dcache();
1775
1776        /* Re-enable I-cache/D-cache */
1777        __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1778                             "or %%g1, %1, %%g1\n\t"
1779                             "stxa %%g1, [%%g0] %0\n\t"
1780                             "membar #Sync"
1781                             : /* no outputs */
1782                             : "i" (ASI_DCU_CONTROL_REG),
1783                               "i" (DCU_DC | DCU_IC)
1784                             : "g1");
1785
1786        if (type & 0x2) {
1787                printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1788                       smp_processor_id(),
1789                       (type & 0x1) ? 'I' : 'D',
1790                       regs->tpc);
1791                printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1792                panic("Irrecoverable Cheetah+ parity error.");
1793        }
1794
1795        printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1796               smp_processor_id(),
1797               (type & 0x1) ? 'I' : 'D',
1798               regs->tpc);
1799        printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1800}
1801
1802struct sun4v_error_entry {
1803        /* Unique error handle */
1804/*0x00*/u64             err_handle;
1805
1806        /* %stick value at the time of the error */
1807/*0x08*/u64             err_stick;
1808
1809/*0x10*/u8              reserved_1[3];
1810
1811        /* Error type */
1812/*0x13*/u8              err_type;
1813#define SUN4V_ERR_TYPE_UNDEFINED        0
1814#define SUN4V_ERR_TYPE_UNCORRECTED_RES  1
1815#define SUN4V_ERR_TYPE_PRECISE_NONRES   2
1816#define SUN4V_ERR_TYPE_DEFERRED_NONRES  3
1817#define SUN4V_ERR_TYPE_SHUTDOWN_RQST    4
1818#define SUN4V_ERR_TYPE_DUMP_CORE        5
1819#define SUN4V_ERR_TYPE_SP_STATE_CHANGE  6
1820#define SUN4V_ERR_TYPE_NUM              7
1821
1822        /* Error attributes */
1823/*0x14*/u32             err_attrs;
1824#define SUN4V_ERR_ATTRS_PROCESSOR       0x00000001
1825#define SUN4V_ERR_ATTRS_MEMORY          0x00000002
1826#define SUN4V_ERR_ATTRS_PIO             0x00000004
1827#define SUN4V_ERR_ATTRS_INT_REGISTERS   0x00000008
1828#define SUN4V_ERR_ATTRS_FPU_REGISTERS   0x00000010
1829#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST   0x00000020
1830#define SUN4V_ERR_ATTRS_ASR             0x00000040
1831#define SUN4V_ERR_ATTRS_ASI             0x00000080
1832#define SUN4V_ERR_ATTRS_PRIV_REG        0x00000100
1833#define SUN4V_ERR_ATTRS_SPSTATE_MSK     0x00000600
1834#define SUN4V_ERR_ATTRS_MCD             0x00000800
1835#define SUN4V_ERR_ATTRS_SPSTATE_SHFT    9
1836#define SUN4V_ERR_ATTRS_MODE_MSK        0x03000000
1837#define SUN4V_ERR_ATTRS_MODE_SHFT       24
1838#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL  0x80000000
1839
1840#define SUN4V_ERR_SPSTATE_FAULTED       0
1841#define SUN4V_ERR_SPSTATE_AVAILABLE     1
1842#define SUN4V_ERR_SPSTATE_NOT_PRESENT   2
1843
1844#define SUN4V_ERR_MODE_USER             1
1845#define SUN4V_ERR_MODE_PRIV             2
1846
1847        /* Real address of the memory region or PIO transaction */
1848/*0x18*/u64             err_raddr;
1849
1850        /* Size of the operation triggering the error, in bytes */
1851/*0x20*/u32             err_size;
1852
1853        /* ID of the CPU */
1854/*0x24*/u16             err_cpu;
1855
1856        /* Grace periof for shutdown, in seconds */
1857/*0x26*/u16             err_secs;
1858
1859        /* Value of the %asi register */
1860/*0x28*/u8              err_asi;
1861
1862/*0x29*/u8              reserved_2;
1863
1864        /* Value of the ASR register number */
1865/*0x2a*/u16             err_asr;
1866#define SUN4V_ERR_ASR_VALID             0x8000
1867
1868/*0x2c*/u32             reserved_3;
1869/*0x30*/u64             reserved_4;
1870/*0x38*/u64             reserved_5;
1871};
1872
1873static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1874static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1875
1876static const char *sun4v_err_type_to_str(u8 type)
1877{
1878        static const char *types[SUN4V_ERR_TYPE_NUM] = {
1879                "undefined",
1880                "uncorrected resumable",
1881                "precise nonresumable",
1882                "deferred nonresumable",
1883                "shutdown request",
1884                "dump core",
1885                "SP state change",
1886        };
1887
1888        if (type < SUN4V_ERR_TYPE_NUM)
1889                return types[type];
1890
1891        return "unknown";
1892}
1893
1894static void sun4v_emit_err_attr_strings(u32 attrs)
1895{
1896        static const char *attr_names[] = {
1897                "processor",
1898                "memory",
1899                "PIO",
1900                "int-registers",
1901                "fpu-registers",
1902                "shutdown-request",
1903                "ASR",
1904                "ASI",
1905                "priv-reg",
1906        };
1907        static const char *sp_states[] = {
1908                "sp-faulted",
1909                "sp-available",
1910                "sp-not-present",
1911                "sp-state-reserved",
1912        };
1913        static const char *modes[] = {
1914                "mode-reserved0",
1915                "user",
1916                "priv",
1917                "mode-reserved1",
1918        };
1919        u32 sp_state, mode;
1920        int i;
1921
