linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
   7 */
   8#include <linux/console.h>
   9#include <linux/crash_dump.h>
  10#include <linux/dma-map-ops.h>
  11#include <linux/dmi.h>
  12#include <linux/efi.h>
  13#include <linux/init_ohci1394_dma.h>
  14#include <linux/initrd.h>
  15#include <linux/iscsi_ibft.h>
  16#include <linux/memblock.h>
  17#include <linux/panic_notifier.h>
  18#include <linux/pci.h>
  19#include <linux/root_dev.h>
  20#include <linux/hugetlb.h>
  21#include <linux/tboot.h>
  22#include <linux/usb/xhci-dbgp.h>
  23#include <linux/static_call.h>
  24#include <linux/swiotlb.h>
  25
  26#include <uapi/linux/mount.h>
  27
  28#include <xen/xen.h>
  29
  30#include <asm/apic.h>
  31#include <asm/numa.h>
  32#include <asm/bios_ebda.h>
  33#include <asm/bugs.h>
  34#include <asm/cpu.h>
  35#include <asm/efi.h>
  36#include <asm/gart.h>
  37#include <asm/hypervisor.h>
  38#include <asm/io_apic.h>
  39#include <asm/kasan.h>
  40#include <asm/kaslr.h>
  41#include <asm/mce.h>
  42#include <asm/mtrr.h>
  43#include <asm/realmode.h>
  44#include <asm/olpc_ofw.h>
  45#include <asm/pci-direct.h>
  46#include <asm/prom.h>
  47#include <asm/proto.h>
  48#include <asm/thermal.h>
  49#include <asm/unwind.h>
  50#include <asm/vsyscall.h>
  51#include <linux/vmalloc.h>
  52
  53/*
  54 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  55 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  56 *
  57 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  58 * represented by pfn_mapped[].
  59 */
  60unsigned long max_low_pfn_mapped;
  61unsigned long max_pfn_mapped;
  62
  63#ifdef CONFIG_DMI
  64RESERVE_BRK(dmi_alloc, 65536);
  65#endif
  66
  67
  68/*
  69 * Range of the BSS area. The size of the BSS area is determined
  70 * at link time, with RESERVE_BRK() facility reserving additional
  71 * chunks.
  72 */
  73unsigned long _brk_start = (unsigned long)__brk_base;
  74unsigned long _brk_end   = (unsigned long)__brk_base;
  75
  76struct boot_params boot_params;
  77
  78/*
  79 * These are the four main kernel memory regions, we put them into
  80 * the resource tree so that kdump tools and other debugging tools
  81 * recover it:
  82 */
  83
  84static struct resource rodata_resource = {
  85        .name   = "Kernel rodata",
  86        .start  = 0,
  87        .end    = 0,
  88        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  89};
  90
  91static struct resource data_resource = {
  92        .name   = "Kernel data",
  93        .start  = 0,
  94        .end    = 0,
  95        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  96};
  97
  98static struct resource code_resource = {
  99        .name   = "Kernel code",
 100        .start  = 0,
 101        .end    = 0,
 102        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 103};
 104
 105static struct resource bss_resource = {
 106        .name   = "Kernel bss",
 107        .start  = 0,
 108        .end    = 0,
 109        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 110};
 111
 112
 113#ifdef CONFIG_X86_32
 114/* CPU data as detected by the assembly code in head_32.S */
 115struct cpuinfo_x86 new_cpu_data;
 116
 117/* Common CPU data for all CPUs */
 118struct cpuinfo_x86 boot_cpu_data __read_mostly;
 119EXPORT_SYMBOL(boot_cpu_data);
 120
 121unsigned int def_to_bigsmp;
 122
 123struct apm_info apm_info;
 124EXPORT_SYMBOL(apm_info);
 125
 126#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 127        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 128struct ist_info ist_info;
 129EXPORT_SYMBOL(ist_info);
 130#else
 131struct ist_info ist_info;
 132#endif
 133
 134#else
 135struct cpuinfo_x86 boot_cpu_data __read_mostly;
 136EXPORT_SYMBOL(boot_cpu_data);
 137#endif
 138
 139
 140#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 141__visible unsigned long mmu_cr4_features __ro_after_init;
 142#else
 143__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 144#endif
 145
 146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 147int bootloader_type, bootloader_version;
 148
 149/*
 150 * Setup options
 151 */
 152struct screen_info screen_info;
 153EXPORT_SYMBOL(screen_info);
 154struct edid_info edid_info;
 155EXPORT_SYMBOL_GPL(edid_info);
 156
 157extern int root_mountflags;
 158
 159unsigned long saved_video_mode;
 160
 161#define RAMDISK_IMAGE_START_MASK        0x07FF
 162#define RAMDISK_PROMPT_FLAG             0x8000
 163#define RAMDISK_LOAD_FLAG               0x4000
 164
 165static char __initdata command_line[COMMAND_LINE_SIZE];
 166#ifdef CONFIG_CMDLINE_BOOL
 167static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 168#endif
 169
 170#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 171struct edd edd;
 172#ifdef CONFIG_EDD_MODULE
 173EXPORT_SYMBOL(edd);
 174#endif
 175/**
 176 * copy_edd() - Copy the BIOS EDD information
 177 *              from boot_params into a safe place.
