linux/arch/x86/kernel/e820.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
  21#include <asm/setup.h>
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent CRC32
  35 *         checksum of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init                __initdata;
  60static struct e820_table e820_table_kexec_init          __initdata;
  61static struct e820_table e820_table_firmware_init       __initdata;
  62
  63struct e820_table *e820_table __refdata                 = &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata           = &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata        = &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78                              u64 start, u64 end, enum e820_type type)
  79{
  80        int i;
  81
  82        for (i = 0; i < table->nr_entries; i++) {
  83                struct e820_entry *entry = &table->entries[i];
  84
  85                if (type && entry->type != type)
  86                        continue;
  87                if (entry->addr >= end || entry->addr + entry->size <= start)
  88                        continue;
  89                return true;
  90        }
  91        return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96        return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102        return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113                                             enum e820_type type)
 114{
 115        int i;
 116
 117        for (i = 0; i < e820_table->nr_entries; i++) {
 118                struct e820_entry *entry = &e820_table->entries[i];
 119
 120                if (type && entry->type != type)
 121                        continue;
 122
 123                /* Is the region (part) in overlap with the current region? */
 124                if (entry->addr >= end || entry->addr + entry->size <= start)
 125                        continue;
 126
 127                /*
 128                 * If the region is at the beginning of <start,end> we move
 129                 * 'start' to the end of the region since it's ok until there
 130                 */
 131                if (entry->addr <= start)
 132                        start = entry->addr + entry->size;
 133
 134                /*
 135                 * If 'start' is now at or beyond 'end', we're done, full
 136                 * coverage of the desired range exists:
 137                 */
 138                if (start >= end)
 139                        return entry;
 140        }
 141
 142        return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150        return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158        struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160        return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 167{
 168        int x = table->nr_entries;
 169
 170        if (x >= ARRAY_SIZE(table->entries)) {
 171                pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172                       start, start + size - 1);
 173                return;
 174        }
 175
 176        table->entries[x].addr = start;
 177        table->entries[x].size = size;
 178        table->entries[x].type = type;
 179        table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184        __e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189        switch (type) {
 190        case E820_TYPE_RAM:             /* Fall through: */
 191        case E820_TYPE_RESERVED_KERN:   pr_cont("usable");                      break;
 192        case E820_TYPE_RESERVED:        pr_cont("reserved");                    break;
 193        case E820_TYPE_SOFT_RESERVED:   pr_cont("soft reserved");               break;
 194        case E820_TYPE_ACPI:            pr_cont("ACPI data");                   break;
 195        case E820_TYPE_NVS:             pr_cont("ACPI NVS");                    break;
 196        case E820_TYPE_UNUSABLE:        pr_cont("unusable");                    break;
 197        case E820_TYPE_PMEM:            /* Fall through: */
 198        case E820_TYPE_PRAM:            pr_cont("persistent (type %u)", type);  break;
 199        default:                        pr_cont("type %u", type);               break;
 200        }
 201}
 202
 203void __init e820__print_table(char *who)
 204{
 205        int i;
 206
 207        for (i = 0; i < e820_table->nr_entries; i++) {
 208                pr_info("%s: [mem %#018Lx-%#018Lx] ",
 209                        who,
 210                        e820_table->entries[i].addr,
 211                        e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 212
 213                e820_print_type(e820_table->entries[i].type);
 214                pr_cont("\n");
 215        }
 216}
 217
 218/*
 219 * Sanitize an E820 map.
 220 *
 221 * Some E820 layouts include overlapping entries. The following
 222 * replaces the original E820 map with a new one, removing overlaps,
 223 * and resolving conflicting memory types in favor of highest
 224 * numbered type.
 225 *
 226 * The input parameter 'entries' points to an array of 'struct
 227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 228 * valid, and which has space for up to max_nr_entries entries.
 229 * On return, the resulting sanitized E820 map entries will be in
 230 * overwritten in the same location, starting at 'entries'.
 231 *
 232 * The integer pointed to by nr_entries must be valid on entry (the
 233 * current number of valid entries located at 'entries'). If the
 234 * sanitizing succeeds the *nr_entries will be updated with the new
 235 * number of valid entries (something no more than max_nr_entries).
 236 *
 237 * The return value from e820__update_table() is zero if it
 238 * successfully 'sanitized' the map entries passed in, and is -1
 239 * if it did nothing, which can happen if either of (1) it was
 240 * only passed one map entry, or (2) any of the input map entries
 241 * were invalid (start + size < start, meaning that the size was
 242 * so big the described memory range wrapped around through zero.)
 243 *
 244 *      Visually we're performing the following
 245 *      (1,2,3,4 = memory types)...
