linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * User interface for Resource Allocation in Resource Director Technology(RDT)
   4 *
   5 * Copyright (C) 2016 Intel Corporation
   6 *
   7 * Author: Fenghua Yu <fenghua.yu@intel.com>
   8 *
   9 * More information about RDT be found in the Intel (R) x86 Architecture
  10 * Software Developer Manual.
  11 */
  12
  13#define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
  14
  15#include <linux/cacheinfo.h>
  16#include <linux/cpu.h>
  17#include <linux/debugfs.h>
  18#include <linux/fs.h>
  19#include <linux/fs_parser.h>
  20#include <linux/sysfs.h>
  21#include <linux/kernfs.h>
  22#include <linux/seq_buf.h>
  23#include <linux/seq_file.h>
  24#include <linux/sched/signal.h>
  25#include <linux/sched/task.h>
  26#include <linux/slab.h>
  27#include <linux/task_work.h>
  28#include <linux/user_namespace.h>
  29
  30#include <uapi/linux/magic.h>
  31
  32#include <asm/resctrl.h>
  33#include "internal.h"
  34
  35DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
  36DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
  37DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
  38static struct kernfs_root *rdt_root;
  39struct rdtgroup rdtgroup_default;
  40LIST_HEAD(rdt_all_groups);
  41
  42/* Kernel fs node for "info" directory under root */
  43static struct kernfs_node *kn_info;
  44
  45/* Kernel fs node for "mon_groups" directory under root */
  46static struct kernfs_node *kn_mongrp;
  47
  48/* Kernel fs node for "mon_data" directory under root */
  49static struct kernfs_node *kn_mondata;
  50
  51static struct seq_buf last_cmd_status;
  52static char last_cmd_status_buf[512];
  53
  54struct dentry *debugfs_resctrl;
  55
  56void rdt_last_cmd_clear(void)
  57{
  58        lockdep_assert_held(&rdtgroup_mutex);
  59        seq_buf_clear(&last_cmd_status);
  60}
  61
  62void rdt_last_cmd_puts(const char *s)
  63{
  64        lockdep_assert_held(&rdtgroup_mutex);
  65        seq_buf_puts(&last_cmd_status, s);
  66}
  67
  68void rdt_last_cmd_printf(const char *fmt, ...)
  69{
  70        va_list ap;
  71
  72        va_start(ap, fmt);
  73        lockdep_assert_held(&rdtgroup_mutex);
  74        seq_buf_vprintf(&last_cmd_status, fmt, ap);
  75        va_end(ap);
  76}
  77
  78/*
  79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
  80 * we can keep a bitmap of free CLOSIDs in a single integer.
  81 *
  82 * Using a global CLOSID across all resources has some advantages and
  83 * some drawbacks:
  84 * + We can simply set "current->closid" to assign a task to a resource
  85 *   group.
  86 * + Context switch code can avoid extra memory references deciding which
  87 *   CLOSID to load into the PQR_ASSOC MSR
  88 * - We give up some options in configuring resource groups across multi-socket
  89 *   systems.
  90 * - Our choices on how to configure each resource become progressively more
  91 *   limited as the number of resources grows.
  92 */
  93static int closid_free_map;
  94static int closid_free_map_len;
  95
  96int closids_supported(void)
  97{
  98        return closid_free_map_len;
  99}
 100
 101static void closid_init(void)
 102{
 103        struct rdt_resource *r;
 104        int rdt_min_closid = 32;
 105
 106        /* Compute rdt_min_closid across all resources */
 107        for_each_alloc_enabled_rdt_resource(r)
 108                rdt_min_closid = min(rdt_min_closid, r->num_closid);
 109
 110        closid_free_map = BIT_MASK(rdt_min_closid) - 1;
 111
 112        /* CLOSID 0 is always reserved for the default group */
 113        closid_free_map &= ~1;
 114        closid_free_map_len = rdt_min_closid;
 115}
 116
 117static int closid_alloc(void)
 118{
 119        u32 closid = ffs(closid_free_map);
 120
 121        if (closid == 0)
 122                return -ENOSPC;
 123        closid--;
 124        closid_free_map &= ~(1 << closid);
 125
 126        return closid;
 127}
 128
 129void closid_free(int closid)
 130{
 131        closid_free_map |= 1 << closid;
 132}
 133
 134/**
 135 * closid_allocated - test if provided closid is in use
 136 * @closid: closid to be tested
 137 *
 138 * Return: true if @closid is currently associated with a resource group,
 139 * false if @closid is free
 140 */
 141static bool closid_allocated(unsigned int closid)
 142{
 143        return (closid_free_map & (1 << closid)) == 0;
 144}
 145
 146/**
 147 * rdtgroup_mode_by_closid - Return mode of resource group with closid
 148 * @closid: closid if the resource group
 149 *
 150 * Each resource group is associated with a @closid. Here the mode
 151 * of a resource group can be queried by searching for it using its closid.
 152 *
 153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
 154 */
 155enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
 156{
 157        struct rdtgroup *rdtgrp;
 158
 159        list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
 160                if (rdtgrp->closid == closid)
 161                        return rdtgrp->mode;
 162        }
 163
 164        return RDT_NUM_MODES;
 165}
 166
 167static const char * const rdt_mode_str[] = {
 168        [RDT_MODE_SHAREABLE]            = "shareable",
 169        [RDT_MODE_EXCLUSIVE]            = "exclusive",
 170        [RDT_MODE_PSEUDO_LOCKSETUP]     = "pseudo-locksetup",
 171        [RDT_MODE_PSEUDO_LOCKED]        = "pseudo-locked",
 172};
 173
 174/**
 175 * rdtgroup_mode_str - Return the string representation of mode
 176 * @mode: the resource group mode as &enum rdtgroup_mode
 177 *
 178 * Return: string representation of valid mode, "unknown" otherwise
 179 */
 180static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
 181{
 182        if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
 183                return "unknown";
 184
 185        return rdt_mode_str[mode];
 186}
 187
 188/* set uid and gid of rdtgroup dirs and files to that of the creator */
 189static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
 190{
 191        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
 192                                .ia_uid = current_fsuid(),
 193                                .ia_gid = current_fsgid(), };
 194
 195        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
 196            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
 197                return 0;
 198
 199        return kernfs_setattr(kn, &iattr);
 200}
 201
 202static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
 203{
 204        struct kernfs_node *kn;
 205        int ret;
 206
 207        kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
 208                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 209                                  0, rft->kf_ops, rft, NULL, NULL);
 210        if (IS_ERR(kn))
 211                return PTR_ERR(kn);
 212
 213        ret = rdtgroup_kn_set_ugid(kn);
 214        if (ret) {
 215                kernfs_remove(kn);
 216                return ret;
 217        }
 218
 219        return 0;
 220}
 221
 222static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
 223{
 224        struct kernfs_open_file *of = m->private;
 225        struct rftype *rft = of->kn->priv;
 226
 227        if (rft->seq_show)
 228                return rft->seq_show(of, m, arg);
 229        return 0;
 230}
 231
 232static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
 233                                   size_t nbytes, loff_t off)
 234{
 235        struct rftype *rft = of->kn->priv;
 236
 237        if (rft->write)
 238                return rft->write(of, buf, nbytes, off);
 239
 240        return -EINVAL;
 241}
 242
 243static const struct kernfs_ops rdtgroup_kf_single_ops = {
 244        .atomic_write_len       = PAGE_SIZE,
 245        .write                  = rdtgroup_file_write,
 246        .seq_show               = rdtgroup_seqfile_show,
 247};
 248
 249static const struct kernfs_ops kf_mondata_ops = {
 250        .atomic_write_len       = PAGE_SIZE,
 251        .seq_show               = rdtgroup_mondata_show,
 252};
 253
 254static bool is_cpu_list(struct kernfs_open_file *of)
 255{
 256        struct rftype *rft = of->kn->priv;
 257
 258        return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
 259}
 260
 261static int rdtgroup_cpus_show(struct kernfs_open_file *of,
 262                              struct seq_file *s, void *v)
 263{
 264        struct rdtgroup *rdtgrp;
 265        struct cpumask *mask;
 266        int ret = 0;
 267
 268        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 269
 270        if (rdtgrp) {
 271                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
 272                        if (!rdtgrp->plr->d) {
 273                                rdt_last_cmd_clear();
 274                                rdt_last_cmd_puts("Cache domain offline\n");
 275                                ret = -ENODEV;
 276                        } else {
 277                                mask = &rdtgrp->plr->d->cpu_mask;
 278                                seq_printf(s, is_cpu_list(of) ?
 279                                           "%*pbl\n" : "%*pb\n",
 280                                           cpumask_pr_args(mask));
 281                        }
 282                } else {
 283                        seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
 284                                   cpumask_pr_args(&rdtgrp->cpu_mask));
 285                }
 286        } else {
 287                ret = -ENOENT;
 288        }
 289        rdtgroup_kn_unlock(of->kn);
 290
 291        return ret;
 292}
 293
 294/*
 295 * This is safe against resctrl_sched_in() called from __switch_to()
 296 * because __switch_to() is executed with interrupts disabled. A local call
 297 * from update_closid_rmid() is protected against __switch_to() because
 298 * preemption is disabled.
 299 */
 300static void update_cpu_closid_rmid(void *info)
 301{
 302        struct rdtgroup *r = info;
 303
 304        if (r) {
 305                this_cpu_write(pqr_state.default_closid, r->closid);
 306                this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
 307        }
 308
 309        /*
 310         * We cannot unconditionally write the MSR because the current
 311         * executing task might have its own closid selected. Just reuse
 312         * the context switch code.
 313         */
 314        resctrl_sched_in();
 315}
 316
 317/*
 318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
 319 *
 320 * Per task closids/rmids must have been set up before calling this function.
 321 */
 322static void
 323update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
 324{
 325        int cpu = get_cpu();
 326
 327        if (cpumask_test_cpu(cpu, cpu_mask))
 328                update_cpu_closid_rmid(r);
 329        smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
 330        put_cpu();
 331}
 332
 333static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
 334                          cpumask_var_t tmpmask)
 335{
 336        struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
 337        struct list_head *head;
 338
 339        /* Check whether cpus belong to parent ctrl group */
 340        cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
 341        if (cpumask_weight(tmpmask)) {
 342                rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
 343                return -EINVAL;
 344        }
 345
 346        /* Check whether cpus are dropped from this group */
 347        cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
 348        if (cpumask_weight(tmpmask)) {
 349                /* Give any dropped cpus to parent rdtgroup */
 350                cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
 351                update_closid_rmid(tmpmask, prgrp);
 352        }
 353
 354        /*
 355         * If we added cpus, remove them from previous group that owned them
 356         * and update per-cpu rmid
 357         */
 358        cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
 359        if (cpumask_weight(tmpmask)) {
 360                head = &prgrp->mon.crdtgrp_list;
 361                list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
 362                        if (crgrp == rdtgrp)
 363                                continue;
 364                        cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
 365                                       tmpmask);
 366                }
 367                update_closid_rmid(tmpmask, rdtgrp);
 368        }
 369
 370        /* Done pushing/pulling - update this group with new mask */
 371        cpumask_copy(&rdtgrp->cpu_mask, newmask);
 372
 373        return 0;
 374}
 375
 376static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
 377{
 378        struct rdtgroup *crgrp;
 379
 380        cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
 381        /* update the child mon group masks as well*/
 382        list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
 383                cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
 384}
 385
 386static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
 387                           cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
 388{
 389        struct rdtgroup *r, *crgrp;
 390        struct list_head *head;
 391
 392        /* Check whether cpus are dropped from this group */
 393        cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
 394        if (cpumask_weight(tmpmask)) {
 395                /* Can't drop from default group */
 396                if (rdtgrp == &rdtgroup_default) {
 397                        rdt_last_cmd_puts("Can't drop CPUs from default group\n");
 398                        return -EINVAL;
 399                }
 400
 401                /* Give any dropped cpus to rdtgroup_default */
 402                cpumask_or(&rdtgroup_default.cpu_mask,
 403                           &rdtgroup_default.cpu_mask, tmpmask);
 404                update_closid_rmid(tmpmask, &rdtgroup_default);
 405        }
 406
 407        /*
 408         * If we added cpus, remove them from previous group and
 409         * the prev group's child groups that owned them
 410         * and update per-cpu closid/rmid.
