linux/arch/x86/kvm/vmx/nested.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/objtool.h>
   4#include <linux/percpu.h>
   5
   6#include <asm/debugreg.h>
   7#include <asm/mmu_context.h>
   8
   9#include "cpuid.h"
  10#include "hyperv.h"
  11#include "mmu.h"
  12#include "nested.h"
  13#include "pmu.h"
  14#include "sgx.h"
  15#include "trace.h"
  16#include "vmx.h"
  17#include "x86.h"
  18
  19static bool __read_mostly enable_shadow_vmcs = 1;
  20module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  21
  22static bool __read_mostly nested_early_check = 0;
  23module_param(nested_early_check, bool, S_IRUGO);
  24
  25#define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
  26
  27/*
  28 * Hyper-V requires all of these, so mark them as supported even though
  29 * they are just treated the same as all-context.
  30 */
  31#define VMX_VPID_EXTENT_SUPPORTED_MASK          \
  32        (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
  33        VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
  34        VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
  35        VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
  36
  37#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
  38
  39enum {
  40        VMX_VMREAD_BITMAP,
  41        VMX_VMWRITE_BITMAP,
  42        VMX_BITMAP_NR
  43};
  44static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
  45
  46#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
  47#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
  48
  49struct shadow_vmcs_field {
  50        u16     encoding;
  51        u16     offset;
  52};
  53static struct shadow_vmcs_field shadow_read_only_fields[] = {
  54#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
  55#include "vmcs_shadow_fields.h"
  56};
  57static int max_shadow_read_only_fields =
  58        ARRAY_SIZE(shadow_read_only_fields);
  59
  60static struct shadow_vmcs_field shadow_read_write_fields[] = {
  61#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
  62#include "vmcs_shadow_fields.h"
  63};
  64static int max_shadow_read_write_fields =
  65        ARRAY_SIZE(shadow_read_write_fields);
  66
  67static void init_vmcs_shadow_fields(void)
  68{
  69        int i, j;
  70
  71        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
  72        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
  73
  74        for (i = j = 0; i < max_shadow_read_only_fields; i++) {
  75                struct shadow_vmcs_field entry = shadow_read_only_fields[i];
  76                u16 field = entry.encoding;
  77
  78                if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
  79                    (i + 1 == max_shadow_read_only_fields ||
  80                     shadow_read_only_fields[i + 1].encoding != field + 1))
  81                        pr_err("Missing field from shadow_read_only_field %x\n",
  82                               field + 1);
  83
  84                clear_bit(field, vmx_vmread_bitmap);
  85                if (field & 1)
  86#ifdef CONFIG_X86_64
  87                        continue;
  88#else
  89                        entry.offset += sizeof(u32);
  90#endif
  91                shadow_read_only_fields[j++] = entry;
  92        }
  93        max_shadow_read_only_fields = j;
  94
  95        for (i = j = 0; i < max_shadow_read_write_fields; i++) {
  96                struct shadow_vmcs_field entry = shadow_read_write_fields[i];
  97                u16 field = entry.encoding;
  98
  99                if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 100                    (i + 1 == max_shadow_read_write_fields ||
 101                     shadow_read_write_fields[i + 1].encoding != field + 1))
 102                        pr_err("Missing field from shadow_read_write_field %x\n",
 103                               field + 1);
 104
 105                WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
 106                          field <= GUEST_TR_AR_BYTES,
 107                          "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
 108
 109                /*
 110                 * PML and the preemption timer can be emulated, but the
 111                 * processor cannot vmwrite to fields that don't exist
 112                 * on bare metal.
 113                 */
 114                switch (field) {
 115                case GUEST_PML_INDEX:
 116                        if (!cpu_has_vmx_pml())
 117                                continue;
 118                        break;
 119                case VMX_PREEMPTION_TIMER_VALUE:
 120                        if (!cpu_has_vmx_preemption_timer())
 121                                continue;
 122                        break;
 123                case GUEST_INTR_STATUS:
 124                        if (!cpu_has_vmx_apicv())
 125                                continue;
 126                        break;
 127                default:
 128                        break;
 129                }
 130
 131                clear_bit(field, vmx_vmwrite_bitmap);
 132                clear_bit(field, vmx_vmread_bitmap);
 133                if (field & 1)
 134#ifdef CONFIG_X86_64
 135                        continue;
 136#else
 137                        entry.offset += sizeof(u32);
 138#endif
 139                shadow_read_write_fields[j++] = entry;
 140        }
 141        max_shadow_read_write_fields = j;
 142}
 143
 144/*
 145 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 146 * set the success or error code of an emulated VMX instruction (as specified
 147 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 148 * instruction.
 149 */
 150static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
 151{
 152        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
 153                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 154                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
 155        return kvm_skip_emulated_instruction(vcpu);
 156}
 157
 158static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
 159{
 160        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 161                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
 162                            X86_EFLAGS_SF | X86_EFLAGS_OF))
 163                        | X86_EFLAGS_CF);
 164        return kvm_skip_emulated_instruction(vcpu);
 165}
 166
 167static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
 168                                u32 vm_instruction_error)
 169{
 170        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 171                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 172                            X86_EFLAGS_SF | X86_EFLAGS_OF))
 173                        | X86_EFLAGS_ZF);
 174        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
 175        /*
 176         * We don't need to force sync to shadow VMCS because
 177         * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
 178         * fields and thus must be synced.
 179         */
 180        if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
 181                to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
 182
 183        return kvm_skip_emulated_instruction(vcpu);
 184}
 185
 186static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
 187{
 188        struct vcpu_vmx *vmx = to_vmx(vcpu);
 189
 190        /*
 191         * failValid writes the error number to the current VMCS, which
 192         * can't be done if there isn't a current VMCS.
 193         */
 194        if (vmx->nested.current_vmptr == -1ull &&
 195            !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 196                return nested_vmx_failInvalid(vcpu);
 197
 198        return nested_vmx_failValid(vcpu, vm_instruction_error);
 199}
 200
 201static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
 202{
 203        /* TODO: not to reset guest simply here. */
 204        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 205        pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
 206}
 207
 208static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
 209{
 210        return fixed_bits_valid(control, low, high);
 211}
 212
 213static inline u64 vmx_control_msr(u32 low, u32 high)
 214{
 215        return low | ((u64)high << 32);
 216}
 217
 218static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
 219{
 220        secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
 221        vmcs_write64(VMCS_LINK_POINTER, -1ull);
 222        vmx->nested.need_vmcs12_to_shadow_sync = false;
 223}
 224
 225static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
 226{
 227        struct vcpu_vmx *vmx = to_vmx(vcpu);
 228
 229        if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
 230                kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
 231                vmx->nested.hv_evmcs = NULL;
 232        }
 233
 234        vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
 235}
 236
 237static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
 238                                     struct loaded_vmcs *prev)
 239{
 240        struct vmcs_host_state *dest, *src;
 241
 242        if (unlikely(!vmx->guest_state_loaded))
 243                return;
 244
 245        src = &prev->host_state;
 246        dest = &vmx->loaded_vmcs->host_state;
 247
 248        vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
 249        dest->ldt_sel = src->ldt_sel;
 250#ifdef CONFIG_X86_64
 251        dest->ds_sel = src->ds_sel;
 252        dest->es_sel = src->es_sel;
 253#endif
 254}
 255
 256static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
 257{
 258        struct vcpu_vmx *vmx = to_vmx(vcpu);
 259        struct loaded_vmcs *prev;
 260        int cpu;
 261
 262        if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
 263                return;
 264
 265        cpu = get_cpu();
 266        prev = vmx->loaded_vmcs;
 267        vmx->loaded_vmcs = vmcs;
 268        vmx_vcpu_load_vmcs(vcpu, cpu, prev);
 269        vmx_sync_vmcs_host_state(vmx, prev);
 270        put_cpu();
 271
 272        vmx_register_cache_reset(vcpu);
 273}
 274
 275/*
 276 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 277 * just stops using VMX.