1922        for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1923                if (attrs & (1U << i)) {
1924                        const char *s = attr_names[i];
1925
1926                        pr_cont("%s ", s);
1927                }
1928        }
1929
1930        sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1931                    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1932        pr_cont("%s ", sp_states[sp_state]);
1933
1934        mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1935                SUN4V_ERR_ATTRS_MODE_SHFT);
1936        pr_cont("%s ", modes[mode]);
1937
1938        if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1939                pr_cont("res-queue-full ");
1940}
1941
1942/* When the report contains a real-address of "-1" it means that the
1943 * hardware did not provide the address.  So we compute the effective
1944 * address of the load or store instruction at regs->tpc and report
1945 * that.  Usually when this happens it's a PIO and in such a case we
1946 * are using physical addresses with bypass ASIs anyways, so what we
1947 * report here is exactly what we want.
1948 */
1949static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1950{
1951        unsigned int insn;
1952        u64 addr;
1953
1954        if (!(regs->tstate & TSTATE_PRIV))
1955                return;
1956
1957        insn = *(unsigned int *) regs->tpc;
1958
1959        addr = compute_effective_address(regs, insn, 0);
1960
1961        printk("%s: insn effective address [0x%016llx]\n",
1962               pfx, addr);
1963}
1964
1965static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1966                            int cpu, const char *pfx, atomic_t *ocnt)
1967{
1968        u64 *raw_ptr = (u64 *) ent;
1969        u32 attrs;
1970        int cnt;
1971
1972        printk("%s: Reporting on cpu %d\n", pfx, cpu);
1973        printk("%s: TPC [0x%016lx] <%pS>\n",
1974               pfx, regs->tpc, (void *) regs->tpc);
1975
1976        printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1977               pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1978        printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1979               pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1980
1981        printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1982               pfx, ent->err_handle, ent->err_stick);
1983
1984        printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1985
1986        attrs = ent->err_attrs;
1987        printk("%s: attrs [0x%08x] < ", pfx, attrs);
1988        sun4v_emit_err_attr_strings(attrs);
1989        pr_cont(">\n");
1990
1991        /* Various fields in the error report are only valid if
1992         * certain attribute bits are set.
1993         */
1994        if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1995                     SUN4V_ERR_ATTRS_PIO |
1996                     SUN4V_ERR_ATTRS_ASI)) {
1997                printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1998
1999                if (ent->err_raddr == ~(u64)0)
2000                        sun4v_report_real_raddr(pfx, regs);
2001        }
2002
2003        if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2004                printk("%s: size [0x%x]\n", pfx, ent->err_size);
2005
2006        if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2007                     SUN4V_ERR_ATTRS_INT_REGISTERS |
2008                     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2009                     SUN4V_ERR_ATTRS_PRIV_REG))
2010                printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2011
2012        if (attrs & SUN4V_ERR_ATTRS_ASI)
2013                printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2014
2015        if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2016                      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2017                      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2018            (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2019                printk("%s: reg [0x%04x]\n",
2020                       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2021
2022        show_regs(regs);
2023
2024        if ((cnt = atomic_read(ocnt)) != 0) {
2025                atomic_set(ocnt, 0);
2026                wmb();
2027                printk("%s: Queue overflowed %d times.\n",
2028                       pfx, cnt);
2029        }
2030}
2031
2032/* Handle memory corruption detected error which is vectored in
2033 * through resumable error trap.
2034 */
2035void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2036{
2037        if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2038                       SIGSEGV) == NOTIFY_STOP)
2039                return;
2040
2041        if (regs->tstate & TSTATE_PRIV) {
2042                /* MCD exception could happen because the task was
2043                 * running a system call with MCD enabled and passed a
2044                 * non-versioned pointer or pointer with bad version
2045                 * tag to the system call. In such cases, hypervisor
2046                 * places the address of offending instruction in the
2047                 * resumable error report. This is a deferred error,
2048                 * so the read/write that caused the trap was potentially
2049                 * retired long time back and we may have no choice
2050                 * but to send SIGSEGV to the process.