 178 *
 179 */
 180static inline void __init copy_edd(void)
 181{
 182     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 183            sizeof(edd.mbr_signature));
 184     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 185     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 186     edd.edd_info_nr = boot_params.eddbuf_entries;
 187}
 188#else
 189static inline void __init copy_edd(void)
 190{
 191}
 192#endif
 193
 194void * __init extend_brk(size_t size, size_t align)
 195{
 196        size_t mask = align - 1;
 197        void *ret;
 198
 199        BUG_ON(_brk_start == 0);
 200        BUG_ON(align & mask);
 201
 202        _brk_end = (_brk_end + mask) & ~mask;
 203        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 204
 205        ret = (void *)_brk_end;
 206        _brk_end += size;
 207
 208        memset(ret, 0, size);
 209
 210        return ret;
 211}
 212
 213#ifdef CONFIG_X86_32
 214static void __init cleanup_highmap(void)
 215{
 216}
 217#endif
 218
 219static void __init reserve_brk(void)
 220{
 221        if (_brk_end > _brk_start)
 222                memblock_reserve(__pa_symbol(_brk_start),
 223                                 _brk_end - _brk_start);
 224
 225        /* Mark brk area as locked down and no longer taking any
 226           new allocations */
 227        _brk_start = 0;
 228}
 229
 230u64 relocated_ramdisk;
 231
 232#ifdef CONFIG_BLK_DEV_INITRD
 233
 234static u64 __init get_ramdisk_image(void)
 235{
 236        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 237
 238        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 239
 240        if (ramdisk_image == 0)
 241                ramdisk_image = phys_initrd_start;
 242
 243        return ramdisk_image;
 244}
 245static u64 __init get_ramdisk_size(void)
 246{
 247        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 248
 249        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 250
 251        if (ramdisk_size == 0)
 252                ramdisk_size = phys_initrd_size;
 253
 254        return ramdisk_size;
 255}
 256
 257static void __init relocate_initrd(void)
 258{
 259        /* Assume only end is not page aligned */
 260        u64 ramdisk_image = get_ramdisk_image();
 261        u64 ramdisk_size  = get_ramdisk_size();
 262        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 263
 264        /* We need to move the initrd down into directly mapped mem */
 265        relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 266                                                      PFN_PHYS(max_pfn_mapped));
 267        if (!relocated_ramdisk)
 268                panic("Cannot find place for new RAMDISK of size %lld\n",
 269                      ramdisk_size);
 270
 271        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 272        initrd_end   = initrd_start + ramdisk_size;
 273        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 274               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 275
 276        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 277
 278        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 279                " [mem %#010llx-%#010llx]\n",
 280                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 281                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 282}
 283
 284static void __init early_reserve_initrd(void)
 285{
 286        /* Assume only end is not page aligned */
 287        u64 ramdisk_image = get_ramdisk_image();
 288        u64 ramdisk_size  = get_ramdisk_size();
 289        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 290
 291        if (!boot_params.hdr.type_of_loader ||
 292            !ramdisk_image || !ramdisk_size)
 293                return;         /* No initrd provided by bootloader */
 294
 295        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 296}
 297
 298static void __init reserve_initrd(void)
 299{
 300        /* Assume only end is not page aligned */
 301        u64 ramdisk_image = get_ramdisk_image();
 302        u64 ramdisk_size  = get_ramdisk_size();
 303        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 304
 305        if (!boot_params.hdr.type_of_loader ||
 306            !ramdisk_image || !ramdisk_size)
 307                return;         /* No initrd provided by bootloader */
 308
 309        initrd_start = 0;
 310
 311        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 312                        ramdisk_end - 1);
 313
 314        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 315                                PFN_DOWN(ramdisk_end))) {
 316                /* All are mapped, easy case */
 317                initrd_start = ramdisk_image + PAGE_OFFSET;
 318                initrd_end = initrd_start + ramdisk_size;
 319                return;
 320        }
 321
 322        relocate_initrd();
 323
 324        memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 325}
 326
 327#else
 328static void __init early_reserve_initrd(void)
 329{
 330}
 331static void __init reserve_initrd(void)
 332{
 333}
 334#endif /* CONFIG_BLK_DEV_INITRD */
 335
 336static void __init parse_setup_data(void)
 337{
 338        struct setup_data *data;
 339        u64 pa_data, pa_next;
 340
 341        pa_data = boot_params.hdr.setup_data;
 342        while (pa_data) {
 343                u32 data_len, data_type;
 344
 345                data = early_memremap(pa_data, sizeof(*data));
 346                data_len = data->len + sizeof(struct setup_data);
 347                data_type = data->type;