 278 */
 279static void free_nested(struct kvm_vcpu *vcpu)
 280{
 281        struct vcpu_vmx *vmx = to_vmx(vcpu);
 282
 283        if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
 284                vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 285
 286        if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
 287                return;
 288
 289        kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
 290
 291        vmx->nested.vmxon = false;
 292        vmx->nested.smm.vmxon = false;
 293        free_vpid(vmx->nested.vpid02);
 294        vmx->nested.posted_intr_nv = -1;
 295        vmx->nested.current_vmptr = -1ull;
 296        if (enable_shadow_vmcs) {
 297                vmx_disable_shadow_vmcs(vmx);
 298                vmcs_clear(vmx->vmcs01.shadow_vmcs);
 299                free_vmcs(vmx->vmcs01.shadow_vmcs);
 300                vmx->vmcs01.shadow_vmcs = NULL;
 301        }
 302        kfree(vmx->nested.cached_vmcs12);
 303        vmx->nested.cached_vmcs12 = NULL;
 304        kfree(vmx->nested.cached_shadow_vmcs12);
 305        vmx->nested.cached_shadow_vmcs12 = NULL;
 306        /* Unpin physical memory we referred to in the vmcs02 */
 307        if (vmx->nested.apic_access_page) {
 308                kvm_release_page_clean(vmx->nested.apic_access_page);
 309                vmx->nested.apic_access_page = NULL;
 310        }
 311        kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
 312        kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
 313        vmx->nested.pi_desc = NULL;
 314
 315        kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 316
 317        nested_release_evmcs(vcpu);
 318
 319        free_loaded_vmcs(&vmx->nested.vmcs02);
 320}
 321
 322/*
 323 * Ensure that the current vmcs of the logical processor is the
 324 * vmcs01 of the vcpu before calling free_nested().
 325 */
 326void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
 327{
 328        vcpu_load(vcpu);
 329        vmx_leave_nested(vcpu);
 330        vcpu_put(vcpu);
 331}
 332
 333#define EPTP_PA_MASK   GENMASK_ULL(51, 12)
 334
 335static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
 336{
 337        return VALID_PAGE(root_hpa) &&
 338               ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
 339}
 340
 341static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
 342                                       gpa_t addr)
 343{
 344        uint i;
 345        struct kvm_mmu_root_info *cached_root;
 346
 347        WARN_ON_ONCE(!mmu_is_nested(vcpu));
 348
 349        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 350                cached_root = &vcpu->arch.mmu->prev_roots[i];
 351
 352                if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
 353                                            eptp))
 354                        vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
 355        }
 356}
 357
 358static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
 359                struct x86_exception *fault)
 360{
 361        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 362        struct vcpu_vmx *vmx = to_vmx(vcpu);
 363        u32 vm_exit_reason;
 364        unsigned long exit_qualification = vcpu->arch.exit_qualification;
 365
 366        if (vmx->nested.pml_full) {
 367                vm_exit_reason = EXIT_REASON_PML_FULL;
 368                vmx->nested.pml_full = false;
 369                exit_qualification &= INTR_INFO_UNBLOCK_NMI;
 370        } else {
 371                if (fault->error_code & PFERR_RSVD_MASK)
 372                        vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
 373                else
 374                        vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
 375
 376                /*
 377                 * Although the caller (kvm_inject_emulated_page_fault) would
 378                 * have already synced the faulting address in the shadow EPT
 379                 * tables for the current EPTP12, we also need to sync it for
 380                 * any other cached EPTP02s based on the same EP4TA, since the
 381                 * TLB associates mappings to the EP4TA rather than the full EPTP.
 382                 */
 383                nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
 384                                           fault->address);
 385        }
 386
 387        nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
 388        vmcs12->guest_physical_address = fault->address;
 389}
 390
 391static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
 392{
 393        kvm_init_shadow_ept_mmu(vcpu,
 394                                to_vmx(vcpu)->nested.msrs.ept_caps &
 395                                VMX_EPT_EXECUTE_ONLY_BIT,
 396                                nested_ept_ad_enabled(vcpu),
 397                                nested_ept_get_eptp(vcpu));
 398}
 399
 400static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
 401{
 402        WARN_ON(mmu_is_nested(vcpu));
 403
 404        vcpu->arch.mmu = &vcpu->arch.guest_mmu;
 405        nested_ept_new_eptp(vcpu);
 406        vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
 407        vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
 408        vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
 409
 410        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 411}
 412
 413static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
 414{
 415        vcpu->arch.mmu = &vcpu->arch.root_mmu;
 416        vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 417}
 418
 419static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 420                                            u16 error_code)
 421{
 422        bool inequality, bit;
 423
 424        bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
 425        inequality =
 426                (error_code & vmcs12->page_fault_error_code_mask) !=
 427                 vmcs12->page_fault_error_code_match;
 428        return inequality ^ bit;
 429}
 430
 431
 432/*
 433 * KVM wants to inject page-faults which it got to the guest. This function
 434 * checks whether in a nested guest, we need to inject them to L1 or L2.
 435 */
 436static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
 437{
 438        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 439        unsigned int nr = vcpu->arch.exception.nr;
 440        bool has_payload = vcpu->arch.exception.has_payload;
 441        unsigned long payload = vcpu->arch.exception.payload;
 442
 443        if (nr == PF_VECTOR) {
 444                if (vcpu->arch.exception.nested_apf) {
 445                        *exit_qual = vcpu->arch.apf.nested_apf_token;
 446                        return 1;
 447                }
 448                if (nested_vmx_is_page_fault_vmexit(vmcs12,
 449                                                    vcpu->arch.exception.error_code)) {
 450                        *exit_qual = has_payload ? payload : vcpu->arch.cr2;
 451                        return 1;
 452                }
 453        } else if (vmcs12->exception_bitmap & (1u << nr)) {
 454                if (nr == DB_VECTOR) {
 455                        if (!has_payload) {
 456                                payload = vcpu->arch.dr6;
 457                                payload &= ~DR6_BT;
 458                                payload ^= DR6_ACTIVE_LOW;
 459                        }
 460                        *exit_qual = payload;
 461                } else
 462                        *exit_qual = 0;
 463                return 1;
 464        }
 465
 466        return 0;
 467}
 468
 469
 470static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
 471                struct x86_exception *fault)
 472{
 473        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 474
 475        WARN_ON(!is_guest_mode(vcpu));
 476
 477        if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
 478                !to_vmx(vcpu)->nested.nested_run_pending) {
 479                vmcs12->vm_exit_intr_error_code = fault->error_code;
 480                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
 481                                  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
 482                                  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
 483                                  fault->address);
 484        } else {
 485                kvm_inject_page_fault(vcpu, fault);
 486        }
 487}
 488
 489static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
 490                                               struct vmcs12 *vmcs12)
 491{
 492        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 493                return 0;
 494
 495        if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
 496            CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
 497                return -EINVAL;
 498
 499        return 0;
 500}
 501
 502static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
 503                                                struct vmcs12 *vmcs12)
 504{
 505        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 506                return 0;
 507
 508        if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
 509                return -EINVAL;
 510
 511        return 0;
 512}
 513
 514static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
 515                                                struct vmcs12 *vmcs12)
 516{
 517        if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 518                return 0;
 519
 520        if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
 521                return -EINVAL;
 522
 523        return 0;
 524}
 525
 526/*
 527 * Check if MSR is intercepted for L01 MSR bitmap.
 528 */
 529static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
 530{
 531        unsigned long *msr_bitmap;
 532        int f = sizeof(unsigned long);
 533
 534        if (!cpu_has_vmx_msr_bitmap())
 535                return true;
 536
 537        msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
 538
 539        if (msr <= 0x1fff) {
 540                return !!test_bit(msr, msr_bitmap + 0x800 / f);
 541        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 542                msr &= 0x1fff;
 543                return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 544        }
 545
 546        return true;
 547}
 548
 549/*
 550 * If a msr is allowed by L0, we should check whether it is allowed by L1.
 551 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
 552 */
 553static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
 554                                               unsigned long *msr_bitmap_nested,
 555                                               u32 msr, int type)
 556{
 557        int f = sizeof(unsigned long);
 558
 559        /*
 560         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
 561         * have the write-low and read-high bitmap offsets the wrong way round.
 562         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
 563         */
 564        if (msr <= 0x1fff) {
 565                if (type & MSR_TYPE_R &&
 566                   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
 567                        /* read-low */
 568                        __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
 569
 570                if (type & MSR_TYPE_W &&
 571                   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
 572                        /* write-low */
 573                        __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
 574
 575        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 576                msr &= 0x1fff;
 577                if (type & MSR_TYPE_R &&
 578                   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
 579                        /* read-high */
 580                        __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
 581
 582                if (type & MSR_TYPE_W &&
 583                   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
 584                        /* write-high */
 585                        __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
 586
 587        }
 588}
 589
 590static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
 591{
 592        int msr;
 593
 594        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 595                unsigned word = msr / BITS_PER_LONG;
 596
 597                msr_bitmap[word] = ~0;
 598                msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
 599        }
 600}
 601
 602/*
 603 * Merge L0's and L1's MSR bitmap, return false to indicate that
 604 * we do not use the hardware.