2051                 */
2052                const struct exception_table_entry *entry;
2053
2054                entry = search_exception_tables(regs->tpc);
2055                if (entry) {
2056                        /* Looks like a bad syscall parameter */
2057#ifdef DEBUG_EXCEPTIONS
2058                        pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2059                                 regs->tpc);
2060                        pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2061                                 ent.err_raddr, entry->fixup);
2062#endif
2063                        regs->tpc = entry->fixup;
2064                        regs->tnpc = regs->tpc + 4;
2065                        return;
2066                }
2067        }
2068
2069        /* Send SIGSEGV to the userspace process with the right signal
2070         * code
2071         */
2072        force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2073                        0);
2074}
2075
2076/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2077 * Log the event and clear the first word of the entry.
2078 */
2079void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2080{
2081        enum ctx_state prev_state = exception_enter();
2082        struct sun4v_error_entry *ent, local_copy;
2083        struct trap_per_cpu *tb;
2084        unsigned long paddr;
2085        int cpu;
2086
2087        cpu = get_cpu();
2088
2089        tb = &trap_block[cpu];
2090        paddr = tb->resum_kernel_buf_pa + offset;
2091        ent = __va(paddr);
2092
2093        memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2094
2095        /* We have a local copy now, so release the entry.  */
2096        ent->err_handle = 0;
2097        wmb();
2098
2099        put_cpu();
2100
2101        if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2102                /* We should really take the seconds field of
2103                 * the error report and use it for the shutdown
2104                 * invocation, but for now do the same thing we
2105                 * do for a DS shutdown request.
2106                 */
2107                pr_info("Shutdown request, %u seconds...\n",
2108                        local_copy.err_secs);
2109                orderly_poweroff(true);
2110                goto out;
2111        }
2112
2113        /* If this is a memory corruption detected error vectored in
2114         * by HV through resumable error trap, call the handler
2115         */
2116        if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2117                do_mcd_err(regs, local_copy);
2118                return;
2119        }
2120
2121        sun4v_log_error(regs, &local_copy, cpu,
2122                        KERN_ERR "RESUMABLE ERROR",
2123                        &sun4v_resum_oflow_cnt);
2124out:
2125        exception_exit(prev_state);
2126}
2127
2128/* If we try to printk() we'll probably make matters worse, by trying
2129 * to retake locks this cpu already holds or causing more errors. So
2130 * just bump a counter, and we'll report these counter bumps above.
2131 */
2132void sun4v_resum_overflow(struct pt_regs *regs)
2133{
2134        atomic_inc(&sun4v_resum_oflow_cnt);
2135}
2136
2137/* Given a set of registers, get the virtual addressi that was being accessed
2138 * by the faulting instructions at tpc.
2139 */
2140static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2141{
2142        unsigned int insn;
2143
2144        if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2145                return compute_effective_address(regs, insn,
2146                                                 (insn >> 25) & 0x1f);
2147        }
2148        return 0;
2149}
2150
2151/* Attempt to handle non-resumable errors generated from userspace.
2152 * Returns true if the signal was handled, false otherwise.
2153 */
2154bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2155                                  struct sun4v_error_entry *ent) {
2156
2157        unsigned int attrs = ent->err_attrs;
2158
2159        if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2160                unsigned long addr = ent->err_raddr;
2161
2162                if (addr == ~(u64)0) {
2163                        /* This seems highly unlikely to ever occur */
2164                        pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2165                } else {
2166                        unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2167                                                              PAGE_SIZE);
2168
2169                        /* Break the unfortunate news. */
2170                        pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2171                                 addr);
2172                        pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2173                                 page_cnt);
2174
2175                        while (page_cnt-- > 0) {
2176                                if (pfn_valid(addr >> PAGE_SHIFT))
2177                                        get_page(pfn_to_page(addr >> PAGE_SHIFT));
2178                                addr += PAGE_SIZE;
2179                        }
2180                }
2181                force_sig(SIGKILL);
2182
2183                return true;
2184        }
2185        if (attrs & SUN4V_ERR_ATTRS_PIO) {
2186                force_sig_fault(SIGBUS, BUS_ADRERR,
2187                                (void __user *)sun4v_get_vaddr(regs), 0);
2188                return true;
2189        }
2190
2191        /* Default to doing nothing */
2192        return false;
2193}
2194
2195/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2196 * Log the event, clear the first word of the entry, and die.