 246 *
 247 *      Sample memory map (w/overlaps):
 248 *         ____22__________________
 249 *         ______________________4_
 250 *         ____1111________________
 251 *         _44_____________________
 252 *         11111111________________
 253 *         ____________________33__
 254 *         ___________44___________
 255 *         __________33333_________
 256 *         ______________22________
 257 *         ___________________2222_
 258 *         _________111111111______
 259 *         _____________________11_
 260 *         _________________4______
 261 *
 262 *      Sanitized equivalent (no overlap):
 263 *         1_______________________
 264 *         _44_____________________
 265 *         ___1____________________
 266 *         ____22__________________
 267 *         ______11________________
 268 *         _________1______________
 269 *         __________3_____________
 270 *         ___________44___________
 271 *         _____________33_________
 272 *         _______________2________
 273 *         ________________1_______
 274 *         _________________4______
 275 *         ___________________2____
 276 *         ____________________33__
 277 *         ______________________4_
 278 */
 279struct change_member {
 280        /* Pointer to the original entry: */
 281        struct e820_entry       *entry;
 282        /* Address for this change point: */
 283        unsigned long long      addr;
 284};
 285
 286static struct change_member     change_point_list[2*E820_MAX_ENTRIES]   __initdata;
 287static struct change_member     *change_point[2*E820_MAX_ENTRIES]       __initdata;
 288static struct e820_entry        *overlap_list[E820_MAX_ENTRIES]         __initdata;
 289static struct e820_entry        new_entries[E820_MAX_ENTRIES]           __initdata;
 290
 291static int __init cpcompare(const void *a, const void *b)
 292{
 293        struct change_member * const *app = a, * const *bpp = b;
 294        const struct change_member *ap = *app, *bp = *bpp;
 295
 296        /*
 297         * Inputs are pointers to two elements of change_point[].  If their
 298         * addresses are not equal, their difference dominates.  If the addresses
 299         * are equal, then consider one that represents the end of its region
 300         * to be greater than one that does not.
 301         */
 302        if (ap->addr != bp->addr)
 303                return ap->addr > bp->addr ? 1 : -1;
 304
 305        return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 306}
 307
 308static bool e820_nomerge(enum e820_type type)
 309{
 310        /*
 311         * These types may indicate distinct platform ranges aligned to
 312         * numa node, protection domain, performance domain, or other
 313         * boundaries. Do not merge them.
 314         */
 315        if (type == E820_TYPE_PRAM)
 316                return true;
 317        if (type == E820_TYPE_SOFT_RESERVED)
 318                return true;
 319        return false;
 320}
 321
 322int __init e820__update_table(struct e820_table *table)
 323{
 324        struct e820_entry *entries = table->entries;
 325        u32 max_nr_entries = ARRAY_SIZE(table->entries);
 326        enum e820_type current_type, last_type;
 327        unsigned long long last_addr;
 328        u32 new_nr_entries, overlap_entries;
 329        u32 i, chg_idx, chg_nr;
 330
 331        /* If there's only one memory region, don't bother: */
 332        if (table->nr_entries < 2)
 333                return -1;
 334
 335        BUG_ON(table->nr_entries > max_nr_entries);
 336
 337        /* Bail out if we find any unreasonable addresses in the map: */
 338        for (i = 0; i < table->nr_entries; i++) {
 339                if (entries[i].addr + entries[i].size < entries[i].addr)
 340                        return -1;
 341        }
 342
 343        /* Create pointers for initial change-point information (for sorting): */
 344        for (i = 0; i < 2 * table->nr_entries; i++)
 345                change_point[i] = &change_point_list[i];
 346
 347        /*
 348         * Record all known change-points (starting and ending addresses),
 349         * omitting empty memory regions:
 350         */
 351        chg_idx = 0;
 352        for (i = 0; i < table->nr_entries; i++) {
 353                if (entries[i].size != 0) {
 354                        change_point[chg_idx]->addr     = entries[i].addr;
 355                        change_point[chg_idx++]->entry  = &entries[i];
 356                        change_point[chg_idx]->addr     = entries[i].addr + entries[i].size;
 357                        change_point[chg_idx++]->entry  = &entries[i];
 358                }
 359        }
 360        chg_nr = chg_idx;
 361
 362        /* Sort change-point list by memory addresses (low -> high): */
 363        sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 364
 365        /* Create a new memory map, removing overlaps: */
 366        overlap_entries = 0;     /* Number of entries in the overlap table */
 367        new_nr_entries = 0;      /* Index for creating new map entries */
 368        last_type = 0;           /* Start with undefined memory type */
 369        last_addr = 0;           /* Start with 0 as last starting address */
 370
 371        /* Loop through change-points, determining effect on the new map: */
 372        for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 373                /* Keep track of all overlapping entries */
 374                if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 375                        /* Add map entry to overlap list (> 1 entry implies an overlap) */
 376                        overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 377                } else {
 378                        /* Remove entry from list (order independent, so swap with last): */
 379                        for (i = 0; i < overlap_entries; i++) {
 380                                if (overlap_list[i] == change_point[chg_idx]->entry)
 381                                        overlap_list[i] = overlap_list[overlap_entries-1];
 382                        }
 383                        overlap_entries--;
 384                }
 385                /*