 605 */
 606static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
 607                                                 struct vmcs12 *vmcs12)
 608{
 609        int msr;
 610        unsigned long *msr_bitmap_l1;
 611        unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
 612        struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
 613
 614        /* Nothing to do if the MSR bitmap is not in use.  */
 615        if (!cpu_has_vmx_msr_bitmap() ||
 616            !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 617                return false;
 618
 619        if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
 620                return false;
 621
 622        msr_bitmap_l1 = (unsigned long *)map->hva;
 623
 624        /*
 625         * To keep the control flow simple, pay eight 8-byte writes (sixteen
 626         * 4-byte writes on 32-bit systems) up front to enable intercepts for
 627         * the x2APIC MSR range and selectively disable them below.
 628         */
 629        enable_x2apic_msr_intercepts(msr_bitmap_l0);
 630
 631        if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
 632                if (nested_cpu_has_apic_reg_virt(vmcs12)) {
 633                        /*
 634                         * L0 need not intercept reads for MSRs between 0x800
 635                         * and 0x8ff, it just lets the processor take the value
 636                         * from the virtual-APIC page; take those 256 bits
 637                         * directly from the L1 bitmap.
 638                         */
 639                        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 640                                unsigned word = msr / BITS_PER_LONG;
 641
 642                                msr_bitmap_l0[word] = msr_bitmap_l1[word];
 643                        }
 644                }
 645
 646                nested_vmx_disable_intercept_for_msr(
 647                        msr_bitmap_l1, msr_bitmap_l0,
 648                        X2APIC_MSR(APIC_TASKPRI),
 649                        MSR_TYPE_R | MSR_TYPE_W);
 650
 651                if (nested_cpu_has_vid(vmcs12)) {
 652                        nested_vmx_disable_intercept_for_msr(
 653                                msr_bitmap_l1, msr_bitmap_l0,
 654                                X2APIC_MSR(APIC_EOI),
 655                                MSR_TYPE_W);
 656                        nested_vmx_disable_intercept_for_msr(
 657                                msr_bitmap_l1, msr_bitmap_l0,
 658                                X2APIC_MSR(APIC_SELF_IPI),
 659                                MSR_TYPE_W);
 660                }
 661        }
 662
 663        /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
 664#ifdef CONFIG_X86_64
 665        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 666                                             MSR_FS_BASE, MSR_TYPE_RW);
 667
 668        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 669                                             MSR_GS_BASE, MSR_TYPE_RW);
 670
 671        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 672                                             MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
 673#endif
 674
 675        /*
 676         * Checking the L0->L1 bitmap is trying to verify two things:
 677         *
 678         * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
 679         *    ensures that we do not accidentally generate an L02 MSR bitmap
 680         *    from the L12 MSR bitmap that is too permissive.
 681         * 2. That L1 or L2s have actually used the MSR. This avoids
 682         *    unnecessarily merging of the bitmap if the MSR is unused. This
 683         *    works properly because we only update the L01 MSR bitmap lazily.
 684         *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
 685         *    updated to reflect this when L1 (or its L2s) actually write to
 686         *    the MSR.
 687         */
 688        if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
 689                nested_vmx_disable_intercept_for_msr(
 690                                        msr_bitmap_l1, msr_bitmap_l0,
 691                                        MSR_IA32_SPEC_CTRL,
 692                                        MSR_TYPE_R | MSR_TYPE_W);
 693
 694        if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
 695                nested_vmx_disable_intercept_for_msr(
 696                                        msr_bitmap_l1, msr_bitmap_l0,
 697                                        MSR_IA32_PRED_CMD,
 698                                        MSR_TYPE_W);
 699
 700        kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
 701
 702        return true;
 703}
 704
 705static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
 706                                       struct vmcs12 *vmcs12)
 707{
 708        struct kvm_host_map map;
 709        struct vmcs12 *shadow;
 710
 711        if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 712            vmcs12->vmcs_link_pointer == -1ull)
 713                return;
 714
 715        shadow = get_shadow_vmcs12(vcpu);
 716
 717        if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
 718                return;
 719
 720        memcpy(shadow, map.hva, VMCS12_SIZE);
 721        kvm_vcpu_unmap(vcpu, &map, false);
 722}
 723
 724static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
 725                                              struct vmcs12 *vmcs12)
 726{
 727        struct vcpu_vmx *vmx = to_vmx(vcpu);
 728
 729        if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 730            vmcs12->vmcs_link_pointer == -1ull)
 731                return;
 732
 733        kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
 734                        get_shadow_vmcs12(vcpu), VMCS12_SIZE);
 735}
 736
 737/*
 738 * In nested virtualization, check if L1 has set
 739 * VM_EXIT_ACK_INTR_ON_EXIT
 740 */
 741static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
 742{
 743        return get_vmcs12(vcpu)->vm_exit_controls &
 744                VM_EXIT_ACK_INTR_ON_EXIT;
 745}
 746
 747static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
 748                                          struct vmcs12 *vmcs12)
 749{
 750        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
 751            CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
 752                return -EINVAL;
 753        else
 754                return 0;
 755}
 756
 757static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
 758                                           struct vmcs12 *vmcs12)
 759{
 760        if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 761            !nested_cpu_has_apic_reg_virt(vmcs12) &&
 762            !nested_cpu_has_vid(vmcs12) &&
 763            !nested_cpu_has_posted_intr(vmcs12))
 764                return 0;
 765
 766        /*
 767         * If virtualize x2apic mode is enabled,
 768         * virtualize apic access must be disabled.
 769         */
 770        if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 771               nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
 772                return -EINVAL;
 773
 774        /*
 775         * If virtual interrupt delivery is enabled,
 776         * we must exit on external interrupts.
 777         */
 778        if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
 779                return -EINVAL;
 780
 781        /*
 782         * bits 15:8 should be zero in posted_intr_nv,
 783         * the descriptor address has been already checked
 784         * in nested_get_vmcs12_pages.
 785         *
 786         * bits 5:0 of posted_intr_desc_addr should be zero.
 787         */
 788        if (nested_cpu_has_posted_intr(vmcs12) &&
 789           (CC(!nested_cpu_has_vid(vmcs12)) ||
 790            CC(!nested_exit_intr_ack_set(vcpu)) ||
 791            CC((vmcs12->posted_intr_nv & 0xff00)) ||
 792            CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
 793                return -EINVAL;
 794
 795        /* tpr shadow is needed by all apicv features. */
 796        if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
 797                return -EINVAL;
 798
 799        return 0;
 800}
 801
 802static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
 803                                       u32 count, u64 addr)
 804{
 805        if (count == 0)
 806                return 0;
 807
 808        if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
 809            !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
 810                return -EINVAL;
 811
 812        return 0;
 813}
 814
 815static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
 816                                                     struct vmcs12 *vmcs12)
 817{
 818        if (CC(nested_vmx_check_msr_switch(vcpu,
 819                                           vmcs12->vm_exit_msr_load_count,
 820                                           vmcs12->vm_exit_msr_load_addr)) ||
 821            CC(nested_vmx_check_msr_switch(vcpu,
 822                                           vmcs12->vm_exit_msr_store_count,
 823                                           vmcs12->vm_exit_msr_store_addr)))
 824                return -EINVAL;
 825
 826        return 0;
 827}
 828
 829static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
 830                                                      struct vmcs12 *vmcs12)
 831{
 832        if (CC(nested_vmx_check_msr_switch(vcpu,
 833                                           vmcs12->vm_entry_msr_load_count,
 834                                           vmcs12->vm_entry_msr_load_addr)))
 835                return -EINVAL;
 836
 837        return 0;
 838}
 839
 840static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
 841                                         struct vmcs12 *vmcs12)
 842{
 843        if (!nested_cpu_has_pml(vmcs12))
 844                return 0;
 845
 846        if (CC(!nested_cpu_has_ept(vmcs12)) ||
 847            CC(!page_address_valid(vcpu, vmcs12->pml_address)))
 848                return -EINVAL;
 849
 850        return 0;
 851}
 852
 853static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
 854                                                        struct vmcs12 *vmcs12)
 855{
 856        if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
 857               !nested_cpu_has_ept(vmcs12)))
 858                return -EINVAL;
 859        return 0;
 860}
 861
 862static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
 863                                                         struct vmcs12 *vmcs12)
 864{
 865        if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
 866               !nested_cpu_has_ept(vmcs12)))
 867                return -EINVAL;
 868        return 0;
 869}
 870
 871static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
 872                                                 struct vmcs12 *vmcs12)
 873{
 874        if (!nested_cpu_has_shadow_vmcs(vmcs12))
 875                return 0;
 876
 877        if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
 878            CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
 879                return -EINVAL;
 880
 881        return 0;
 882}
 883
 884static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
 885                                       struct vmx_msr_entry *e)
 886{
 887        /* x2APIC MSR accesses are not allowed */
 888        if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
 889                return -EINVAL;
 890        if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
 891            CC(e->index == MSR_IA32_UCODE_REV))
 892                return -EINVAL;
 893        if (CC(e->reserved != 0))
 894                return -EINVAL;
 895        return 0;
 896}
 897
 898static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
 899                                     struct vmx_msr_entry *e)
 900{
 901        if (CC(e->index == MSR_FS_BASE) ||
 902            CC(e->index == MSR_GS_BASE) ||
 903            CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
 904            nested_vmx_msr_check_common(vcpu, e))
 905                return -EINVAL;
 906        return 0;
 907}
 908
 909static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
 910                                      struct vmx_msr_entry *e)
 911{
 912        if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
 913            nested_vmx_msr_check_common(vcpu, e))
 914                return -EINVAL;
 915        return 0;
 916}
 917
 918static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
 919{
 920        struct vcpu_vmx *vmx = to_vmx(vcpu);
 921        u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
 922                                       vmx->nested.msrs.misc_high);
 923
 924        return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
 925}
 926
 927/*
 928 * Load guest's/host's msr at nested entry/exit.
