linux/arch/x86/kernel/smpboot.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *      x86 SMP booting functions
   4 *
   5 *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *      Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *      Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *      whom a great many thanks are extended.
  11 *
  12 *      Thanks to Intel for making available several different Pentium,
  13 *      Pentium Pro and Pentium-II/Xeon MP machines.
  14 *      Original development of Linux SMP code supported by Caldera.
  15 *
  16 *      Fixes
  17 *              Felix Koop      :       NR_CPUS used properly
  18 *              Jose Renau      :       Handle single CPU case.
  19 *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
  20 *              Greg Wright     :       Fix for kernel stacks panic.
  21 *              Erich Boleyn    :       MP v1.4 and additional changes.
  22 *      Matthias Sattler        :       Changes for 2.1 kernel map.
  23 *      Michel Lespinasse       :       Changes for 2.1 kernel map.
  24 *      Michael Chastain        :       Change trampoline.S to gnu as.
  25 *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
  26 *              Ingo Molnar     :       Added APIC timers, based on code
  27 *                                      from Jose Renau
  28 *              Ingo Molnar     :       various cleanups and rewrites
  29 *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
  30 *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
  31 *      Andi Kleen              :       Changed for SMP boot into long mode.
  32 *              Martin J. Bligh :       Added support for multi-quad systems
  33 *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
  34 *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *      Ashok Raj               :       CPU hotplug support
  37 *      Glauber Costa           :       i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/numa.h>
  57#include <linux/pgtable.h>
  58#include <linux/overflow.h>
  59#include <linux/syscore_ops.h>
  60
  61#include <asm/acpi.h>
  62#include <asm/desc.h>
  63#include <asm/nmi.h>
  64#include <asm/irq.h>
  65#include <asm/realmode.h>
  66#include <asm/cpu.h>
  67#include <asm/numa.h>
  68#include <asm/tlbflush.h>
  69#include <asm/mtrr.h>
  70#include <asm/mwait.h>
  71#include <asm/apic.h>
  72#include <asm/io_apic.h>
  73#include <asm/fpu/internal.h>
  74#include <asm/setup.h>
  75#include <asm/uv/uv.h>
  76#include <linux/mc146818rtc.h>
  77#include <asm/i8259.h>
  78#include <asm/misc.h>
  79#include <asm/qspinlock.h>
  80#include <asm/intel-family.h>
  81#include <asm/cpu_device_id.h>
  82#include <asm/spec-ctrl.h>
  83#include <asm/hw_irq.h>
  84#include <asm/stackprotector.h>
  85
  86#ifdef CONFIG_ACPI_CPPC_LIB
  87#include <acpi/cppc_acpi.h>
  88#endif
  89
  90/* representing HT siblings of each logical CPU */
  91DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  92EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  93
  94/* representing HT and core siblings of each logical CPU */
  95DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  96EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  97
  98/* representing HT, core, and die siblings of each logical CPU */
  99DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 100EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 101
 102DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
 103
 104/* Per CPU bogomips and other parameters */
 105DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 106EXPORT_PER_CPU_SYMBOL(cpu_info);
 107
 108/* Logical package management. We might want to allocate that dynamically */
 109unsigned int __max_logical_packages __read_mostly;
 110EXPORT_SYMBOL(__max_logical_packages);
 111static unsigned int logical_packages __read_mostly;
 112static unsigned int logical_die __read_mostly;
 113
 114/* Maximum number of SMT threads on any online core */
 115int __read_mostly __max_smt_threads = 1;
 116
 117/* Flag to indicate if a complete sched domain rebuild is required */
 118bool x86_topology_update;
 119
 120int arch_update_cpu_topology(void)
 121{
 122        int retval = x86_topology_update;
 123
 124        x86_topology_update = false;
 125        return retval;
 126}
 127
 128static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 129{
 130        unsigned long flags;
 131
 132        spin_lock_irqsave(&rtc_lock, flags);
 133        CMOS_WRITE(0xa, 0xf);
 134        spin_unlock_irqrestore(&rtc_lock, flags);
 135        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
 136                                                        start_eip >> 4;
 137        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
 138                                                        start_eip & 0xf;
 139}
 140
 141static inline void smpboot_restore_warm_reset_vector(void)
 142{
 143        unsigned long flags;
 144
 145        /*
 146         * Paranoid:  Set warm reset code and vector here back
 147         * to default values.
 148         */
 149        spin_lock_irqsave(&rtc_lock, flags);
 150        CMOS_WRITE(0, 0xf);
 151        spin_unlock_irqrestore(&rtc_lock, flags);
 152
 153        *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 154}
 155
 156static void init_freq_invariance(bool secondary, bool cppc_ready);
 157
 158/*
 159 * Report back to the Boot Processor during boot time or to the caller processor
 160 * during CPU online.
 161 */
 162static void smp_callin(void)
 163{
 164        int cpuid;
 165
 166        /*
 167         * If waken up by an INIT in an 82489DX configuration
 168         * cpu_callout_mask guarantees we don't get here before
 169         * an INIT_deassert IPI reaches our local APIC, so it is
 170         * now safe to touch our local APIC.
 171         */
 172        cpuid = smp_processor_id();
 173
 174        /*
 175         * the boot CPU has finished the init stage and is spinning
 176         * on callin_map until we finish. We are free to set up this
 177         * CPU, first the APIC. (this is probably redundant on most
 178         * boards)
 179         */
 180        apic_ap_setup();
 181
 182        /*
 183         * Save our processor parameters. Note: this information
 184         * is needed for clock calibration.
 185         */
 186        smp_store_cpu_info(cpuid);
 187
 188        /*
 189         * The topology information must be up to date before
 190         * calibrate_delay() and notify_cpu_starting().
 191         */
 192        set_cpu_sibling_map(raw_smp_processor_id());
 193
 194        init_freq_invariance(true, false);
 195
 196        /*
 197         * Get our bogomips.
 198         * Update loops_per_jiffy in cpu_data. Previous call to
 199         * smp_store_cpu_info() stored a value that is close but not as
 200         * accurate as the value just calculated.
 201         */
 202        calibrate_delay();
 203        cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
 204        pr_debug("Stack at about %p\n", &cpuid);
 205
 206        wmb();
 207
 208        notify_cpu_starting(cpuid);
 209
 210        /*
 211         * Allow the master to continue.
 212         */
 213        cpumask_set_cpu(cpuid, cpu_callin_mask);
 214}
 215
 216static int cpu0_logical_apicid;
 217static int enable_start_cpu0;
 218/*
 219 * Activate a secondary processor.
 220 */
 221static void notrace start_secondary(void *unused)
 222{
 223        /*
 224         * Don't put *anything* except direct CPU state initialization
 225         * before cpu_init(), SMP booting is too fragile that we want to
 226         * limit the things done here to the most necessary things.
 227         */
 228        cr4_init();
 229
 230#ifdef CONFIG_X86_32
 231        /* switch away from the initial page table */
 232        load_cr3(swapper_pg_dir);
 233        __flush_tlb_all();
 234#endif
 235        cpu_init_secondary();
 236        rcu_cpu_starting(raw_smp_processor_id());
 237        x86_cpuinit.early_percpu_clock_init();
 238        smp_callin();
 239
 240        enable_start_cpu0 = 0;
 241
 242        /* otherwise gcc will move up smp_processor_id before the cpu_init */
 243        barrier();
 244        /*
 245         * Check TSC synchronization with the boot CPU:
 246         */
 247        check_tsc_sync_target();
 248
 249        speculative_store_bypass_ht_init();
 250
 251        /*
 252         * Lock vector_lock, set CPU online and bring the vector
 253         * allocator online. Online must be set with vector_lock held
 254         * to prevent a concurrent irq setup/teardown from seeing a
 255         * half valid vector space.