 386                 * If there are overlapping entries, decide which
 387                 * "type" to use (larger value takes precedence --
 388                 * 1=usable, 2,3,4,4+=unusable)
 389                 */
 390                current_type = 0;
 391                for (i = 0; i < overlap_entries; i++) {
 392                        if (overlap_list[i]->type > current_type)
 393                                current_type = overlap_list[i]->type;
 394                }
 395
 396                /* Continue building up new map based on this information: */
 397                if (current_type != last_type || e820_nomerge(current_type)) {
 398                        if (last_type != 0)      {
 399                                new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 400                                /* Move forward only if the new size was non-zero: */
 401                                if (new_entries[new_nr_entries].size != 0)
 402                                        /* No more space left for new entries? */
 403                                        if (++new_nr_entries >= max_nr_entries)
 404                                                break;
 405                        }
 406                        if (current_type != 0)  {
 407                                new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 408                                new_entries[new_nr_entries].type = current_type;
 409                                last_addr = change_point[chg_idx]->addr;
 410                        }
 411                        last_type = current_type;
 412                }
 413        }
 414
 415        /* Copy the new entries into the original location: */
 416        memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 417        table->nr_entries = new_nr_entries;
 418
 419        return 0;
 420}
 421
 422static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 423{
 424        struct boot_e820_entry *entry = entries;
 425
 426        while (nr_entries) {
 427                u64 start = entry->addr;
 428                u64 size = entry->size;
 429                u64 end = start + size - 1;
 430                u32 type = entry->type;
 431
 432                /* Ignore the entry on 64-bit overflow: */
 433                if (start > end && likely(size))
 434                        return -1;
 435
 436                e820__range_add(start, size, type);
 437
 438                entry++;
 439                nr_entries--;
 440        }
 441        return 0;
 442}
 443
 444/*
 445 * Copy the BIOS E820 map into a safe place.
 446 *
 447 * Sanity-check it while we're at it..
 448 *
 449 * If we're lucky and live on a modern system, the setup code
 450 * will have given us a memory map that we can use to properly
 451 * set up memory.  If we aren't, we'll fake a memory map.
 452 */
 453static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 454{
 455        /* Only one memory region (or negative)? Ignore it */
 456        if (nr_entries < 2)
 457                return -1;
 458
 459        return __append_e820_table(entries, nr_entries);
 460}
 461
 462static u64 __init
 463__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 464{
 465        u64 end;
 466        unsigned int i;
 467        u64 real_updated_size = 0;
 468
 469        BUG_ON(old_type == new_type);
 470
 471        if (size > (ULLONG_MAX - start))
 472                size = ULLONG_MAX - start;
 473
 474        end = start + size;
 475        printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 476        e820_print_type(old_type);
 477        pr_cont(" ==> ");
 478        e820_print_type(new_type);
 479        pr_cont("\n");
 480
 481        for (i = 0; i < table->nr_entries; i++) {
 482                struct e820_entry *entry = &table->entries[i];
 483                u64 final_start, final_end;
 484                u64 entry_end;
 485
 486                if (entry->type != old_type)
 487                        continue;
 488
 489                entry_end = entry->addr + entry->size;
 490
 491                /* Completely covered by new range? */
 492                if (entry->addr >= start && entry_end <= end) {
 493                        entry->type = new_type;
 494                        real_updated_size += entry->size;
 495                        continue;
 496                }
 497
 498                /* New range is completely covered? */
 499                if (entry->addr < start && entry_end > end) {
 500                        __e820__range_add(table, start, size, new_type);
 501                        __e820__range_add(table, end, entry_end - end, entry->type);
 502                        entry->size = start - entry->addr;
 503                        real_updated_size += size;
 504                        continue;
 505                }
 506
 507                /* Partially covered: */
 508                final_start = max(start, entry->addr);
 509                final_end = min(end, entry_end);
 510                if (final_start >= final_end)
 511                        continue;
 512
 513                __e820__range_add(table, final_start, final_end - final_start, new_type);
 514
 515                real_updated_size += final_end - final_start;
 516
 517                /*
 518                 * Left range could be head or tail, so need to update
 519                 * its size first:
 520                 */
 521                entry->size -= final_end - final_start;
 522                if (entry->addr < final_start)
 523                        continue;
 524
 525                entry->addr = final_end;
 526        }
 527        return real_updated_size;
 528}
 529
 530u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 531{
 532        return __e820__range_update(e820_table, start, size, old_type, new_type);
 533}
 534
 535static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 536{
 537        return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 538}
 539
 540/* Remove a range of memory from the E820 table: */
 541u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 542{
 543        int i;
 544        u64 end;
 545        u64 real_removed_size = 0;
 546
