linux/arch/x86/kernel/process_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 *
   8 *  X86-64 port
   9 *      Andi Kleen.
  10 *
  11 *      CPU hotplug support - ashok.raj@intel.com
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of process handling..
  16 */
  17
  18#include <linux/cpu.h>
  19#include <linux/errno.h>
  20#include <linux/sched.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/fs.h>
  24#include <linux/kernel.h>
  25#include <linux/mm.h>
  26#include <linux/elfcore.h>
  27#include <linux/smp.h>
  28#include <linux/slab.h>
  29#include <linux/user.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/export.h>
  33#include <linux/ptrace.h>
  34#include <linux/notifier.h>
  35#include <linux/kprobes.h>
  36#include <linux/kdebug.h>
  37#include <linux/prctl.h>
  38#include <linux/uaccess.h>
  39#include <linux/io.h>
  40#include <linux/ftrace.h>
  41#include <linux/syscalls.h>
  42
  43#include <asm/processor.h>
  44#include <asm/pkru.h>
  45#include <asm/fpu/internal.h>
  46#include <asm/mmu_context.h>
  47#include <asm/prctl.h>
  48#include <asm/desc.h>
  49#include <asm/proto.h>
  50#include <asm/ia32.h>
  51#include <asm/debugreg.h>
  52#include <asm/switch_to.h>
  53#include <asm/xen/hypervisor.h>
  54#include <asm/vdso.h>
  55#include <asm/resctrl.h>
  56#include <asm/unistd.h>
  57#include <asm/fsgsbase.h>
  58#ifdef CONFIG_IA32_EMULATION
  59/* Not included via unistd.h */
  60#include <asm/unistd_32_ia32.h>
  61#endif
  62
  63#include "process.h"
  64
  65/* Prints also some state that isn't saved in the pt_regs */
  66void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
  67                 const char *log_lvl)
  68{
  69        unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
  70        unsigned long d0, d1, d2, d3, d6, d7;
  71        unsigned int fsindex, gsindex;
  72        unsigned int ds, es;
  73
  74        show_iret_regs(regs, log_lvl);
  75
  76        if (regs->orig_ax != -1)
  77                pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
  78        else
  79                pr_cont("\n");
  80
  81        printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
  82               log_lvl, regs->ax, regs->bx, regs->cx);
  83        printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
  84               log_lvl, regs->dx, regs->si, regs->di);
  85        printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
  86               log_lvl, regs->bp, regs->r8, regs->r9);
  87        printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
  88               log_lvl, regs->r10, regs->r11, regs->r12);
  89        printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
  90               log_lvl, regs->r13, regs->r14, regs->r15);
  91
  92        if (mode == SHOW_REGS_SHORT)
  93                return;
  94
  95        if (mode == SHOW_REGS_USER) {
  96                rdmsrl(MSR_FS_BASE, fs);
  97                rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
  98                printk("%sFS:  %016lx GS:  %016lx\n",
  99                       log_lvl, fs, shadowgs);
 100                return;
 101        }
 102
 103        asm("movl %%ds,%0" : "=r" (ds));
 104        asm("movl %%es,%0" : "=r" (es));
 105        asm("movl %%fs,%0" : "=r" (fsindex));
 106        asm("movl %%gs,%0" : "=r" (gsindex));
 107
 108        rdmsrl(MSR_FS_BASE, fs);
 109        rdmsrl(MSR_GS_BASE, gs);
 110        rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 111
 112        cr0 = read_cr0();
 113        cr2 = read_cr2();
 114        cr3 = __read_cr3();
 115        cr4 = __read_cr4();
 116
 117        printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
 118               log_lvl, fs, fsindex, gs, gsindex, shadowgs);
 119        printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
 120                log_lvl, regs->cs, ds, es, cr0);
 121        printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
 122                log_lvl, cr2, cr3, cr4);
 123
 124        get_debugreg(d0, 0);
 125        get_debugreg(d1, 1);
 126        get_debugreg(d2, 2);
 127        get_debugreg(d3, 3);
 128        get_debugreg(d6, 6);
 129        get_debugreg(d7, 7);
 130
 131        /* Only print out debug registers if they are in their non-default state. */
 132        if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 133            (d6 == DR6_RESERVED) && (d7 == 0x400))) {
 134                printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
 135                       log_lvl, d0, d1, d2);
 136                printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
 137                       log_lvl, d3, d6, d7);
 138        }
 139
 140        if (cpu_feature_enabled(X86_FEATURE_OSPKE))
 141                printk("%sPKRU: %08x\n", log_lvl, read_pkru());
 142}
 143
 144void release_thread(struct task_struct *dead_task)
 145{
 146        WARN_ON(dead_task->mm);
 147}
 148
 149enum which_selector {
 150        FS,
 151        GS
 152};
 153
 154/*
 155 * Out of line to be protected from kprobes and tracing. If this would be
 156 * traced or probed than any access to a per CPU variable happens with
 157 * the wrong GS.