 256         */
 257        lock_vector_lock();
 258        set_cpu_online(smp_processor_id(), true);
 259        lapic_online();
 260        unlock_vector_lock();
 261        cpu_set_state_online(smp_processor_id());
 262        x86_platform.nmi_init();
 263
 264        /* enable local interrupts */
 265        local_irq_enable();
 266
 267        x86_cpuinit.setup_percpu_clockev();
 268
 269        wmb();
 270        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 271}
 272
 273/**
 274 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
 275 * @cpu:        CPU to check
 276 */
 277bool topology_is_primary_thread(unsigned int cpu)
 278{
 279        return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
 280}
 281
 282/**
 283 * topology_smt_supported - Check whether SMT is supported by the CPUs
 284 */
 285bool topology_smt_supported(void)
 286{
 287        return smp_num_siblings > 1;
 288}
 289
 290/**
 291 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 292 *
 293 * Returns logical package id or -1 if not found
 294 */
 295int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 296{
 297        int cpu;
 298
 299        for_each_possible_cpu(cpu) {
 300                struct cpuinfo_x86 *c = &cpu_data(cpu);
 301
 302                if (c->initialized && c->phys_proc_id == phys_pkg)
 303                        return c->logical_proc_id;
 304        }
 305        return -1;
 306}
 307EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 308/**
 309 * topology_phys_to_logical_die - Map a physical die id to logical
 310 *
 311 * Returns logical die id or -1 if not found
 312 */
 313int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
 314{
 315        int cpu;
 316        int proc_id = cpu_data(cur_cpu).phys_proc_id;
 317
 318        for_each_possible_cpu(cpu) {
 319                struct cpuinfo_x86 *c = &cpu_data(cpu);
 320
 321                if (c->initialized && c->cpu_die_id == die_id &&
 322                    c->phys_proc_id == proc_id)
 323                        return c->logical_die_id;
 324        }
 325        return -1;
 326}
 327EXPORT_SYMBOL(topology_phys_to_logical_die);
 328
 329/**
 330 * topology_update_package_map - Update the physical to logical package map
 331 * @pkg:        The physical package id as retrieved via CPUID
 332 * @cpu:        The cpu for which this is updated
 333 */
 334int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 335{
 336        int new;
 337
 338        /* Already available somewhere? */
 339        new = topology_phys_to_logical_pkg(pkg);
 340        if (new >= 0)
 341                goto found;
 342
 343        new = logical_packages++;
 344        if (new != pkg) {
 345                pr_info("CPU %u Converting physical %u to logical package %u\n",
 346                        cpu, pkg, new);
 347        }
 348found:
 349        cpu_data(cpu).logical_proc_id = new;
 350        return 0;
 351}
 352/**
 353 * topology_update_die_map - Update the physical to logical die map
 354 * @die:        The die id as retrieved via CPUID
 355 * @cpu:        The cpu for which this is updated
 356 */
 357int topology_update_die_map(unsigned int die, unsigned int cpu)
 358{
 359        int new;
 360
 361        /* Already available somewhere? */
 362        new = topology_phys_to_logical_die(die, cpu);
 363        if (new >= 0)
 364                goto found;
 365
 366        new = logical_die++;
 367        if (new != die) {
 368                pr_info("CPU %u Converting physical %u to logical die %u\n",
 369                        cpu, die, new);
 370        }
 371found:
 372        cpu_data(cpu).logical_die_id = new;
 373        return 0;
 374}
 375
 376void __init smp_store_boot_cpu_info(void)
 377{
 378        int id = 0; /* CPU 0 */
 379        struct cpuinfo_x86 *c = &cpu_data(id);
 380
 381        *c = boot_cpu_data;
 382        c->cpu_index = id;
 383        topology_update_package_map(c->phys_proc_id, id);
 384        topology_update_die_map(c->cpu_die_id, id);
 385        c->initialized = true;
 386}
 387
 388/*
 389 * The bootstrap kernel entry code has set these up. Save them for
 390 * a given CPU
 391 */
 392void smp_store_cpu_info(int id)
 393{
 394        struct cpuinfo_x86 *c = &cpu_data(id);
 395
 396        /* Copy boot_cpu_data only on the first bringup */
 397        if (!c->initialized)
 398                *c = boot_cpu_data;
 399        c->cpu_index = id;
 400        /*
 401         * During boot time, CPU0 has this setup already. Save the info when
 402         * bringing up AP or offlined CPU0.
 403         */
 404        identify_secondary_cpu(c);
 405        c->initialized = true;
 406}
 407
 408static bool
 409topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 410{
 411        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 412
 413        return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 414}
 415
 416static bool
 417topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 418{
 419        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 420
 421        return !WARN_ONCE(!topology_same_node(c, o),
 422                "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 423                "[node: %d != %d]. Ignoring dependency.\n",
 424                cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 425}
 426
 427#define link_mask(mfunc, c1, c2)                                        \
 428do {                                                                    \
 429        cpumask_set_cpu((c1), mfunc(c2));                               \
 430        cpumask_set_cpu((c2), mfunc(c1));                               \
 431} while (0)
 432
 433static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 434{
 435        if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 436                int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 437
 438                if (c->phys_proc_id == o->phys_proc_id &&
 439                    c->cpu_die_id == o->cpu_die_id &&
 440                    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
 441                        if (c->cpu_core_id == o->cpu_core_id)
 442                                return topology_sane(c, o, "smt");
 443
 444                        if ((c->cu_id != 0xff) &&
 445                            (o->cu_id != 0xff) &&
 446                            (c->cu_id == o->cu_id))
 447                                return topology_sane(c, o, "smt");
 448                }
 449
 450        } else if (c->phys_proc_id == o->phys_proc_id &&
 451                   c->cpu_die_id == o->cpu_die_id &&
 452                   c->cpu_core_id == o->cpu_core_id) {
 453                return topology_sane(c, o, "smt");
 454        }
 455
 456        return false;
 457}
 458
 459static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 460{
 461        if (c->phys_proc_id == o->phys_proc_id &&
 462            c->cpu_die_id == o->cpu_die_id)
 463                return true;
 464        return false;
 465}
 466
 467/*
 468 * Unlike the other levels, we do not enforce keeping a
 469 * multicore group inside a NUMA node.  If this happens, we will
 470 * discard the MC level of the topology later.
 471 */
 472static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 473{
 474        if (c->phys_proc_id == o->phys_proc_id)
 475                return true;
 476        return false;
 477}
 478
 479/*
 480 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 481 *
 482 * Any Intel CPU that has multiple nodes per package and does not
 483 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 484 *
 485 * When in SNC mode, these CPUs enumerate an LLC that is shared
 486 * by multiple NUMA nodes. The LLC is shared for off-package data
 487 * access but private to the NUMA node (half of the package) for
 488 * on-package access. CPUID (the source of the information about
 489 * the LLC) can only enumerate the cache as shared or unshared,
 490 * but not this particular configuration.
 491 */
 492
 493static const struct x86_cpu_id intel_cod_cpu[] = {
 494        X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),       /* COD */
 495        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),     /* COD */
 496        X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),             /* SNC */
 497        {}
 498};
 499
 500static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 501{
 502        const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 503        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 504        bool intel_snc = id && id->driver_data;
 505
 506        /* Do not match if we do not have a valid APICID for cpu: */
 507        if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
 508                return false;
 509
 510        /* Do not match if LLC id does not match: */
 511        if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
 512                return false;
 513
 514        /*
 515         * Allow the SNC topology without warning. Return of false
 516         * means 'c' does not share the LLC of 'o'. This will be
 517         * reflected to userspace.