 929 * return 0 for success, entry index for failure.
 930 *
 931 * One of the failure modes for MSR load/store is when a list exceeds the
 932 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
 933 * as possible, process all valid entries before failing rather than precheck
 934 * for a capacity violation.
 935 */
 936static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 937{
 938        u32 i;
 939        struct vmx_msr_entry e;
 940        u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 941
 942        for (i = 0; i < count; i++) {
 943                if (unlikely(i >= max_msr_list_size))
 944                        goto fail;
 945
 946                if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
 947                                        &e, sizeof(e))) {
 948                        pr_debug_ratelimited(
 949                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
 950                                __func__, i, gpa + i * sizeof(e));
 951                        goto fail;
 952                }
 953                if (nested_vmx_load_msr_check(vcpu, &e)) {
 954                        pr_debug_ratelimited(
 955                                "%s check failed (%u, 0x%x, 0x%x)\n",
 956                                __func__, i, e.index, e.reserved);
 957                        goto fail;
 958                }
 959                if (kvm_set_msr(vcpu, e.index, e.value)) {
 960                        pr_debug_ratelimited(
 961                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 962                                __func__, i, e.index, e.value);
 963                        goto fail;
 964                }
 965        }
 966        return 0;
 967fail:
 968        /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
 969        return i + 1;
 970}
 971
 972static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
 973                                            u32 msr_index,
 974                                            u64 *data)
 975{
 976        struct vcpu_vmx *vmx = to_vmx(vcpu);
 977
 978        /*
 979         * If the L0 hypervisor stored a more accurate value for the TSC that
 980         * does not include the time taken for emulation of the L2->L1
 981         * VM-exit in L0, use the more accurate value.
 982         */
 983        if (msr_index == MSR_IA32_TSC) {
 984                int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
 985                                                    MSR_IA32_TSC);
 986
 987                if (i >= 0) {
 988                        u64 val = vmx->msr_autostore.guest.val[i].value;
 989
 990                        *data = kvm_read_l1_tsc(vcpu, val);
 991                        return true;
 992                }
 993        }
 994
 995        if (kvm_get_msr(vcpu, msr_index, data)) {
 996                pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
 997                        msr_index);
 998                return false;
 999        }
1000        return true;
1001}
1002
1003static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1004                                     struct vmx_msr_entry *e)
1005{
1006        if (kvm_vcpu_read_guest(vcpu,
1007                                gpa + i * sizeof(*e),
1008                                e, 2 * sizeof(u32))) {
1009                pr_debug_ratelimited(
1010                        "%s cannot read MSR entry (%u, 0x%08llx)\n",
1011                        __func__, i, gpa + i * sizeof(*e));
1012                return false;
1013        }
1014        if (nested_vmx_store_msr_check(vcpu, e)) {
1015                pr_debug_ratelimited(
1016                        "%s check failed (%u, 0x%x, 0x%x)\n",
1017                        __func__, i, e->index, e->reserved);
1018                return false;
1019        }
1020        return true;
1021}
1022
1023static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1024{
1025        u64 data;
1026        u32 i;
1027        struct vmx_msr_entry e;
1028        u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1029
1030        for (i = 0; i < count; i++) {
1031                if (unlikely(i >= max_msr_list_size))
1032                        return -EINVAL;
1033
1034                if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035                        return -EINVAL;
1036
1037                if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1038                        return -EINVAL;
1039
1040                if (kvm_vcpu_write_guest(vcpu,
1041                                         gpa + i * sizeof(e) +
1042                                             offsetof(struct vmx_msr_entry, value),
1043                                         &data, sizeof(data))) {
1044                        pr_debug_ratelimited(
1045                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1046                                __func__, i, e.index, data);
1047                        return -EINVAL;
1048                }
1049        }
1050        return 0;
1051}
1052
1053static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1054{
1055        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1056        u32 count = vmcs12->vm_exit_msr_store_count;
1057        u64 gpa = vmcs12->vm_exit_msr_store_addr;
1058        struct vmx_msr_entry e;
1059        u32 i;
1060
1061        for (i = 0; i < count; i++) {
1062                if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1063                        return false;
1064
1065                if (e.index == msr_index)
1066                        return true;
1067        }
1068        return false;
1069}
1070
1071static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1072                                           u32 msr_index)
1073{
1074        struct vcpu_vmx *vmx = to_vmx(vcpu);
1075        struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1076        bool in_vmcs12_store_list;
1077        int msr_autostore_slot;
1078        bool in_autostore_list;
1079        int last;
1080
1081        msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1082        in_autostore_list = msr_autostore_slot >= 0;
1083        in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1084
1085        if (in_vmcs12_store_list && !in_autostore_list) {
1086                if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1087                        /*
1088                         * Emulated VMEntry does not fail here.  Instead a less
1089                         * accurate value will be returned by
1090                         * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1091                         * instead of reading the value from the vmcs02 VMExit
1092                         * MSR-store area.
1093                         */
1094                        pr_warn_ratelimited(
1095                                "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1096                                msr_index);
1097                        return;
1098                }
1099                last = autostore->nr++;
1100                autostore->val[last].index = msr_index;
1101        } else if (!in_vmcs12_store_list && in_autostore_list) {
1102                last = --autostore->nr;
1103                autostore->val[msr_autostore_slot] = autostore->val[last];
1104        }
1105}
1106
1107/*
1108 * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1109 * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1110 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1111 * @entry_failure_code.
1112 */
1113static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1114                               bool nested_ept, bool reload_pdptrs,
1115                               enum vm_entry_failure_code *entry_failure_code)
1116{
1117        if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1118                *entry_failure_code = ENTRY_FAIL_DEFAULT;
1119                return -EINVAL;
1120        }
1121
1122        /*
1123         * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1124         * must not be dereferenced.
1125         */
1126        if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1127            CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1128                *entry_failure_code = ENTRY_FAIL_PDPTE;
1129                return -EINVAL;
1130        }
1131
1132        if (!nested_ept)
1133                kvm_mmu_new_pgd(vcpu, cr3);
1134
1135        vcpu->arch.cr3 = cr3;
1136        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1137
1138        /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1139        kvm_init_mmu(vcpu);
1140
1141        return 0;
1142}
1143
1144/*
1145 * Returns if KVM is able to config CPU to tag TLB entries
1146 * populated by L2 differently than TLB entries populated
1147 * by L1.
1148 *
1149 * If L0 uses EPT, L1 and L2 run with different EPTP because
1150 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1151 * are tagged with different EPTP.
1152 *
1153 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1154 * with different VPID (L1 entries are tagged with vmx->vpid
1155 * while L2 entries are tagged with vmx->nested.vpid02).
1156 */
1157static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1158{
1159        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1160
1161        return enable_ept ||
1162               (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1163}
1164
1165static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1166                                            struct vmcs12 *vmcs12,
1167                                            bool is_vmenter)
1168{
1169        struct vcpu_vmx *vmx = to_vmx(vcpu);
1170
1171        /*
1172         * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1173         * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1174         * full TLB flush from the guest's perspective.  This is required even
1175         * if VPID is disabled in the host as KVM may need to synchronize the
1176         * MMU in response to the guest TLB flush.
1177         *
1178         * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1179         * EPT is a special snowflake, as guest-physical mappings aren't
1180         * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1181         * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1182         * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1183         * those mappings.
1184         */
1185        if (!nested_cpu_has_vpid(vmcs12)) {
1186                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187                return;
1188        }
1189
1190        /* L2 should never have a VPID if VPID is disabled. */
1191        WARN_ON(!enable_vpid);
1192
1193        /*
1194         * If VPID is enabled and used by vmc12, but L2 does not have a unique
1195         * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1196         * a VPID for L2, flush the current context as the effective ASID is
1197         * common to both L1 and L2.