2197 */
2198void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2199{
2200        struct sun4v_error_entry *ent, local_copy;
2201        struct trap_per_cpu *tb;
2202        unsigned long paddr;
2203        int cpu;
2204
2205        cpu = get_cpu();
2206
2207        tb = &trap_block[cpu];
2208        paddr = tb->nonresum_kernel_buf_pa + offset;
2209        ent = __va(paddr);
2210
2211        memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2212
2213        /* We have a local copy now, so release the entry.  */
2214        ent->err_handle = 0;
2215        wmb();
2216
2217        put_cpu();
2218
2219        if (!(regs->tstate & TSTATE_PRIV) &&
2220            sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2221                /* DON'T PANIC: This userspace error was handled. */
2222                return;
2223        }
2224
2225#ifdef CONFIG_PCI
2226        /* Check for the special PCI poke sequence. */
2227        if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2228                pci_poke_faulted = 1;
2229                regs->tpc += 4;
2230                regs->tnpc = regs->tpc + 4;
2231                return;
2232        }
2233#endif
2234
2235        sun4v_log_error(regs, &local_copy, cpu,
2236                        KERN_EMERG "NON-RESUMABLE ERROR",
2237                        &sun4v_nonresum_oflow_cnt);
2238
2239        panic("Non-resumable error.");
2240}
2241
2242/* If we try to printk() we'll probably make matters worse, by trying
2243 * to retake locks this cpu already holds or causing more errors. So
2244 * just bump a counter, and we'll report these counter bumps above.
2245 */
2246void sun4v_nonresum_overflow(struct pt_regs *regs)
2247{
2248        /* XXX Actually even this can make not that much sense.  Perhaps
2249         * XXX we should just pull the plug and panic directly from here?
2250         */
2251        atomic_inc(&sun4v_nonresum_oflow_cnt);
2252}
2253
2254static void sun4v_tlb_error(struct pt_regs *regs)
2255{
2256        die_if_kernel("TLB/TSB error", regs);
2257}
2258
2259unsigned long sun4v_err_itlb_vaddr;
2260unsigned long sun4v_err_itlb_ctx;
2261unsigned long sun4v_err_itlb_pte;
2262unsigned long sun4v_err_itlb_error;
2263
2264void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2265{
2266        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2267
2268        printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2269               regs->tpc, tl);
2270        printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2271        printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2272        printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2273               (void *) regs->u_regs[UREG_I7]);
2274        printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2275               "pte[%lx] error[%lx]\n",
2276               sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2277               sun4v_err_itlb_pte, sun4v_err_itlb_error);
2278
2279        sun4v_tlb_error(regs);
2280}
2281
2282unsigned long sun4v_err_dtlb_vaddr;
2283unsigned long sun4v_err_dtlb_ctx;
2284unsigned long sun4v_err_dtlb_pte;
2285unsigned long sun4v_err_dtlb_error;
2286
2287void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2288{
2289        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2290
2291        printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2292               regs->tpc, tl);
2293        printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2294        printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2295        printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2296               (void *) regs->u_regs[UREG_I7]);
2297        printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2298               "pte[%lx] error[%lx]\n",
2299               sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2300               sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2301
2302        sun4v_tlb_error(regs);
2303}
2304
2305void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2306{
2307        printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2308               err, op);
2309}
2310
2311void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2312{
2313        printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2314               err, op);
2315}
2316
2317static void do_fpe_common(struct pt_regs *regs)
2318{
2319        if (regs->tstate & TSTATE_PRIV) {
2320                regs->tpc = regs->tnpc;
2321                regs->tnpc += 4;
2322        } else {
2323                unsigned long fsr = current_thread_info()->xfsr[0];
2324                int code;
2325
2326                if (test_thread_flag(TIF_32BIT)) {
2327                        regs->tpc &= 0xffffffff;
2328                        regs->tnpc &= 0xffffffff;
2329                }
2330                code = FPE_FLTUNK;
2331                if ((fsr & 0x1c000) == (1 << 14)) {
2332                        if (fsr & 0x10)
2333                                code = FPE_FLTINV;
2334                        else if (fsr & 0x08)
2335                                code = FPE_FLTOVF;
2336                        else if (fsr & 0x04)
2337                                code = FPE_FLTUND;
2338                        else if (fsr & 0x02)
2339                                code = FPE_FLTDIV;
2340                        else if (fsr & 0x01)
2341                                code = FPE_FLTRES;
2342                }
2343                force_sig_fault(SIGFPE, code,
2344                                (void __user *)regs->tpc, 0);
2345        }
2346}
2347
2348void do_fpieee(struct pt_regs *regs)
2349{
2350        enum ctx_state prev_state = exception_enter();
2351
2352        if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2353                       0, 0x24, SIGFPE) == NOTIFY_STOP)
2354                goto out;
2355
2356        do_fpe_common(regs);
2357out:
2358        exception_exit(prev_state);
2359}
2360
2361void do_fpother(struct pt_regs *regs)
2362{
2363        enum ctx_state prev_state = exception_enter();
2364        struct fpustate *f = FPUSTATE;
2365        int ret = 0;
2366
2367        if (notify_die(DIE_TRAP, "fpu exception other", regs,