 518         */
 519        if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 520                return false;
 521
 522        return topology_sane(c, o, "llc");
 523}
 524
 525
 526#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
 527static inline int x86_sched_itmt_flags(void)
 528{
 529        return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 530}
 531
 532#ifdef CONFIG_SCHED_MC
 533static int x86_core_flags(void)
 534{
 535        return cpu_core_flags() | x86_sched_itmt_flags();
 536}
 537#endif
 538#ifdef CONFIG_SCHED_SMT
 539static int x86_smt_flags(void)
 540{
 541        return cpu_smt_flags() | x86_sched_itmt_flags();
 542}
 543#endif
 544#endif
 545
 546static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
 547#ifdef CONFIG_SCHED_SMT
 548        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 549#endif
 550#ifdef CONFIG_SCHED_MC
 551        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 552#endif
 553        { NULL, },
 554};
 555
 556static struct sched_domain_topology_level x86_topology[] = {
 557#ifdef CONFIG_SCHED_SMT
 558        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 559#endif
 560#ifdef CONFIG_SCHED_MC
 561        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 562#endif
 563        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
 564        { NULL, },
 565};
 566
 567/*
 568 * Set if a package/die has multiple NUMA nodes inside.
 569 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 570 * Sub-NUMA Clustering have this.
 571 */
 572static bool x86_has_numa_in_package;
 573
 574void set_cpu_sibling_map(int cpu)
 575{
 576        bool has_smt = smp_num_siblings > 1;
 577        bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 578        struct cpuinfo_x86 *c = &cpu_data(cpu);
 579        struct cpuinfo_x86 *o;
 580        int i, threads;
 581
 582        cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 583
 584        if (!has_mp) {
 585                cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 586                cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 587                cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 588                cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 589                c->booted_cores = 1;
 590                return;
 591        }
 592
 593        for_each_cpu(i, cpu_sibling_setup_mask) {
 594                o = &cpu_data(i);
 595
 596                if (match_pkg(c, o) && !topology_same_node(c, o))
 597                        x86_has_numa_in_package = true;
 598
 599                if ((i == cpu) || (has_smt && match_smt(c, o)))
 600                        link_mask(topology_sibling_cpumask, cpu, i);
 601
 602                if ((i == cpu) || (has_mp && match_llc(c, o)))
 603                        link_mask(cpu_llc_shared_mask, cpu, i);
 604
 605                if ((i == cpu) || (has_mp && match_die(c, o)))
 606                        link_mask(topology_die_cpumask, cpu, i);
 607        }
 608
 609        threads = cpumask_weight(topology_sibling_cpumask(cpu));
 610        if (threads > __max_smt_threads)
 611                __max_smt_threads = threads;
 612
 613        /*
 614         * This needs a separate iteration over the cpus because we rely on all
 615         * topology_sibling_cpumask links to be set-up.
 616         */
 617        for_each_cpu(i, cpu_sibling_setup_mask) {
 618                o = &cpu_data(i);
 619
 620                if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 621                        link_mask(topology_core_cpumask, cpu, i);
 622
 623                        /*
 624                         *  Does this new cpu bringup a new core?
 625                         */
 626                        if (threads == 1) {
 627                                /*
 628                                 * for each core in package, increment
 629                                 * the booted_cores for this new cpu
 630                                 */
 631                                if (cpumask_first(
 632                                    topology_sibling_cpumask(i)) == i)
 633                                        c->booted_cores++;
 634                                /*
 635                                 * increment the core count for all
 636                                 * the other cpus in this package
 637                                 */
 638                                if (i != cpu)
 639                                        cpu_data(i).booted_cores++;
 640                        } else if (i != cpu && !c->booted_cores)
 641                                c->booted_cores = cpu_data(i).booted_cores;
 642                }
 643        }
 644}
 645
 646/* maps the cpu to the sched domain representing multi-core */
 647const struct cpumask *cpu_coregroup_mask(int cpu)
 648{
 649        return cpu_llc_shared_mask(cpu);
 650}
 651
 652static void impress_friends(void)
 653{
 654        int cpu;
 655        unsigned long bogosum = 0;
 656        /*
 657         * Allow the user to impress friends.
 658         */
 659        pr_debug("Before bogomips\n");
 660        for_each_possible_cpu(cpu)
 661                if (cpumask_test_cpu(cpu, cpu_callout_mask))
 662                        bogosum += cpu_data(cpu).loops_per_jiffy;
 663        pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 664                num_online_cpus(),
 665                bogosum/(500000/HZ),
 666                (bogosum/(5000/HZ))%100);
 667
 668        pr_debug("Before bogocount - setting activated=1\n");
 669}
 670
 671void __inquire_remote_apic(int apicid)
 672{
 673        unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 674        const char * const names[] = { "ID", "VERSION", "SPIV" };
 675        int timeout;
 676        u32 status;
 677
 678        pr_info("Inquiring remote APIC 0x%x...\n", apicid);
 679
 680        for (i = 0; i < ARRAY_SIZE(regs); i++) {
 681                pr_info("... APIC 0x%x %s: ", apicid, names[i]);
 682
 683                /*
 684                 * Wait for idle.
 685                 */
 686                status = safe_apic_wait_icr_idle();
 687                if (status)
 688                        pr_cont("a previous APIC delivery may have failed\n");
 689
 690                apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 691
 692                timeout = 0;
 693                do {
 694                        udelay(100);
 695                        status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 696                } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 697
 698                switch (status) {
 699                case APIC_ICR_RR_VALID:
 700                        status = apic_read(APIC_RRR);
 701                        pr_cont("%08x\n", status);
 702                        break;
 703                default:
 704                        pr_cont("failed\n");
 705                }
 706        }
 707}
 708
 709/*
 710 * The Multiprocessor Specification 1.4 (1997) example code suggests
 711 * that there should be a 10ms delay between the BSP asserting INIT
 712 * and de-asserting INIT, when starting a remote processor.
 713 * But that slows boot and resume on modern processors, which include
 714 * many cores and don't require that delay.
 715 *
 716 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 717 * Modern processor families are quirked to remove the delay entirely.
 718 */
 719#define UDELAY_10MS_DEFAULT 10000
 720
 721static unsigned int init_udelay = UINT_MAX;
 722
 723static int __init cpu_init_udelay(char *str)
 724{
 725        get_option(&str, &init_udelay);
 726
 727        return 0;
 728}
 729early_param("cpu_init_udelay", cpu_init_udelay);
 730
 731static void __init smp_quirk_init_udelay(void)
 732{
 733        /* if cmdline changed it from default, leave it alone */
 734        if (init_udelay != UINT_MAX)
 735                return;
 736
 737        /* if modern processor, use no delay */
 738        if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 739            ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 740            ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 741                init_udelay = 0;
 742                return;
 743        }
 744        /* else, use legacy delay */
 745        init_udelay = UDELAY_10MS_DEFAULT;
 746}
 747
 748/*
 749 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 750 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 751 * won't ... remember to clear down the APIC, etc later.
 752 */
 753int
 754wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
 755{
 756        u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
 757        unsigned long send_status, accept_status = 0;
 758        int maxlvt;
 759
 760        /* Target chip */
 761        /* Boot on the stack */
 762        /* Kick the second */
 763        apic_icr_write(APIC_DM_NMI | dm, apicid);
 764
 765        pr_debug("Waiting for send to finish...\n");
 766        send_status = safe_apic_wait_icr_idle();
 767
 768        /*
 769         * Give the other CPU some time to accept the IPI.
 770         */
 771        udelay(200);
 772        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 773                maxlvt = lapic_get_maxlvt();
 774                if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
 775                        apic_write(APIC_ESR, 0);
 776                accept_status = (apic_read(APIC_ESR) & 0xEF);
 777        }
 778        pr_debug("NMI sent\n");
 779
 780        if (send_status)
 781                pr_err("APIC never delivered???\n");
 782        if (accept_status)
 783                pr_err("APIC delivery error (%lx)\n", accept_status);
 784
 785        return (send_status | accept_status);
 786}
 787
 788static int
 789wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 790{
 791        unsigned long send_status = 0, accept_status = 0;
 792        int maxlvt, num_starts, j;
 793
 794        maxlvt = lapic_get_maxlvt();
 795
 796        /*
 797         * Be paranoid about clearing APIC errors.