 547        if (size > (ULLONG_MAX - start))
 548                size = ULLONG_MAX - start;
 549
 550        end = start + size;
 551        printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 552        if (check_type)
 553                e820_print_type(old_type);
 554        pr_cont("\n");
 555
 556        for (i = 0; i < e820_table->nr_entries; i++) {
 557                struct e820_entry *entry = &e820_table->entries[i];
 558                u64 final_start, final_end;
 559                u64 entry_end;
 560
 561                if (check_type && entry->type != old_type)
 562                        continue;
 563
 564                entry_end = entry->addr + entry->size;
 565
 566                /* Completely covered? */
 567                if (entry->addr >= start && entry_end <= end) {
 568                        real_removed_size += entry->size;
 569                        memset(entry, 0, sizeof(*entry));
 570                        continue;
 571                }
 572
 573                /* Is the new range completely covered? */
 574                if (entry->addr < start && entry_end > end) {
 575                        e820__range_add(end, entry_end - end, entry->type);
 576                        entry->size = start - entry->addr;
 577                        real_removed_size += size;
 578                        continue;
 579                }
 580
 581                /* Partially covered: */
 582                final_start = max(start, entry->addr);
 583                final_end = min(end, entry_end);
 584                if (final_start >= final_end)
 585                        continue;
 586
 587                real_removed_size += final_end - final_start;
 588
 589                /*
 590                 * Left range could be head or tail, so need to update
 591                 * the size first:
 592                 */
 593                entry->size -= final_end - final_start;
 594                if (entry->addr < final_start)
 595                        continue;
 596
 597                entry->addr = final_end;
 598        }
 599        return real_removed_size;
 600}
 601
 602void __init e820__update_table_print(void)
 603{
 604        if (e820__update_table(e820_table))
 605                return;
 606
 607        pr_info("modified physical RAM map:\n");
 608        e820__print_table("modified");
 609}
 610
 611static void __init e820__update_table_kexec(void)
 612{
 613        e820__update_table(e820_table_kexec);
 614}
 615
 616#define MAX_GAP_END 0x100000000ull
 617
 618/*
 619 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 620 */
 621static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 622{
 623        unsigned long long last = MAX_GAP_END;
 624        int i = e820_table->nr_entries;
 625        int found = 0;
 626
 627        while (--i >= 0) {
 628                unsigned long long start = e820_table->entries[i].addr;
 629                unsigned long long end = start + e820_table->entries[i].size;
 630
 631                /*
 632                 * Since "last" is at most 4GB, we know we'll
 633                 * fit in 32 bits if this condition is true:
 634                 */
 635                if (last > end) {
 636                        unsigned long gap = last - end;
 637
 638                        if (gap >= *gapsize) {
 639                                *gapsize = gap;
 640                                *gapstart = end;
 641                                found = 1;
 642                        }
 643                }
 644                if (start < last)
 645                        last = start;
 646        }
 647        return found;
 648}
 649
 650/*
 651 * Search for the biggest gap in the low 32 bits of the E820
 652 * memory space. We pass this space to the PCI subsystem, so
 653 * that it can assign MMIO resources for hotplug or
 654 * unconfigured devices in.
 655 *
 656 * Hopefully the BIOS let enough space left.
 657 */
 658__init void e820__setup_pci_gap(void)
 659{
 660        unsigned long gapstart, gapsize;
 661        int found;
 662
 663        gapsize = 0x400000;
 664        found  = e820_search_gap(&gapstart, &gapsize);
 665
 666        if (!found) {
 667#ifdef CONFIG_X86_64
 668                gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 669                pr_err("Cannot find an available gap in the 32-bit address range\n");
 670                pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 671#else
 672                gapstart = 0x10000000;
 673#endif
 674        }
 675
 676        /*
 677         * e820__reserve_resources_late() protects stolen RAM already:
 678         */
 679        pci_mem_start = gapstart;
 680
 681        pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 682                gapstart, gapstart + gapsize - 1);
 683}
 684
 685/*
 686 * Called late during init, in free_initmem().
 687 *
 688 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 689 *
 690 * Copy them to a (usually much smaller) dynamically allocated area that is
 691 * sized precisely after the number of e820 entries.
 692 *
 693 * This is done after we've performed all the fixes and tweaks to the tables.
 694 * All functions which modify them are __init functions, which won't exist
 695 * after free_initmem().
 696 */
 697__init void e820__reallocate_tables(void)
 698{
 699        struct e820_table *n;
 700        int size;
 701
 702        size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 703        n = kmemdup(e820_table, size, GFP_KERNEL);
 704        BUG_ON(!n);
 705        e820_table = n;
 706
 707        size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 708        n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 709        BUG_ON(!n);
 710        e820_table_kexec = n;
 711
 712        size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 713        n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 714        BUG_ON(!n);
 715        e820_table_firmware = n;
 716}
 717
 718/*
 719 * Because of the small fixed size of struct boot_params, only the first
 720 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 721 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 722 * struct setup_data, which is parsed here.