 348                pa_next = data->next;
 349                early_memunmap(data, sizeof(*data));
 350
 351                switch (data_type) {
 352                case SETUP_E820_EXT:
 353                        e820__memory_setup_extended(pa_data, data_len);
 354                        break;
 355                case SETUP_DTB:
 356                        add_dtb(pa_data);
 357                        break;
 358                case SETUP_EFI:
 359                        parse_efi_setup(pa_data, data_len);
 360                        break;
 361                default:
 362                        break;
 363                }
 364                pa_data = pa_next;
 365        }
 366}
 367
 368static void __init memblock_x86_reserve_range_setup_data(void)
 369{
 370        struct setup_data *data;
 371        u64 pa_data;
 372
 373        pa_data = boot_params.hdr.setup_data;
 374        while (pa_data) {
 375                data = early_memremap(pa_data, sizeof(*data));
 376                memblock_reserve(pa_data, sizeof(*data) + data->len);
 377
 378                if (data->type == SETUP_INDIRECT &&
 379                    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
 380                        memblock_reserve(((struct setup_indirect *)data->data)->addr,
 381                                         ((struct setup_indirect *)data->data)->len);
 382
 383                pa_data = data->next;
 384                early_memunmap(data, sizeof(*data));
 385        }
 386}
 387
 388/*
 389 * --------- Crashkernel reservation ------------------------------
 390 */
 391
 392#ifdef CONFIG_KEXEC_CORE
 393
 394/* 16M alignment for crash kernel regions */
 395#define CRASH_ALIGN             SZ_16M
 396
 397/*
 398 * Keep the crash kernel below this limit.
 399 *
 400 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 401 * due to mapping restrictions.
 402 *
 403 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 404 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 405 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 406 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 407 * no good way to detect the paging mode of the target kernel which will be
 408 * loaded for dumping.
 409 */
 410#ifdef CONFIG_X86_32
 411# define CRASH_ADDR_LOW_MAX     SZ_512M
 412# define CRASH_ADDR_HIGH_MAX    SZ_512M
 413#else
 414# define CRASH_ADDR_LOW_MAX     SZ_4G
 415# define CRASH_ADDR_HIGH_MAX    SZ_64T
 416#endif
 417
 418static int __init reserve_crashkernel_low(void)
 419{
 420#ifdef CONFIG_X86_64
 421        unsigned long long base, low_base = 0, low_size = 0;
 422        unsigned long low_mem_limit;
 423        int ret;
 424
 425        low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 426
 427        /* crashkernel=Y,low */
 428        ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 429        if (ret) {
 430                /*
 431                 * two parts from kernel/dma/swiotlb.c:
 432                 * -swiotlb size: user-specified with swiotlb= or default.
 433                 *
 434                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 435                 * to 8M for other buffers that may need to stay low too. Also
 436                 * make sure we allocate enough extra low memory so that we
 437                 * don't run out of DMA buffers for 32-bit devices.
 438                 */
 439                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 440        } else {
 441                /* passed with crashkernel=0,low ? */
 442                if (!low_size)
 443                        return 0;
 444        }
 445
 446        low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 447        if (!low_base) {
 448                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 449                       (unsigned long)(low_size >> 20));
 450                return -ENOMEM;
 451        }
 452
 453        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 454                (unsigned long)(low_size >> 20),
 455                (unsigned long)(low_base >> 20),
 456                (unsigned long)(low_mem_limit >> 20));
 457
 458        crashk_low_res.start = low_base;
 459        crashk_low_res.end   = low_base + low_size - 1;
 460        insert_resource(&iomem_resource, &crashk_low_res);
 461#endif
 462        return 0;
 463}
 464
 465static void __init reserve_crashkernel(void)
 466{
 467        unsigned long long crash_size, crash_base, total_mem;
 468        bool high = false;
 469        int ret;
 470
 471        total_mem = memblock_phys_mem_size();
 472
 473        /* crashkernel=XM */
 474        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 475        if (ret != 0 || crash_size <= 0) {
 476                /* crashkernel=X,high */
 477                ret = parse_crashkernel_high(boot_command_line, total_mem,
 478                                             &crash_size, &crash_base);
 479                if (ret != 0 || crash_size <= 0)
 480                        return;
 481                high = true;
 482        }
 483
 484        if (xen_pv_domain()) {
 485                pr_info("Ignoring crashkernel for a Xen PV domain\n");
 486                return;
 487        }
 488
 489        /* 0 means: find the address automatically */
 490        if (!crash_base) {
 491                /*
 492                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 493                 * crashkernel=x,high reserves memory over 4G, also allocates
 494                 * 256M extra low memory for DMA buffers and swiotlb.