 411         */
 412        cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
 413        if (cpumask_weight(tmpmask)) {
 414                list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
 415                        if (r == rdtgrp)
 416                                continue;
 417                        cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
 418                        if (cpumask_weight(tmpmask1))
 419                                cpumask_rdtgrp_clear(r, tmpmask1);
 420                }
 421                update_closid_rmid(tmpmask, rdtgrp);
 422        }
 423
 424        /* Done pushing/pulling - update this group with new mask */
 425        cpumask_copy(&rdtgrp->cpu_mask, newmask);
 426
 427        /*
 428         * Clear child mon group masks since there is a new parent mask
 429         * now and update the rmid for the cpus the child lost.
 430         */
 431        head = &rdtgrp->mon.crdtgrp_list;
 432        list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
 433                cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
 434                update_closid_rmid(tmpmask, rdtgrp);
 435                cpumask_clear(&crgrp->cpu_mask);
 436        }
 437
 438        return 0;
 439}
 440
 441static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
 442                                   char *buf, size_t nbytes, loff_t off)
 443{
 444        cpumask_var_t tmpmask, newmask, tmpmask1;
 445        struct rdtgroup *rdtgrp;
 446        int ret;
 447
 448        if (!buf)
 449                return -EINVAL;
 450
 451        if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
 452                return -ENOMEM;
 453        if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
 454                free_cpumask_var(tmpmask);
 455                return -ENOMEM;
 456        }
 457        if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
 458                free_cpumask_var(tmpmask);
 459                free_cpumask_var(newmask);
 460                return -ENOMEM;
 461        }
 462
 463        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 464        if (!rdtgrp) {
 465                ret = -ENOENT;
 466                goto unlock;
 467        }
 468
 469        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
 470            rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
 471                ret = -EINVAL;
 472                rdt_last_cmd_puts("Pseudo-locking in progress\n");
 473                goto unlock;
 474        }
 475
 476        if (is_cpu_list(of))
 477                ret = cpulist_parse(buf, newmask);
 478        else
 479                ret = cpumask_parse(buf, newmask);
 480
 481        if (ret) {
 482                rdt_last_cmd_puts("Bad CPU list/mask\n");
 483                goto unlock;
 484        }
 485
 486        /* check that user didn't specify any offline cpus */
 487        cpumask_andnot(tmpmask, newmask, cpu_online_mask);
 488        if (cpumask_weight(tmpmask)) {
 489                ret = -EINVAL;
 490                rdt_last_cmd_puts("Can only assign online CPUs\n");
 491                goto unlock;
 492        }
 493
 494        if (rdtgrp->type == RDTCTRL_GROUP)
 495                ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
 496        else if (rdtgrp->type == RDTMON_GROUP)
 497                ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
 498        else
 499                ret = -EINVAL;
 500
 501unlock:
 502        rdtgroup_kn_unlock(of->kn);
 503        free_cpumask_var(tmpmask);
 504        free_cpumask_var(newmask);
 505        free_cpumask_var(tmpmask1);
 506
 507        return ret ?: nbytes;
 508}
 509
 510/**
 511 * rdtgroup_remove - the helper to remove resource group safely
 512 * @rdtgrp: resource group to remove
 513 *
 514 * On resource group creation via a mkdir, an extra kernfs_node reference is
 515 * taken to ensure that the rdtgroup structure remains accessible for the
 516 * rdtgroup_kn_unlock() calls where it is removed.
 517 *
 518 * Drop the extra reference here, then free the rdtgroup structure.
 519 *
 520 * Return: void
 521 */
 522static void rdtgroup_remove(struct rdtgroup *rdtgrp)
 523{
 524        kernfs_put(rdtgrp->kn);
 525        kfree(rdtgrp);
 526}
 527
 528static void _update_task_closid_rmid(void *task)
 529{
 530        /*
 531         * If the task is still current on this CPU, update PQR_ASSOC MSR.
 532         * Otherwise, the MSR is updated when the task is scheduled in.
 533         */
 534        if (task == current)
 535                resctrl_sched_in();
 536}
 537
 538static void update_task_closid_rmid(struct task_struct *t)
 539{
 540        if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
 541                smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
 542        else
 543                _update_task_closid_rmid(t);
 544}
 545
 546static int __rdtgroup_move_task(struct task_struct *tsk,
 547                                struct rdtgroup *rdtgrp)
 548{
 549        /* If the task is already in rdtgrp, no need to move the task. */
 550        if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
 551             tsk->rmid == rdtgrp->mon.rmid) ||
 552            (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
 553             tsk->closid == rdtgrp->mon.parent->closid))
 554                return 0;
 555
 556        /*
 557         * Set the task's closid/rmid before the PQR_ASSOC MSR can be
 558         * updated by them.
 559         *
 560         * For ctrl_mon groups, move both closid and rmid.
 561         * For monitor groups, can move the tasks only from
 562         * their parent CTRL group.
 563         */
 564
 565        if (rdtgrp->type == RDTCTRL_GROUP) {
 566                WRITE_ONCE(tsk->closid, rdtgrp->closid);
 567                WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
 568        } else if (rdtgrp->type == RDTMON_GROUP) {
 569                if (rdtgrp->mon.parent->closid == tsk->closid) {
 570                        WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
 571                } else {
 572                        rdt_last_cmd_puts("Can't move task to different control group\n");
 573                        return -EINVAL;
 574                }
 575        }
 576
 577        /*
 578         * Ensure the task's closid and rmid are written before determining if
 579         * the task is current that will decide if it will be interrupted.
 580         */
 581        barrier();
 582
 583        /*
 584         * By now, the task's closid and rmid are set. If the task is current
 585         * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
 586         * group go into effect. If the task is not current, the MSR will be
 587         * updated when the task is scheduled in.
 588         */
 589        update_task_closid_rmid(tsk);
 590
 591        return 0;
 592}
 593
 594static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
 595{
 596        return (rdt_alloc_capable &&
 597               (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
 598}
 599
 600static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
 601{
 602        return (rdt_mon_capable &&
 603               (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
 604}
 605
 606/**
 607 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
 608 * @r: Resource group
 609 *
 610 * Return: 1 if tasks have been assigned to @r, 0 otherwise
 611 */
 612int rdtgroup_tasks_assigned(struct rdtgroup *r)
 613{
 614        struct task_struct *p, *t;
 615        int ret = 0;
 616
 617        lockdep_assert_held(&rdtgroup_mutex);
 618
 619        rcu_read_lock();
 620        for_each_process_thread(p, t) {
 621                if (is_closid_match(t, r) || is_rmid_match(t, r)) {
 622                        ret = 1;
 623                        break;
 624                }
 625        }
 626        rcu_read_unlock();
 627
 628        return ret;
 629}
 630
 631static int rdtgroup_task_write_permission(struct task_struct *task,
 632                                          struct kernfs_open_file *of)
 633{
 634        const struct cred *tcred = get_task_cred(task);
 635        const struct cred *cred = current_cred();
 636        int ret = 0;
 637
 638        /*
 639         * Even if we're attaching all tasks in the thread group, we only
 640         * need to check permissions on one of them.
 641         */
 642        if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 643            !uid_eq(cred->euid, tcred->uid) &&
 644            !uid_eq(cred->euid, tcred->suid)) {
 645                rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
 646                ret = -EPERM;
 647        }
 648
 649        put_cred(tcred);
 650        return ret;
 651}
 652
 653static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
 654                              struct kernfs_open_file *of)
 655{
 656        struct task_struct *tsk;
 657        int ret;
 658
 659        rcu_read_lock();
 660        if (pid) {
 661                tsk = find_task_by_vpid(pid);
 662                if (!tsk) {
 663                        rcu_read_unlock();
 664                        rdt_last_cmd_printf("No task %d\n", pid);
 665                        return -ESRCH;
 666                }
 667        } else {
 668                tsk = current;
 669        }
 670
 671        get_task_struct(tsk);
 672        rcu_read_unlock();
 673
 674        ret = rdtgroup_task_write_permission(tsk, of);
 675        if (!ret)
 676                ret = __rdtgroup_move_task(tsk, rdtgrp);
 677
 678        put_task_struct(tsk);
 679        return ret;
 680}
 681
 682static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
 683                                    char *buf, size_t nbytes, loff_t off)
 684{
 685        struct rdtgroup *rdtgrp;
 686        int ret = 0;
 687        pid_t pid;
 688
 689        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
 690                return -EINVAL;
 691        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 692        if (!rdtgrp) {
 693                rdtgroup_kn_unlock(of->kn);
 694                return -ENOENT;
 695        }
 696        rdt_last_cmd_clear();
 697
 698        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
 699            rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
 700                ret = -EINVAL;
 701                rdt_last_cmd_puts("Pseudo-locking in progress\n");
 702                goto unlock;
 703        }
 704
 705        ret = rdtgroup_move_task(pid, rdtgrp, of);
 706
 707unlock:
 708        rdtgroup_kn_unlock(of->kn);
 709
 710        return ret ?: nbytes;
 711}
 712
 713static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
 714{
 715        struct task_struct *p, *t;
 716
 717        rcu_read_lock();
 718        for_each_process_thread(p, t) {
 719                if (is_closid_match(t, r) || is_rmid_match(t, r))
 720                        seq_printf(s, "%d\n", t->pid);
 721        }
 722        rcu_read_unlock();
 723}
 724
 725static int rdtgroup_tasks_show(struct kernfs_open_file *of,
 726                               struct seq_file *s, void *v)
 727{
 728        struct rdtgroup *rdtgrp;
 729        int ret = 0;
 730
 731        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 732        if (rdtgrp)
 733                show_rdt_tasks(rdtgrp, s);
 734        else
 735                ret = -ENOENT;
 736        rdtgroup_kn_unlock(of->kn);
 737
 738        return ret;
 739}
 740
 741#ifdef CONFIG_PROC_CPU_RESCTRL
 742
 743/*
 744 * A task can only be part of one resctrl control group and of one monitor
 745 * group which is associated to that control group.
 746 *
 747 * 1)   res:
 748 *      mon:
 749 *
 750 *    resctrl is not available.
 751 *
 752 * 2)   res:/
 753 *      mon:
 754 *
 755 *    Task is part of the root resctrl control group, and it is not associated
 756 *    to any monitor group.
 757 *
 758 * 3)  res:/
 759 *     mon:mon0
 760 *
 761 *    Task is part of the root resctrl control group and monitor group mon0.
 762 *
 763 * 4)  res:group0
 764 *     mon:
 765 *
 766 *    Task is part of resctrl control group group0, and it is not associated
 767 *    to any monitor group.
 768 *
 769 * 5) res:group0
 770 *    mon:mon1
 771 *
 772 *    Task is part of resctrl control group group0 and monitor group mon1.
 773 */
 774int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
 775                      struct pid *pid, struct task_struct *tsk)
 776{
 777        struct rdtgroup *rdtg;
 778        int ret = 0;
 779
 780        mutex_lock(&rdtgroup_mutex);
 781
 782        /* Return empty if resctrl has not been mounted. */
 783        if (!static_branch_unlikely(&rdt_enable_key)) {
 784                seq_puts(s, "res:\nmon:\n");
 785                goto unlock;
 786        }
 787
 788        list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
 789                struct rdtgroup *crg;
 790
 791                /*
 792                 * Task information is only relevant for shareable
 793                 * and exclusive groups.
 794                 */
 795                if (rdtg->mode != RDT_MODE_SHAREABLE &&
 796                    rdtg->mode != RDT_MODE_EXCLUSIVE)
 797                        continue;
 798
 799                if (rdtg->closid != tsk->closid)
 800                        continue;
 801
 802                seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
 803                           rdtg->kn->name);
 804                seq_puts(s, "mon:");
 805                list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
 806                                    mon.crdtgrp_list) {
 807                        if (tsk->rmid != crg->mon.rmid)
 808                                continue;
 809                        seq_printf(s, "%s", crg->kn->name);
 810                        break;
 811                }
 812                seq_putc(s, '\n');
 813                goto unlock;
 814        }
 815        /*
 816         * The above search should succeed. Otherwise return
 817         * with an error.