 723 */
 724void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 725{
 726        int entries;
 727        struct boot_e820_entry *extmap;
 728        struct setup_data *sdata;
 729
 730        sdata = early_memremap(phys_addr, data_len);
 731        entries = sdata->len / sizeof(*extmap);
 732        extmap = (struct boot_e820_entry *)(sdata->data);
 733
 734        __append_e820_table(extmap, entries);
 735        e820__update_table(e820_table);
 736
 737        memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 738        memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 739
 740        early_memunmap(sdata, data_len);
 741        pr_info("extended physical RAM map:\n");
 742        e820__print_table("extended");
 743}
 744
 745/*
 746 * Find the ranges of physical addresses that do not correspond to
 747 * E820 RAM areas and register the corresponding pages as 'nosave' for
 748 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 749 *
 750 * This function requires the E820 map to be sorted and without any
 751 * overlapping entries.
 752 */
 753void __init e820__register_nosave_regions(unsigned long limit_pfn)
 754{
 755        int i;
 756        unsigned long pfn = 0;
 757
 758        for (i = 0; i < e820_table->nr_entries; i++) {
 759                struct e820_entry *entry = &e820_table->entries[i];
 760
 761                if (pfn < PFN_UP(entry->addr))
 762                        register_nosave_region(pfn, PFN_UP(entry->addr));
 763
 764                pfn = PFN_DOWN(entry->addr + entry->size);
 765
 766                if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 767                        register_nosave_region(PFN_UP(entry->addr), pfn);
 768
 769                if (pfn >= limit_pfn)
 770                        break;
 771        }
 772}
 773
 774#ifdef CONFIG_ACPI
 775/*
 776 * Register ACPI NVS memory regions, so that we can save/restore them during
 777 * hibernation and the subsequent resume:
 778 */
 779static int __init e820__register_nvs_regions(void)
 780{
 781        int i;
 782
 783        for (i = 0; i < e820_table->nr_entries; i++) {
 784                struct e820_entry *entry = &e820_table->entries[i];
 785
 786                if (entry->type == E820_TYPE_NVS)
 787                        acpi_nvs_register(entry->addr, entry->size);
 788        }
 789
 790        return 0;
 791}
 792core_initcall(e820__register_nvs_regions);
 793#endif
 794
 795/*
 796 * Allocate the requested number of bytes with the requested alignment
 797 * and return (the physical address) to the caller. Also register this
 798 * range in the 'kexec' E820 table as a reserved range.
 799 *
 800 * This allows kexec to fake a new mptable, as if it came from the real
 801 * system.
 802 */
 803u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 804{
 805        u64 addr;
 806
 807        addr = memblock_phys_alloc(size, align);
 808        if (addr) {
 809                e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 810                pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 811                e820__update_table_kexec();
 812        }
 813
 814        return addr;
 815}
 816
 817#ifdef CONFIG_X86_32
 818# ifdef CONFIG_X86_PAE
 819#  define MAX_ARCH_PFN          (1ULL<<(36-PAGE_SHIFT))
 820# else
 821#  define MAX_ARCH_PFN          (1ULL<<(32-PAGE_SHIFT))
 822# endif
 823#else /* CONFIG_X86_32 */
 824# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 825#endif
 826
 827/*
 828 * Find the highest page frame number we have available
 829 */
 830static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 831{
 832        int i;
 833        unsigned long last_pfn = 0;
 834        unsigned long max_arch_pfn = MAX_ARCH_PFN;
 835
 836        for (i = 0; i < e820_table->nr_entries; i++) {
 837                struct e820_entry *entry = &e820_table->entries[i];
 838                unsigned long start_pfn;
 839                unsigned long end_pfn;
 840
 841                if (entry->type != type)
 842                        continue;
 843
 844                start_pfn = entry->addr >> PAGE_SHIFT;
 845                end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 846
 847                if (start_pfn >= limit_pfn)
 848                        continue;
 849                if (end_pfn > limit_pfn) {
 850                        last_pfn = limit_pfn;
 851                        break;
 852                }
 853                if (end_pfn > last_pfn)
 854                        last_pfn = end_pfn;
 855        }
 856
 857        if (last_pfn > max_arch_pfn)
 858                last_pfn = max_arch_pfn;
 859
 860        pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 861                last_pfn, max_arch_pfn);