 798         */
 799        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 800                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 801                        apic_write(APIC_ESR, 0);
 802                apic_read(APIC_ESR);
 803        }
 804
 805        pr_debug("Asserting INIT\n");
 806
 807        /*
 808         * Turn INIT on target chip
 809         */
 810        /*
 811         * Send IPI
 812         */
 813        apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 814                       phys_apicid);
 815
 816        pr_debug("Waiting for send to finish...\n");
 817        send_status = safe_apic_wait_icr_idle();
 818
 819        udelay(init_udelay);
 820
 821        pr_debug("Deasserting INIT\n");
 822
 823        /* Target chip */
 824        /* Send IPI */
 825        apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 826
 827        pr_debug("Waiting for send to finish...\n");
 828        send_status = safe_apic_wait_icr_idle();
 829
 830        mb();
 831
 832        /*
 833         * Should we send STARTUP IPIs ?
 834         *
 835         * Determine this based on the APIC version.
 836         * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 837         */
 838        if (APIC_INTEGRATED(boot_cpu_apic_version))
 839                num_starts = 2;
 840        else
 841                num_starts = 0;
 842
 843        /*
 844         * Run STARTUP IPI loop.
 845         */
 846        pr_debug("#startup loops: %d\n", num_starts);
 847
 848        for (j = 1; j <= num_starts; j++) {
 849                pr_debug("Sending STARTUP #%d\n", j);
 850                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 851                        apic_write(APIC_ESR, 0);
 852                apic_read(APIC_ESR);
 853                pr_debug("After apic_write\n");
 854
 855                /*
 856                 * STARTUP IPI
 857                 */
 858
 859                /* Target chip */
 860                /* Boot on the stack */
 861                /* Kick the second */
 862                apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 863                               phys_apicid);
 864
 865                /*
 866                 * Give the other CPU some time to accept the IPI.
 867                 */
 868                if (init_udelay == 0)
 869                        udelay(10);
 870                else
 871                        udelay(300);
 872
 873                pr_debug("Startup point 1\n");
 874
 875                pr_debug("Waiting for send to finish...\n");
 876                send_status = safe_apic_wait_icr_idle();
 877
 878                /*
 879                 * Give the other CPU some time to accept the IPI.
 880                 */
 881                if (init_udelay == 0)
 882                        udelay(10);
 883                else
 884                        udelay(200);
 885
 886                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 887                        apic_write(APIC_ESR, 0);
 888                accept_status = (apic_read(APIC_ESR) & 0xEF);
 889                if (send_status || accept_status)
 890                        break;
 891        }
 892        pr_debug("After Startup\n");
 893
 894        if (send_status)
 895                pr_err("APIC never delivered???\n");
 896        if (accept_status)
 897                pr_err("APIC delivery error (%lx)\n", accept_status);
 898
 899        return (send_status | accept_status);
 900}
 901
 902/* reduce the number of lines printed when booting a large cpu count system */
 903static void announce_cpu(int cpu, int apicid)
 904{
 905        static int current_node = NUMA_NO_NODE;
 906        int node = early_cpu_to_node(cpu);
 907        static int width, node_width;
 908
 909        if (!width)
 910                width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 911
 912        if (!node_width)
 913                node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 914
 915        if (cpu == 1)
 916                printk(KERN_INFO "x86: Booting SMP configuration:\n");
 917
 918        if (system_state < SYSTEM_RUNNING) {
 919                if (node != current_node) {
 920                        if (current_node > (-1))
 921                                pr_cont("\n");
 922                        current_node = node;
 923
 924                        printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 925                               node_width - num_digits(node), " ", node);
 926                }
 927
 928                /* Add padding for the BSP */
 929                if (cpu == 1)
 930                        pr_cont("%*s", width + 1, " ");
 931
 932                pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 933
 934        } else
 935                pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 936                        node, cpu, apicid);
 937}
 938
 939static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
 940{
 941        int cpu;
 942
 943        cpu = smp_processor_id();
 944        if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
 945                return NMI_HANDLED;
 946
 947        return NMI_DONE;
 948}
 949
 950/*
 951 * Wake up AP by INIT, INIT, STARTUP sequence.
 952 *
 953 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
 954 * boot-strap code which is not a desired behavior for waking up BSP. To
 955 * void the boot-strap code, wake up CPU0 by NMI instead.
 956 *
 957 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
 958 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
 959 * We'll change this code in the future to wake up hard offlined CPU0 if
 960 * real platform and request are available.
 961 */
 962static int
 963wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
 964               int *cpu0_nmi_registered)
 965{
 966        int id;
 967        int boot_error;
 968
 969        preempt_disable();
 970
 971        /*
 972         * Wake up AP by INIT, INIT, STARTUP sequence.
 973         */
 974        if (cpu) {
 975                boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
 976                goto out;
 977        }
 978
 979        /*
 980         * Wake up BSP by nmi.
 981         *
 982         * Register a NMI handler to help wake up CPU0.
 983         */
 984        boot_error = register_nmi_handler(NMI_LOCAL,
 985                                          wakeup_cpu0_nmi, 0, "wake_cpu0");
 986
 987        if (!boot_error) {
 988                enable_start_cpu0 = 1;
 989                *cpu0_nmi_registered = 1;
 990                id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
 991                boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
 992        }
 993
 994out:
 995        preempt_enable();
 996
 997        return boot_error;
 998}
 999
1000int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1001{
1002        int ret;
1003
1004        /* Just in case we booted with a single CPU. */
1005        alternatives_enable_smp();
1006
1007        per_cpu(current_task, cpu) = idle;
1008        cpu_init_stack_canary(cpu, idle);
1009
1010        /* Initialize the interrupt stack(s) */
1011        ret = irq_init_percpu_irqstack(cpu);
1012        if (ret)
1013                return ret;
1014
1015#ifdef CONFIG_X86_32
1016        /* Stack for startup_32 can be just as for start_secondary onwards */
1017        per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1018#else
1019        initial_gs = per_cpu_offset(cpu);
1020#endif
1021        return 0;
1022}
1023
1024/*
1025 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1026 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1027 * Returns zero if CPU booted OK, else error code from
1028 * ->wakeup_secondary_cpu.
1029 */
1030static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1031                       int *cpu0_nmi_registered)
1032{
1033        /* start_ip had better be page-aligned! */
1034        unsigned long start_ip = real_mode_header->trampoline_start;
1035
1036        unsigned long boot_error = 0;
1037        unsigned long timeout;
1038
1039        idle->thread.sp = (unsigned long)task_pt_regs(idle);
1040        early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1041        initial_code = (unsigned long)start_secondary;
1042        initial_stack  = idle->thread.sp;
1043
1044        /* Enable the espfix hack for this CPU */
1045        init_espfix_ap(cpu);
1046
1047        /* So we see what's up */
1048        announce_cpu(cpu, apicid);
1049
1050        /*
1051         * This grunge runs the startup process for
1052         * the targeted processor.
1053         */
1054
1055        if (x86_platform.legacy.warm_reset) {
1056
1057                pr_debug("Setting warm reset code and vector.\n");
1058
1059                smpboot_setup_warm_reset_vector(start_ip);
1060                /*
1061                 * Be paranoid about clearing APIC errors.
1062                */
1063                if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1064                        apic_write(APIC_ESR, 0);
1065                        apic_read(APIC_ESR);
1066                }
1067        }
1068
1069        /*
1070         * AP might wait on cpu_callout_mask in cpu_init() with
1071         * cpu_initialized_mask set if previous attempt to online
1072         * it timed-out. Clear cpu_initialized_mask so that after
1073         * INIT/SIPI it could start with a clean state.