2368                       0, 0x25, SIGFPE) == NOTIFY_STOP)
2369                goto out;
2370
2371        switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2372        case (2 << 14): /* unfinished_FPop */
2373        case (3 << 14): /* unimplemented_FPop */
2374                ret = do_mathemu(regs, f, false);
2375                break;
2376        }
2377        if (ret)
2378                goto out;
2379        do_fpe_common(regs);
2380out:
2381        exception_exit(prev_state);
2382}
2383
2384void do_tof(struct pt_regs *regs)
2385{
2386        enum ctx_state prev_state = exception_enter();
2387
2388        if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2389                       0, 0x26, SIGEMT) == NOTIFY_STOP)
2390                goto out;
2391
2392        if (regs->tstate & TSTATE_PRIV)
2393                die_if_kernel("Penguin overflow trap from kernel mode", regs);
2394        if (test_thread_flag(TIF_32BIT)) {
2395                regs->tpc &= 0xffffffff;
2396                regs->tnpc &= 0xffffffff;
2397        }
2398        force_sig_fault(SIGEMT, EMT_TAGOVF,
2399                        (void __user *)regs->tpc, 0);
2400out:
2401        exception_exit(prev_state);
2402}
2403
2404void do_div0(struct pt_regs *regs)
2405{
2406        enum ctx_state prev_state = exception_enter();
2407
2408        if (notify_die(DIE_TRAP, "integer division by zero", regs,
2409                       0, 0x28, SIGFPE) == NOTIFY_STOP)
2410                goto out;
2411
2412        if (regs->tstate & TSTATE_PRIV)
2413                die_if_kernel("TL0: Kernel divide by zero.", regs);
2414        if (test_thread_flag(TIF_32BIT)) {
2415                regs->tpc &= 0xffffffff;
2416                regs->tnpc &= 0xffffffff;
2417        }
2418        force_sig_fault(SIGFPE, FPE_INTDIV,
2419                        (void __user *)regs->tpc, 0);
2420out:
2421        exception_exit(prev_state);
2422}
2423
2424static void instruction_dump(unsigned int *pc)
2425{
2426        int i;
2427
2428        if ((((unsigned long) pc) & 3))
2429                return;
2430
2431        printk("Instruction DUMP:");
2432        for (i = -3; i < 6; i++)
2433                printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2434        printk("\n");
2435}
2436
2437static void user_instruction_dump(unsigned int __user *pc)
2438{
2439        int i;
2440        unsigned int buf[9];
2441        
2442        if ((((unsigned long) pc) & 3))
2443                return;
2444                
2445        if (copy_from_user(buf, pc - 3, sizeof(buf)))
2446                return;
2447
2448        printk("Instruction DUMP:");
2449        for (i = 0; i < 9; i++)
2450                printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2451        printk("\n");
2452}
2453
2454void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2455{
2456        unsigned long fp, ksp;
2457        struct thread_info *tp;
2458        int count = 0;
2459#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2460        int graph = 0;
2461#endif
2462
2463        ksp = (unsigned long) _ksp;
2464        if (!tsk)
2465                tsk = current;
2466        tp = task_thread_info(tsk);
2467        if (ksp == 0UL) {
2468                if (tsk == current)
2469                        asm("mov %%fp, %0" : "=r" (ksp));
2470                else
2471                        ksp = tp->ksp;
2472        }
2473        if (tp == current_thread_info())
2474                flushw_all();
2475
2476        fp = ksp + STACK_BIAS;
2477
2478        printk("%sCall Trace:\n", loglvl);
2479        do {
2480                struct sparc_stackf *sf;
2481                struct pt_regs *regs;
2482                unsigned long pc;
2483
2484                if (!kstack_valid(tp, fp))
2485                        break;
2486                sf = (struct sparc_stackf *) fp;
2487                regs = (struct pt_regs *) (sf + 1);
2488
2489                if (kstack_is_trap_frame(tp, regs)) {
2490                        if (!(regs->tstate & TSTATE_PRIV))
2491                                break;
2492                        pc = regs->tpc;
2493                        fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2494                } else {
2495                        pc = sf->callers_pc;
2496                        fp = (unsigned long)sf->fp + STACK_BIAS;
2497                }
2498
2499                print_ip_sym(loglvl, pc);
2500#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2501                if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2502                        struct ftrace_ret_stack *ret_stack;
2503                        ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2504                        if (ret_stack) {
2505                                pc = ret_stack->ret;
2506                                print_ip_sym(loglvl, pc);
2507                                graph++;
2508                        }
2509                }
2510#endif
2511        } while (++count < 16);
2512}
2513
2514static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2515{
2516        unsigned long fp = rw->ins[6];
2517
2518        if (!fp)
2519                return NULL;
2520
2521        return (struct reg_window *) (fp + STACK_BIAS);
2522}
2523
2524void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2525{
2526        static int die_counter;
2527        int count = 0;
2528        
2529        /* Amuse the user. */
2530        printk(
2531"              \\|/ ____ \\|/\n"
2532"              \"@'/ .. \\`@\"\n"
2533"              /_| \\__/ |_\\\n"
2534"                 \\__U_/\n");
2535
2536        printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2537        notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2538        __asm__ __volatile__("flushw");
2539        show_regs(regs);
2540        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2541        if (regs->tstate & TSTATE_PRIV) {
2542                struct thread_info *tp = current_thread_info();
2543                struct reg_window *rw = (struct reg_window *)
2544                        (regs->u_regs[UREG_FP] + STACK_BIAS);
2545
2546                /* Stop the back trace when we hit userland or we
2547                 * find some badly aligned kernel stack.