 495                 * But the extra memory is not required for all machines.
 496                 * So try low memory first and fall back to high memory
 497                 * unless "crashkernel=size[KMG],high" is specified.
 498                 */
 499                if (!high)
 500                        crash_base = memblock_phys_alloc_range(crash_size,
 501                                                CRASH_ALIGN, CRASH_ALIGN,
 502                                                CRASH_ADDR_LOW_MAX);
 503                if (!crash_base)
 504                        crash_base = memblock_phys_alloc_range(crash_size,
 505                                                CRASH_ALIGN, CRASH_ALIGN,
 506                                                CRASH_ADDR_HIGH_MAX);
 507                if (!crash_base) {
 508                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 509                        return;
 510                }
 511        } else {
 512                unsigned long long start;
 513
 514                start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 515                                                  crash_base + crash_size);
 516                if (start != crash_base) {
 517                        pr_info("crashkernel reservation failed - memory is in use.\n");
 518                        return;
 519                }
 520        }
 521
 522        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 523                memblock_free(crash_base, crash_size);
 524                return;
 525        }
 526
 527        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 528                (unsigned long)(crash_size >> 20),
 529                (unsigned long)(crash_base >> 20),
 530                (unsigned long)(total_mem >> 20));
 531
 532        crashk_res.start = crash_base;
 533        crashk_res.end   = crash_base + crash_size - 1;
 534        insert_resource(&iomem_resource, &crashk_res);
 535}
 536#else
 537static void __init reserve_crashkernel(void)
 538{
 539}
 540#endif
 541
 542static struct resource standard_io_resources[] = {
 543        { .name = "dma1", .start = 0x00, .end = 0x1f,
 544                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 545        { .name = "pic1", .start = 0x20, .end = 0x21,
 546                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 547        { .name = "timer0", .start = 0x40, .end = 0x43,
 548                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 549        { .name = "timer1", .start = 0x50, .end = 0x53,
 550                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 551        { .name = "keyboard", .start = 0x60, .end = 0x60,
 552                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 553        { .name = "keyboard", .start = 0x64, .end = 0x64,
 554                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 555        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 556                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 557        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 558                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 559        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 560                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 561        { .name = "fpu", .start = 0xf0, .end = 0xff,
 562                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 563};
 564
 565void __init reserve_standard_io_resources(void)
 566{
 567        int i;
 568
 569        /* request I/O space for devices used on all i[345]86 PCs */
 570        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 571                request_resource(&ioport_resource, &standard_io_resources[i]);
 572
 573}
 574
 575static __init void reserve_ibft_region(void)
 576{
 577        unsigned long addr, size = 0;
 578
 579        addr = find_ibft_region(&size);
 580
 581        if (size)
 582                memblock_reserve(addr, size);
 583}
 584
 585static bool __init snb_gfx_workaround_needed(void)
 586{
 587#ifdef CONFIG_PCI
 588        int i;
 589        u16 vendor, devid;
 590        static const __initconst u16 snb_ids[] = {
 591                0x0102,
 592                0x0112,
 593                0x0122,
 594                0x0106,
 595                0x0116,
 596                0x0126,
 597                0x010a,
 598        };
 599
 600        /* Assume no if something weird is going on with PCI */
 601        if (!early_pci_allowed())
 602                return false;
 603
 604        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 605        if (vendor != 0x8086)
 606                return false;
 607
 608        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 609        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 610                if (devid == snb_ids[i])
 611                        return true;
 612#endif
 613
 614        return false;
 615}
 616
 617/*
 618 * Sandy Bridge graphics has trouble with certain ranges, exclude
 619 * them from allocation.
 620 */
 621static void __init trim_snb_memory(void)
 622{
 623        static const __initconst unsigned long bad_pages[] = {
 624                0x20050000,
 625                0x20110000,
 626                0x20130000,
 627                0x20138000,
 628                0x40004000,
 629        };
 630        int i;
 631
 632        if (!snb_gfx_workaround_needed())
 633                return;
 634
 635        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 636
 637        /*
 638         * SandyBridge integrated graphics devices have a bug that prevents
 639         * them from accessing certain memory ranges, namely anything below
 640         * 1M and in the pages listed in bad_pages[] above.
 641         *
 642         * To avoid these pages being ever accessed by SNB gfx devices reserve
 643         * bad_pages that have not already been reserved at boot time.
 644         * All memory below the 1 MB mark is anyway reserved later during
 645         * setup_arch(), so there is no need to reserve it here.