 158 *
 159 * It is not used on Xen paravirt. When paravirt support is needed, it
 160 * needs to be renamed with native_ prefix.
 161 */
 162static noinstr unsigned long __rdgsbase_inactive(void)
 163{
 164        unsigned long gsbase;
 165
 166        lockdep_assert_irqs_disabled();
 167
 168        if (!static_cpu_has(X86_FEATURE_XENPV)) {
 169                native_swapgs();
 170                gsbase = rdgsbase();
 171                native_swapgs();
 172        } else {
 173                instrumentation_begin();
 174                rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
 175                instrumentation_end();
 176        }
 177
 178        return gsbase;
 179}
 180
 181/*
 182 * Out of line to be protected from kprobes and tracing. If this would be
 183 * traced or probed than any access to a per CPU variable happens with
 184 * the wrong GS.
 185 *
 186 * It is not used on Xen paravirt. When paravirt support is needed, it
 187 * needs to be renamed with native_ prefix.
 188 */
 189static noinstr void __wrgsbase_inactive(unsigned long gsbase)
 190{
 191        lockdep_assert_irqs_disabled();
 192
 193        if (!static_cpu_has(X86_FEATURE_XENPV)) {
 194                native_swapgs();
 195                wrgsbase(gsbase);
 196                native_swapgs();
 197        } else {
 198                instrumentation_begin();
 199                wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
 200                instrumentation_end();
 201        }
 202}
 203
 204/*
 205 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
 206 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
 207 * It's forcibly inlined because it'll generate better code and this function
 208 * is hot.
 209 */
 210static __always_inline void save_base_legacy(struct task_struct *prev_p,
 211                                             unsigned short selector,
 212                                             enum which_selector which)
 213{
 214        if (likely(selector == 0)) {
 215                /*
 216                 * On Intel (without X86_BUG_NULL_SEG), the segment base could
 217                 * be the pre-existing saved base or it could be zero.  On AMD
 218                 * (with X86_BUG_NULL_SEG), the segment base could be almost
 219                 * anything.
 220                 *
 221                 * This branch is very hot (it's hit twice on almost every
 222                 * context switch between 64-bit programs), and avoiding
 223                 * the RDMSR helps a lot, so we just assume that whatever
 224                 * value is already saved is correct.  This matches historical
 225                 * Linux behavior, so it won't break existing applications.
 226                 *
 227                 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
 228                 * report that the base is zero, it needs to actually be zero:
 229                 * see the corresponding logic in load_seg_legacy.
 230                 */
 231        } else {
 232                /*
 233                 * If the selector is 1, 2, or 3, then the base is zero on
 234                 * !X86_BUG_NULL_SEG CPUs and could be anything on
 235                 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
 236                 * has never attempted to preserve the base across context
 237                 * switches.
 238                 *
 239                 * If selector > 3, then it refers to a real segment, and
 240                 * saving the base isn't necessary.