2548                 */
2549                while (rw &&
2550                       count++ < 30 &&
2551                       kstack_valid(tp, (unsigned long) rw)) {
2552                        printk("Caller[%016lx]: %pS\n", rw->ins[7],
2553                               (void *) rw->ins[7]);
2554
2555                        rw = kernel_stack_up(rw);
2556                }
2557                instruction_dump ((unsigned int *) regs->tpc);
2558        } else {
2559                if (test_thread_flag(TIF_32BIT)) {
2560                        regs->tpc &= 0xffffffff;
2561                        regs->tnpc &= 0xffffffff;
2562                }
2563                user_instruction_dump ((unsigned int __user *) regs->tpc);
2564        }
2565        if (panic_on_oops)
2566                panic("Fatal exception");
2567        if (regs->tstate & TSTATE_PRIV)
2568                do_exit(SIGKILL);
2569        do_exit(SIGSEGV);
2570}
2571EXPORT_SYMBOL(die_if_kernel);
2572
2573#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2574#define VIS_OPCODE_VAL  ((0x2 << 30) | (0x36 << 19))
2575
2576void do_illegal_instruction(struct pt_regs *regs)
2577{
2578        enum ctx_state prev_state = exception_enter();
2579        unsigned long pc = regs->tpc;
2580        unsigned long tstate = regs->tstate;
2581        u32 insn;
2582
2583        if (notify_die(DIE_TRAP, "illegal instruction", regs,
2584                       0, 0x10, SIGILL) == NOTIFY_STOP)
2585                goto out;
2586
2587        if (tstate & TSTATE_PRIV)
2588                die_if_kernel("Kernel illegal instruction", regs);
2589        if (test_thread_flag(TIF_32BIT))
2590                pc = (u32)pc;
2591        if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2592                if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2593                        if (handle_popc(insn, regs))
2594                                goto out;
2595                } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2596                        if (handle_ldf_stq(insn, regs))
2597                                goto out;
2598                } else if (tlb_type == hypervisor) {
2599                        if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2600                                if (!vis_emul(regs, insn))
2601                                        goto out;
2602                        } else {
2603                                struct fpustate *f = FPUSTATE;
2604
2605                                /* On UltraSPARC T2 and later, FPU insns which
2606                                 * are not implemented in HW signal an illegal
2607                                 * instruction trap and do not set the FP Trap
2608                                 * Trap in the %fsr to unimplemented_FPop.
2609                                 */
2610                                if (do_mathemu(regs, f, true))
2611                                        goto out;
2612                        }
2613                }
2614        }
2615        force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0);
2616out:
2617        exception_exit(prev_state);
2618}
2619
2620void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2621{
2622        enum ctx_state prev_state = exception_enter();
2623
2624        if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2625                       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2626                goto out;
2627
2628        if (regs->tstate & TSTATE_PRIV) {
2629                kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2630                goto out;
2631        }
2632        if (is_no_fault_exception(regs))
2633                return;
2634
2635        force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0);
2636out:
2637        exception_exit(prev_state);
2638}
2639
2640void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2641{
2642        if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2643                       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2644                return;
2645
2646        if (regs->tstate & TSTATE_PRIV) {
2647                kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2648                return;
2649        }
2650        if (is_no_fault_exception(regs))
2651                return;
2652
2653        force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0);
2654}
2655
2656/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2657 * tag mismatch.