1198         *
1199         * Defer the flush so that it runs after vmcs02.EPTP has been set by
1200         * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1201         * redundant flushes further down the nested pipeline.
1202         *
1203         * If a TLB flush isn't required due to any of the above, and vpid12 is
1204         * changing then the new "virtual" VPID (vpid12) will reuse the same
1205         * "real" VPID (vpid02), and so needs to be flushed.  There's no direct
1206         * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1207         * all nested vCPUs.  Remember, a flush on VM-Enter does not invalidate
1208         * guest-physical mappings, so there is no need to sync the nEPT MMU.
1209         */
1210        if (!nested_has_guest_tlb_tag(vcpu)) {
1211                kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1212        } else if (is_vmenter &&
1213                   vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1214                vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1215                vpid_sync_context(nested_get_vpid02(vcpu));
1216        }
1217}
1218
1219static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1220{
1221        superset &= mask;
1222        subset &= mask;
1223
1224        return (superset | subset) == superset;
1225}
1226
1227static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1228{
1229        const u64 feature_and_reserved =
1230                /* feature (except bit 48; see below) */
1231                BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1232                /* reserved */
1233                BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1234        u64 vmx_basic = vmx->nested.msrs.basic;
1235
1236        if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1237                return -EINVAL;
1238
1239        /*
1240         * KVM does not emulate a version of VMX that constrains physical
1241         * addresses of VMX structures (e.g. VMCS) to 32-bits.
1242         */
1243        if (data & BIT_ULL(48))
1244                return -EINVAL;
1245
1246        if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1247            vmx_basic_vmcs_revision_id(data))
1248                return -EINVAL;
1249
1250        if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1251                return -EINVAL;
1252
1253        vmx->nested.msrs.basic = data;
1254        return 0;
1255}
1256
1257static int
1258vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1259{
1260        u64 supported;
1261        u32 *lowp, *highp;
1262
1263        switch (msr_index) {
1264        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1265                lowp = &vmx->nested.msrs.pinbased_ctls_low;
1266                highp = &vmx->nested.msrs.pinbased_ctls_high;
1267                break;
1268        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1269                lowp = &vmx->nested.msrs.procbased_ctls_low;
1270                highp = &vmx->nested.msrs.procbased_ctls_high;
1271                break;
1272        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1273                lowp = &vmx->nested.msrs.exit_ctls_low;
1274                highp = &vmx->nested.msrs.exit_ctls_high;
1275                break;
1276        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1277                lowp = &vmx->nested.msrs.entry_ctls_low;
1278                highp = &vmx->nested.msrs.entry_ctls_high;
1279                break;
1280        case MSR_IA32_VMX_PROCBASED_CTLS2:
1281                lowp = &vmx->nested.msrs.secondary_ctls_low;
1282                highp = &vmx->nested.msrs.secondary_ctls_high;
1283                break;
1284        default:
1285                BUG();
1286        }
1287
1288        supported = vmx_control_msr(*lowp, *highp);
1289
1290        /* Check must-be-1 bits are still 1. */
1291        if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1292                return -EINVAL;
1293
1294        /* Check must-be-0 bits are still 0. */
1295        if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1296                return -EINVAL;
1297
1298        *lowp = data;
1299        *highp = data >> 32;
1300        return 0;
1301}
1302
1303static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1304{
1305        const u64 feature_and_reserved_bits =
1306                /* feature */
1307                BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1308                BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1309                /* reserved */
1310                GENMASK_ULL(13, 9) | BIT_ULL(31);
1311        u64 vmx_misc;
1312
1313        vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1314                                   vmx->nested.msrs.misc_high);
1315
1316        if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1317                return -EINVAL;
1318
1319        if ((vmx->nested.msrs.pinbased_ctls_high &
1320             PIN_BASED_VMX_PREEMPTION_TIMER) &&
1321            vmx_misc_preemption_timer_rate(data) !=
1322            vmx_misc_preemption_timer_rate(vmx_misc))
1323                return -EINVAL;
1324
1325        if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1326                return -EINVAL;
1327
1328        if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1329                return -EINVAL;
1330
1331        if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1332                return -EINVAL;
1333
1334        vmx->nested.msrs.misc_low = data;
1335        vmx->nested.msrs.misc_high = data >> 32;
1336
1337        return 0;
1338}
1339
1340static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1341{
1342        u64 vmx_ept_vpid_cap;
1343
1344        vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1345                                           vmx->nested.msrs.vpid_caps);
1346
1347        /* Every bit is either reserved or a feature bit. */
1348        if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1349                return -EINVAL;
1350
1351        vmx->nested.msrs.ept_caps = data;
1352        vmx->nested.msrs.vpid_caps = data >> 32;
1353        return 0;
1354}
1355
1356static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1357{
1358        u64 *msr;
1359
1360        switch (msr_index) {
1361        case MSR_IA32_VMX_CR0_FIXED0:
1362                msr = &vmx->nested.msrs.cr0_fixed0;
1363                break;
1364        case MSR_IA32_VMX_CR4_FIXED0:
1365                msr = &vmx->nested.msrs.cr4_fixed0;
1366                break;
1367        default:
1368                BUG();
1369        }
1370
1371        /*
1372         * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1373         * must be 1 in the restored value.
1374         */
1375        if (!is_bitwise_subset(data, *msr, -1ULL))
1376                return -EINVAL;
1377
1378        *msr = data;
1379        return 0;
1380}
1381
1382/*
1383 * Called when userspace is restoring VMX MSRs.
1384 *
1385 * Returns 0 on success, non-0 otherwise.
1386 */
1387int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1388{
1389        struct vcpu_vmx *vmx = to_vmx(vcpu);
1390
1391        /*
1392         * Don't allow changes to the VMX capability MSRs while the vCPU
1393         * is in VMX operation.
1394         */
1395        if (vmx->nested.vmxon)
1396                return -EBUSY;
1397
1398        switch (msr_index) {
1399        case MSR_IA32_VMX_BASIC:
1400                return vmx_restore_vmx_basic(vmx, data);
1401        case MSR_IA32_VMX_PINBASED_CTLS:
1402        case MSR_IA32_VMX_PROCBASED_CTLS:
1403        case MSR_IA32_VMX_EXIT_CTLS:
1404        case MSR_IA32_VMX_ENTRY_CTLS:
1405                /*
1406                 * The "non-true" VMX capability MSRs are generated from the
1407                 * "true" MSRs, so we do not support restoring them directly.
1408                 *
1409                 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1410                 * should restore the "true" MSRs with the must-be-1 bits
1411                 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1412                 * DEFAULT SETTINGS".
1413                 */
1414                return -EINVAL;
1415        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1416        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1417        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1418        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1419        case MSR_IA32_VMX_PROCBASED_CTLS2:
1420                return vmx_restore_control_msr(vmx, msr_index, data);
1421        case MSR_IA32_VMX_MISC:
1422                return vmx_restore_vmx_misc(vmx, data);
1423        case MSR_IA32_VMX_CR0_FIXED0:
1424        case MSR_IA32_VMX_CR4_FIXED0:
1425                return vmx_restore_fixed0_msr(vmx, msr_index, data);
1426        case MSR_IA32_VMX_CR0_FIXED1:
1427        case MSR_IA32_VMX_CR4_FIXED1:
1428                /*
1429                 * These MSRs are generated based on the vCPU's CPUID, so we
1430                 * do not support restoring them directly.
1431                 */
1432                return -EINVAL;
1433        case MSR_IA32_VMX_EPT_VPID_CAP:
1434                return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1435        case MSR_IA32_VMX_VMCS_ENUM:
1436                vmx->nested.msrs.vmcs_enum = data;
1437                return 0;
1438        case MSR_IA32_VMX_VMFUNC:
1439                if (data & ~vmx->nested.msrs.vmfunc_controls)
1440                        return -EINVAL;
1441                vmx->nested.msrs.vmfunc_controls = data;
1442                return 0;
1443        default:
1444                /*
1445                 * The rest of the VMX capability MSRs do not support restore.