 862        return last_pfn;
 863}
 864
 865unsigned long __init e820__end_of_ram_pfn(void)
 866{
 867        return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 868}
 869
 870unsigned long __init e820__end_of_low_ram_pfn(void)
 871{
 872        return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 873}
 874
 875static void __init early_panic(char *msg)
 876{
 877        early_printk(msg);
 878        panic(msg);
 879}
 880
 881static int userdef __initdata;
 882
 883/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 884static int __init parse_memopt(char *p)
 885{
 886        u64 mem_size;
 887
 888        if (!p)
 889                return -EINVAL;
 890
 891        if (!strcmp(p, "nopentium")) {
 892#ifdef CONFIG_X86_32
 893                setup_clear_cpu_cap(X86_FEATURE_PSE);
 894                return 0;
 895#else
 896                pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 897                return -EINVAL;
 898#endif
 899        }
 900
 901        userdef = 1;
 902        mem_size = memparse(p, &p);
 903
 904        /* Don't remove all memory when getting "mem={invalid}" parameter: */
 905        if (mem_size == 0)
 906                return -EINVAL;
 907
 908        e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 909
 910#ifdef CONFIG_MEMORY_HOTPLUG
 911        max_mem_size = mem_size;
 912#endif
 913
 914        return 0;
 915}
 916early_param("mem", parse_memopt);
 917
 918static int __init parse_memmap_one(char *p)
 919{
 920        char *oldp;
 921        u64 start_at, mem_size;
 922
 923        if (!p)
 924                return -EINVAL;
 925
 926        if (!strncmp(p, "exactmap", 8)) {
 927                e820_table->nr_entries = 0;
 928                userdef = 1;
 929                return 0;
 930        }
 931
 932        oldp = p;
 933        mem_size = memparse(p, &p);
 934        if (p == oldp)
 935                return -EINVAL;
 936
 937        userdef = 1;
 938        if (*p == '@') {
 939                start_at = memparse(p+1, &p);
 940                e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 941        } else if (*p == '#') {
 942                start_at = memparse(p+1, &p);
 943                e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 944        } else if (*p == '$') {
 945                start_at = memparse(p+1, &p);
 946                e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 947        } else if (*p == '!') {
 948                start_at = memparse(p+1, &p);
 949                e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 950        } else if (*p == '%') {
 951                enum e820_type from = 0, to = 0;
 952
 953                start_at = memparse(p + 1, &p);
 954                if (*p == '-')
 955                        from = simple_strtoull(p + 1, &p, 0);
 956                if (*p == '+')
 957                        to = simple_strtoull(p + 1, &p, 0);
 958                if (*p != '\0')
 959                        return -EINVAL;
 960                if (from && to)
 961                        e820__range_update(start_at, mem_size, from, to);
 962                else if (to)
 963                        e820__range_add(start_at, mem_size, to);
 964                else if (from)
 965                        e820__range_remove(start_at, mem_size, from, 1);
 966                else
 967                        e820__range_remove(start_at, mem_size, 0, 0);
 968        } else {
 969                e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 970        }
 971
 972        return *p == '\0' ? 0 : -EINVAL;
 973}
 974
 975static int __init parse_memmap_opt(char *str)
 976{
 977        while (str) {
 978                char *k = strchr(str, ',');
 979
 980                if (k)
 981                        *k++ = 0;
 982
 983                parse_memmap_one(str);
 984                str = k;
 985        }
 986
 987        return 0;
 988}
 989early_param("memmap", parse_memmap_opt);
 990
 991/*
 992 * Reserve all entries from the bootloader's extensible data nodes list,
 993 * because if present we are going to use it later on to fetch e820
 994 * entries from it:
 995 */
 996void __init e820__reserve_setup_data(void)
 997{
 998        struct setup_data *data;
 999        u64 pa_data;
1000
1001        pa_data = boot_params.hdr.setup_data;
1002        if (!pa_data)
1003                return;
1004
1005        while (pa_data) {
1006                data = early_memremap(pa_data, sizeof(*data));
1007                e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1008
1009                /*
1010                 * SETUP_EFI is supplied by kexec and does not need to be
1011                 * reserved.