1074         */
1075        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1076        smp_mb();
1077
1078        /*
1079         * Wake up a CPU in difference cases:
1080         * - Use the method in the APIC driver if it's defined
1081         * Otherwise,
1082         * - Use an INIT boot APIC message for APs or NMI for BSP.
1083         */
1084        if (apic->wakeup_secondary_cpu)
1085                boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1086        else
1087                boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1088                                                     cpu0_nmi_registered);
1089
1090        if (!boot_error) {
1091                /*
1092                 * Wait 10s total for first sign of life from AP
1093                 */
1094                boot_error = -1;
1095                timeout = jiffies + 10*HZ;
1096                while (time_before(jiffies, timeout)) {
1097                        if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1098                                /*
1099                                 * Tell AP to proceed with initialization
1100                                 */
1101                                cpumask_set_cpu(cpu, cpu_callout_mask);
1102                                boot_error = 0;
1103                                break;
1104                        }
1105                        schedule();
1106                }
1107        }
1108
1109        if (!boot_error) {
1110                /*
1111                 * Wait till AP completes initial initialization
1112                 */
1113                while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1114                        /*
1115                         * Allow other tasks to run while we wait for the
1116                         * AP to come online. This also gives a chance
1117                         * for the MTRR work(triggered by the AP coming online)
1118                         * to be completed in the stop machine context.
1119                         */
1120                        schedule();
1121                }
1122        }
1123
1124        if (x86_platform.legacy.warm_reset) {
1125                /*
1126                 * Cleanup possible dangling ends...
1127                 */
1128                smpboot_restore_warm_reset_vector();
1129        }
1130
1131        return boot_error;
1132}
1133
1134int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1135{
1136        int apicid = apic->cpu_present_to_apicid(cpu);
1137        int cpu0_nmi_registered = 0;
1138        unsigned long flags;
1139        int err, ret = 0;
1140
1141        lockdep_assert_irqs_enabled();
1142
1143        pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1144
1145        if (apicid == BAD_APICID ||
1146            !physid_isset(apicid, phys_cpu_present_map) ||
1147            !apic->apic_id_valid(apicid)) {
1148                pr_err("%s: bad cpu %d\n", __func__, cpu);
1149                return -EINVAL;
1150        }
1151
1152        /*
1153         * Already booted CPU?
1154         */
1155        if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1156                pr_debug("do_boot_cpu %d Already started\n", cpu);
1157                return -ENOSYS;
1158        }
1159
1160        /*
1161         * Save current MTRR state in case it was changed since early boot
1162         * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1163         */
1164        mtrr_save_state();
1165
1166        /* x86 CPUs take themselves offline, so delayed offline is OK. */
1167        err = cpu_check_up_prepare(cpu);
1168        if (err && err != -EBUSY)
1169                return err;
1170
1171        /* the FPU context is blank, nobody can own it */
1172        per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1173
1174        err = common_cpu_up(cpu, tidle);
1175        if (err)
1176                return err;
1177
1178        err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1179        if (err) {
1180                pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1181                ret = -EIO;
1182                goto unreg_nmi;
1183        }
1184
1185        /*
1186         * Check TSC synchronization with the AP (keep irqs disabled
1187         * while doing so):
1188         */
1189        local_irq_save(flags);
1190        check_tsc_sync_source(cpu);
1191        local_irq_restore(flags);
1192
1193        while (!cpu_online(cpu)) {
1194                cpu_relax();
1195                touch_nmi_watchdog();
1196        }
1197
1198unreg_nmi:
1199        /*
1200         * Clean up the nmi handler. Do this after the callin and callout sync
1201         * to avoid impact of possible long unregister time.
1202         */
1203        if (cpu0_nmi_registered)
1204                unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1205
1206        return ret;
1207}
1208
1209/**
1210 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1211 */
1212void arch_disable_smp_support(void)
1213{
1214        disable_ioapic_support();
1215}
1216
1217/*
1218 * Fall back to non SMP mode after errors.
1219 *
1220 * RED-PEN audit/test this more. I bet there is more state messed up here.
1221 */
1222static __init void disable_smp(void)
1223{
1224        pr_info("SMP disabled\n");
1225
1226        disable_ioapic_support();
1227
1228        init_cpu_present(cpumask_of(0));
1229        init_cpu_possible(cpumask_of(0));
1230
1231        if (smp_found_config)
1232                physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1233        else
1234                physid_set_mask_of_physid(0, &phys_cpu_present_map);
1235        cpumask_set_cpu(0, topology_sibling_cpumask(0));
1236        cpumask_set_cpu(0, topology_core_cpumask(0));
1237        cpumask_set_cpu(0, topology_die_cpumask(0));
1238}
1239
1240/*
1241 * Various sanity checks.
1242 */
1243static void __init smp_sanity_check(void)
1244{
1245        preempt_disable();
1246
1247#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1248        if (def_to_bigsmp && nr_cpu_ids > 8) {
1249                unsigned int cpu;
1250                unsigned nr;
1251
1252                pr_warn("More than 8 CPUs detected - skipping them\n"
1253                        "Use CONFIG_X86_BIGSMP\n");
1254
1255                nr = 0;
1256                for_each_present_cpu(cpu) {
1257                        if (nr >= 8)
1258                                set_cpu_present(cpu, false);
1259                        nr++;
1260                }
1261
1262                nr = 0;
1263                for_each_possible_cpu(cpu) {
1264                        if (nr >= 8)
1265                                set_cpu_possible(cpu, false);
1266                        nr++;
1267                }
1268
1269                nr_cpu_ids = 8;
1270        }
1271#endif
1272
1273        if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1274                pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1275                        hard_smp_processor_id());
1276
1277                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1278        }
1279
1280        /*
1281         * Should not be necessary because the MP table should list the boot
1282         * CPU too, but we do it for the sake of robustness anyway.
1283         */
1284        if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1285                pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1286                          boot_cpu_physical_apicid);
1287                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1288        }
1289        preempt_enable();
1290}
1291
1292static void __init smp_cpu_index_default(void)
1293{
1294        int i;
1295        struct cpuinfo_x86 *c;
1296
1297        for_each_possible_cpu(i) {
1298                c = &cpu_data(i);
1299                /* mark all to hotplug */
1300                c->cpu_index = nr_cpu_ids;
1301        }
1302}
1303
1304static void __init smp_get_logical_apicid(void)
1305{
1306        if (x2apic_mode)
1307                cpu0_logical_apicid = apic_read(APIC_LDR);
1308        else
1309                cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1310}
1311
1312/*
1313 * Prepare for SMP bootup.
1314 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1315 *            for common interface support.
1316 */
1317void __init native_smp_prepare_cpus(unsigned int max_cpus)
1318{
1319        unsigned int i;
1320
1321        smp_cpu_index_default();
1322
1323        /*
1324         * Setup boot CPU information
1325         */
1326        smp_store_boot_cpu_info(); /* Final full version of the data */
1327        cpumask_copy(cpu_callin_mask, cpumask_of(0));
1328        mb();
1329
1330        for_each_possible_cpu(i) {
1331                zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1332                zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1333                zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1334                zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1335        }
1336
1337        /*
1338         * Set 'default' x86 topology, this matches default_topology() in that
1339         * it has NUMA nodes as a topology level. See also
1340         * native_smp_cpus_done().
1341         *
1342         * Must be done before set_cpus_sibling_map() is ran.