1446                 */
1447                return -EINVAL;
1448        }
1449}
1450
1451/* Returns 0 on success, non-0 otherwise. */
1452int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1453{
1454        switch (msr_index) {
1455        case MSR_IA32_VMX_BASIC:
1456                *pdata = msrs->basic;
1457                break;
1458        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1459        case MSR_IA32_VMX_PINBASED_CTLS:
1460                *pdata = vmx_control_msr(
1461                        msrs->pinbased_ctls_low,
1462                        msrs->pinbased_ctls_high);
1463                if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1464                        *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1465                break;
1466        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1467        case MSR_IA32_VMX_PROCBASED_CTLS:
1468                *pdata = vmx_control_msr(
1469                        msrs->procbased_ctls_low,
1470                        msrs->procbased_ctls_high);
1471                if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1472                        *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1473                break;
1474        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1475        case MSR_IA32_VMX_EXIT_CTLS:
1476                *pdata = vmx_control_msr(
1477                        msrs->exit_ctls_low,
1478                        msrs->exit_ctls_high);
1479                if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1480                        *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1481                break;
1482        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1483        case MSR_IA32_VMX_ENTRY_CTLS:
1484                *pdata = vmx_control_msr(
1485                        msrs->entry_ctls_low,
1486                        msrs->entry_ctls_high);
1487                if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1488                        *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1489                break;
1490        case MSR_IA32_VMX_MISC:
1491                *pdata = vmx_control_msr(
1492                        msrs->misc_low,
1493                        msrs->misc_high);
1494                break;
1495        case MSR_IA32_VMX_CR0_FIXED0:
1496                *pdata = msrs->cr0_fixed0;
1497                break;
1498        case MSR_IA32_VMX_CR0_FIXED1:
1499                *pdata = msrs->cr0_fixed1;
1500                break;
1501        case MSR_IA32_VMX_CR4_FIXED0:
1502                *pdata = msrs->cr4_fixed0;
1503                break;
1504        case MSR_IA32_VMX_CR4_FIXED1:
1505                *pdata = msrs->cr4_fixed1;
1506                break;
1507        case MSR_IA32_VMX_VMCS_ENUM:
1508                *pdata = msrs->vmcs_enum;
1509                break;
1510        case MSR_IA32_VMX_PROCBASED_CTLS2:
1511                *pdata = vmx_control_msr(
1512                        msrs->secondary_ctls_low,
1513                        msrs->secondary_ctls_high);
1514                break;
1515        case MSR_IA32_VMX_EPT_VPID_CAP:
1516                *pdata = msrs->ept_caps |
1517                        ((u64)msrs->vpid_caps << 32);
1518                break;
1519        case MSR_IA32_VMX_VMFUNC:
1520                *pdata = msrs->vmfunc_controls;
1521                break;
1522        default:
1523                return 1;
1524        }
1525
1526        return 0;
1527}
1528
1529/*
1530 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1531 * been modified by the L1 guest.  Note, "writable" in this context means
1532 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1533 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1534 * VM-exit information fields (which are actually writable if the vCPU is
1535 * configured to support "VMWRITE to any supported field in the VMCS").
1536 */
1537static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1538{
1539        struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1540        struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1541        struct shadow_vmcs_field field;
1542        unsigned long val;
1543        int i;
1544
1545        if (WARN_ON(!shadow_vmcs))
1546                return;
1547
1548        preempt_disable();
1549
1550        vmcs_load(shadow_vmcs);
1551
1552        for (i = 0; i < max_shadow_read_write_fields; i++) {
1553                field = shadow_read_write_fields[i];
1554                val = __vmcs_readl(field.encoding);
1555                vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1556        }
1557
1558        vmcs_clear(shadow_vmcs);
1559        vmcs_load(vmx->loaded_vmcs->vmcs);
1560
1561        preempt_enable();
1562}
1563
1564static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1565{
1566        const struct shadow_vmcs_field *fields[] = {
1567                shadow_read_write_fields,
1568                shadow_read_only_fields
1569        };
1570        const int max_fields[] = {
1571                max_shadow_read_write_fields,
1572                max_shadow_read_only_fields
1573        };
1574        struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1575        struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1576        struct shadow_vmcs_field field;
1577        unsigned long val;
1578        int i, q;
1579
1580        if (WARN_ON(!shadow_vmcs))
1581                return;
1582
1583        vmcs_load(shadow_vmcs);
1584
1585        for (q = 0; q < ARRAY_SIZE(fields); q++) {
1586                for (i = 0; i < max_fields[q]; i++) {
1587                        field = fields[q][i];
1588                        val = vmcs12_read_any(vmcs12, field.encoding,
1589                                              field.offset);
1590                        __vmcs_writel(field.encoding, val);
1591                }
1592        }
1593
1594        vmcs_clear(shadow_vmcs);
1595        vmcs_load(vmx->loaded_vmcs->vmcs);
1596}
1597
1598static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1599{
1600        struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1601        struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1602
1603        /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1604        vmcs12->tpr_threshold = evmcs->tpr_threshold;
1605        vmcs12->guest_rip = evmcs->guest_rip;
1606
1607        if (unlikely(!(hv_clean_fields &
1608                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1609                vmcs12->guest_rsp = evmcs->guest_rsp;
1610                vmcs12->guest_rflags = evmcs->guest_rflags;
1611                vmcs12->guest_interruptibility_info =
1612                        evmcs->guest_interruptibility_info;
1613        }
1614
1615        if (unlikely(!(hv_clean_fields &
1616                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1617                vmcs12->cpu_based_vm_exec_control =
1618                        evmcs->cpu_based_vm_exec_control;
1619        }
1620
1621        if (unlikely(!(hv_clean_fields &
1622                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1623                vmcs12->exception_bitmap = evmcs->exception_bitmap;
1624        }
1625
1626        if (unlikely(!(hv_clean_fields &
1627                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1628                vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1629        }
1630
1631        if (unlikely(!(hv_clean_fields &
1632                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1633                vmcs12->vm_entry_intr_info_field =
1634                        evmcs->vm_entry_intr_info_field;
1635                vmcs12->vm_entry_exception_error_code =
1636                        evmcs->vm_entry_exception_error_code;
1637                vmcs12->vm_entry_instruction_len =
1638                        evmcs->vm_entry_instruction_len;
1639        }
1640
1641        if (unlikely(!(hv_clean_fields &
1642                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1643                vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1644                vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1645                vmcs12->host_cr0 = evmcs->host_cr0;
1646                vmcs12->host_cr3 = evmcs->host_cr3;
1647                vmcs12->host_cr4 = evmcs->host_cr4;
1648                vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1649                vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1650                vmcs12->host_rip = evmcs->host_rip;
1651                vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1652                vmcs12->host_es_selector = evmcs->host_es_selector;
1653                vmcs12->host_cs_selector = evmcs->host_cs_selector;
1654                vmcs12->host_ss_selector = evmcs->host_ss_selector;
1655                vmcs12->host_ds_selector = evmcs->host_ds_selector;
1656                vmcs12->host_fs_selector = evmcs->host_fs_selector;
1657                vmcs12->host_gs_selector = evmcs->host_gs_selector;
1658                vmcs12->host_tr_selector = evmcs->host_tr_selector;
1659        }
1660
1661        if (unlikely(!(hv_clean_fields &
1662                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663                vmcs12->pin_based_vm_exec_control =
1664                        evmcs->pin_based_vm_exec_control;
1665                vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666                vmcs12->secondary_vm_exec_control =
1667                        evmcs->secondary_vm_exec_control;
1668        }
1669
1670        if (unlikely(!(hv_clean_fields &
1671                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672                vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673                vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1674        }
1675
1676        if (unlikely(!(hv_clean_fields &
1677                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678                vmcs12->msr_bitmap = evmcs->msr_bitmap;
1679        }
1680
1681        if (unlikely(!(hv_clean_fields &
1682                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683                vmcs12->guest_es_base = evmcs->guest_es_base;
1684                vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685                vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686                vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687                vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688                vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689                vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690                vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691                vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692                vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693                vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694                vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695                vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696                vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697                vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698                vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699                vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700                vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701                vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702                vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703                vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704                vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705                vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706                vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707                vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708                vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709                vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710                vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711                vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712                vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713                vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714                vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715                vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716                vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717                vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718                vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1719        }
1720
1721        if (unlikely(!(hv_clean_fields &
1722                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723                vmcs12->tsc_offset = evmcs->tsc_offset;
1724                vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725                vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726        }
1727
1728        if (unlikely(!(hv_clean_fields &
1729                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1730                vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1731                vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1732                vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1733                vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1734                vmcs12->guest_cr0 = evmcs->guest_cr0;
1735                vmcs12->guest_cr3 = evmcs->guest_cr3;
1736                vmcs12->guest_cr4 = evmcs->guest_cr4;
1737                vmcs12->guest_dr7 = evmcs->guest_dr7;
1738        }
1739
1740        if (unlikely(!(hv_clean_fields &
1741                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1742                vmcs12->host_fs_base = evmcs->host_fs_base;
1743                vmcs12->host_gs_base = evmcs->host_gs_base;
1744                vmcs12->host_tr_base = evmcs->host_tr_base;
1745                vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1746                vmcs12->host_idtr_base = evmcs->host_idtr_base;
1747                vmcs12->host_rsp = evmcs->host_rsp;
1748        }
1749
1750        if (unlikely(!(hv_clean_fields &
1751                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1752                vmcs12->ept_pointer = evmcs->ept_pointer;
1753                vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1754        }
1755
1756        if (unlikely(!(hv_clean_fields &
1757                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1758                vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1759                vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1760                vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1761                vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1762                vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1763                vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1764                vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1765                vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1766                vmcs12->guest_pending_dbg_exceptions =
1767                        evmcs->guest_pending_dbg_exceptions;
1768                vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1769                vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1770                vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1771                vmcs12->guest_activity_state = evmcs->guest_activity_state;
1772                vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1773        }
1774
1775        /*
1776         * Not used?