 241                 */
 242                if (which == FS)
 243                        prev_p->thread.fsbase = 0;
 244                else
 245                        prev_p->thread.gsbase = 0;
 246        }
 247}
 248
 249static __always_inline void save_fsgs(struct task_struct *task)
 250{
 251        savesegment(fs, task->thread.fsindex);
 252        savesegment(gs, task->thread.gsindex);
 253        if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
 254                /*
 255                 * If FSGSBASE is enabled, we can't make any useful guesses
 256                 * about the base, and user code expects us to save the current
 257                 * value.  Fortunately, reading the base directly is efficient.
 258                 */
 259                task->thread.fsbase = rdfsbase();
 260                task->thread.gsbase = __rdgsbase_inactive();
 261        } else {
 262                save_base_legacy(task, task->thread.fsindex, FS);
 263                save_base_legacy(task, task->thread.gsindex, GS);
 264        }
 265}
 266
 267/*
 268 * While a process is running,current->thread.fsbase and current->thread.gsbase
 269 * may not match the corresponding CPU registers (see save_base_legacy()).
 270 */
 271void current_save_fsgs(void)
 272{
 273        unsigned long flags;
 274
 275        /* Interrupts need to be off for FSGSBASE */
 276        local_irq_save(flags);
 277        save_fsgs(current);
 278        local_irq_restore(flags);
 279}
 280#if IS_ENABLED(CONFIG_KVM)
 281EXPORT_SYMBOL_GPL(current_save_fsgs);
 282#endif
 283
 284static __always_inline void loadseg(enum which_selector which,
 285                                    unsigned short sel)
 286{
 287        if (which == FS)
 288                loadsegment(fs, sel);
 289        else
 290                load_gs_index(sel);
 291}
 292
 293static __always_inline void load_seg_legacy(unsigned short prev_index,
 294                                            unsigned long prev_base,
 295                                            unsigned short next_index,
 296                                            unsigned long next_base,
 297                                            enum which_selector which)
 298{
 299        if (likely(next_index <= 3)) {
 300                /*
 301                 * The next task is using 64-bit TLS, is not using this
 302                 * segment at all, or is having fun with arcane CPU features.
 303                 */
 304                if (next_base == 0) {
 305                        /*
 306                         * Nasty case: on AMD CPUs, we need to forcibly zero
 307                         * the base.
 308                         */
 309                        if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
 310                                loadseg(which, __USER_DS);
 311                                loadseg(which, next_index);
 312                        } else {
 313                                /*
 314                                 * We could try to exhaustively detect cases
 315                                 * under which we can skip the segment load,
 316                                 * but there's really only one case that matters
 317                                 * for performance: if both the previous and
 318                                 * next states are fully zeroed, we can skip
 319                                 * the load.
 320                                 *
 321                                 * (This assumes that prev_base == 0 has no
 322                                 * false positives.  This is the case on
 323                                 * Intel-style CPUs.)
 324                                 */
 325                                if (likely(prev_index | next_index | prev_base))
 326                                        loadseg(which, next_index);
 327                        }
 328                } else {
 329                        if (prev_index != next_index)
 330                                loadseg(which, next_index);
 331                        wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
 332                               next_base);
 333                }
 334        } else {
 335                /*
 336                 * The next task is using a real segment.  Loading the selector
 337                 * is sufficient.
 338                 */
 339                loadseg(which, next_index);
 340        }
 341}
 342
 343/*
 344 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
 345 * is not XSTATE managed on context switch because that would require a
 346 * lookup in the task's FPU xsave buffer and require to keep that updated
 347 * in various places.