1343         */
1344        set_sched_topology(x86_topology);
1345
1346        set_cpu_sibling_map(0);
1347        init_freq_invariance(false, false);
1348        smp_sanity_check();
1349
1350        switch (apic_intr_mode) {
1351        case APIC_PIC:
1352        case APIC_VIRTUAL_WIRE_NO_CONFIG:
1353                disable_smp();
1354                return;
1355        case APIC_SYMMETRIC_IO_NO_ROUTING:
1356                disable_smp();
1357                /* Setup local timer */
1358                x86_init.timers.setup_percpu_clockev();
1359                return;
1360        case APIC_VIRTUAL_WIRE:
1361        case APIC_SYMMETRIC_IO:
1362                break;
1363        }
1364
1365        /* Setup local timer */
1366        x86_init.timers.setup_percpu_clockev();
1367
1368        smp_get_logical_apicid();
1369
1370        pr_info("CPU0: ");
1371        print_cpu_info(&cpu_data(0));
1372
1373        uv_system_init();
1374
1375        set_mtrr_aps_delayed_init();
1376
1377        smp_quirk_init_udelay();
1378
1379        speculative_store_bypass_ht_init();
1380}
1381
1382void arch_thaw_secondary_cpus_begin(void)
1383{
1384        set_mtrr_aps_delayed_init();
1385}
1386
1387void arch_thaw_secondary_cpus_end(void)
1388{
1389        mtrr_aps_init();
1390}
1391
1392/*
1393 * Early setup to make printk work.
1394 */
1395void __init native_smp_prepare_boot_cpu(void)
1396{
1397        int me = smp_processor_id();
1398        switch_to_new_gdt(me);
1399        /* already set me in cpu_online_mask in boot_cpu_init() */
1400        cpumask_set_cpu(me, cpu_callout_mask);
1401        cpu_set_state_online(me);
1402        native_pv_lock_init();
1403}
1404
1405void __init calculate_max_logical_packages(void)
1406{
1407        int ncpus;
1408
1409        /*
1410         * Today neither Intel nor AMD support heterogeneous systems so
1411         * extrapolate the boot cpu's data to all packages.
1412         */
1413        ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1414        __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1415        pr_info("Max logical packages: %u\n", __max_logical_packages);
1416}
1417
1418void __init native_smp_cpus_done(unsigned int max_cpus)
1419{
1420        pr_debug("Boot done\n");
1421
1422        calculate_max_logical_packages();
1423
1424        if (x86_has_numa_in_package)
1425                set_sched_topology(x86_numa_in_package_topology);
1426
1427        nmi_selftest();
1428        impress_friends();
1429        mtrr_aps_init();
1430}
1431
1432static int __initdata setup_possible_cpus = -1;
1433static int __init _setup_possible_cpus(char *str)
1434{
1435        get_option(&str, &setup_possible_cpus);
1436        return 0;
1437}
1438early_param("possible_cpus", _setup_possible_cpus);
1439
1440
1441/*
1442 * cpu_possible_mask should be static, it cannot change as cpu's
1443 * are onlined, or offlined. The reason is per-cpu data-structures
1444 * are allocated by some modules at init time, and don't expect to
1445 * do this dynamically on cpu arrival/departure.
1446 * cpu_present_mask on the other hand can change dynamically.
1447 * In case when cpu_hotplug is not compiled, then we resort to current
1448 * behaviour, which is cpu_possible == cpu_present.
1449 * - Ashok Raj
1450 *
1451 * Three ways to find out the number of additional hotplug CPUs:
1452 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1453 * - The user can overwrite it with possible_cpus=NUM
1454 * - Otherwise don't reserve additional CPUs.
1455 * We do this because additional CPUs waste a lot of memory.
1456 * -AK
1457 */
1458__init void prefill_possible_map(void)
1459{
1460        int i, possible;
1461
1462        /* No boot processor was found in mptable or ACPI MADT */
1463        if (!num_processors) {
1464                if (boot_cpu_has(X86_FEATURE_APIC)) {
1465                        int apicid = boot_cpu_physical_apicid;
1466                        int cpu = hard_smp_processor_id();
1467
1468                        pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1469
1470                        /* Make sure boot cpu is enumerated */
1471                        if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1472                            apic->apic_id_valid(apicid))
1473                                generic_processor_info(apicid, boot_cpu_apic_version);
1474                }
1475
1476                if (!num_processors)
1477                        num_processors = 1;
1478        }
1479
1480        i = setup_max_cpus ?: 1;
1481        if (setup_possible_cpus == -1) {
1482                possible = num_processors;
1483#ifdef CONFIG_HOTPLUG_CPU
1484                if (setup_max_cpus)
1485                        possible += disabled_cpus;
1486#else
1487                if (possible > i)
1488                        possible = i;
1489#endif
1490        } else
1491                possible = setup_possible_cpus;
1492
1493        total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1494
1495        /* nr_cpu_ids could be reduced via nr_cpus= */
1496        if (possible > nr_cpu_ids) {
1497                pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1498                        possible, nr_cpu_ids);
1499                possible = nr_cpu_ids;
1500        }
1501
1502#ifdef CONFIG_HOTPLUG_CPU
1503        if (!setup_max_cpus)
1504#endif
1505        if (possible > i) {
1506                pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1507                        possible, setup_max_cpus);
1508                possible = i;
1509        }
1510
1511        nr_cpu_ids = possible;
1512
1513        pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1514                possible, max_t(int, possible - num_processors, 0));
1515
1516        reset_cpu_possible_mask();
1517
1518        for (i = 0; i < possible; i++)
1519                set_cpu_possible(i, true);
1520}
1521
1522#ifdef CONFIG_HOTPLUG_CPU
1523
1524/* Recompute SMT state for all CPUs on offline */
1525static void recompute_smt_state(void)
1526{
1527        int max_threads, cpu;
1528
1529        max_threads = 0;
1530        for_each_online_cpu (cpu) {
1531                int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1532
1533                if (threads > max_threads)
1534                        max_threads = threads;
1535        }
1536        __max_smt_threads = max_threads;
1537}
1538
1539static void remove_siblinginfo(int cpu)
1540{
1541        int sibling;
1542        struct cpuinfo_x86 *c = &cpu_data(cpu);
1543
1544        for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1545                cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1546                /*/
1547                 * last thread sibling in this cpu core going down
1548                 */
1549                if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1550                        cpu_data(sibling).booted_cores--;
1551        }
1552
1553        for_each_cpu(sibling, topology_die_cpumask(cpu))
1554                cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1555        for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1556                cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1557        for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1558                cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1559        cpumask_clear(cpu_llc_shared_mask(cpu));
1560        cpumask_clear(topology_sibling_cpumask(cpu));
1561        cpumask_clear(topology_core_cpumask(cpu));
1562        cpumask_clear(topology_die_cpumask(cpu));
1563        c->cpu_core_id = 0;
1564        c->booted_cores = 0;
1565        cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1566        recompute_smt_state();
1567}
1568
1569static void remove_cpu_from_maps(int cpu)
1570{
1571        set_cpu_online(cpu, false);
1572        cpumask_clear_cpu(cpu, cpu_callout_mask);
1573        cpumask_clear_cpu(cpu, cpu_callin_mask);
1574        /* was set by cpu_init() */
1575        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1576        numa_remove_cpu(cpu);
1577}
1578
1579void cpu_disable_common(void)
1580{
1581        int cpu = smp_processor_id();
1582
1583        remove_siblinginfo(cpu);
1584
1585        /* It's now safe to remove this processor from the online map */
1586        lock_vector_lock();
1587        remove_cpu_from_maps(cpu);
1588        unlock_vector_lock();
1589        fixup_irqs();
1590        lapic_offline();
1591}
1592
1593int native_cpu_disable(void)
1594{
1595        int ret;
1596
1597        ret = lapic_can_unplug_cpu();
1598        if (ret)
1599                return ret;
1600
1601        cpu_disable_common();
1602
1603        /*
1604         * Disable the local APIC. Otherwise IPI broadcasts will reach
1605         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1606         * messages.
1607         *
1608         * Disabling the APIC must happen after cpu_disable_common()
1609         * which invokes fixup_irqs().