 646         */
 647
 648        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 649                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 650                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 651                               bad_pages[i]);
 652        }
 653}
 654
 655static void __init trim_bios_range(void)
 656{
 657        /*
 658         * A special case is the first 4Kb of memory;
 659         * This is a BIOS owned area, not kernel ram, but generally
 660         * not listed as such in the E820 table.
 661         *
 662         * This typically reserves additional memory (64KiB by default)
 663         * since some BIOSes are known to corrupt low memory.  See the
 664         * Kconfig help text for X86_RESERVE_LOW.
 665         */
 666        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 667
 668        /*
 669         * special case: Some BIOSes report the PC BIOS
 670         * area (640Kb -> 1Mb) as RAM even though it is not.
 671         * take them out.
 672         */
 673        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 674
 675        e820__update_table(e820_table);
 676}
 677
 678/* called before trim_bios_range() to spare extra sanitize */
 679static void __init e820_add_kernel_range(void)
 680{
 681        u64 start = __pa_symbol(_text);
 682        u64 size = __pa_symbol(_end) - start;
 683
 684        /*
 685         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 686         * attempt to fix it by adding the range. We may have a confused BIOS,
 687         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 688         * exclude kernel range. If we really are running on top non-RAM,
 689         * we will crash later anyways.
 690         */
 691        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 692                return;
 693
 694        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 695        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 696        e820__range_add(start, size, E820_TYPE_RAM);
 697}
 698
 699static void __init early_reserve_memory(void)
 700{
 701        /*
 702         * Reserve the memory occupied by the kernel between _text and
 703         * __end_of_kernel_reserve symbols. Any kernel sections after the
 704         * __end_of_kernel_reserve symbol must be explicitly reserved with a
 705         * separate memblock_reserve() or they will be discarded.
 706         */
 707        memblock_reserve(__pa_symbol(_text),
 708                         (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 709
 710        /*
 711         * The first 4Kb of memory is a BIOS owned area, but generally it is
 712         * not listed as such in the E820 table.
 713         *
 714         * Reserve the first 64K of memory since some BIOSes are known to
 715         * corrupt low memory. After the real mode trampoline is allocated the
 716         * rest of the memory below 640k is reserved.
 717         *
 718         * In addition, make sure page 0 is always reserved because on
 719         * systems with L1TF its contents can be leaked to user processes.
 720         */
 721        memblock_reserve(0, SZ_64K);
 722
 723        early_reserve_initrd();
 724
 725        if (efi_enabled(EFI_BOOT))
 726                efi_memblock_x86_reserve_range();
 727
 728        memblock_x86_reserve_range_setup_data();
 729
 730        reserve_ibft_region();
 731        reserve_bios_regions();
 732        trim_snb_memory();
 733}
 734
 735/*
 736 * Dump out kernel offset information on panic.
 737 */
 738static int
 739dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 740{
 741        if (kaslr_enabled()) {
 742                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 743                         kaslr_offset(),
 744                         __START_KERNEL,
 745                         __START_KERNEL_map,
 746                         MODULES_VADDR-1);
 747        } else {
 748                pr_emerg("Kernel Offset: disabled\n");
 749        }
 750
 751        return 0;
 752}
 753
 754/*
 755 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 756 * passed the efi memmap, systab, etc., so we should use these data structures
 757 * for initialization.  Note, the efi init code path is determined by the
 758 * global efi_enabled. This allows the same kernel image to be used on existing
 759 * systems (with a traditional BIOS) as well as on EFI systems.
 760 */
 761/*
 762 * setup_arch - architecture-specific boot-time initializations
 763 *
 764 * Note: On x86_64, fixmaps are ready for use even before this is called.
 765 */
 766
 767void __init setup_arch(char **cmdline_p)
 768{
 769#ifdef CONFIG_X86_32
 770        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 771
 772        /*
 773         * copy kernel address range established so far and switch
 774         * to the proper swapper page table
 775         */
 776        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 777                        initial_page_table + KERNEL_PGD_BOUNDARY,
 778                        KERNEL_PGD_PTRS);
 779
 780        load_cr3(swapper_pg_dir);
 781        /*
 782         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 783         * a cr3 based tlb flush, so the following __flush_tlb_all()
 784         * will not flush anything because the CPU quirk which clears
 785         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 786         * load_cr3() above the TLB has been flushed already. The
 787         * quirk is invoked before subsequent calls to __flush_tlb_all()
 788         * so proper operation is guaranteed.
 789         */
 790        __flush_tlb_all();
 791#else
 792        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 793        boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 794#endif
 795
 796        /*
 797         * If we have OLPC OFW, we might end up relocating the fixmap due to
 798         * reserve_top(), so do this before touching the ioremap area.