1012                 */
1013                if (data->type != SETUP_EFI)
1014                        e820__range_update_kexec(pa_data,
1015                                                 sizeof(*data) + data->len,
1016                                                 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1017
1018                if (data->type == SETUP_INDIRECT &&
1019                    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
1020                        e820__range_update(((struct setup_indirect *)data->data)->addr,
1021                                           ((struct setup_indirect *)data->data)->len,
1022                                           E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1023                        e820__range_update_kexec(((struct setup_indirect *)data->data)->addr,
1024                                                 ((struct setup_indirect *)data->data)->len,
1025                                                 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1026                }
1027
1028                pa_data = data->next;
1029                early_memunmap(data, sizeof(*data));
1030        }
1031
1032        e820__update_table(e820_table);
1033        e820__update_table(e820_table_kexec);
1034
1035        pr_info("extended physical RAM map:\n");
1036        e820__print_table("reserve setup_data");
1037}
1038
1039/*
1040 * Called after parse_early_param(), after early parameters (such as mem=)
1041 * have been processed, in which case we already have an E820 table filled in
1042 * via the parameter callback function(s), but it's not sorted and printed yet:
1043 */
1044void __init e820__finish_early_params(void)
1045{
1046        if (userdef) {
1047                if (e820__update_table(e820_table) < 0)
1048                        early_panic("Invalid user supplied memory map");
1049
1050                pr_info("user-defined physical RAM map:\n");
1051                e820__print_table("user");
1052        }
1053}
1054
1055static const char *__init e820_type_to_string(struct e820_entry *entry)
1056{
1057        switch (entry->type) {
1058        case E820_TYPE_RESERVED_KERN:   /* Fall-through: */
1059        case E820_TYPE_RAM:             return "System RAM";
1060        case E820_TYPE_ACPI:            return "ACPI Tables";
1061        case E820_TYPE_NVS:             return "ACPI Non-volatile Storage";
1062        case E820_TYPE_UNUSABLE:        return "Unusable memory";
1063        case E820_TYPE_PRAM:            return "Persistent Memory (legacy)";
1064        case E820_TYPE_PMEM:            return "Persistent Memory";
1065        case E820_TYPE_RESERVED:        return "Reserved";
1066        case E820_TYPE_SOFT_RESERVED:   return "Soft Reserved";
1067        default:                        return "Unknown E820 type";
1068        }
1069}
1070
1071static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1072{
1073        switch (entry->type) {
1074        case E820_TYPE_RESERVED_KERN:   /* Fall-through: */
1075        case E820_TYPE_RAM:             return IORESOURCE_SYSTEM_RAM;
1076        case E820_TYPE_ACPI:            /* Fall-through: */
1077        case E820_TYPE_NVS:             /* Fall-through: */
1078        case E820_TYPE_UNUSABLE:        /* Fall-through: */
1079        case E820_TYPE_PRAM:            /* Fall-through: */
1080        case E820_TYPE_PMEM:            /* Fall-through: */
1081        case E820_TYPE_RESERVED:        /* Fall-through: */
1082        case E820_TYPE_SOFT_RESERVED:   /* Fall-through: */
1083        default:                        return IORESOURCE_MEM;
1084        }
1085}
1086
1087static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1088{
1089        switch (entry->type) {
1090        case E820_TYPE_ACPI:            return IORES_DESC_ACPI_TABLES;
1091        case E820_TYPE_NVS:             return IORES_DESC_ACPI_NV_STORAGE;
1092        case E820_TYPE_PMEM:            return IORES_DESC_PERSISTENT_MEMORY;
1093        case E820_TYPE_PRAM:            return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1094        case E820_TYPE_RESERVED:        return IORES_DESC_RESERVED;
1095        case E820_TYPE_SOFT_RESERVED:   return IORES_DESC_SOFT_RESERVED;
1096        case E820_TYPE_RESERVED_KERN:   /* Fall-through: */
1097        case E820_TYPE_RAM:             /* Fall-through: */
1098        case E820_TYPE_UNUSABLE:        /* Fall-through: */
1099        default:                        return IORES_DESC_NONE;
1100        }
1101}
1102
1103static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1104{
1105        /* this is the legacy bios/dos rom-shadow + mmio region */
1106        if (res->start < (1ULL<<20))
1107                return true;
1108
1109        /*
1110         * Treat persistent memory and other special memory ranges like
1111         * device memory, i.e. reserve it for exclusive use of a driver
1112         */
1113        switch (type) {
1114        case E820_TYPE_RESERVED:
1115        case E820_TYPE_SOFT_RESERVED:
1116        case E820_TYPE_PRAM:
1117        case E820_TYPE_PMEM:
1118                return false;
1119        case E820_TYPE_RESERVED_KERN:
1120        case E820_TYPE_RAM:
1121        case E820_TYPE_ACPI:
1122        case E820_TYPE_NVS:
1123        case E820_TYPE_UNUSABLE:
1124        default:
1125                return true;
1126        }
1127}
1128
1129/*
1130 * Mark E820 reserved areas as busy for the resource manager:
1131 */
1132
1133static struct resource __initdata *e820_res;
1134
1135void __init e820__reserve_resources(void)
1136{
1137        int i;
1138        struct resource *res;
1139        u64 end;
1140
1141        res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1142                             SMP_CACHE_BYTES);
1143        if (!res)
1144                panic("%s: Failed to allocate %zu bytes\n", __func__,
1145                      sizeof(*res) * e820_table->nr_entries);
1146        e820_res = res;
1147
1148        for (i = 0; i < e820_table->nr_entries; i++) {
1149                struct e820_entry *entry = e820_table->entries + i;
1150
1151                end = entry->addr + entry->size - 1;
1152                if (end != (resource_size_t)end) {
1153                        res++;
1154                        continue;
1155                }
1156                res->start = entry->addr;
1157                res->end   = end;
1158                res->name  = e820_type_to_string(entry);
1159                res->flags = e820_type_to_iomem_type(entry);
1160                res->desc  = e820_type_to_iores_desc(entry);
1161
1162                /*
1163                 * Don't register the region that could be conflicted with
1164                 * PCI device BAR resources and insert them later in
1165                 * pcibios_resource_survey():
1166                 */
1167                if (do_mark_busy(entry->type, res)) {
1168                        res->flags |= IORESOURCE_BUSY;
1169                        insert_resource(&iomem_resource, res);
1170                }
1171                res++;
1172        }
1173
1174        /* Expose the bootloader-provided memory layout to the sysfs. */
1175        for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1176                struct e820_entry *entry = e820_table_firmware->entries + i;
1177
1178                firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1179        }
1180}
1181
1182/*
1183 * How much should we pad the end of RAM, depending on where it is?