1610         *
1611         * Disabling the APIC preserves already set bits in IRR, but
1612         * an interrupt arriving after disabling the local APIC does not
1613         * set the corresponding IRR bit.
1614         *
1615         * fixup_irqs() scans IRR for set bits so it can raise a not
1616         * yet handled interrupt on the new destination CPU via an IPI
1617         * but obviously it can't do so for IRR bits which are not set.
1618         * IOW, interrupts arriving after disabling the local APIC will
1619         * be lost.
1620         */
1621        apic_soft_disable();
1622
1623        return 0;
1624}
1625
1626int common_cpu_die(unsigned int cpu)
1627{
1628        int ret = 0;
1629
1630        /* We don't do anything here: idle task is faking death itself. */
1631
1632        /* They ack this in play_dead() by setting CPU_DEAD */
1633        if (cpu_wait_death(cpu, 5)) {
1634                if (system_state == SYSTEM_RUNNING)
1635                        pr_info("CPU %u is now offline\n", cpu);
1636        } else {
1637                pr_err("CPU %u didn't die...\n", cpu);
1638                ret = -1;
1639        }
1640
1641        return ret;
1642}
1643
1644void native_cpu_die(unsigned int cpu)
1645{
1646        common_cpu_die(cpu);
1647}
1648
1649void play_dead_common(void)
1650{
1651        idle_task_exit();
1652
1653        /* Ack it */
1654        (void)cpu_report_death();
1655
1656        /*
1657         * With physical CPU hotplug, we should halt the cpu
1658         */
1659        local_irq_disable();
1660}
1661
1662/**
1663 * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1664 *
1665 * If NMI wants to wake up CPU0, start CPU0.
1666 */
1667void cond_wakeup_cpu0(void)
1668{
1669        if (smp_processor_id() == 0 && enable_start_cpu0)
1670                start_cpu0();
1671}
1672EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1673
1674/*
1675 * We need to flush the caches before going to sleep, lest we have
1676 * dirty data in our caches when we come back up.
1677 */
1678static inline void mwait_play_dead(void)
1679{
1680        unsigned int eax, ebx, ecx, edx;
1681        unsigned int highest_cstate = 0;
1682        unsigned int highest_subcstate = 0;
1683        void *mwait_ptr;
1684        int i;
1685
1686        if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1687            boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1688                return;
1689        if (!this_cpu_has(X86_FEATURE_MWAIT))
1690                return;
1691        if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1692                return;
1693        if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1694                return;
1695
1696        eax = CPUID_MWAIT_LEAF;
1697        ecx = 0;
1698        native_cpuid(&eax, &ebx, &ecx, &edx);
1699
1700        /*
1701         * eax will be 0 if EDX enumeration is not valid.
1702         * Initialized below to cstate, sub_cstate value when EDX is valid.
1703         */
1704        if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1705                eax = 0;
1706        } else {
1707                edx >>= MWAIT_SUBSTATE_SIZE;
1708                for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1709                        if (edx & MWAIT_SUBSTATE_MASK) {
1710                                highest_cstate = i;
1711                                highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1712                        }
1713                }
1714                eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1715                        (highest_subcstate - 1);
1716        }
1717
1718        /*
1719         * This should be a memory location in a cache line which is
1720         * unlikely to be touched by other processors.  The actual
1721         * content is immaterial as it is not actually modified in any way.
1722         */
1723        mwait_ptr = &current_thread_info()->flags;
1724
1725        wbinvd();
1726
1727        while (1) {
1728                /*
1729                 * The CLFLUSH is a workaround for erratum AAI65 for
1730                 * the Xeon 7400 series.  It's not clear it is actually
1731                 * needed, but it should be harmless in either case.
1732                 * The WBINVD is insufficient due to the spurious-wakeup
1733                 * case where we return around the loop.
1734                 */
1735                mb();
1736                clflush(mwait_ptr);
1737                mb();
1738                __monitor(mwait_ptr, 0, 0);
1739                mb();
1740                __mwait(eax, 0);
1741
1742                cond_wakeup_cpu0();
1743        }
1744}
1745
1746void hlt_play_dead(void)
1747{
1748        if (__this_cpu_read(cpu_info.x86) >= 4)
1749                wbinvd();
1750
1751        while (1) {
1752                native_halt();
1753
1754                cond_wakeup_cpu0();
1755        }
1756}
1757
1758void native_play_dead(void)
1759{
1760        play_dead_common();
1761        tboot_shutdown(TB_SHUTDOWN_WFS);
1762
1763        mwait_play_dead();      /* Only returns on failure */
1764        if (cpuidle_play_dead())
1765                hlt_play_dead();
1766}
1767
1768#else /* ... !CONFIG_HOTPLUG_CPU */
1769int native_cpu_disable(void)
1770{
1771        return -ENOSYS;
1772}
1773
1774void native_cpu_die(unsigned int cpu)
1775{
1776        /* We said "no" in __cpu_disable */
1777        BUG();
1778}
1779
1780void native_play_dead(void)
1781{
1782        BUG();
1783}
1784
1785#endif
1786
1787#ifdef CONFIG_X86_64
1788/*
1789 * APERF/MPERF frequency ratio computation.
1790 *
1791 * The scheduler wants to do frequency invariant accounting and needs a <1
1792 * ratio to account for the 'current' frequency, corresponding to
1793 * freq_curr / freq_max.
1794 *
1795 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1796 * our P-state setting is little more than a request/hint, we need to observe
1797 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1798 * interval after discarding idle time. This is given by:
1799 *
1800 *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1801 *
1802 * where freq_base is the max non-turbo P-state.
1803 *
1804 * The freq_max term has to be set to a somewhat arbitrary value, because we
1805 * can't know which turbo states will be available at a given point in time:
1806 * it all depends on the thermal headroom of the entire package. We set it to
1807 * the turbo level with 4 cores active.
1808 *
1809 * Benchmarks show that's a good compromise between the 1C turbo ratio
1810 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1811 * which would ignore the entire turbo range (a conspicuous part, making
1812 * freq_curr/freq_max always maxed out).
1813 *
1814 * An exception to the heuristic above is the Atom uarch, where we choose the
1815 * highest turbo level for freq_max since Atom's are generally oriented towards
1816 * power efficiency.