 348 */
 349static __always_inline void x86_pkru_load(struct thread_struct *prev,
 350                                          struct thread_struct *next)
 351{
 352        if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 353                return;
 354
 355        /* Stash the prev task's value: */
 356        prev->pkru = rdpkru();
 357
 358        /*
 359         * PKRU writes are slightly expensive.  Avoid them when not
 360         * strictly necessary:
 361         */
 362        if (prev->pkru != next->pkru)
 363                wrpkru(next->pkru);
 364}
 365
 366static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
 367                                              struct thread_struct *next)
 368{
 369        if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
 370                /* Update the FS and GS selectors if they could have changed. */
 371                if (unlikely(prev->fsindex || next->fsindex))
 372                        loadseg(FS, next->fsindex);
 373                if (unlikely(prev->gsindex || next->gsindex))
 374                        loadseg(GS, next->gsindex);
 375
 376                /* Update the bases. */
 377                wrfsbase(next->fsbase);
 378                __wrgsbase_inactive(next->gsbase);
 379        } else {
 380                load_seg_legacy(prev->fsindex, prev->fsbase,
 381                                next->fsindex, next->fsbase, FS);
 382                load_seg_legacy(prev->gsindex, prev->gsbase,
 383                                next->gsindex, next->gsbase, GS);
 384        }
 385}
 386
 387unsigned long x86_fsgsbase_read_task(struct task_struct *task,
 388                                     unsigned short selector)
 389{
 390        unsigned short idx = selector >> 3;
 391        unsigned long base;
 392
 393        if (likely((selector & SEGMENT_TI_MASK) == 0)) {
 394                if (unlikely(idx >= GDT_ENTRIES))
 395                        return 0;
 396
 397                /*
 398                 * There are no user segments in the GDT with nonzero bases
 399                 * other than the TLS segments.
 400                 */
 401                if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
 402                        return 0;
 403
 404                idx -= GDT_ENTRY_TLS_MIN;
 405                base = get_desc_base(&task->thread.tls_array[idx]);
 406        } else {
 407#ifdef CONFIG_MODIFY_LDT_SYSCALL
 408                struct ldt_struct *ldt;
 409
 410                /*
 411                 * If performance here mattered, we could protect the LDT
 412                 * with RCU.  This is a slow path, though, so we can just
 413                 * take the mutex.
 414                 */
 415                mutex_lock(&task->mm->context.lock);
 416                ldt = task->mm->context.ldt;
 417                if (unlikely(!ldt || idx >= ldt->nr_entries))
 418                        base = 0;
 419                else
 420                        base = get_desc_base(ldt->entries + idx);
 421                mutex_unlock(&task->mm->context.lock);
 422#else
 423                base = 0;
 424#endif
 425        }
 426
 427        return base;
 428}
 429
 430unsigned long x86_gsbase_read_cpu_inactive(void)
 431{
 432        unsigned long gsbase;
 433
 434        if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
 435                unsigned long flags;
 436
 437                local_irq_save(flags);
 438                gsbase = __rdgsbase_inactive();
 439                local_irq_restore(flags);
 440        } else {
 441                rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
 442        }
 443
 444        return gsbase;
 445}
 446
 447void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
 448{
 449        if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
 450                unsigned long flags;
 451
 452                local_irq_save(flags);
 453                __wrgsbase_inactive(gsbase);
 454                local_irq_restore(flags);
 455        } else {
 456                wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
 457        }
 458}
 459
 460unsigned long x86_fsbase_read_task(struct task_struct *task)
 461{
 462        unsigned long fsbase;
 463
 464        if (task == current)
 465                fsbase = x86_fsbase_read_cpu();
 466        else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 467                 (task->thread.fsindex == 0))
 468                fsbase = task->thread.fsbase;
 469        else
 470                fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
 471
 472        return fsbase;
 473}
 474
 475unsigned long x86_gsbase_read_task(struct task_struct *task)
 476{
 477        unsigned long gsbase;
 478
 479        if (task == current)
 480                gsbase = x86_gsbase_read_cpu_inactive();