 818         */
 819        ret = -ENOENT;
 820unlock:
 821        mutex_unlock(&rdtgroup_mutex);
 822
 823        return ret;
 824}
 825#endif
 826
 827static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
 828                                    struct seq_file *seq, void *v)
 829{
 830        int len;
 831
 832        mutex_lock(&rdtgroup_mutex);
 833        len = seq_buf_used(&last_cmd_status);
 834        if (len)
 835                seq_printf(seq, "%.*s", len, last_cmd_status_buf);
 836        else
 837                seq_puts(seq, "ok\n");
 838        mutex_unlock(&rdtgroup_mutex);
 839        return 0;
 840}
 841
 842static int rdt_num_closids_show(struct kernfs_open_file *of,
 843                                struct seq_file *seq, void *v)
 844{
 845        struct rdt_resource *r = of->kn->parent->priv;
 846
 847        seq_printf(seq, "%d\n", r->num_closid);
 848        return 0;
 849}
 850
 851static int rdt_default_ctrl_show(struct kernfs_open_file *of,
 852                             struct seq_file *seq, void *v)
 853{
 854        struct rdt_resource *r = of->kn->parent->priv;
 855
 856        seq_printf(seq, "%x\n", r->default_ctrl);
 857        return 0;
 858}
 859
 860static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
 861                             struct seq_file *seq, void *v)
 862{
 863        struct rdt_resource *r = of->kn->parent->priv;
 864
 865        seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
 866        return 0;
 867}
 868
 869static int rdt_shareable_bits_show(struct kernfs_open_file *of,
 870                                   struct seq_file *seq, void *v)
 871{
 872        struct rdt_resource *r = of->kn->parent->priv;
 873
 874        seq_printf(seq, "%x\n", r->cache.shareable_bits);
 875        return 0;
 876}
 877
 878/**
 879 * rdt_bit_usage_show - Display current usage of resources
 880 *
 881 * A domain is a shared resource that can now be allocated differently. Here
 882 * we display the current regions of the domain as an annotated bitmask.
 883 * For each domain of this resource its allocation bitmask
 884 * is annotated as below to indicate the current usage of the corresponding bit:
 885 *   0 - currently unused
 886 *   X - currently available for sharing and used by software and hardware
 887 *   H - currently used by hardware only but available for software use
 888 *   S - currently used and shareable by software only
 889 *   E - currently used exclusively by one resource group
 890 *   P - currently pseudo-locked by one resource group
 891 */
 892static int rdt_bit_usage_show(struct kernfs_open_file *of,
 893                              struct seq_file *seq, void *v)
 894{
 895        struct rdt_resource *r = of->kn->parent->priv;
 896        /*
 897         * Use unsigned long even though only 32 bits are used to ensure
 898         * test_bit() is used safely.
 899         */
 900        unsigned long sw_shareable = 0, hw_shareable = 0;
 901        unsigned long exclusive = 0, pseudo_locked = 0;
 902        struct rdt_domain *dom;
 903        int i, hwb, swb, excl, psl;
 904        enum rdtgrp_mode mode;
 905        bool sep = false;
 906        u32 *ctrl;
 907
 908        mutex_lock(&rdtgroup_mutex);
 909        hw_shareable = r->cache.shareable_bits;
 910        list_for_each_entry(dom, &r->domains, list) {
 911                if (sep)
 912                        seq_putc(seq, ';');
 913                ctrl = dom->ctrl_val;
 914                sw_shareable = 0;
 915                exclusive = 0;
 916                seq_printf(seq, "%d=", dom->id);
 917                for (i = 0; i < closids_supported(); i++, ctrl++) {
 918                        if (!closid_allocated(i))
 919                                continue;
 920                        mode = rdtgroup_mode_by_closid(i);
 921                        switch (mode) {
 922                        case RDT_MODE_SHAREABLE:
 923                                sw_shareable |= *ctrl;
 924                                break;
 925                        case RDT_MODE_EXCLUSIVE:
 926                                exclusive |= *ctrl;
 927                                break;
 928                        case RDT_MODE_PSEUDO_LOCKSETUP:
 929                        /*
 930                         * RDT_MODE_PSEUDO_LOCKSETUP is possible
 931                         * here but not included since the CBM
 932                         * associated with this CLOSID in this mode
 933                         * is not initialized and no task or cpu can be
 934                         * assigned this CLOSID.
 935                         */
 936                                break;
 937                        case RDT_MODE_PSEUDO_LOCKED:
 938                        case RDT_NUM_MODES:
 939                                WARN(1,
 940                                     "invalid mode for closid %d\n", i);
 941                                break;
 942                        }
 943                }
 944                for (i = r->cache.cbm_len - 1; i >= 0; i--) {
 945                        pseudo_locked = dom->plr ? dom->plr->cbm : 0;
 946                        hwb = test_bit(i, &hw_shareable);
 947                        swb = test_bit(i, &sw_shareable);
 948                        excl = test_bit(i, &exclusive);
 949                        psl = test_bit(i, &pseudo_locked);
 950                        if (hwb && swb)
 951                                seq_putc(seq, 'X');
 952                        else if (hwb && !swb)
 953                                seq_putc(seq, 'H');
 954                        else if (!hwb && swb)
 955                                seq_putc(seq, 'S');
 956                        else if (excl)
 957                                seq_putc(seq, 'E');
 958                        else if (psl)
 959                                seq_putc(seq, 'P');
 960                        else /* Unused bits remain */
 961                                seq_putc(seq, '0');
 962                }
 963                sep = true;
 964        }
 965        seq_putc(seq, '\n');
 966        mutex_unlock(&rdtgroup_mutex);
 967        return 0;
 968}
 969
 970static int rdt_min_bw_show(struct kernfs_open_file *of,
 971                             struct seq_file *seq, void *v)
 972{
 973        struct rdt_resource *r = of->kn->parent->priv;
 974
 975        seq_printf(seq, "%u\n", r->membw.min_bw);
 976        return 0;
 977}
 978
 979static int rdt_num_rmids_show(struct kernfs_open_file *of,
 980                              struct seq_file *seq, void *v)
 981{
 982        struct rdt_resource *r = of->kn->parent->priv;
 983
 984        seq_printf(seq, "%d\n", r->num_rmid);
 985
 986        return 0;
 987}
 988
 989static int rdt_mon_features_show(struct kernfs_open_file *of,
 990                                 struct seq_file *seq, void *v)
 991{
 992        struct rdt_resource *r = of->kn->parent->priv;
 993        struct mon_evt *mevt;
 994
 995        list_for_each_entry(mevt, &r->evt_list, list)
 996                seq_printf(seq, "%s\n", mevt->name);
 997
 998        return 0;
 999}
1000
1001static int rdt_bw_gran_show(struct kernfs_open_file *of,
1002                             struct seq_file *seq, void *v)
1003{
1004        struct rdt_resource *r = of->kn->parent->priv;
1005
1006        seq_printf(seq, "%u\n", r->membw.bw_gran);
1007        return 0;
1008}
1009
1010static int rdt_delay_linear_show(struct kernfs_open_file *of,
1011                             struct seq_file *seq, void *v)
1012{
1013        struct rdt_resource *r = of->kn->parent->priv;
1014
1015        seq_printf(seq, "%u\n", r->membw.delay_linear);
1016        return 0;
1017}
1018
1019static int max_threshold_occ_show(struct kernfs_open_file *of,
1020                                  struct seq_file *seq, void *v)
1021{
1022        struct rdt_resource *r = of->kn->parent->priv;
1023
1024        seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
1025
1026        return 0;
1027}
1028
1029static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1030                                         struct seq_file *seq, void *v)
1031{
1032        struct rdt_resource *r = of->kn->parent->priv;
1033
1034        if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1035                seq_puts(seq, "per-thread\n");
1036        else
1037                seq_puts(seq, "max\n");
1038
1039        return 0;
1040}
1041
1042static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1043                                       char *buf, size_t nbytes, loff_t off)
1044{
1045        struct rdt_resource *r = of->kn->parent->priv;
1046        unsigned int bytes;
1047        int ret;
1048
1049        ret = kstrtouint(buf, 0, &bytes);
1050        if (ret)
1051                return ret;
1052
1053        if (bytes > (boot_cpu_data.x86_cache_size * 1024))
1054                return -EINVAL;
1055
1056        resctrl_cqm_threshold = bytes / r->mon_scale;
1057
1058        return nbytes;
1059}
1060
1061/*
1062 * rdtgroup_mode_show - Display mode of this resource group
1063 */
1064static int rdtgroup_mode_show(struct kernfs_open_file *of,
1065                              struct seq_file *s, void *v)
1066{
1067        struct rdtgroup *rdtgrp;
1068
1069        rdtgrp = rdtgroup_kn_lock_live(of->kn);
1070        if (!rdtgrp) {
1071                rdtgroup_kn_unlock(of->kn);
1072                return -ENOENT;
1073        }
1074
1075        seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1076
1077        rdtgroup_kn_unlock(of->kn);
1078        return 0;
1079}
1080
1081/**
1082 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
1083 * @r: RDT resource to which RDT domain @d belongs
1084 * @d: Cache instance for which a CDP peer is requested
1085 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
1086 *         Used to return the result.
1087 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
1088 *         Used to return the result.
1089 *
1090 * RDT resources are managed independently and by extension the RDT domains
1091 * (RDT resource instances) are managed independently also. The Code and
1092 * Data Prioritization (CDP) RDT resources, while managed independently,
1093 * could refer to the same underlying hardware. For example,
1094 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1095 *
1096 * When provided with an RDT resource @r and an instance of that RDT
1097 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1098 * resource and the exact instance that shares the same hardware.
1099 *
1100 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1101 *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
1102 *         and @d_cdp will point to the peer RDT domain.
1103 */
1104static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1105                            struct rdt_resource **r_cdp,
1106                            struct rdt_domain **d_cdp)
1107{
1108        struct rdt_resource *_r_cdp = NULL;
1109        struct rdt_domain *_d_cdp = NULL;
1110        int ret = 0;
1111
1112        switch (r->rid) {
1113        case RDT_RESOURCE_L3DATA:
1114                _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1115                break;
1116        case RDT_RESOURCE_L3CODE:
1117                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1118                break;
1119        case RDT_RESOURCE_L2DATA:
1120                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1121                break;
1122        case RDT_RESOURCE_L2CODE:
1123                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1124                break;
1125        default:
1126                ret = -ENOENT;
1127                goto out;
1128        }
1129
1130        /*
1131         * When a new CPU comes online and CDP is enabled then the new
1132         * RDT domains (if any) associated with both CDP RDT resources
1133         * are added in the same CPU online routine while the
1134         * rdtgroup_mutex is held. It should thus not happen for one
1135         * RDT domain to exist and be associated with its RDT CDP
1136         * resource but there is no RDT domain associated with the
1137         * peer RDT CDP resource. Hence the WARN.
1138         */
1139        _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1140        if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1141                _r_cdp = NULL;
1142                _d_cdp = NULL;
1143                ret = -EINVAL;
1144        }
1145
1146out:
1147        *r_cdp = _r_cdp;
1148        *d_cdp = _d_cdp;
1149
1150        return ret;
1151}
1152
1153/**
1154 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1155 * @r: Resource to which domain instance @d belongs.
1156 * @d: The domain instance for which @closid is being tested.
1157 * @cbm: Capacity bitmask being tested.
1158 * @closid: Intended closid for @cbm.
1159 * @exclusive: Only check if overlaps with exclusive resource groups
1160 *
1161 * Checks if provided @cbm intended to be used for @closid on domain
1162 * @d overlaps with any other closids or other hardware usage associated
1163 * with this domain. If @exclusive is true then only overlaps with
1164 * resource groups in exclusive mode will be considered. If @exclusive
1165 * is false then overlaps with any resource group or hardware entities
1166 * will be considered.
1167 *
1168 * @cbm is unsigned long, even if only 32 bits are used, to make the
1169 * bitmap functions work correctly.
1170 *
1171 * Return: false if CBM does not overlap, true if it does.
1172 */
1173static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1174                                    unsigned long cbm, int closid, bool exclusive)
1175{
1176        enum rdtgrp_mode mode;
1177        unsigned long ctrl_b;
1178        u32 *ctrl;
1179        int i;
1180
1181        /* Check for any overlap with regions used by hardware directly */
1182        if (!exclusive) {
1183                ctrl_b = r->cache.shareable_bits;
1184                if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1185                        return true;
1186        }
1187
1188        /* Check for overlap with other resource groups */
1189        ctrl = d->ctrl_val;
1190        for (i = 0; i < closids_supported(); i++, ctrl++) {
1191                ctrl_b = *ctrl;
1192                mode = rdtgroup_mode_by_closid(i);
1193                if (closid_allocated(i) && i != closid &&
1194                    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1195                        if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1196                                if (exclusive) {
1197                                        if (mode == RDT_MODE_EXCLUSIVE)
1198                                                return true;
1199                                        continue;
1200                                }
1201                                return true;
1202                        }
1203                }
1204        }
1205
1206        return false;
1207}
1208
1209/**
1210 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1211 * @r: Resource to which domain instance @d belongs.