1184 */
1185static unsigned long __init ram_alignment(resource_size_t pos)
1186{
1187        unsigned long mb = pos >> 20;
1188
1189        /* To 64kB in the first megabyte */
1190        if (!mb)
1191                return 64*1024;
1192
1193        /* To 1MB in the first 16MB */
1194        if (mb < 16)
1195                return 1024*1024;
1196
1197        /* To 64MB for anything above that */
1198        return 64*1024*1024;
1199}
1200
1201#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1202
1203void __init e820__reserve_resources_late(void)
1204{
1205        int i;
1206        struct resource *res;
1207
1208        res = e820_res;
1209        for (i = 0; i < e820_table->nr_entries; i++) {
1210                if (!res->parent && res->end)
1211                        insert_resource_expand_to_fit(&iomem_resource, res);
1212                res++;
1213        }
1214
1215        /*
1216         * Try to bump up RAM regions to reasonable boundaries, to
1217         * avoid stolen RAM:
1218         */
1219        for (i = 0; i < e820_table->nr_entries; i++) {
1220                struct e820_entry *entry = &e820_table->entries[i];
1221                u64 start, end;
1222
1223                if (entry->type != E820_TYPE_RAM)
1224                        continue;
1225
1226                start = entry->addr + entry->size;
1227                end = round_up(start, ram_alignment(start)) - 1;
1228                if (end > MAX_RESOURCE_SIZE)
1229                        end = MAX_RESOURCE_SIZE;
1230                if (start >= end)
1231                        continue;
1232
1233                printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1234                reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1235        }
1236}
1237
1238/*
1239 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1240 */
1241char *__init e820__memory_setup_default(void)
1242{
1243        char *who = "BIOS-e820";
1244
1245        /*
1246         * Try to copy the BIOS-supplied E820-map.
1247         *
1248         * Otherwise fake a memory map; one section from 0k->640k,
1249         * the next section from 1mb->appropriate_mem_k
1250         */
1251        if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1252                u64 mem_size;
1253
1254                /* Compare results from other methods and take the one that gives more RAM: */
1255                if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1256                        mem_size = boot_params.screen_info.ext_mem_k;
1257                        who = "BIOS-88";
1258                } else {
1259                        mem_size = boot_params.alt_mem_k;
1260                        who = "BIOS-e801";
1261                }
1262
1263                e820_table->nr_entries = 0;
1264                e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1265                e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1266        }
1267
1268        /* We just appended a lot of ranges, sanitize the table: */
1269        e820__update_table(e820_table);
1270
1271        return who;
1272}
1273
1274/*
1275 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1276 * E820 map - with an optional platform quirk available for virtual platforms
1277 * to override this method of boot environment processing:
1278 */
1279void __init e820__memory_setup(void)
1280{
1281        char *who;
1282
1283        /* This is a firmware interface ABI - make sure we don't break it: */
1284        BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1285
1286        who = x86_init.resources.memory_setup();
1287
1288        memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1289        memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1290
1291        pr_info("BIOS-provided physical RAM map:\n");
1292        e820__print_table(who);
1293}
1294
1295void __init e820__memblock_setup(void)
1296{
1297        int i;
1298        u64 end;
1299
1300        /*
1301         * The bootstrap memblock region count maximum is 128 entries
1302         * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1303         * than that - so allow memblock resizing.
1304         *
1305         * This is safe, because this call happens pretty late during x86 setup,
1306         * so we know about reserved memory regions already. (This is important
1307         * so that memblock resizing does no stomp over reserved areas.)
1308         */
1309        memblock_allow_resize();
1310
1311        for (i = 0; i < e820_table->nr_entries; i++) {
1312                struct e820_entry *entry = &e820_table->entries[i];
1313
1314                end = entry->addr + entry->size;
1315                if (end != (resource_size_t)end)
1316                        continue;
1317
1318                if (entry->type == E820_TYPE_SOFT_RESERVED)
1319                        memblock_reserve(entry->addr, entry->size);
1320
1321                if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1322                        continue;
1323
1324                memblock_add(entry->addr, entry->size);
1325        }
1326
1327        /* Throw away partial pages: */
1328        memblock_trim_memory(PAGE_SIZE);
1329
1330        memblock_dump_all();
1331}
1332