 481        else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 482                 (task->thread.gsindex == 0))
 483                gsbase = task->thread.gsbase;
 484        else
 485                gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
 486
 487        return gsbase;
 488}
 489
 490void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
 491{
 492        WARN_ON_ONCE(task == current);
 493
 494        task->thread.fsbase = fsbase;
 495}
 496
 497void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
 498{
 499        WARN_ON_ONCE(task == current);
 500
 501        task->thread.gsbase = gsbase;
 502}
 503
 504static void
 505start_thread_common(struct pt_regs *regs, unsigned long new_ip,
 506                    unsigned long new_sp,
 507                    unsigned int _cs, unsigned int _ss, unsigned int _ds)
 508{
 509        WARN_ON_ONCE(regs != current_pt_regs());
 510
 511        if (static_cpu_has(X86_BUG_NULL_SEG)) {
 512                /* Loading zero below won't clear the base. */
 513                loadsegment(fs, __USER_DS);
 514                load_gs_index(__USER_DS);
 515        }
 516
 517        loadsegment(fs, 0);
 518        loadsegment(es, _ds);
 519        loadsegment(ds, _ds);
 520        load_gs_index(0);
 521
 522        regs->ip                = new_ip;
 523        regs->sp                = new_sp;
 524        regs->cs                = _cs;
 525        regs->ss                = _ss;
 526        regs->flags             = X86_EFLAGS_IF;
 527}
 528
 529void
 530start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 531{
 532        start_thread_common(regs, new_ip, new_sp,
 533                            __USER_CS, __USER_DS, 0);
 534}
 535EXPORT_SYMBOL_GPL(start_thread);
 536
 537#ifdef CONFIG_COMPAT
 538void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
 539{
 540        start_thread_common(regs, new_ip, new_sp,
 541                            x32 ? __USER_CS : __USER32_CS,
 542                            __USER_DS, __USER_DS);
 543}
 544#endif
 545
 546/*
 547 *      switch_to(x,y) should switch tasks from x to y.
 548 *
 549 * This could still be optimized:
 550 * - fold all the options into a flag word and test it with a single test.
 551 * - could test fs/gs bitsliced
 552 *
 553 * Kprobes not supported here. Set the probe on schedule instead.
 554 * Function graph tracer not supported too.
 555 */
 556__visible __notrace_funcgraph struct task_struct *
 557__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 558{
 559        struct thread_struct *prev = &prev_p->thread;
 560        struct thread_struct *next = &next_p->thread;
 561        struct fpu *prev_fpu = &prev->fpu;
 562        struct fpu *next_fpu = &next->fpu;
 563        int cpu = smp_processor_id();
 564
 565        WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
 566                     this_cpu_read(hardirq_stack_inuse));
 567
 568        if (!test_thread_flag(TIF_NEED_FPU_LOAD))
 569                switch_fpu_prepare(prev_fpu, cpu);
 570
 571        /* We must save %fs and %gs before load_TLS() because
 572         * %fs and %gs may be cleared by load_TLS().
 573         *
 574         * (e.g. xen_load_tls())
 575         */
 576        save_fsgs(prev_p);
 577
 578        /*
 579         * Load TLS before restoring any segments so that segment loads
 580         * reference the correct GDT entries.
 581         */
 582        load_TLS(next, cpu);
 583
 584        /*
 585         * Leave lazy mode, flushing any hypercalls made here.  This
 586         * must be done after loading TLS entries in the GDT but before
 587         * loading segments that might reference them.
 588         */
 589        arch_end_context_switch(next_p);
 590
 591        /* Switch DS and ES.
 592         *
 593         * Reading them only returns the selectors, but writing them (if
 594         * nonzero) loads the full descriptor from the GDT or LDT.  The
 595         * LDT for next is loaded in switch_mm, and the GDT is loaded
 596         * above.
 597         *
 598         * We therefore need to write new values to the segment
 599         * registers on every context switch unless both the new and old
 600         * values are zero.
 601         *
 602         * Note that we don't need to do anything for CS and SS, as
 603         * those are saved and restored as part of pt_regs.
 604         */
 605        savesegment(es, prev->es);
 606        if (unlikely(next->es | prev->es))
 607                loadsegment(es, next->es);
 608
 609        savesegment(ds, prev->ds);
 610        if (unlikely(next->ds | prev->ds))
 611                loadsegment(ds, next->ds);
 612
 613        x86_fsgsbase_load(prev, next);
 614
 615        x86_pkru_load(prev, next);
 616
 617        /*
 618         * Switch the PDA and FPU contexts.