 799         */
 800        olpc_ofw_detect();
 801
 802        idt_setup_early_traps();
 803        early_cpu_init();
 804        jump_label_init();
 805        static_call_init();
 806        early_ioremap_init();
 807
 808        setup_olpc_ofw_pgd();
 809
 810        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 811        screen_info = boot_params.screen_info;
 812        edid_info = boot_params.edid_info;
 813#ifdef CONFIG_X86_32
 814        apm_info.bios = boot_params.apm_bios_info;
 815        ist_info = boot_params.ist_info;
 816#endif
 817        saved_video_mode = boot_params.hdr.vid_mode;
 818        bootloader_type = boot_params.hdr.type_of_loader;
 819        if ((bootloader_type >> 4) == 0xe) {
 820                bootloader_type &= 0xf;
 821                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 822        }
 823        bootloader_version  = bootloader_type & 0xf;
 824        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 825
 826#ifdef CONFIG_BLK_DEV_RAM
 827        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 828#endif
 829#ifdef CONFIG_EFI
 830        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 831                     EFI32_LOADER_SIGNATURE, 4)) {
 832                set_bit(EFI_BOOT, &efi.flags);
 833        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 834                     EFI64_LOADER_SIGNATURE, 4)) {
 835                set_bit(EFI_BOOT, &efi.flags);
 836                set_bit(EFI_64BIT, &efi.flags);
 837        }
 838#endif
 839
 840        x86_init.oem.arch_setup();
 841
 842        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 843        e820__memory_setup();
 844        parse_setup_data();
 845
 846        copy_edd();
 847
 848        if (!boot_params.hdr.root_flags)
 849                root_mountflags &= ~MS_RDONLY;
 850        setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 851
 852        code_resource.start = __pa_symbol(_text);
 853        code_resource.end = __pa_symbol(_etext)-1;
 854        rodata_resource.start = __pa_symbol(__start_rodata);
 855        rodata_resource.end = __pa_symbol(__end_rodata)-1;
 856        data_resource.start = __pa_symbol(_sdata);
 857        data_resource.end = __pa_symbol(_edata)-1;
 858        bss_resource.start = __pa_symbol(__bss_start);
 859        bss_resource.end = __pa_symbol(__bss_stop)-1;
 860
 861#ifdef CONFIG_CMDLINE_BOOL
 862#ifdef CONFIG_CMDLINE_OVERRIDE
 863        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 864#else
 865        if (builtin_cmdline[0]) {
 866                /* append boot loader cmdline to builtin */
 867                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 868                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 869                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 870        }
 871#endif
 872#endif
 873
 874        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 875        *cmdline_p = command_line;
 876
 877        /*
 878         * x86_configure_nx() is called before parse_early_param() to detect
 879         * whether hardware doesn't support NX (so that the early EHCI debug
 880         * console setup can safely call set_fixmap()). It may then be called
 881         * again from within noexec_setup() during parsing early parameters
 882         * to honor the respective command line option.
 883         */
 884        x86_configure_nx();
 885
 886        parse_early_param();
 887
 888        /*
 889         * Do some memory reservations *before* memory is added to
 890         * memblock, so memblock allocations won't overwrite it.
 891         * Do it after early param, so we could get (unlikely) panic from
 892         * serial.
 893         *
 894         * After this point everything still needed from the boot loader or
 895         * firmware or kernel text should be early reserved or marked not
 896         * RAM in e820. All other memory is free game.
 897         */
 898        early_reserve_memory();
 899
 900#ifdef CONFIG_MEMORY_HOTPLUG
 901        /*
 902         * Memory used by the kernel cannot be hot-removed because Linux
 903         * cannot migrate the kernel pages. When memory hotplug is
 904         * enabled, we should prevent memblock from allocating memory
 905         * for the kernel.
 906         *
 907         * ACPI SRAT records all hotpluggable memory ranges. But before
 908         * SRAT is parsed, we don't know about it.
 909         *
 910         * The kernel image is loaded into memory at very early time. We
 911         * cannot prevent this anyway. So on NUMA system, we set any
 912         * node the kernel resides in as un-hotpluggable.
 913         *
 914         * Since on modern servers, one node could have double-digit
 915         * gigabytes memory, we can assume the memory around the kernel
 916         * image is also un-hotpluggable. So before SRAT is parsed, just
 917         * allocate memory near the kernel image to try the best to keep
 918         * the kernel away from hotpluggable memory.
 919         */
 920        if (movable_node_is_enabled())
 921                memblock_set_bottom_up(true);
 922#endif
 923
 924        x86_report_nx();
 925
 926        if (acpi_mps_check()) {
 927#ifdef CONFIG_X86_LOCAL_APIC
 928                disable_apic = 1;
 929#endif
 930                setup_clear_cpu_cap(X86_FEATURE_APIC);
 931        }
 932
 933        e820__reserve_setup_data();
 934        e820__finish_early_params();
 935
 936        if (efi_enabled(EFI_BOOT))
 937                efi_init();
 938
 939        dmi_setup();
 940
 941        /*
 942         * VMware detection requires dmi to be available, so this
 943         * needs to be done after dmi_setup(), for the boot CPU.