1212 * @d: The domain instance for which @closid is being tested.
1213 * @cbm: Capacity bitmask being tested.
1214 * @closid: Intended closid for @cbm.
1215 * @exclusive: Only check if overlaps with exclusive resource groups
1216 *
1217 * Resources that can be allocated using a CBM can use the CBM to control
1218 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1219 * for overlap. Overlap test is not limited to the specific resource for
1220 * which the CBM is intended though - when dealing with CDP resources that
1221 * share the underlying hardware the overlap check should be performed on
1222 * the CDP resource sharing the hardware also.
1223 *
1224 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1225 * overlap test.
1226 *
1227 * Return: true if CBM overlap detected, false if there is no overlap
1228 */
1229bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1230                           unsigned long cbm, int closid, bool exclusive)
1231{
1232        struct rdt_resource *r_cdp;
1233        struct rdt_domain *d_cdp;
1234
1235        if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1236                return true;
1237
1238        if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1239                return false;
1240
1241        return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1242}
1243
1244/**
1245 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1246 *
1247 * An exclusive resource group implies that there should be no sharing of
1248 * its allocated resources. At the time this group is considered to be
1249 * exclusive this test can determine if its current schemata supports this
1250 * setting by testing for overlap with all other resource groups.
1251 *
1252 * Return: true if resource group can be exclusive, false if there is overlap
1253 * with allocations of other resource groups and thus this resource group
1254 * cannot be exclusive.
1255 */
1256static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1257{
1258        int closid = rdtgrp->closid;
1259        struct rdt_resource *r;
1260        bool has_cache = false;
1261        struct rdt_domain *d;
1262
1263        for_each_alloc_enabled_rdt_resource(r) {
1264                if (r->rid == RDT_RESOURCE_MBA)
1265                        continue;
1266                has_cache = true;
1267                list_for_each_entry(d, &r->domains, list) {
1268                        if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1269                                                  rdtgrp->closid, false)) {
1270                                rdt_last_cmd_puts("Schemata overlaps\n");
1271                                return false;
1272                        }
1273                }
1274        }
1275
1276        if (!has_cache) {
1277                rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1278                return false;
1279        }
1280
1281        return true;
1282}
1283
1284/**
1285 * rdtgroup_mode_write - Modify the resource group's mode
1286 *
1287 */
1288static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1289                                   char *buf, size_t nbytes, loff_t off)
1290{
1291        struct rdtgroup *rdtgrp;
1292        enum rdtgrp_mode mode;
1293        int ret = 0;
1294
1295        /* Valid input requires a trailing newline */
1296        if (nbytes == 0 || buf[nbytes - 1] != '\n')
1297                return -EINVAL;
1298        buf[nbytes - 1] = '\0';
1299
1300        rdtgrp = rdtgroup_kn_lock_live(of->kn);
1301        if (!rdtgrp) {
1302                rdtgroup_kn_unlock(of->kn);
1303                return -ENOENT;
1304        }
1305
1306        rdt_last_cmd_clear();
1307
1308        mode = rdtgrp->mode;
1309
1310        if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1311            (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1312            (!strcmp(buf, "pseudo-locksetup") &&
1313             mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1314            (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1315                goto out;
1316
1317        if (mode == RDT_MODE_PSEUDO_LOCKED) {
1318                rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1319                ret = -EINVAL;
1320                goto out;
1321        }
1322
1323        if (!strcmp(buf, "shareable")) {
1324                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1325                        ret = rdtgroup_locksetup_exit(rdtgrp);
1326                        if (ret)
1327                                goto out;
1328                }
1329                rdtgrp->mode = RDT_MODE_SHAREABLE;
1330        } else if (!strcmp(buf, "exclusive")) {
1331                if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1332                        ret = -EINVAL;
1333                        goto out;
1334                }
1335                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1336                        ret = rdtgroup_locksetup_exit(rdtgrp);
1337                        if (ret)
1338                                goto out;
1339                }
1340                rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1341        } else if (!strcmp(buf, "pseudo-locksetup")) {
1342                ret = rdtgroup_locksetup_enter(rdtgrp);
1343                if (ret)
1344                        goto out;
1345                rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1346        } else {
1347                rdt_last_cmd_puts("Unknown or unsupported mode\n");
1348                ret = -EINVAL;
1349        }
1350
1351out:
1352        rdtgroup_kn_unlock(of->kn);
1353        return ret ?: nbytes;
1354}
1355
1356/**
1357 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1358 * @r: RDT resource to which @d belongs.
1359 * @d: RDT domain instance.
1360 * @cbm: bitmask for which the size should be computed.
1361 *
1362 * The bitmask provided associated with the RDT domain instance @d will be
1363 * translated into how many bytes it represents. The size in bytes is
1364 * computed by first dividing the total cache size by the CBM length to
1365 * determine how many bytes each bit in the bitmask represents. The result
1366 * is multiplied with the number of bits set in the bitmask.
1367 *
1368 * @cbm is unsigned long, even if only 32 bits are used to make the
1369 * bitmap functions work correctly.
1370 */
1371unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1372                                  struct rdt_domain *d, unsigned long cbm)
1373{
1374        struct cpu_cacheinfo *ci;
1375        unsigned int size = 0;
1376        int num_b, i;
1377
1378        num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1379        ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1380        for (i = 0; i < ci->num_leaves; i++) {
1381                if (ci->info_list[i].level == r->cache_level) {
1382                        size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1383                        break;
1384                }
1385        }
1386
1387        return size;
1388}
1389
1390/**
1391 * rdtgroup_size_show - Display size in bytes of allocated regions
1392 *
1393 * The "size" file mirrors the layout of the "schemata" file, printing the
1394 * size in bytes of each region instead of the capacity bitmask.
1395 *
1396 */
1397static int rdtgroup_size_show(struct kernfs_open_file *of,
1398                              struct seq_file *s, void *v)
1399{
1400        struct rdtgroup *rdtgrp;
1401        struct rdt_resource *r;
1402        struct rdt_domain *d;
1403        unsigned int size;
1404        int ret = 0;
1405        bool sep;
1406        u32 ctrl;
1407
1408        rdtgrp = rdtgroup_kn_lock_live(of->kn);
1409        if (!rdtgrp) {
1410                rdtgroup_kn_unlock(of->kn);
1411                return -ENOENT;
1412        }
1413
1414        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1415                if (!rdtgrp->plr->d) {
1416                        rdt_last_cmd_clear();
1417                        rdt_last_cmd_puts("Cache domain offline\n");
1418                        ret = -ENODEV;
1419                } else {
1420                        seq_printf(s, "%*s:", max_name_width,
1421                                   rdtgrp->plr->r->name);
1422                        size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1423                                                    rdtgrp->plr->d,
1424                                                    rdtgrp->plr->cbm);
1425                        seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1426                }
1427                goto out;
1428        }
1429
1430        for_each_alloc_enabled_rdt_resource(r) {
1431                sep = false;
1432                seq_printf(s, "%*s:", max_name_width, r->name);
1433                list_for_each_entry(d, &r->domains, list) {
1434                        if (sep)
1435                                seq_putc(s, ';');
1436                        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1437                                size = 0;
1438                        } else {
1439                                ctrl = (!is_mba_sc(r) ?
1440                                                d->ctrl_val[rdtgrp->closid] :
1441                                                d->mbps_val[rdtgrp->closid]);
1442                                if (r->rid == RDT_RESOURCE_MBA)
1443                                        size = ctrl;
1444                                else
1445                                        size = rdtgroup_cbm_to_size(r, d, ctrl);
1446                        }
1447                        seq_printf(s, "%d=%u", d->id, size);
1448                        sep = true;
1449                }
1450                seq_putc(s, '\n');
1451        }
1452
1453out:
1454        rdtgroup_kn_unlock(of->kn);
1455
1456        return ret;
1457}
1458
1459/* rdtgroup information files for one cache resource. */
1460static struct rftype res_common_files[] = {
1461        {
1462                .name           = "last_cmd_status",
1463                .mode           = 0444,
1464                .kf_ops         = &rdtgroup_kf_single_ops,
1465                .seq_show       = rdt_last_cmd_status_show,
1466                .fflags         = RF_TOP_INFO,
1467        },
1468        {
1469                .name           = "num_closids",
1470                .mode           = 0444,
1471                .kf_ops         = &rdtgroup_kf_single_ops,
1472                .seq_show       = rdt_num_closids_show,
1473                .fflags         = RF_CTRL_INFO,
1474        },
1475        {
1476                .name           = "mon_features",
1477                .mode           = 0444,
1478                .kf_ops         = &rdtgroup_kf_single_ops,
1479                .seq_show       = rdt_mon_features_show,
1480                .fflags         = RF_MON_INFO,
1481        },
1482        {
1483                .name           = "num_rmids",
1484                .mode           = 0444,
1485                .kf_ops         = &rdtgroup_kf_single_ops,
1486                .seq_show       = rdt_num_rmids_show,
1487                .fflags         = RF_MON_INFO,
1488        },
1489        {
1490                .name           = "cbm_mask",
1491                .mode           = 0444,
1492                .kf_ops         = &rdtgroup_kf_single_ops,
1493                .seq_show       = rdt_default_ctrl_show,
1494                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1495        },
1496        {
1497                .name           = "min_cbm_bits",
1498                .mode           = 0444,
1499                .kf_ops         = &rdtgroup_kf_single_ops,
1500                .seq_show       = rdt_min_cbm_bits_show,
1501                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1502        },
1503        {
1504                .name           = "shareable_bits",
1505                .mode           = 0444,
1506                .kf_ops         = &rdtgroup_kf_single_ops,
1507                .seq_show       = rdt_shareable_bits_show,
1508                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1509        },
1510        {
1511                .name           = "bit_usage",
1512                .mode           = 0444,
1513                .kf_ops         = &rdtgroup_kf_single_ops,
1514                .seq_show       = rdt_bit_usage_show,
1515                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1516        },
1517        {
1518                .name           = "min_bandwidth",
1519                .mode           = 0444,
1520                .kf_ops         = &rdtgroup_kf_single_ops,
1521                .seq_show       = rdt_min_bw_show,
1522                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1523        },
1524        {
1525                .name           = "bandwidth_gran",
1526                .mode           = 0444,
1527                .kf_ops         = &rdtgroup_kf_single_ops,
1528                .seq_show       = rdt_bw_gran_show,
1529                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1530        },
1531        {
1532                .name           = "delay_linear",
1533                .mode           = 0444,
1534                .kf_ops         = &rdtgroup_kf_single_ops,
1535                .seq_show       = rdt_delay_linear_show,
1536                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1537        },
1538        /*
1539         * Platform specific which (if any) capabilities are provided by
1540         * thread_throttle_mode. Defer "fflags" initialization to platform
1541         * discovery.