 619         */
 620        this_cpu_write(current_task, next_p);
 621        this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
 622
 623        switch_fpu_finish(next_fpu);
 624
 625        /* Reload sp0. */
 626        update_task_stack(next_p);
 627
 628        switch_to_extra(prev_p, next_p);
 629
 630        if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
 631                /*
 632                 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
 633                 * does not update the cached descriptor.  As a result, if we
 634                 * do SYSRET while SS is NULL, we'll end up in user mode with
 635                 * SS apparently equal to __USER_DS but actually unusable.
 636                 *
 637                 * The straightforward workaround would be to fix it up just
 638                 * before SYSRET, but that would slow down the system call
 639                 * fast paths.  Instead, we ensure that SS is never NULL in
 640                 * system call context.  We do this by replacing NULL SS
 641                 * selectors at every context switch.  SYSCALL sets up a valid
 642                 * SS, so the only way to get NULL is to re-enter the kernel
 643                 * from CPL 3 through an interrupt.  Since that can't happen
 644                 * in the same task as a running syscall, we are guaranteed to
 645                 * context switch between every interrupt vector entry and a
 646                 * subsequent SYSRET.
 647                 *
 648                 * We read SS first because SS reads are much faster than
 649                 * writes.  Out of caution, we force SS to __KERNEL_DS even if
 650                 * it previously had a different non-NULL value.
 651                 */
 652                unsigned short ss_sel;
 653                savesegment(ss, ss_sel);
 654                if (ss_sel != __KERNEL_DS)
 655                        loadsegment(ss, __KERNEL_DS);
 656        }
 657
 658        /* Load the Intel cache allocation PQR MSR. */
 659        resctrl_sched_in();
 660
 661        return prev_p;
 662}
 663
 664void set_personality_64bit(void)
 665{
 666        /* inherit personality from parent */
 667
 668        /* Make sure to be in 64bit mode */
 669        clear_thread_flag(TIF_ADDR32);
 670        /* Pretend that this comes from a 64bit execve */
 671        task_pt_regs(current)->orig_ax = __NR_execve;
 672        current_thread_info()->status &= ~TS_COMPAT;
 673        if (current->mm)
 674                current->mm->context.flags = MM_CONTEXT_HAS_VSYSCALL;
 675
 676        /* TBD: overwrites user setup. Should have two bits.
 677           But 64bit processes have always behaved this way,
 678           so it's not too bad. The main problem is just that
 679           32bit children are affected again. */
 680        current->personality &= ~READ_IMPLIES_EXEC;
 681}
 682
 683static void __set_personality_x32(void)
 684{
 685#ifdef CONFIG_X86_X32
 686        if (current->mm)
 687                current->mm->context.flags = 0;
 688
 689        current->personality &= ~READ_IMPLIES_EXEC;
 690        /*
 691         * in_32bit_syscall() uses the presence of the x32 syscall bit
 692         * flag to determine compat status.  The x86 mmap() code relies on
 693         * the syscall bitness so set x32 syscall bit right here to make
 694         * in_32bit_syscall() work during exec().
 695         *
 696         * Pretend to come from a x32 execve.
 697         */
 698        task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
 699        current_thread_info()->status &= ~TS_COMPAT;
 700#endif
 701}
 702
 703static void __set_personality_ia32(void)
 704{
 705#ifdef CONFIG_IA32_EMULATION
 706        if (current->mm) {
 707                /*
 708                 * uprobes applied to this MM need to know this and
 709                 * cannot use user_64bit_mode() at that time.