 944         */
 945        init_hypervisor_platform();
 946
 947        tsc_early_init();
 948        x86_init.resources.probe_roms();
 949
 950        /* after parse_early_param, so could debug it */
 951        insert_resource(&iomem_resource, &code_resource);
 952        insert_resource(&iomem_resource, &rodata_resource);
 953        insert_resource(&iomem_resource, &data_resource);
 954        insert_resource(&iomem_resource, &bss_resource);
 955
 956        e820_add_kernel_range();
 957        trim_bios_range();
 958#ifdef CONFIG_X86_32
 959        if (ppro_with_ram_bug()) {
 960                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 961                                  E820_TYPE_RESERVED);
 962                e820__update_table(e820_table);
 963                printk(KERN_INFO "fixed physical RAM map:\n");
 964                e820__print_table("bad_ppro");
 965        }
 966#else
 967        early_gart_iommu_check();
 968#endif
 969
 970        /*
 971         * partially used pages are not usable - thus
 972         * we are rounding upwards:
 973         */
 974        max_pfn = e820__end_of_ram_pfn();
 975
 976        /* update e820 for memory not covered by WB MTRRs */
 977        mtrr_bp_init();
 978        if (mtrr_trim_uncached_memory(max_pfn))
 979                max_pfn = e820__end_of_ram_pfn();
 980
 981        max_possible_pfn = max_pfn;
 982
 983        /*
 984         * This call is required when the CPU does not support PAT. If
 985         * mtrr_bp_init() invoked it already via pat_init() the call has no
 986         * effect.
 987         */
 988        init_cache_modes();
 989
 990        /*
 991         * Define random base addresses for memory sections after max_pfn is
 992         * defined and before each memory section base is used.
 993         */
 994        kernel_randomize_memory();
 995
 996#ifdef CONFIG_X86_32
 997        /* max_low_pfn get updated here */
 998        find_low_pfn_range();
 999#else
1000        check_x2apic();
1001
1002        /* How many end-of-memory variables you have, grandma! */
1003        /* need this before calling reserve_initrd */
1004        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1005                max_low_pfn = e820__end_of_low_ram_pfn();
1006        else
1007                max_low_pfn = max_pfn;
1008
1009        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1010#endif
1011
1012        /*
1013         * Find and reserve possible boot-time SMP configuration:
1014         */
1015        find_smp_config();
1016
1017        early_alloc_pgt_buf();
1018
1019        /*
1020         * Need to conclude brk, before e820__memblock_setup()
1021         * it could use memblock_find_in_range, could overlap with
1022         * brk area.
1023         */
1024        reserve_brk();
1025
1026        cleanup_highmap();
1027
1028        memblock_set_current_limit(ISA_END_ADDRESS);
1029        e820__memblock_setup();
1030
1031        /*
1032         * Needs to run after memblock setup because it needs the physical
1033         * memory size.
1034         */
1035        sev_setup_arch();
1036
1037        efi_fake_memmap();
1038        efi_find_mirror();
1039        efi_esrt_init();
1040        efi_mokvar_table_init();
1041
1042        /*
1043         * The EFI specification says that boot service code won't be
1044         * called after ExitBootServices(). This is, in fact, a lie.
1045         */
1046        efi_reserve_boot_services();
1047
1048        /* preallocate 4k for mptable mpc */
1049        e820__memblock_alloc_reserved_mpc_new();
1050
1051#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1052        setup_bios_corruption_check();
1053#endif
1054
1055#ifdef CONFIG_X86_32
1056        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1057                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1058#endif
1059
1060        /*
1061         * Find free memory for the real mode trampoline and place it there. If
1062         * there is not enough free memory under 1M, on EFI-enabled systems
1063         * there will be additional attempt to reclaim the memory for the real
1064         * mode trampoline at efi_free_boot_services().
1065         *
1066         * Unconditionally reserve the entire first 1M of RAM because BIOSes
1067         * are known to corrupt low memory and several hundred kilobytes are not
1068         * worth complex detection what memory gets clobbered. Windows does the
1069         * same thing for very similar reasons.
1070         *
1071         * Moreover, on machines with SandyBridge graphics or in setups that use
1072         * crashkernel the entire 1M is reserved anyway.
1073         */
1074        reserve_real_mode();
1075
1076        init_mem_mapping();
1077
1078        idt_setup_early_pf();
1079
1080        /*
1081         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1082         * with the current CR4 value.  This may not be necessary, but
1083         * auditing all the early-boot CR4 manipulation would be needed to
1084         * rule it out.