1542         */
1543        {
1544                .name           = "thread_throttle_mode",
1545                .mode           = 0444,
1546                .kf_ops         = &rdtgroup_kf_single_ops,
1547                .seq_show       = rdt_thread_throttle_mode_show,
1548        },
1549        {
1550                .name           = "max_threshold_occupancy",
1551                .mode           = 0644,
1552                .kf_ops         = &rdtgroup_kf_single_ops,
1553                .write          = max_threshold_occ_write,
1554                .seq_show       = max_threshold_occ_show,
1555                .fflags         = RF_MON_INFO | RFTYPE_RES_CACHE,
1556        },
1557        {
1558                .name           = "cpus",
1559                .mode           = 0644,
1560                .kf_ops         = &rdtgroup_kf_single_ops,
1561                .write          = rdtgroup_cpus_write,
1562                .seq_show       = rdtgroup_cpus_show,
1563                .fflags         = RFTYPE_BASE,
1564        },
1565        {
1566                .name           = "cpus_list",
1567                .mode           = 0644,
1568                .kf_ops         = &rdtgroup_kf_single_ops,
1569                .write          = rdtgroup_cpus_write,
1570                .seq_show       = rdtgroup_cpus_show,
1571                .flags          = RFTYPE_FLAGS_CPUS_LIST,
1572                .fflags         = RFTYPE_BASE,
1573        },
1574        {
1575                .name           = "tasks",
1576                .mode           = 0644,
1577                .kf_ops         = &rdtgroup_kf_single_ops,
1578                .write          = rdtgroup_tasks_write,
1579                .seq_show       = rdtgroup_tasks_show,
1580                .fflags         = RFTYPE_BASE,
1581        },
1582        {
1583                .name           = "schemata",
1584                .mode           = 0644,
1585                .kf_ops         = &rdtgroup_kf_single_ops,
1586                .write          = rdtgroup_schemata_write,
1587                .seq_show       = rdtgroup_schemata_show,
1588                .fflags         = RF_CTRL_BASE,
1589        },
1590        {
1591                .name           = "mode",
1592                .mode           = 0644,
1593                .kf_ops         = &rdtgroup_kf_single_ops,
1594                .write          = rdtgroup_mode_write,
1595                .seq_show       = rdtgroup_mode_show,
1596                .fflags         = RF_CTRL_BASE,
1597        },
1598        {
1599                .name           = "size",
1600                .mode           = 0444,
1601                .kf_ops         = &rdtgroup_kf_single_ops,
1602                .seq_show       = rdtgroup_size_show,
1603                .fflags         = RF_CTRL_BASE,
1604        },
1605
1606};
1607
1608static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1609{
1610        struct rftype *rfts, *rft;
1611        int ret, len;
1612
1613        rfts = res_common_files;
1614        len = ARRAY_SIZE(res_common_files);
1615
1616        lockdep_assert_held(&rdtgroup_mutex);
1617
1618        for (rft = rfts; rft < rfts + len; rft++) {
1619                if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1620                        ret = rdtgroup_add_file(kn, rft);
1621                        if (ret)
1622                                goto error;
1623                }
1624        }
1625
1626        return 0;
1627error:
1628        pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1629        while (--rft >= rfts) {
1630                if ((fflags & rft->fflags) == rft->fflags)
1631                        kernfs_remove_by_name(kn, rft->name);
1632        }
1633        return ret;
1634}
1635
1636static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1637{
1638        struct rftype *rfts, *rft;
1639        int len;
1640
1641        rfts = res_common_files;
1642        len = ARRAY_SIZE(res_common_files);
1643
1644        for (rft = rfts; rft < rfts + len; rft++) {
1645                if (!strcmp(rft->name, name))
1646                        return rft;
1647        }
1648
1649        return NULL;
1650}
1651
1652void __init thread_throttle_mode_init(void)
1653{
1654        struct rftype *rft;
1655
1656        rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1657        if (!rft)
1658                return;
1659
1660        rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1661}
1662
1663/**
1664 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1665 * @r: The resource group with which the file is associated.
1666 * @name: Name of the file
1667 *
1668 * The permissions of named resctrl file, directory, or link are modified
1669 * to not allow read, write, or execute by any user.
1670 *
1671 * WARNING: This function is intended to communicate to the user that the
1672 * resctrl file has been locked down - that it is not relevant to the
1673 * particular state the system finds itself in. It should not be relied
1674 * on to protect from user access because after the file's permissions
1675 * are restricted the user can still change the permissions using chmod
1676 * from the command line.
1677 *
1678 * Return: 0 on success, <0 on failure.
1679 */
1680int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1681{
1682        struct iattr iattr = {.ia_valid = ATTR_MODE,};
1683        struct kernfs_node *kn;
1684        int ret = 0;
1685
1686        kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1687        if (!kn)
1688                return -ENOENT;
1689
1690        switch (kernfs_type(kn)) {
1691        case KERNFS_DIR:
1692                iattr.ia_mode = S_IFDIR;
1693                break;
1694        case KERNFS_FILE:
1695                iattr.ia_mode = S_IFREG;
1696                break;
1697        case KERNFS_LINK:
1698                iattr.ia_mode = S_IFLNK;
1699                break;
1700        }
1701
1702        ret = kernfs_setattr(kn, &iattr);
1703        kernfs_put(kn);
1704        return ret;
1705}
1706
1707/**
1708 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1709 * @r: The resource group with which the file is associated.
1710 * @name: Name of the file
1711 * @mask: Mask of permissions that should be restored
1712 *
1713 * Restore the permissions of the named file. If @name is a directory the
1714 * permissions of its parent will be used.
1715 *
1716 * Return: 0 on success, <0 on failure.
1717 */
1718int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1719                             umode_t mask)
1720{
1721        struct iattr iattr = {.ia_valid = ATTR_MODE,};
1722        struct kernfs_node *kn, *parent;
1723        struct rftype *rfts, *rft;
1724        int ret, len;
1725
1726        rfts = res_common_files;
1727        len = ARRAY_SIZE(res_common_files);
1728
1729        for (rft = rfts; rft < rfts + len; rft++) {
1730                if (!strcmp(rft->name, name))
1731                        iattr.ia_mode = rft->mode & mask;
1732        }
1733
1734        kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1735        if (!kn)
1736                return -ENOENT;
1737
1738        switch (kernfs_type(kn)) {
1739        case KERNFS_DIR:
1740                parent = kernfs_get_parent(kn);
1741                if (parent) {
1742                        iattr.ia_mode |= parent->mode;
1743                        kernfs_put(parent);
1744                }
1745                iattr.ia_mode |= S_IFDIR;
1746                break;
1747        case KERNFS_FILE:
1748                iattr.ia_mode |= S_IFREG;
1749                break;
1750        case KERNFS_LINK:
1751                iattr.ia_mode |= S_IFLNK;
1752                break;
1753        }
1754
1755        ret = kernfs_setattr(kn, &iattr);
1756        kernfs_put(kn);
1757        return ret;
1758}
1759
1760static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1761                                      unsigned long fflags)
1762{
1763        struct kernfs_node *kn_subdir;
1764        int ret;
1765
1766        kn_subdir = kernfs_create_dir(kn_info, name,
1767                                      kn_info->mode, r);
1768        if (IS_ERR(kn_subdir))
1769                return PTR_ERR(kn_subdir);
1770
1771        ret = rdtgroup_kn_set_ugid(kn_subdir);
1772        if (ret)
1773                return ret;
1774
1775        ret = rdtgroup_add_files(kn_subdir, fflags);
1776        if (!ret)
1777                kernfs_activate(kn_subdir);
1778
1779        return ret;
1780}
1781
1782static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1783{
1784        struct rdt_resource *r;
1785        unsigned long fflags;
1786        char name[32];
1787        int ret;
1788
1789        /* create the directory */
1790        kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1791        if (IS_ERR(kn_info))
1792                return PTR_ERR(kn_info);
1793
1794        ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1795        if (ret)
1796                goto out_destroy;
1797
1798        for_each_alloc_enabled_rdt_resource(r) {
1799                fflags =  r->fflags | RF_CTRL_INFO;
1800                ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1801                if (ret)
1802                        goto out_destroy;
1803        }
1804
1805        for_each_mon_enabled_rdt_resource(r) {
1806                fflags =  r->fflags | RF_MON_INFO;
1807                sprintf(name, "%s_MON", r->name);
1808                ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1809                if (ret)
1810                        goto out_destroy;
1811        }
1812
1813        ret = rdtgroup_kn_set_ugid(kn_info);
1814        if (ret)
1815                goto out_destroy;
1816
1817        kernfs_activate(kn_info);
1818
1819        return 0;
1820
1821out_destroy:
1822        kernfs_remove(kn_info);
1823        return ret;
1824}
1825
1826static int
1827mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1828                    char *name, struct kernfs_node **dest_kn)
1829{
1830        struct kernfs_node *kn;
1831        int ret;
1832
1833        /* create the directory */
1834        kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1835        if (IS_ERR(kn))
1836                return PTR_ERR(kn);
1837
1838        if (dest_kn)
1839                *dest_kn = kn;
1840
1841        ret = rdtgroup_kn_set_ugid(kn);
1842        if (ret)
1843                goto out_destroy;
1844
1845        kernfs_activate(kn);
1846
1847        return 0;
1848
1849out_destroy:
1850        kernfs_remove(kn);
1851        return ret;
1852}
1853
1854static void l3_qos_cfg_update(void *arg)
1855{
1856        bool *enable = arg;
1857
1858        wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1859}
1860
1861static void l2_qos_cfg_update(void *arg)
1862{
1863        bool *enable = arg;
1864
1865        wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1866}
1867
1868static inline bool is_mba_linear(void)
1869{
1870        return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1871}
1872
1873static int set_cache_qos_cfg(int level, bool enable)
1874{
1875        void (*update)(void *arg);
1876        struct rdt_resource *r_l;
1877        cpumask_var_t cpu_mask;
1878        struct rdt_domain *d;
1879        int cpu;
1880
1881        if (level == RDT_RESOURCE_L3)
1882                update = l3_qos_cfg_update;
1883        else if (level == RDT_RESOURCE_L2)
1884                update = l2_qos_cfg_update;
1885        else
1886                return -EINVAL;
1887
1888        if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1889                return -ENOMEM;
1890
1891        r_l = &rdt_resources_all[level];
1892        list_for_each_entry(d, &r_l->domains, list) {
1893                if (r_l->cache.arch_has_per_cpu_cfg)
1894                        /* Pick all the CPUs in the domain instance */
1895                        for_each_cpu(cpu, &d->cpu_mask)
1896                                cpumask_set_cpu(cpu, cpu_mask);
1897                else
1898                        /* Pick one CPU from each domain instance to update MSR */
1899                        cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1900        }
1901        cpu = get_cpu();
1902        /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1903        if (cpumask_test_cpu(cpu, cpu_mask))
1904                update(&enable);
1905        /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1906        smp_call_function_many(cpu_mask, update, &enable, 1);
1907        put_cpu();
1908
1909        free_cpumask_var(cpu_mask);
1910
1911        return 0;
1912}
1913
1914/* Restore the qos cfg state when a domain comes online */
1915void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1916{
1917        if (!r->alloc_capable)
1918                return;
1919
1920        if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1921                l2_qos_cfg_update(&r->alloc_enabled);
1922
1923        if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1924                l3_qos_cfg_update(&r->alloc_enabled);
1925}
1926
1927/*
1928 * Enable or disable the MBA software controller
1929 * which helps user specify bandwidth in MBps.
1930 * MBA software controller is supported only if
1931 * MBM is supported and MBA is in linear scale.
1932 */
1933static int set_mba_sc(bool mba_sc)
1934{
1935        struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1936        struct rdt_domain *d;
1937
1938        if (!is_mbm_enabled() || !is_mba_linear() ||
1939            mba_sc == is_mba_sc(r))
1940                return -EINVAL;
1941
1942        r->membw.mba_sc = mba_sc;
1943        list_for_each_entry(d, &r->domains, list)
1944                setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1945
1946        return 0;
1947}
1948
1949static int cdp_enable(int level, int data_type, int code_type)
1950{
1951        struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1952        struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1953        struct rdt_resource *r_l = &rdt_resources_all[level];
1954        int ret;
1955
1956        if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1957            !r_lcode->alloc_capable)
1958                return -EINVAL;
1959
1960        ret = set_cache_qos_cfg(level, true);
1961        if (!ret) {
1962                r_l->alloc_enabled = false;
1963                r_ldata->alloc_enabled = true;
1964                r_lcode->alloc_enabled = true;
1965        }
1966        return ret;
1967}
1968
1969static int cdpl3_enable(void)
1970{
1971        return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1972                          RDT_RESOURCE_L3CODE);
1973}
1974
1975static int cdpl2_enable(void)
1976{
1977        return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1978                          RDT_RESOURCE_L2CODE);
1979}
1980
1981static void cdp_disable(int level, int data_type, int code_type)
1982{
1983        struct rdt_resource *r = &rdt_resources_all[level];
1984
1985        r->alloc_enabled = r->alloc_capable;
1986
1987        if (rdt_resources_all[data_type].alloc_enabled) {
1988                rdt_resources_all[data_type].alloc_enabled = false;
1989                rdt_resources_all[code_type].alloc_enabled = false;
1990                set_cache_qos_cfg(level, false);
1991        }
1992}
1993
1994static void cdpl3_disable(void)
1995{
1996        cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1997}
1998
1999static void cdpl2_disable(void)
2000{
2001        cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
2002}
2003
2004static void cdp_disable_all(void)
2005{
2006        if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2007                cdpl3_disable();
2008        if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
2009                cdpl2_disable();
2010}
2011
2012/*
2013 * We don't allow rdtgroup directories to be created anywhere
2014 * except the root directory. Thus when looking for the rdtgroup
2015 * structure for a kernfs node we are either looking at a directory,
2016 * in which case the rdtgroup structure is pointed at by the "priv"
2017 * field, otherwise we have a file, and need only look to the parent
2018 * to find the rdtgroup.