1777         * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1778         * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1779         * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1780         * vmcs12->page_fault_error_code_mask =
1781         *              evmcs->page_fault_error_code_mask;
1782         * vmcs12->page_fault_error_code_match =
1783         *              evmcs->page_fault_error_code_match;
1784         * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1785         * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1786         * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1787         * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1788         */
1789
1790        /*
1791         * Read only fields:
1792         * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1793         * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1794         * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1795         * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1796         * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1797         * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1798         * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1799         * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1800         * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1801         * vmcs12->exit_qualification = evmcs->exit_qualification;
1802         * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1803         *
1804         * Not present in struct vmcs12:
1805         * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1806         * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1807         * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1808         * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1809         */
1810
1811        return;
1812}
1813
1814static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1815{
1816        struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1817        struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1818
1819        /*
1820         * Should not be changed by KVM:
1821         *
1822         * evmcs->host_es_selector = vmcs12->host_es_selector;
1823         * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1824         * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1825         * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1826         * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1827         * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1828         * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1829         * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1830         * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1831         * evmcs->host_cr0 = vmcs12->host_cr0;
1832         * evmcs->host_cr3 = vmcs12->host_cr3;
1833         * evmcs->host_cr4 = vmcs12->host_cr4;
1834         * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1835         * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1836         * evmcs->host_rip = vmcs12->host_rip;
1837         * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1838         * evmcs->host_fs_base = vmcs12->host_fs_base;
1839         * evmcs->host_gs_base = vmcs12->host_gs_base;
1840         * evmcs->host_tr_base = vmcs12->host_tr_base;
1841         * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1842         * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1843         * evmcs->host_rsp = vmcs12->host_rsp;
1844         * sync_vmcs02_to_vmcs12() doesn't read these:
1845         * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1846         * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1847         * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1848         * evmcs->ept_pointer = vmcs12->ept_pointer;
1849         * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1850         * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1851         * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1852         * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1853         * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1854         * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1855         * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1856         * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1857         * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1858         * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1859         * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1860         * evmcs->page_fault_error_code_mask =
1861         *              vmcs12->page_fault_error_code_mask;
1862         * evmcs->page_fault_error_code_match =
1863         *              vmcs12->page_fault_error_code_match;
1864         * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1865         * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1866         * evmcs->tsc_offset = vmcs12->tsc_offset;
1867         * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1868         * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1869         * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1870         * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1871         * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1872         * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1873         * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1874         * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1875         *
1876         * Not present in struct vmcs12:
1877         * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1878         * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1879         * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1880         * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1881         */
1882
1883        evmcs->guest_es_selector = vmcs12->guest_es_selector;
1884        evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1885        evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1886        evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1887        evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1888        evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1889        evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1890        evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1891
1892        evmcs->guest_es_limit = vmcs12->guest_es_limit;
1893        evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1894        evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1895        evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1896        evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1897        evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1898        evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1899        evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1900        evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1901        evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1902
1903        evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1904        evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1905        evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1906        evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1907        evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1908        evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1909        evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1910        evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1911
1912        evmcs->guest_es_base = vmcs12->guest_es_base;
1913        evmcs->guest_cs_base = vmcs12->guest_cs_base;
1914        evmcs->guest_ss_base = vmcs12->guest_ss_base;
1915        evmcs->guest_ds_base = vmcs12->guest_ds_base;
1916        evmcs->guest_fs_base = vmcs12->guest_fs_base;
1917        evmcs->guest_gs_base = vmcs12->guest_gs_base;
1918        evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1919        evmcs->guest_tr_base = vmcs12->guest_tr_base;
1920        evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1921        evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1922
1923        evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1924        evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1925
1926        evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1927        evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1928        evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1929        evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1930
1931        evmcs->guest_pending_dbg_exceptions =
1932                vmcs12->guest_pending_dbg_exceptions;
1933        evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1934        evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1935
1936        evmcs->guest_activity_state = vmcs12->guest_activity_state;
1937        evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1938
1939        evmcs->guest_cr0 = vmcs12->guest_cr0;
1940        evmcs->guest_cr3 = vmcs12->guest_cr3;
1941        evmcs->guest_cr4 = vmcs12->guest_cr4;
1942        evmcs->guest_dr7 = vmcs12->guest_dr7;
1943
1944        evmcs->guest_physical_address = vmcs12->guest_physical_address;
1945
1946        evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1947        evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1948        evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1949        evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1950        evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1951        evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1952        evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1953        evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1954
1955        evmcs->exit_qualification = vmcs12->exit_qualification;
1956
1957        evmcs->guest_linear_address = vmcs12->guest_linear_address;
1958        evmcs->guest_rsp = vmcs12->guest_rsp;
1959        evmcs->guest_rflags = vmcs12->guest_rflags;
1960
1961        evmcs->guest_interruptibility_info =
1962                vmcs12->guest_interruptibility_info;
1963        evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1964        evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1965        evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1966        evmcs->vm_entry_exception_error_code =
1967                vmcs12->vm_entry_exception_error_code;
1968        evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1969
1970        evmcs->guest_rip = vmcs12->guest_rip;
1971
1972        evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1973
1974        return;
1975}
1976
1977/*
1978 * This is an equivalent of the nested hypervisor executing the vmptrld
1979 * instruction.
1980 */
1981static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1982        struct kvm_vcpu *vcpu, bool from_launch)
1983{
1984        struct vcpu_vmx *vmx = to_vmx(vcpu);
1985        bool evmcs_gpa_changed = false;
1986        u64 evmcs_gpa;
1987
1988        if (likely(!vmx->nested.enlightened_vmcs_enabled))
1989                return EVMPTRLD_DISABLED;
1990
1991        if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1992                nested_release_evmcs(vcpu);
1993                return EVMPTRLD_DISABLED;
1994        }
1995
1996        if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1997                vmx->nested.current_vmptr = -1ull;
1998
1999                nested_release_evmcs(vcpu);
2000
2001                if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2002                                 &vmx->nested.hv_evmcs_map))
2003                        return EVMPTRLD_ERROR;
2004
2005                vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2006
2007                /*
2008                 * Currently, KVM only supports eVMCS version 1
2009                 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2010                 * value to first u32 field of eVMCS which should specify eVMCS
2011                 * VersionNumber.
2012                 *
2013                 * Guest should be aware of supported eVMCS versions by host by
2014                 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2015                 * expected to set this CPUID leaf according to the value
2016                 * returned in vmcs_version from nested_enable_evmcs().
2017                 *
2018                 * However, it turns out that Microsoft Hyper-V fails to comply
2019                 * to their own invented interface: When Hyper-V use eVMCS, it
2020                 * just sets first u32 field of eVMCS to revision_id specified
2021                 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2022                 * which is one of the supported versions specified in
2023                 * CPUID.0x4000000A.EAX[0:15].
2024                 *
2025                 * To overcome Hyper-V bug, we accept here either a supported
2026                 * eVMCS version or VMCS12 revision_id as valid values for first
2027                 * u32 field of eVMCS.
2028                 */
2029                if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2030                    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2031                        nested_release_evmcs(vcpu);
2032                        return EVMPTRLD_VMFAIL;
2033                }
2034
2035                vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2036
2037                evmcs_gpa_changed = true;
2038                /*
2039                 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2040                 * reloaded from guest's memory (read only fields, fields not
2041                 * present in struct hv_enlightened_vmcs, ...). Make sure there
2042                 * are no leftovers.
2043                 */
2044                if (from_launch) {
2045                        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2046                        memset(vmcs12, 0, sizeof(*vmcs12));
2047                        vmcs12->hdr.revision_id = VMCS12_REVISION;
2048                }
2049
2050        }
2051
2052        /*
2053         * Clean fields data can't be used on VMLAUNCH and when we switch
2054         * between different L2 guests as KVM keeps a single VMCS12 per L1.