1085         *
1086         * Mask off features that don't work outside long mode (just
1087         * PCIDE for now).
1088         */
1089        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1090
1091        memblock_set_current_limit(get_max_mapped());
1092
1093        /*
1094         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1095         */
1096
1097#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1098        if (init_ohci1394_dma_early)
1099                init_ohci1394_dma_on_all_controllers();
1100#endif
1101        /* Allocate bigger log buffer */
1102        setup_log_buf(1);
1103
1104        if (efi_enabled(EFI_BOOT)) {
1105                switch (boot_params.secure_boot) {
1106                case efi_secureboot_mode_disabled:
1107                        pr_info("Secure boot disabled\n");
1108                        break;
1109                case efi_secureboot_mode_enabled:
1110                        pr_info("Secure boot enabled\n");
1111                        break;
1112                default:
1113                        pr_info("Secure boot could not be determined\n");
1114                        break;
1115                }
1116        }
1117
1118        reserve_initrd();
1119
1120        acpi_table_upgrade();
1121        /* Look for ACPI tables and reserve memory occupied by them. */
1122        acpi_boot_table_init();
1123
1124        vsmp_init();
1125
1126        io_delay_init();
1127
1128        early_platform_quirks();
1129
1130        early_acpi_boot_init();
1131
1132        initmem_init();
1133        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1134
1135        if (boot_cpu_has(X86_FEATURE_GBPAGES))
1136                hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1137
1138        /*
1139         * Reserve memory for crash kernel after SRAT is parsed so that it
1140         * won't consume hotpluggable memory.
1141         */
1142        reserve_crashkernel();
1143
1144        memblock_find_dma_reserve();
1145
1146        if (!early_xdbc_setup_hardware())
1147                early_xdbc_register_console();
1148
1149        x86_init.paging.pagetable_init();
1150
1151        kasan_init();
1152
1153        /*
1154         * Sync back kernel address range.
1155         *
1156         * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1157         * this call?
1158         */
1159        sync_initial_page_table();
1160
1161        tboot_probe();
1162
1163        map_vsyscall();
1164
1165        generic_apic_probe();
1166
1167        early_quirks();
1168
1169        /*
1170         * Read APIC and some other early information from ACPI tables.
1171         */
1172        acpi_boot_init();
1173        x86_dtb_init();
1174
1175        /*
1176         * get boot-time SMP configuration:
1177         */
1178        get_smp_config();
1179
1180        /*
1181         * Systems w/o ACPI and mptables might not have it mapped the local
1182         * APIC yet, but prefill_possible_map() might need to access it.
1183         */
1184        init_apic_mappings();
1185
1186        prefill_possible_map();
1187
1188        init_cpu_to_node();
1189        init_gi_nodes();
1190
1191        io_apic_init_mappings();
1192
1193        x86_init.hyper.guest_late_init();
1194
1195        e820__reserve_resources();
1196        e820__register_nosave_regions(max_pfn);
1197
1198        x86_init.resources.reserve_resources();
1199
1200        e820__setup_pci_gap();
1201
1202#ifdef CONFIG_VT
1203#if defined(CONFIG_VGA_CONSOLE)
1204        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1205                conswitchp = &vga_con;
1206#endif
1207#endif
1208        x86_init.oem.banner();
1209
1210        x86_init.timers.wallclock_init();
1211
1212        /*
1213         * This needs to run before setup_local_APIC() which soft-disables the
1214         * local APIC temporarily and that masks the thermal LVT interrupt,
1215         * leading to softlockups on machines which have configured SMI
1216         * interrupt delivery.
1217         */
1218        therm_lvt_init();
1219
1220        mcheck_init();
1221
1222        register_refined_jiffies(CLOCK_TICK_RATE);
1223
1224#ifdef CONFIG_EFI
1225        if (efi_enabled(EFI_BOOT))
1226                efi_apply_memmap_quirks();
1227#endif
1228
1229        unwind_init();
1230}
1231
1232#ifdef CONFIG_X86_32
1233
1234static struct resource video_ram_resource = {
1235        .name   = "Video RAM area",
1236        .start  = 0xa0000,
1237        .end    = 0xbffff,
1238        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1239};
1240
1241void __init i386_reserve_resources(void)
1242{
1243        request_resource(&iomem_resource, &video_ram_resource);
1244        reserve_standard_io_resources();
1245}
1246
1247#endif /* CONFIG_X86_32 */
1248
1249static struct notifier_block kernel_offset_notifier = {
1250        .notifier_call = dump_kernel_offset
1251};
1252
1253static int __init register_kernel_offset_dumper(void)
1254{
1255        atomic_notifier_chain_register(&panic_notifier_list,
1256                                        &kernel_offset_notifier);
1257        return 0;
1258}
1259__initcall(register_kernel_offset_dumper);
1260