1817 *
1818 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1819 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1820 */
1821
1822DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1823
1824static DEFINE_PER_CPU(u64, arch_prev_aperf);
1825static DEFINE_PER_CPU(u64, arch_prev_mperf);
1826static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1827static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1828
1829void arch_set_max_freq_ratio(bool turbo_disabled)
1830{
1831        arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1832                                        arch_turbo_freq_ratio;
1833}
1834EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1835
1836static bool turbo_disabled(void)
1837{
1838        u64 misc_en;
1839        int err;
1840
1841        err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1842        if (err)
1843                return false;
1844
1845        return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1846}
1847
1848static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1849{
1850        int err;
1851
1852        err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1853        if (err)
1854                return false;
1855
1856        err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1857        if (err)
1858                return false;
1859
1860        *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1861        *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1862
1863        return true;
1864}
1865
1866#define X86_MATCH(model)                                        \
1867        X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,            \
1868                INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1869
1870static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1871        X86_MATCH(XEON_PHI_KNL),
1872        X86_MATCH(XEON_PHI_KNM),
1873        {}
1874};
1875
1876static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1877        X86_MATCH(SKYLAKE_X),
1878        {}
1879};
1880
1881static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1882        X86_MATCH(ATOM_GOLDMONT),
1883        X86_MATCH(ATOM_GOLDMONT_D),
1884        X86_MATCH(ATOM_GOLDMONT_PLUS),
1885        {}
1886};
1887
1888static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1889                                int num_delta_fratio)
1890{
1891        int fratio, delta_fratio, found;
1892        int err, i;
1893        u64 msr;
1894
1895        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1896        if (err)
1897                return false;
1898
1899        *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1900
1901        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1902        if (err)
1903                return false;
1904
1905        fratio = (msr >> 8) & 0xFF;
1906        i = 16;
1907        found = 0;
1908        do {
1909                if (found >= num_delta_fratio) {
1910                        *turbo_freq = fratio;
1911                        return true;
1912                }
1913
1914                delta_fratio = (msr >> (i + 5)) & 0x7;
1915
1916                if (delta_fratio) {
1917                        found += 1;
1918                        fratio -= delta_fratio;
1919                }
1920
1921                i += 8;
1922        } while (i < 64);
1923
1924        return true;
1925}
1926
1927static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1928{
1929        u64 ratios, counts;
1930        u32 group_size;
1931        int err, i;
1932
1933        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1934        if (err)
1935                return false;
1936
1937        *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1938
1939        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1940        if (err)
1941                return false;
1942
1943        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1944        if (err)
1945                return false;
1946
1947        for (i = 0; i < 64; i += 8) {
1948                group_size = (counts >> i) & 0xFF;
1949                if (group_size >= size) {
1950                        *turbo_freq = (ratios >> i) & 0xFF;
1951                        return true;
1952                }
1953        }
1954
1955        return false;
1956}
1957
1958static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1959{
1960        u64 msr;
1961        int err;
1962
1963        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1964        if (err)
1965                return false;
1966
1967        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1968        if (err)
1969                return false;
1970
1971        *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1972        *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1973
1974        /* The CPU may have less than 4 cores */
1975        if (!*turbo_freq)
1976                *turbo_freq = msr & 0xFF;         /* 1C turbo    */
1977
1978        return true;
1979}
1980
1981static bool intel_set_max_freq_ratio(void)
1982{
1983        u64 base_freq, turbo_freq;
1984        u64 turbo_ratio;
1985
1986        if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1987                goto out;
1988
1989        if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1990            skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1991                goto out;
1992
1993        if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1994            knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995                goto out;
1996
1997        if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1998            skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1999                goto out;
2000
2001        if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2002                goto out;
2003
2004        return false;
2005
2006out:
2007        /*
2008         * Some hypervisors advertise X86_FEATURE_APERFMPERF
2009         * but then fill all MSR's with zeroes.
2010         * Some CPUs have turbo boost but don't declare any turbo ratio
2011         * in MSR_TURBO_RATIO_LIMIT.
2012         */
2013        if (!base_freq || !turbo_freq) {
2014                pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2015                return false;
2016        }
2017
2018        turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2019        if (!turbo_ratio) {
2020                pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2021                return false;
2022        }
2023
2024        arch_turbo_freq_ratio = turbo_ratio;
2025        arch_set_max_freq_ratio(turbo_disabled());
2026
2027        return true;
2028}
2029
2030#ifdef CONFIG_ACPI_CPPC_LIB
2031static bool amd_set_max_freq_ratio(void)
2032{
2033        struct cppc_perf_caps perf_caps;
2034        u64 highest_perf, nominal_perf;
2035        u64 perf_ratio;
2036        int rc;
2037
2038        rc = cppc_get_perf_caps(0, &perf_caps);
2039        if (rc) {
2040                pr_debug("Could not retrieve perf counters (%d)\n", rc);
2041                return false;
2042        }
2043
2044        highest_perf = amd_get_highest_perf();
2045        nominal_perf = perf_caps.nominal_perf;
2046
2047        if (!highest_perf || !nominal_perf) {
2048                pr_debug("Could not retrieve highest or nominal performance\n");
2049                return false;
2050        }
2051
2052        perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2053        /* midpoint between max_boost and max_P */
2054        perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2055        if (!perf_ratio) {
2056                pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2057                return false;
2058        }
2059
2060        arch_turbo_freq_ratio = perf_ratio;
2061        arch_set_max_freq_ratio(false);
2062
2063        return true;
2064}
2065#else
2066static bool amd_set_max_freq_ratio(void)
2067{
2068        return false;
2069}
2070#endif
2071
2072static void init_counter_refs(void)
2073{
2074        u64 aperf, mperf;
2075
2076        rdmsrl(MSR_IA32_APERF, aperf);
2077        rdmsrl(MSR_IA32_MPERF, mperf);
2078
2079        this_cpu_write(arch_prev_aperf, aperf);
2080        this_cpu_write(arch_prev_mperf, mperf);
2081}
2082
2083#ifdef CONFIG_PM_SLEEP
2084static struct syscore_ops freq_invariance_syscore_ops = {
2085        .resume = init_counter_refs,
2086};
2087
2088static void register_freq_invariance_syscore_ops(void)
2089{
2090        /* Bail out if registered already. */
2091        if (freq_invariance_syscore_ops.node.prev)
2092                return;
2093
2094        register_syscore_ops(&freq_invariance_syscore_ops);
2095}
2096#else
2097static inline void register_freq_invariance_syscore_ops(void) {}
2098#endif
2099
2100static void init_freq_invariance(bool secondary, bool cppc_ready)
2101{
2102        bool ret = false;
2103
2104        if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2105                return;
2106
2107        if (secondary) {
2108                if (static_branch_likely(&arch_scale_freq_key)) {
2109                        init_counter_refs();
2110                }
2111                return;
2112        }
2113
2114        if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2115                ret = intel_set_max_freq_ratio();
2116        else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2117                if (!cppc_ready) {
2118                        return;
2119                }
2120                ret = amd_set_max_freq_ratio();
2121        }
2122
2123        if (ret) {
2124                init_counter_refs();
2125                static_branch_enable(&arch_scale_freq_key);
2126                register_freq_invariance_syscore_ops();
2127                pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2128        } else {
2129                pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2130        }
2131}
2132
2133#ifdef CONFIG_ACPI_CPPC_LIB
2134static DEFINE_MUTEX(freq_invariance_lock);
2135
2136void init_freq_invariance_cppc(void)
2137{
2138        static bool secondary;
2139
2140        mutex_lock(&freq_invariance_lock);
2141
2142        init_freq_invariance(secondary, true);
2143        secondary = true;
2144
2145        mutex_unlock(&freq_invariance_lock);
2146}
2147#endif
2148
2149static void disable_freq_invariance_workfn(struct work_struct *work)
2150{
2151        static_branch_disable(&arch_scale_freq_key);
2152}
2153
2154static DECLARE_WORK(disable_freq_invariance_work,
2155                    disable_freq_invariance_workfn);
2156
2157DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2158
2159void arch_scale_freq_tick(void)
2160{
2161        u64 freq_scale = SCHED_CAPACITY_SCALE;
2162        u64 aperf, mperf;
2163        u64 acnt, mcnt;
2164
2165        if (!arch_scale_freq_invariant())
2166                return;
2167
2168        rdmsrl(MSR_IA32_APERF, aperf);
2169        rdmsrl(MSR_IA32_MPERF, mperf);
2170
2171        acnt = aperf - this_cpu_read(arch_prev_aperf);
2172        mcnt = mperf - this_cpu_read(arch_prev_mperf);
2173
2174        this_cpu_write(arch_prev_aperf, aperf);
2175        this_cpu_write(arch_prev_mperf, mperf);
2176
2177        if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2178                goto error;
2179
2180        if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2181                goto error;
2182
2183        freq_scale = div64_u64(acnt, mcnt);
2184        if (!freq_scale)
2185                goto error;
2186
2187        if (freq_scale > SCHED_CAPACITY_SCALE)
2188                freq_scale = SCHED_CAPACITY_SCALE;
2189
2190        this_cpu_write(arch_freq_scale, freq_scale);
2191        return;
2192
2193error:
2194        pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2195        schedule_work(&disable_freq_invariance_work);
2196}
2197#else
2198static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2199{
2200}
2201#endif /* CONFIG_X86_64 */
2202