2019 */
2020static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2021{
2022        if (kernfs_type(kn) == KERNFS_DIR) {
2023                /*
2024                 * All the resource directories use "kn->priv"
2025                 * to point to the "struct rdtgroup" for the
2026                 * resource. "info" and its subdirectories don't
2027                 * have rdtgroup structures, so return NULL here.
2028                 */
2029                if (kn == kn_info || kn->parent == kn_info)
2030                        return NULL;
2031                else
2032                        return kn->priv;
2033        } else {
2034                return kn->parent->priv;
2035        }
2036}
2037
2038struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2039{
2040        struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2041
2042        if (!rdtgrp)
2043                return NULL;
2044
2045        atomic_inc(&rdtgrp->waitcount);
2046        kernfs_break_active_protection(kn);
2047
2048        mutex_lock(&rdtgroup_mutex);
2049
2050        /* Was this group deleted while we waited? */
2051        if (rdtgrp->flags & RDT_DELETED)
2052                return NULL;
2053
2054        return rdtgrp;
2055}
2056
2057void rdtgroup_kn_unlock(struct kernfs_node *kn)
2058{
2059        struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2060
2061        if (!rdtgrp)
2062                return;
2063
2064        mutex_unlock(&rdtgroup_mutex);
2065
2066        if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2067            (rdtgrp->flags & RDT_DELETED)) {
2068                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2069                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2070                        rdtgroup_pseudo_lock_remove(rdtgrp);
2071                kernfs_unbreak_active_protection(kn);
2072                rdtgroup_remove(rdtgrp);
2073        } else {
2074                kernfs_unbreak_active_protection(kn);
2075        }
2076}
2077
2078static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2079                             struct rdtgroup *prgrp,
2080                             struct kernfs_node **mon_data_kn);
2081
2082static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2083{
2084        int ret = 0;
2085
2086        if (ctx->enable_cdpl2)
2087                ret = cdpl2_enable();
2088
2089        if (!ret && ctx->enable_cdpl3)
2090                ret = cdpl3_enable();
2091
2092        if (!ret && ctx->enable_mba_mbps)
2093                ret = set_mba_sc(true);
2094
2095        return ret;
2096}
2097
2098static int rdt_get_tree(struct fs_context *fc)
2099{
2100        struct rdt_fs_context *ctx = rdt_fc2context(fc);
2101        struct rdt_domain *dom;
2102        struct rdt_resource *r;
2103        int ret;
2104
2105        cpus_read_lock();
2106        mutex_lock(&rdtgroup_mutex);
2107        /*
2108         * resctrl file system can only be mounted once.
2109         */
2110        if (static_branch_unlikely(&rdt_enable_key)) {
2111                ret = -EBUSY;
2112                goto out;
2113        }
2114
2115        ret = rdt_enable_ctx(ctx);
2116        if (ret < 0)
2117                goto out_cdp;
2118
2119        closid_init();
2120
2121        ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2122        if (ret < 0)
2123                goto out_mba;
2124
2125        if (rdt_mon_capable) {
2126                ret = mongroup_create_dir(rdtgroup_default.kn,
2127                                          &rdtgroup_default, "mon_groups",
2128                                          &kn_mongrp);
2129                if (ret < 0)
2130                        goto out_info;
2131
2132                ret = mkdir_mondata_all(rdtgroup_default.kn,
2133                                        &rdtgroup_default, &kn_mondata);
2134                if (ret < 0)
2135                        goto out_mongrp;
2136                rdtgroup_default.mon.mon_data_kn = kn_mondata;
2137        }
2138
2139        ret = rdt_pseudo_lock_init();
2140        if (ret)
2141                goto out_mondata;
2142
2143        ret = kernfs_get_tree(fc);
2144        if (ret < 0)
2145                goto out_psl;
2146
2147        if (rdt_alloc_capable)
2148                static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2149        if (rdt_mon_capable)
2150                static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2151
2152        if (rdt_alloc_capable || rdt_mon_capable)
2153                static_branch_enable_cpuslocked(&rdt_enable_key);
2154
2155        if (is_mbm_enabled()) {
2156                r = &rdt_resources_all[RDT_RESOURCE_L3];
2157                list_for_each_entry(dom, &r->domains, list)
2158                        mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2159        }
2160
2161        goto out;
2162
2163out_psl:
2164        rdt_pseudo_lock_release();
2165out_mondata:
2166        if (rdt_mon_capable)
2167                kernfs_remove(kn_mondata);
2168out_mongrp:
2169        if (rdt_mon_capable)
2170                kernfs_remove(kn_mongrp);
2171out_info:
2172        kernfs_remove(kn_info);
2173out_mba:
2174        if (ctx->enable_mba_mbps)
2175                set_mba_sc(false);
2176out_cdp:
2177        cdp_disable_all();
2178out:
2179        rdt_last_cmd_clear();
2180        mutex_unlock(&rdtgroup_mutex);
2181        cpus_read_unlock();
2182        return ret;
2183}
2184
2185enum rdt_param {
2186        Opt_cdp,
2187        Opt_cdpl2,
2188        Opt_mba_mbps,
2189        nr__rdt_params
2190};
2191
2192static const struct fs_parameter_spec rdt_fs_parameters[] = {
2193        fsparam_flag("cdp",             Opt_cdp),
2194        fsparam_flag("cdpl2",           Opt_cdpl2),
2195        fsparam_flag("mba_MBps",        Opt_mba_mbps),
2196        {}
2197};
2198
2199static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2200{
2201        struct rdt_fs_context *ctx = rdt_fc2context(fc);
2202        struct fs_parse_result result;
2203        int opt;
2204
2205        opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2206        if (opt < 0)
2207                return opt;
2208
2209        switch (opt) {
2210        case Opt_cdp:
2211                ctx->enable_cdpl3 = true;
2212                return 0;
2213        case Opt_cdpl2:
2214                ctx->enable_cdpl2 = true;
2215                return 0;
2216        case Opt_mba_mbps:
2217                if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2218                        return -EINVAL;
2219                ctx->enable_mba_mbps = true;
2220                return 0;
2221        }
2222
2223        return -EINVAL;
2224}
2225
2226static void rdt_fs_context_free(struct fs_context *fc)
2227{
2228        struct rdt_fs_context *ctx = rdt_fc2context(fc);
2229
2230        kernfs_free_fs_context(fc);
2231        kfree(ctx);
2232}
2233
2234static const struct fs_context_operations rdt_fs_context_ops = {
2235        .free           = rdt_fs_context_free,
2236        .parse_param    = rdt_parse_param,
2237        .get_tree       = rdt_get_tree,
2238};
2239
2240static int rdt_init_fs_context(struct fs_context *fc)
2241{
2242        struct rdt_fs_context *ctx;
2243
2244        ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2245        if (!ctx)
2246                return -ENOMEM;
2247
2248        ctx->kfc.root = rdt_root;
2249        ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2250        fc->fs_private = &ctx->kfc;
2251        fc->ops = &rdt_fs_context_ops;
2252        put_user_ns(fc->user_ns);
2253        fc->user_ns = get_user_ns(&init_user_ns);
2254        fc->global = true;
2255        return 0;
2256}
2257
2258static int reset_all_ctrls(struct rdt_resource *r)
2259{
2260        struct msr_param msr_param;
2261        cpumask_var_t cpu_mask;
2262        struct rdt_domain *d;
2263        int i, cpu;
2264
2265        if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2266                return -ENOMEM;
2267
2268        msr_param.res = r;
2269        msr_param.low = 0;
2270        msr_param.high = r->num_closid;
2271
2272        /*
2273         * Disable resource control for this resource by setting all
2274         * CBMs in all domains to the maximum mask value. Pick one CPU
2275         * from each domain to update the MSRs below.
2276         */
2277        list_for_each_entry(d, &r->domains, list) {
2278                cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2279
2280                for (i = 0; i < r->num_closid; i++)
2281                        d->ctrl_val[i] = r->default_ctrl;
2282        }
2283        cpu = get_cpu();
2284        /* Update CBM on this cpu if it's in cpu_mask. */
2285        if (cpumask_test_cpu(cpu, cpu_mask))
2286                rdt_ctrl_update(&msr_param);
2287        /* Update CBM on all other cpus in cpu_mask. */
2288        smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2289        put_cpu();
2290
2291        free_cpumask_var(cpu_mask);
2292
2293        return 0;
2294}
2295
2296/*
2297 * Move tasks from one to the other group. If @from is NULL, then all tasks
2298 * in the systems are moved unconditionally (used for teardown).
2299 *
2300 * If @mask is not NULL the cpus on which moved tasks are running are set
2301 * in that mask so the update smp function call is restricted to affected
2302 * cpus.
2303 */
2304static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2305                                 struct cpumask *mask)
2306{
2307        struct task_struct *p, *t;
2308
2309        read_lock(&tasklist_lock);
2310        for_each_process_thread(p, t) {
2311                if (!from || is_closid_match(t, from) ||
2312                    is_rmid_match(t, from)) {
2313                        WRITE_ONCE(t->closid, to->closid);
2314                        WRITE_ONCE(t->rmid, to->mon.rmid);
2315
2316                        /*
2317                         * If the task is on a CPU, set the CPU in the mask.
2318                         * The detection is inaccurate as tasks might move or
2319                         * schedule before the smp function call takes place.
2320                         * In such a case the function call is pointless, but
2321                         * there is no other side effect.
2322                         */
2323                        if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2324                                cpumask_set_cpu(task_cpu(t), mask);
2325                }
2326        }
2327        read_unlock(&tasklist_lock);
2328}
2329
2330static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2331{
2332        struct rdtgroup *sentry, *stmp;
2333        struct list_head *head;
2334
2335        head = &rdtgrp->mon.crdtgrp_list;
2336        list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2337                free_rmid(sentry->mon.rmid);
2338                list_del(&sentry->mon.crdtgrp_list);
2339
2340                if (atomic_read(&sentry->waitcount) != 0)
2341                        sentry->flags = RDT_DELETED;
2342                else
2343                        rdtgroup_remove(sentry);
2344        }
2345}
2346
2347/*
2348 * Forcibly remove all of subdirectories under root.
2349 */
2350static void rmdir_all_sub(void)
2351{
2352        struct rdtgroup *rdtgrp, *tmp;
2353
2354        /* Move all tasks to the default resource group */
2355        rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2356
2357        list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2358                /* Free any child rmids */
2359                free_all_child_rdtgrp(rdtgrp);
2360
2361                /* Remove each rdtgroup other than root */
2362                if (rdtgrp == &rdtgroup_default)
2363                        continue;
2364
2365                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2366                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2367                        rdtgroup_pseudo_lock_remove(rdtgrp);
2368
2369                /*
2370                 * Give any CPUs back to the default group. We cannot copy
2371                 * cpu_online_mask because a CPU might have executed the
2372                 * offline callback already, but is still marked online.