2658 *
2659 * ADI version tag mismatch on a load from memory always results in a
2660 * precise exception. Tag mismatch on a store to memory will result in
2661 * precise exception if MCDPER or PMCDPER is set to 1.
2662 */
2663void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2664                                      unsigned long context)
2665{
2666        if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2667                       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2668                return;
2669
2670        if (regs->tstate & TSTATE_PRIV) {
2671                /* MCD exception could happen because the task was running
2672                 * a system call with MCD enabled and passed a non-versioned
2673                 * pointer or pointer with bad version tag to  the system
2674                 * call.
2675                 */
2676                const struct exception_table_entry *entry;
2677
2678                entry = search_exception_tables(regs->tpc);
2679                if (entry) {
2680                        /* Looks like a bad syscall parameter */
2681#ifdef DEBUG_EXCEPTIONS
2682                        pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2683                                 regs->tpc);
2684                        pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2685                                 regs->tpc, entry->fixup);
2686#endif
2687                        regs->tpc = entry->fixup;
2688                        regs->tnpc = regs->tpc + 4;
2689                        return;
2690                }
2691                pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2692                         __func__, addr, context);
2693                die_if_kernel("MCD precise", regs);
2694        }
2695
2696        if (test_thread_flag(TIF_32BIT)) {
2697                regs->tpc &= 0xffffffff;
2698                regs->tnpc &= 0xffffffff;
2699        }
2700        force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0);
2701}
2702
2703void do_privop(struct pt_regs *regs)
2704{
2705        enum ctx_state prev_state = exception_enter();
2706
2707        if (notify_die(DIE_TRAP, "privileged operation", regs,
2708                       0, 0x11, SIGILL) == NOTIFY_STOP)
2709                goto out;
2710
2711        if (test_thread_flag(TIF_32BIT)) {
2712                regs->tpc &= 0xffffffff;
2713                regs->tnpc &= 0xffffffff;
2714        }
2715        force_sig_fault(SIGILL, ILL_PRVOPC,
2716                        (void __user *)regs->tpc, 0);
2717out:
2718        exception_exit(prev_state);
2719}
2720
2721void do_privact(struct pt_regs *regs)
2722{
2723        do_privop(regs);
2724}
2725
2726/* Trap level 1 stuff or other traps we should never see... */
2727void do_cee(struct pt_regs *regs)
2728{
2729        exception_enter();
2730        die_if_kernel("TL0: Cache Error Exception", regs);
2731}
2732
2733void do_div0_tl1(struct pt_regs *regs)
2734{
2735        exception_enter();
2736        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2737        die_if_kernel("TL1: DIV0 Exception", regs);
2738}
2739
2740void do_fpieee_tl1(struct pt_regs *regs)
2741{
2742        exception_enter();
2743        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2744        die_if_kernel("TL1: FPU IEEE Exception", regs);
2745}
2746
2747void do_fpother_tl1(struct pt_regs *regs)
2748{
2749        exception_enter();
2750        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2751        die_if_kernel("TL1: FPU Other Exception", regs);
2752}
2753
2754void do_ill_tl1(struct pt_regs *regs)
2755{
2756        exception_enter();
2757        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2758        die_if_kernel("TL1: Illegal Instruction Exception", regs);
2759}
2760
2761void do_irq_tl1(struct pt_regs *regs)
2762{
2763        exception_enter();
2764        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2765        die_if_kernel("TL1: IRQ Exception", regs);
2766}
2767
2768void do_lddfmna_tl1(struct pt_regs *regs)
2769{
2770        exception_enter();
2771        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2772        die_if_kernel("TL1: LDDF Exception", regs);
2773}
2774
2775void do_stdfmna_tl1(struct pt_regs *regs)
2776{
2777        exception_enter();
2778        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2779        die_if_kernel("TL1: STDF Exception", regs);
2780}
2781
2782void do_paw(struct pt_regs *regs)
2783{
2784        exception_enter();
2785        die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2786}
2787
2788void do_paw_tl1(struct pt_regs *regs)
2789{
2790        exception_enter();
2791        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2792        die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2793}
2794
2795void do_vaw(struct pt_regs *regs)
2796{
2797        exception_enter();
2798        die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2799}
2800
2801void do_vaw_tl1(struct pt_regs *regs)
2802{
2803        exception_enter();
2804        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2805        die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2806}
2807
2808void do_tof_tl1(struct pt_regs *regs)
2809{
2810        exception_enter();
2811        dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2812        die_if_kernel("TL1: Tag Overflow Exception", regs);
2813}
2814
2815void do_getpsr(struct pt_regs *regs)
2816{
2817        regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2818        regs->tpc   = regs->tnpc;
2819        regs->tnpc += 4;
2820        if (test_thread_flag(TIF_32BIT)) {
2821                regs->tpc &= 0xffffffff;
2822                regs->tnpc &= 0xffffffff;
2823        }
2824}
2825
2826u64 cpu_mondo_counter[NR_CPUS] = {0};
2827struct trap_per_cpu trap_block[NR_CPUS];
2828EXPORT_SYMBOL(trap_block);
2829
2830/* This can get invoked before sched_init() so play it super safe
2831 * and use hard_smp_processor_id().