 710                 */
 711                current->mm->context.flags = MM_CONTEXT_UPROBE_IA32;
 712        }
 713
 714        current->personality |= force_personality32;
 715        /* Prepare the first "return" to user space */
 716        task_pt_regs(current)->orig_ax = __NR_ia32_execve;
 717        current_thread_info()->status |= TS_COMPAT;
 718#endif
 719}
 720
 721void set_personality_ia32(bool x32)
 722{
 723        /* Make sure to be in 32bit mode */
 724        set_thread_flag(TIF_ADDR32);
 725
 726        if (x32)
 727                __set_personality_x32();
 728        else
 729                __set_personality_ia32();
 730}
 731EXPORT_SYMBOL_GPL(set_personality_ia32);
 732
 733#ifdef CONFIG_CHECKPOINT_RESTORE
 734static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
 735{
 736        int ret;
 737
 738        ret = map_vdso_once(image, addr);
 739        if (ret)
 740                return ret;
 741
 742        return (long)image->size;
 743}
 744#endif
 745
 746long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
 747{
 748        int ret = 0;
 749
 750        switch (option) {
 751        case ARCH_SET_GS: {
 752                if (unlikely(arg2 >= TASK_SIZE_MAX))
 753                        return -EPERM;
 754
 755                preempt_disable();
 756                /*
 757                 * ARCH_SET_GS has always overwritten the index
 758                 * and the base. Zero is the most sensible value
 759                 * to put in the index, and is the only value that
 760                 * makes any sense if FSGSBASE is unavailable.
 761                 */
 762                if (task == current) {
 763                        loadseg(GS, 0);
 764                        x86_gsbase_write_cpu_inactive(arg2);
 765
 766                        /*
 767                         * On non-FSGSBASE systems, save_base_legacy() expects
 768                         * that we also fill in thread.gsbase.
 769                         */
 770                        task->thread.gsbase = arg2;
 771
 772                } else {
 773                        task->thread.gsindex = 0;
 774                        x86_gsbase_write_task(task, arg2);
 775                }
 776                preempt_enable();
 777                break;
 778        }
 779        case ARCH_SET_FS: {
 780                /*
 781                 * Not strictly needed for %fs, but do it for symmetry
 782                 * with %gs
 783                 */
 784                if (unlikely(arg2 >= TASK_SIZE_MAX))
 785                        return -EPERM;
 786
 787                preempt_disable();
 788                /*
 789                 * Set the selector to 0 for the same reason
 790                 * as %gs above.
 791                 */
 792                if (task == current) {
 793                        loadseg(FS, 0);
 794                        x86_fsbase_write_cpu(arg2);
 795
 796                        /*
 797                         * On non-FSGSBASE systems, save_base_legacy() expects
 798                         * that we also fill in thread.fsbase.
 799                         */
 800                        task->thread.fsbase = arg2;
 801                } else {
 802                        task->thread.fsindex = 0;
 803                        x86_fsbase_write_task(task, arg2);
 804                }
 805                preempt_enable();
 806                break;
 807        }
 808        case ARCH_GET_FS: {
 809                unsigned long base = x86_fsbase_read_task(task);
 810
 811                ret = put_user(base, (unsigned long __user *)arg2);
 812                break;
 813        }
 814        case ARCH_GET_GS: {
 815                unsigned long base = x86_gsbase_read_task(task);
 816
 817                ret = put_user(base, (unsigned long __user *)arg2);
 818                break;
 819        }
 820
 821#ifdef CONFIG_CHECKPOINT_RESTORE
 822# ifdef CONFIG_X86_X32_ABI
 823        case ARCH_MAP_VDSO_X32:
 824                return prctl_map_vdso(&vdso_image_x32, arg2);
 825# endif
 826# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
 827        case ARCH_MAP_VDSO_32:
 828                return prctl_map_vdso(&vdso_image_32, arg2);
 829# endif
 830        case ARCH_MAP_VDSO_64:
 831                return prctl_map_vdso(&vdso_image_64, arg2);
 832#endif
 833
 834        default:
 835                ret = -EINVAL;
 836                break;
 837        }
 838
 839        return ret;
 840}
 841
 842SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 843{
 844        long ret;
 845
 846        ret = do_arch_prctl_64(current, option, arg2);
 847        if (ret == -EINVAL)
 848                ret = do_arch_prctl_common(current, option, arg2);
 849
 850        return ret;
 851}
 852
 853#ifdef CONFIG_IA32_EMULATION
 854COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 855{
 856        return do_arch_prctl_common(current, option, arg2);
 857}
 858#endif
 859
 860unsigned long KSTK_ESP(struct task_struct *task)
 861{
 862        return task_pt_regs(task)->sp;
 863}
 864