2373                 */
2374                cpumask_or(&rdtgroup_default.cpu_mask,
2375                           &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2376
2377                free_rmid(rdtgrp->mon.rmid);
2378
2379                kernfs_remove(rdtgrp->kn);
2380                list_del(&rdtgrp->rdtgroup_list);
2381
2382                if (atomic_read(&rdtgrp->waitcount) != 0)
2383                        rdtgrp->flags = RDT_DELETED;
2384                else
2385                        rdtgroup_remove(rdtgrp);
2386        }
2387        /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2388        update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2389
2390        kernfs_remove(kn_info);
2391        kernfs_remove(kn_mongrp);
2392        kernfs_remove(kn_mondata);
2393}
2394
2395static void rdt_kill_sb(struct super_block *sb)
2396{
2397        struct rdt_resource *r;
2398
2399        cpus_read_lock();
2400        mutex_lock(&rdtgroup_mutex);
2401
2402        set_mba_sc(false);
2403
2404        /*Put everything back to default values. */
2405        for_each_alloc_enabled_rdt_resource(r)
2406                reset_all_ctrls(r);
2407        cdp_disable_all();
2408        rmdir_all_sub();
2409        rdt_pseudo_lock_release();
2410        rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2411        static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2412        static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2413        static_branch_disable_cpuslocked(&rdt_enable_key);
2414        kernfs_kill_sb(sb);
2415        mutex_unlock(&rdtgroup_mutex);
2416        cpus_read_unlock();
2417}
2418
2419static struct file_system_type rdt_fs_type = {
2420        .name                   = "resctrl",
2421        .init_fs_context        = rdt_init_fs_context,
2422        .parameters             = rdt_fs_parameters,
2423        .kill_sb                = rdt_kill_sb,
2424};
2425
2426static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2427                       void *priv)
2428{
2429        struct kernfs_node *kn;
2430        int ret = 0;
2431
2432        kn = __kernfs_create_file(parent_kn, name, 0444,
2433                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2434                                  &kf_mondata_ops, priv, NULL, NULL);
2435        if (IS_ERR(kn))
2436                return PTR_ERR(kn);
2437
2438        ret = rdtgroup_kn_set_ugid(kn);
2439        if (ret) {
2440                kernfs_remove(kn);
2441                return ret;
2442        }
2443
2444        return ret;
2445}
2446
2447/*
2448 * Remove all subdirectories of mon_data of ctrl_mon groups
2449 * and monitor groups with given domain id.
2450 */
2451void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2452{
2453        struct rdtgroup *prgrp, *crgrp;
2454        char name[32];
2455
2456        if (!r->mon_enabled)
2457                return;
2458
2459        list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2460                sprintf(name, "mon_%s_%02d", r->name, dom_id);
2461                kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2462
2463                list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2464                        kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2465        }
2466}
2467
2468static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2469                                struct rdt_domain *d,
2470                                struct rdt_resource *r, struct rdtgroup *prgrp)
2471{
2472        union mon_data_bits priv;
2473        struct kernfs_node *kn;
2474        struct mon_evt *mevt;
2475        struct rmid_read rr;
2476        char name[32];
2477        int ret;
2478
2479        sprintf(name, "mon_%s_%02d", r->name, d->id);
2480        /* create the directory */
2481        kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2482        if (IS_ERR(kn))
2483                return PTR_ERR(kn);
2484
2485        ret = rdtgroup_kn_set_ugid(kn);
2486        if (ret)
2487                goto out_destroy;
2488
2489        if (WARN_ON(list_empty(&r->evt_list))) {
2490                ret = -EPERM;
2491                goto out_destroy;
2492        }
2493
2494        priv.u.rid = r->rid;
2495        priv.u.domid = d->id;
2496        list_for_each_entry(mevt, &r->evt_list, list) {
2497                priv.u.evtid = mevt->evtid;
2498                ret = mon_addfile(kn, mevt->name, priv.priv);
2499                if (ret)
2500                        goto out_destroy;
2501
2502                if (is_mbm_event(mevt->evtid))
2503                        mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2504        }
2505        kernfs_activate(kn);
2506        return 0;
2507
2508out_destroy:
2509        kernfs_remove(kn);
2510        return ret;
2511}
2512
2513/*
2514 * Add all subdirectories of mon_data for "ctrl_mon" groups
2515 * and "monitor" groups with given domain id.
2516 */
2517void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2518                                    struct rdt_domain *d)
2519{
2520        struct kernfs_node *parent_kn;
2521        struct rdtgroup *prgrp, *crgrp;
2522        struct list_head *head;
2523
2524        if (!r->mon_enabled)
2525                return;
2526
2527        list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2528                parent_kn = prgrp->mon.mon_data_kn;
2529                mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2530
2531                head = &prgrp->mon.crdtgrp_list;
2532                list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2533                        parent_kn = crgrp->mon.mon_data_kn;
2534                        mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2535                }
2536        }
2537}
2538
2539static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2540                                       struct rdt_resource *r,
2541                                       struct rdtgroup *prgrp)
2542{
2543        struct rdt_domain *dom;
2544        int ret;
2545
2546        list_for_each_entry(dom, &r->domains, list) {
2547                ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2548                if (ret)
2549                        return ret;
2550        }
2551
2552        return 0;
2553}
2554
2555/*
2556 * This creates a directory mon_data which contains the monitored data.
2557 *
2558 * mon_data has one directory for each domain which are named
2559 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2560 * with L3 domain looks as below:
2561 * ./mon_data:
2562 * mon_L3_00
2563 * mon_L3_01
2564 * mon_L3_02
2565 * ...
2566 *
2567 * Each domain directory has one file per event:
2568 * ./mon_L3_00/:
2569 * llc_occupancy
2570 *
2571 */
2572static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2573                             struct rdtgroup *prgrp,
2574                             struct kernfs_node **dest_kn)
2575{
2576        struct rdt_resource *r;
2577        struct kernfs_node *kn;
2578        int ret;
2579
2580        /*
2581         * Create the mon_data directory first.
2582         */
2583        ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2584        if (ret)
2585                return ret;
2586
2587        if (dest_kn)
2588                *dest_kn = kn;
2589
2590        /*
2591         * Create the subdirectories for each domain. Note that all events
2592         * in a domain like L3 are grouped into a resource whose domain is L3
2593         */
2594        for_each_mon_enabled_rdt_resource(r) {
2595                ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2596                if (ret)
2597                        goto out_destroy;
2598        }
2599
2600        return 0;
2601
2602out_destroy:
2603        kernfs_remove(kn);
2604        return ret;
2605}
2606
2607/**
2608 * cbm_ensure_valid - Enforce validity on provided CBM
2609 * @_val:       Candidate CBM
2610 * @r:          RDT resource to which the CBM belongs
2611 *
2612 * The provided CBM represents all cache portions available for use. This
2613 * may be represented by a bitmap that does not consist of contiguous ones
2614 * and thus be an invalid CBM.
2615 * Here the provided CBM is forced to be a valid CBM by only considering
2616 * the first set of contiguous bits as valid and clearing all bits.
2617 * The intention here is to provide a valid default CBM with which a new
2618 * resource group is initialized. The user can follow this with a
2619 * modification to the CBM if the default does not satisfy the
2620 * requirements.
2621 */
2622static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2623{
2624        unsigned int cbm_len = r->cache.cbm_len;
2625        unsigned long first_bit, zero_bit;
2626        unsigned long val = _val;
2627
2628        if (!val)
2629                return 0;
2630
2631        first_bit = find_first_bit(&val, cbm_len);
2632        zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2633
2634        /* Clear any remaining bits to ensure contiguous region */
2635        bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2636        return (u32)val;
2637}
2638
2639/*
2640 * Initialize cache resources per RDT domain
2641 *
2642 * Set the RDT domain up to start off with all usable allocations. That is,
2643 * all shareable and unused bits. All-zero CBM is invalid.
2644 */
2645static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2646                                 u32 closid)
2647{
2648        struct rdt_resource *r_cdp = NULL;
2649        struct rdt_domain *d_cdp = NULL;
2650        u32 used_b = 0, unused_b = 0;
2651        unsigned long tmp_cbm;
2652        enum rdtgrp_mode mode;
2653        u32 peer_ctl, *ctrl;
2654        int i;
2655
2656        rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2657        d->have_new_ctrl = false;
2658        d->new_ctrl = r->cache.shareable_bits;
2659        used_b = r->cache.shareable_bits;
2660        ctrl = d->ctrl_val;
2661        for (i = 0; i < closids_supported(); i++, ctrl++) {
2662                if (closid_allocated(i) && i != closid) {
2663                        mode = rdtgroup_mode_by_closid(i);
2664                        if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2665                                /*
2666                                 * ctrl values for locksetup aren't relevant
2667                                 * until the schemata is written, and the mode
2668                                 * becomes RDT_MODE_PSEUDO_LOCKED.
2669                                 */
2670                                continue;
2671                        /*
2672                         * If CDP is active include peer domain's
2673                         * usage to ensure there is no overlap
2674                         * with an exclusive group.
2675                         */
2676                        if (d_cdp)
2677                                peer_ctl = d_cdp->ctrl_val[i];
2678                        else
2679                                peer_ctl = 0;
2680                        used_b |= *ctrl | peer_ctl;
2681                        if (mode == RDT_MODE_SHAREABLE)
2682                                d->new_ctrl |= *ctrl | peer_ctl;
2683                }
2684        }
2685        if (d->plr && d->plr->cbm > 0)
2686                used_b |= d->plr->cbm;
2687        unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2688        unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2689        d->new_ctrl |= unused_b;
2690        /*
2691         * Force the initial CBM to be valid, user can
2692         * modify the CBM based on system availability.
2693         */
2694        d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2695        /*
2696         * Assign the u32 CBM to an unsigned long to ensure that
2697         * bitmap_weight() does not access out-of-bound memory.
2698         */
2699        tmp_cbm = d->new_ctrl;
2700        if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2701                rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2702                return -ENOSPC;
2703        }
2704        d->have_new_ctrl = true;
2705
2706        return 0;
2707}
2708
2709/*
2710 * Initialize cache resources with default values.
2711 *
2712 * A new RDT group is being created on an allocation capable (CAT)
2713 * supporting system. Set this group up to start off with all usable
2714 * allocations.
2715 *
2716 * If there are no more shareable bits available on any domain then
2717 * the entire allocation will fail.
2718 */
2719static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2720{
2721        struct rdt_domain *d;
2722        int ret;
2723
2724        list_for_each_entry(d, &r->domains, list) {
2725                ret = __init_one_rdt_domain(d, r, closid);
2726                if (ret < 0)
2727                        return ret;
2728        }
2729
2730        return 0;
2731}
2732
2733/* Initialize MBA resource with default values. */
2734static void rdtgroup_init_mba(struct rdt_resource *r)
2735{
2736        struct rdt_domain *d;
2737
2738        list_for_each_entry(d, &r->domains, list) {
2739                d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2740                d->have_new_ctrl = true;
2741        }
2742}
2743
2744/* Initialize the RDT group's allocations. */
2745static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2746{
2747        struct rdt_resource *r;
2748        int ret;
2749
2750        for_each_alloc_enabled_rdt_resource(r) {
2751                if (r->rid == RDT_RESOURCE_MBA) {
2752                        rdtgroup_init_mba(r);
2753                } else {
2754                        ret = rdtgroup_init_cat(r, rdtgrp->closid);
2755                        if (ret < 0)
2756                                return ret;
2757                }
2758
2759                ret = update_domains(r, rdtgrp->closid);
2760                if (ret < 0) {
2761                        rdt_last_cmd_puts("Failed to initialize allocations\n");
2762                        return ret;
2763                }
2764
2765        }
2766
2767        rdtgrp->mode = RDT_MODE_SHAREABLE;
2768
2769        return 0;
2770}
2771
2772static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2773                             const char *name, umode_t mode,
2774                             enum rdt_group_type rtype, struct rdtgroup **r)
2775{
2776        struct rdtgroup *prdtgrp, *rdtgrp;
2777        struct kernfs_node *kn;
2778        uint files = 0;
2779        int ret;
2780
2781        prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2782        if (!prdtgrp) {
2783                ret = -ENODEV;
2784                goto out_unlock;
2785        }
2786
2787        if (rtype == RDTMON_GROUP &&
2788            (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2789             prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2790                ret = -EINVAL;
2791                rdt_last_cmd_puts("Pseudo-locking in progress\n");
2792                goto out_unlock;
2793        }
2794
2795        /* allocate the rdtgroup. */
2796        rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2797        if (!rdtgrp) {
2798                ret = -ENOSPC;
2799                rdt_last_cmd_puts("Kernel out of memory\n");
2800                goto out_unlock;
2801        }
2802        *r = rdtgrp;
2803        rdtgrp->mon.parent = prdtgrp;
2804        rdtgrp->type = rtype;
2805        INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2806
2807        /* kernfs creates the directory for rdtgrp */
2808        kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2809        if (IS_ERR(kn)) {
2810                ret = PTR_ERR(kn);
2811                rdt_last_cmd_puts("kernfs create error\n");
2812                goto out_free_rgrp;
2813        }
2814        rdtgrp->kn = kn;
2815
2816        /*
2817         * kernfs_remove() will drop the reference count on "kn" which
2818         * will free it. But we still need it to stick around for the
2819         * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2820         * which will be dropped by kernfs_put() in rdtgroup_remove().