2832 */
2833void notrace init_cur_cpu_trap(struct thread_info *t)
2834{
2835        int cpu = hard_smp_processor_id();
2836        struct trap_per_cpu *p = &trap_block[cpu];
2837
2838        p->thread = t;
2839        p->pgd_paddr = 0;
2840}
2841
2842extern void thread_info_offsets_are_bolixed_dave(void);
2843extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2844extern void tsb_config_offsets_are_bolixed_dave(void);
2845
2846/* Only invoked on boot processor. */
2847void __init trap_init(void)
2848{
2849        /* Compile time sanity check. */
2850        BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2851                     TI_FLAGS != offsetof(struct thread_info, flags) ||
2852                     TI_CPU != offsetof(struct thread_info, cpu) ||
2853                     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2854                     TI_KSP != offsetof(struct thread_info, ksp) ||
2855                     TI_FAULT_ADDR != offsetof(struct thread_info,
2856                                               fault_address) ||
2857                     TI_KREGS != offsetof(struct thread_info, kregs) ||
2858                     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2859                     TI_REG_WINDOW != offsetof(struct thread_info,
2860                                               reg_window) ||
2861                     TI_RWIN_SPTRS != offsetof(struct thread_info,
2862                                               rwbuf_stkptrs) ||
2863                     TI_GSR != offsetof(struct thread_info, gsr) ||
2864                     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2865                     TI_PRE_COUNT != offsetof(struct thread_info,
2866                                              preempt_count) ||
2867                     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2868                     TI_CURRENT_DS != offsetof(struct thread_info,
2869                                                current_ds) ||
2870                     TI_KUNA_REGS != offsetof(struct thread_info,
2871                                              kern_una_regs) ||
2872                     TI_KUNA_INSN != offsetof(struct thread_info,
2873                                              kern_una_insn) ||
2874                     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2875                     (TI_FPREGS & (64 - 1)));
2876
2877        BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2878                                                     thread) ||
2879                     (TRAP_PER_CPU_PGD_PADDR !=
2880                      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2881                     (TRAP_PER_CPU_CPU_MONDO_PA !=
2882                      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2883                     (TRAP_PER_CPU_DEV_MONDO_PA !=
2884                      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2885                     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2886                      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2887                     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2888                      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2889                     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2890                      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2891                     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2892                      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2893                     (TRAP_PER_CPU_FAULT_INFO !=
2894                      offsetof(struct trap_per_cpu, fault_info)) ||
2895                     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2896                      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2897                     (TRAP_PER_CPU_CPU_LIST_PA !=
2898                      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2899                     (TRAP_PER_CPU_TSB_HUGE !=
2900                      offsetof(struct trap_per_cpu, tsb_huge)) ||
2901                     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2902                      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2903                     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2904                      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2905                     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2906                      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2907                     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2908                      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2909                     (TRAP_PER_CPU_RESUM_QMASK !=
2910                      offsetof(struct trap_per_cpu, resum_qmask)) ||
2911                     (TRAP_PER_CPU_NONRESUM_QMASK !=
2912                      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2913                     (TRAP_PER_CPU_PER_CPU_BASE !=
2914                      offsetof(struct trap_per_cpu, __per_cpu_base)));
2915
2916        BUILD_BUG_ON((TSB_CONFIG_TSB !=
2917                      offsetof(struct tsb_config, tsb)) ||
2918                     (TSB_CONFIG_RSS_LIMIT !=
2919                      offsetof(struct tsb_config, tsb_rss_limit)) ||
2920                     (TSB_CONFIG_NENTRIES !=
2921                      offsetof(struct tsb_config, tsb_nentries)) ||
2922                     (TSB_CONFIG_REG_VAL !=
2923                      offsetof(struct tsb_config, tsb_reg_val)) ||
2924                     (TSB_CONFIG_MAP_VADDR !=
2925                      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2926                     (TSB_CONFIG_MAP_PTE !=
2927                      offsetof(struct tsb_config, tsb_map_pte)));
2928
2929        /* Attach to the address space of init_task.  On SMP we
2930         * do this in smp.c:smp_callin for other cpus.
2931         */
2932        mmgrab(&init_mm);
2933        current->active_mm = &init_mm;
2934}
2935