2821         */
2822        kernfs_get(kn);
2823
2824        ret = rdtgroup_kn_set_ugid(kn);
2825        if (ret) {
2826                rdt_last_cmd_puts("kernfs perm error\n");
2827                goto out_destroy;
2828        }
2829
2830        files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2831        ret = rdtgroup_add_files(kn, files);
2832        if (ret) {
2833                rdt_last_cmd_puts("kernfs fill error\n");
2834                goto out_destroy;
2835        }
2836
2837        if (rdt_mon_capable) {
2838                ret = alloc_rmid();
2839                if (ret < 0) {
2840                        rdt_last_cmd_puts("Out of RMIDs\n");
2841                        goto out_destroy;
2842                }
2843                rdtgrp->mon.rmid = ret;
2844
2845                ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2846                if (ret) {
2847                        rdt_last_cmd_puts("kernfs subdir error\n");
2848                        goto out_idfree;
2849                }
2850        }
2851        kernfs_activate(kn);
2852
2853        /*
2854         * The caller unlocks the parent_kn upon success.
2855         */
2856        return 0;
2857
2858out_idfree:
2859        free_rmid(rdtgrp->mon.rmid);
2860out_destroy:
2861        kernfs_put(rdtgrp->kn);
2862        kernfs_remove(rdtgrp->kn);
2863out_free_rgrp:
2864        kfree(rdtgrp);
2865out_unlock:
2866        rdtgroup_kn_unlock(parent_kn);
2867        return ret;
2868}
2869
2870static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2871{
2872        kernfs_remove(rgrp->kn);
2873        free_rmid(rgrp->mon.rmid);
2874        rdtgroup_remove(rgrp);
2875}
2876
2877/*
2878 * Create a monitor group under "mon_groups" directory of a control
2879 * and monitor group(ctrl_mon). This is a resource group
2880 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2881 */
2882static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2883                              const char *name, umode_t mode)
2884{
2885        struct rdtgroup *rdtgrp, *prgrp;
2886        int ret;
2887
2888        ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2889        if (ret)
2890                return ret;
2891
2892        prgrp = rdtgrp->mon.parent;
2893        rdtgrp->closid = prgrp->closid;
2894
2895        /*
2896         * Add the rdtgrp to the list of rdtgrps the parent
2897         * ctrl_mon group has to track.
2898         */
2899        list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2900
2901        rdtgroup_kn_unlock(parent_kn);
2902        return ret;
2903}
2904
2905/*
2906 * These are rdtgroups created under the root directory. Can be used
2907 * to allocate and monitor resources.
2908 */
2909static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2910                                   const char *name, umode_t mode)
2911{
2912        struct rdtgroup *rdtgrp;
2913        struct kernfs_node *kn;
2914        u32 closid;
2915        int ret;
2916
2917        ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
2918        if (ret)
2919                return ret;
2920
2921        kn = rdtgrp->kn;
2922        ret = closid_alloc();
2923        if (ret < 0) {
2924                rdt_last_cmd_puts("Out of CLOSIDs\n");
2925                goto out_common_fail;
2926        }
2927        closid = ret;
2928        ret = 0;
2929
2930        rdtgrp->closid = closid;
2931        ret = rdtgroup_init_alloc(rdtgrp);
2932        if (ret < 0)
2933                goto out_id_free;
2934
2935        list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2936
2937        if (rdt_mon_capable) {
2938                /*
2939                 * Create an empty mon_groups directory to hold the subset
2940                 * of tasks and cpus to monitor.
2941                 */
2942                ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2943                if (ret) {
2944                        rdt_last_cmd_puts("kernfs subdir error\n");
2945                        goto out_del_list;
2946                }
2947        }
2948
2949        goto out_unlock;
2950
2951out_del_list:
2952        list_del(&rdtgrp->rdtgroup_list);
2953out_id_free:
2954        closid_free(closid);
2955out_common_fail:
2956        mkdir_rdt_prepare_clean(rdtgrp);
2957out_unlock:
2958        rdtgroup_kn_unlock(parent_kn);
2959        return ret;
2960}
2961
2962/*
2963 * We allow creating mon groups only with in a directory called "mon_groups"
2964 * which is present in every ctrl_mon group. Check if this is a valid
2965 * "mon_groups" directory.
2966 *
2967 * 1. The directory should be named "mon_groups".
2968 * 2. The mon group itself should "not" be named "mon_groups".
2969 *   This makes sure "mon_groups" directory always has a ctrl_mon group
2970 *   as parent.
2971 */
2972static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2973{
2974        return (!strcmp(kn->name, "mon_groups") &&
2975                strcmp(name, "mon_groups"));
2976}
2977
2978static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2979                          umode_t mode)
2980{
2981        /* Do not accept '\n' to avoid unparsable situation. */
2982        if (strchr(name, '\n'))
2983                return -EINVAL;
2984
2985        /*
2986         * If the parent directory is the root directory and RDT
2987         * allocation is supported, add a control and monitoring
2988         * subdirectory
2989         */
2990        if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2991                return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
2992
2993        /*
2994         * If RDT monitoring is supported and the parent directory is a valid
2995         * "mon_groups" directory, add a monitoring subdirectory.
2996         */
2997        if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2998                return rdtgroup_mkdir_mon(parent_kn, name, mode);
2999
3000        return -EPERM;
3001}
3002
3003static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3004{
3005        struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3006        int cpu;
3007
3008        /* Give any tasks back to the parent group */
3009        rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3010
3011        /* Update per cpu rmid of the moved CPUs first */
3012        for_each_cpu(cpu, &rdtgrp->cpu_mask)
3013                per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3014        /*
3015         * Update the MSR on moved CPUs and CPUs which have moved
3016         * task running on them.
3017         */
3018        cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3019        update_closid_rmid(tmpmask, NULL);
3020
3021        rdtgrp->flags = RDT_DELETED;
3022        free_rmid(rdtgrp->mon.rmid);
3023
3024        /*
3025         * Remove the rdtgrp from the parent ctrl_mon group's list
3026         */
3027        WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3028        list_del(&rdtgrp->mon.crdtgrp_list);
3029
3030        kernfs_remove(rdtgrp->kn);
3031
3032        return 0;
3033}
3034
3035static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3036{
3037        rdtgrp->flags = RDT_DELETED;
3038        list_del(&rdtgrp->rdtgroup_list);
3039
3040        kernfs_remove(rdtgrp->kn);
3041        return 0;
3042}
3043
3044static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3045{
3046        int cpu;
3047
3048        /* Give any tasks back to the default group */
3049        rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3050
3051        /* Give any CPUs back to the default group */
3052        cpumask_or(&rdtgroup_default.cpu_mask,
3053                   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3054
3055        /* Update per cpu closid and rmid of the moved CPUs first */
3056        for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3057                per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3058                per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3059        }
3060
3061        /*
3062         * Update the MSR on moved CPUs and CPUs which have moved
3063         * task running on them.
3064         */
3065        cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3066        update_closid_rmid(tmpmask, NULL);
3067
3068        closid_free(rdtgrp->closid);
3069        free_rmid(rdtgrp->mon.rmid);
3070
3071        rdtgroup_ctrl_remove(rdtgrp);
3072
3073        /*
3074         * Free all the child monitor group rmids.
3075         */
3076        free_all_child_rdtgrp(rdtgrp);
3077
3078        return 0;
3079}
3080
3081static int rdtgroup_rmdir(struct kernfs_node *kn)
3082{
3083        struct kernfs_node *parent_kn = kn->parent;
3084        struct rdtgroup *rdtgrp;
3085        cpumask_var_t tmpmask;
3086        int ret = 0;
3087
3088        if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3089                return -ENOMEM;
3090
3091        rdtgrp = rdtgroup_kn_lock_live(kn);
3092        if (!rdtgrp) {
3093                ret = -EPERM;
3094                goto out;
3095        }
3096
3097        /*
3098         * If the rdtgroup is a ctrl_mon group and parent directory
3099         * is the root directory, remove the ctrl_mon group.
3100         *
3101         * If the rdtgroup is a mon group and parent directory
3102         * is a valid "mon_groups" directory, remove the mon group.
3103         */
3104        if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3105            rdtgrp != &rdtgroup_default) {
3106                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3107                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3108                        ret = rdtgroup_ctrl_remove(rdtgrp);
3109                } else {
3110                        ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3111                }
3112        } else if (rdtgrp->type == RDTMON_GROUP &&
3113                 is_mon_groups(parent_kn, kn->name)) {
3114                ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3115        } else {
3116                ret = -EPERM;
3117        }
3118
3119out:
3120        rdtgroup_kn_unlock(kn);
3121        free_cpumask_var(tmpmask);
3122        return ret;
3123}
3124
3125static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3126{
3127        if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3128                seq_puts(seq, ",cdp");
3129
3130        if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3131                seq_puts(seq, ",cdpl2");
3132
3133        if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3134                seq_puts(seq, ",mba_MBps");
3135
3136        return 0;
3137}
3138
3139static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3140        .mkdir          = rdtgroup_mkdir,
3141        .rmdir          = rdtgroup_rmdir,
3142        .show_options   = rdtgroup_show_options,
3143};
3144
3145static int __init rdtgroup_setup_root(void)
3146{
3147        int ret;
3148
3149        rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3150                                      KERNFS_ROOT_CREATE_DEACTIVATED |
3151                                      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3152                                      &rdtgroup_default);
3153        if (IS_ERR(rdt_root))
3154                return PTR_ERR(rdt_root);
3155
3156        mutex_lock(&rdtgroup_mutex);
3157
3158        rdtgroup_default.closid = 0;
3159        rdtgroup_default.mon.rmid = 0;
3160        rdtgroup_default.type = RDTCTRL_GROUP;
3161        INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3162
3163        list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3164
3165        ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3166        if (ret) {
3167                kernfs_destroy_root(rdt_root);
3168                goto out;
3169        }
3170
3171        rdtgroup_default.kn = rdt_root->kn;
3172        kernfs_activate(rdtgroup_default.kn);
3173
3174out:
3175        mutex_unlock(&rdtgroup_mutex);
3176
3177        return ret;
3178}
3179
3180/*
3181 * rdtgroup_init - rdtgroup initialization
3182 *
3183 * Setup resctrl file system including set up root, create mount point,
3184 * register rdtgroup filesystem, and initialize files under root directory.
3185 *
3186 * Return: 0 on success or -errno
3187 */
3188int __init rdtgroup_init(void)
3189{
3190        int ret = 0;
3191
3192        seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3193                     sizeof(last_cmd_status_buf));
3194
3195        ret = rdtgroup_setup_root();
3196        if (ret)
3197                return ret;
3198
3199        ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3200        if (ret)
3201                goto cleanup_root;
3202
3203        ret = register_filesystem(&rdt_fs_type);
3204        if (ret)
3205                goto cleanup_mountpoint;
3206
3207        /*
3208         * Adding the resctrl debugfs directory here may not be ideal since
3209         * it would let the resctrl debugfs directory appear on the debugfs
3210         * filesystem before the resctrl filesystem is mounted.
3211         * It may also be ok since that would enable debugging of RDT before
3212         * resctrl is mounted.
3213         * The reason why the debugfs directory is created here and not in
3214         * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3215         * during the debugfs directory creation also &sb->s_type->i_mutex_key
3216         * (the lockdep class of inode->i_rwsem). Other filesystem
3217         * interactions (eg. SyS_getdents) have the lock ordering:
3218         * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3219         * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3220         * is taken, thus creating dependency:
3221         * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3222         * issues considering the other two lock dependencies.
3223         * By creating the debugfs directory here we avoid a dependency
3224         * that may cause deadlock (even though file operations cannot
3225         * occur until the filesystem is mounted, but I do not know how to
3226         * tell lockdep that).
3227         */
3228        debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3229
3230        return 0;
3231
3232cleanup_mountpoint:
3233        sysfs_remove_mount_point(fs_kobj, "resctrl");
3234cleanup_root:
3235        kernfs_destroy_root(rdt_root);
3236
3237        return ret;
3238}
3239
3240void __exit rdtgroup_exit(void)
3241{
3242        debugfs_remove_recursive(debugfs_resctrl);
3243        unregister_filesystem(&rdt_fs_type);
3244        sysfs_remove_mount_point(fs_kobj, "resctrl");
3245        kernfs_destroy_root(rdt_root);
3246}
3247