2055         */
2056        if (from_launch || evmcs_gpa_changed)
2057                vmx->nested.hv_evmcs->hv_clean_fields &=
2058                        ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2059
2060        return EVMPTRLD_SUCCEEDED;
2061}
2062
2063void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2064{
2065        struct vcpu_vmx *vmx = to_vmx(vcpu);
2066
2067        if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2068                copy_vmcs12_to_enlightened(vmx);
2069        else
2070                copy_vmcs12_to_shadow(vmx);
2071
2072        vmx->nested.need_vmcs12_to_shadow_sync = false;
2073}
2074
2075static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2076{
2077        struct vcpu_vmx *vmx =
2078                container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2079
2080        vmx->nested.preemption_timer_expired = true;
2081        kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2082        kvm_vcpu_kick(&vmx->vcpu);
2083
2084        return HRTIMER_NORESTART;
2085}
2086
2087static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2088{
2089        struct vcpu_vmx *vmx = to_vmx(vcpu);
2090        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2091
2092        u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2093                            VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2094
2095        if (!vmx->nested.has_preemption_timer_deadline) {
2096                vmx->nested.preemption_timer_deadline =
2097                        vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2098                vmx->nested.has_preemption_timer_deadline = true;
2099        }
2100        return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2101}
2102
2103static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2104                                        u64 preemption_timeout)
2105{
2106        struct vcpu_vmx *vmx = to_vmx(vcpu);
2107
2108        /*
2109         * A timer value of zero is architecturally guaranteed to cause
2110         * a VMExit prior to executing any instructions in the guest.
2111         */
2112        if (preemption_timeout == 0) {
2113                vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2114                return;
2115        }
2116
2117        if (vcpu->arch.virtual_tsc_khz == 0)
2118                return;
2119
2120        preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2121        preemption_timeout *= 1000000;
2122        do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2123        hrtimer_start(&vmx->nested.preemption_timer,
2124                      ktime_add_ns(ktime_get(), preemption_timeout),
2125                      HRTIMER_MODE_ABS_PINNED);
2126}
2127
2128static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2129{
2130        if (vmx->nested.nested_run_pending &&
2131            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2132                return vmcs12->guest_ia32_efer;
2133        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2134                return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2135        else
2136                return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2137}
2138
2139static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2140{
2141        /*
2142         * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2143         * according to L0's settings (vmcs12 is irrelevant here).  Host
2144         * fields that come from L0 and are not constant, e.g. HOST_CR3,
2145         * will be set as needed prior to VMLAUNCH/VMRESUME.
2146         */
2147        if (vmx->nested.vmcs02_initialized)
2148                return;
2149        vmx->nested.vmcs02_initialized = true;
2150
2151        /*
2152         * We don't care what the EPTP value is we just need to guarantee
2153         * it's valid so we don't get a false positive when doing early
2154         * consistency checks.
2155         */
2156        if (enable_ept && nested_early_check)
2157                vmcs_write64(EPT_POINTER,
2158                             construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2159
2160        /* All VMFUNCs are currently emulated through L0 vmexits.  */
2161        if (cpu_has_vmx_vmfunc())
2162                vmcs_write64(VM_FUNCTION_CONTROL, 0);
2163
2164        if (cpu_has_vmx_posted_intr())
2165                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2166
2167        if (cpu_has_vmx_msr_bitmap())
2168                vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2169
2170        /*
2171         * PML is emulated for L2, but never enabled in hardware as the MMU
2172         * handles A/D emulation.  Disabling PML for L2 also avoids having to
2173         * deal with filtering out L2 GPAs from the buffer.
2174         */
2175        if (enable_pml) {
2176                vmcs_write64(PML_ADDRESS, 0);
2177                vmcs_write16(GUEST_PML_INDEX, -1);
2178        }
2179
2180        if (cpu_has_vmx_encls_vmexit())
2181                vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2182
2183        /*
2184         * Set the MSR load/store lists to match L0's settings.  Only the
2185         * addresses are constant (for vmcs02), the counts can change based
2186         * on L2's behavior, e.g. switching to/from long mode.
2187         */
2188        vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2189        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2190        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2191
2192        vmx_set_constant_host_state(vmx);
2193}
2194
2195static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2196                                      struct vmcs12 *vmcs12)
2197{
2198        prepare_vmcs02_constant_state(vmx);
2199
2200        vmcs_write64(VMCS_LINK_POINTER, -1ull);
2201
2202        if (enable_vpid) {
2203                if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2204                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2205                else
2206                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2207        }
2208}
2209
2210static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2211{
2212        u32 exec_control;
2213        u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2214
2215        if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2216                prepare_vmcs02_early_rare(vmx, vmcs12);
2217
2218        /*
2219         * PIN CONTROLS
2220         */
2221        exec_control = vmx_pin_based_exec_ctrl(vmx);
2222        exec_control |= (vmcs12->pin_based_vm_exec_control &
2223                         ~PIN_BASED_VMX_PREEMPTION_TIMER);
2224
2225        /* Posted interrupts setting is only taken from vmcs12.  */
2226        if (nested_cpu_has_posted_intr(vmcs12)) {
2227                vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2228                vmx->nested.pi_pending = false;
2229        } else {
2230                exec_control &= ~PIN_BASED_POSTED_INTR;
2231        }
2232        pin_controls_set(vmx, exec_control);
2233
2234        /*
2235         * EXEC CONTROLS
2236         */
2237        exec_control = vmx_exec_control(vmx); /* L0's desires */
2238        exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2239        exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2240        exec_control &= ~CPU_BASED_TPR_SHADOW;
2241        exec_control |= vmcs12->cpu_based_vm_exec_control;
2242
2243        vmx->nested.l1_tpr_threshold = -1;
2244        if (exec_control & CPU_BASED_TPR_SHADOW)
2245                vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2246#ifdef CONFIG_X86_64
2247        else
2248                exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2249                                CPU_BASED_CR8_STORE_EXITING;
2250#endif
2251
2252        /*
2253         * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2254         * for I/O port accesses.
2255         */
2256        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2257        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2258
2259        /*
2260         * This bit will be computed in nested_get_vmcs12_pages, because
2261         * we do not have access to L1's MSR bitmap yet.  For now, keep
2262         * the same bit as before, hoping to avoid multiple VMWRITEs that
2263         * only set/clear this bit.
2264         */
2265        exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2266        exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2267
2268        exec_controls_set(vmx, exec_control);
2269
2270        /*
2271         * SECONDARY EXEC CONTROLS
2272         */
2273        if (cpu_has_secondary_exec_ctrls()) {
2274                exec_control = vmx->secondary_exec_control;
2275
2276                /* Take the following fields only from vmcs12 */
2277                exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2278                                  SECONDARY_EXEC_ENABLE_INVPCID |
2279                                  SECONDARY_EXEC_ENABLE_RDTSCP |
2280                                  SECONDARY_EXEC_XSAVES |
2281                                  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2282                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2283                                  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2284                                  SECONDARY_EXEC_ENABLE_VMFUNC |
2285                                  SECONDARY_EXEC_TSC_SCALING);
2286                if (nested_cpu_has(vmcs12,
2287                                   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2288                        exec_control |= vmcs12->secondary_vm_exec_control;
2289
2290                /* PML is emulated and never enabled in hardware for L2. */
2291                exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2292
2293                /* VMCS shadowing for L2 is emulated for now */
2294                exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2295
2296                /*
2297                 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2298                 * will not have to rewrite the controls just for this bit.
2299                 */
2300                if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2301                    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2302                        exec_control |= SECONDARY_EXEC_DESC;
2303
2304                if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2305                        vmcs_write16(GUEST_INTR_STATUS,
2306                                vmcs12->guest_intr_status);
2307
2308                if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2309                    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2310
2311                if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2312                        vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2313
2314                secondary_exec_controls_set(vmx, exec_control);
2315        }
2316
2317        /*
2318         * ENTRY CONTROLS
2319         *
2320         * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2321         * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2322         * on the related bits (if supported by the CPU) in the hope that
2323         * we can avoid VMWrites during vmx_set_efer().
2324         */
2325        exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2326                        ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2327        if (cpu_has_load_ia32_efer()) {
2328                if (guest_efer & EFER_LMA)
2329                        exec_control |= VM_ENTRY_IA32E_MODE;
2330                if (guest_efer != host_efer)
2331                        exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2332        }
2333        vm_entry_controls_set(vmx, exec_control);
2334
2335        /*
2336         * EXIT CONTROLS
2337         *
2338         * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2339         * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2340         * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2341         */
2342        exec_control = vmx_vmexit_ctrl();
2343        if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2344                exec_control |= VM_EXIT_LOAD_IA32_EFER;
2345        vm_exit_controls_set(vmx, exec_control);
2346
2347        /*
2348         * Interrupt/Exception Fields
2349         */
2350        if (vmx->nested.nested_run_pending) {
2351                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2352                             vmcs12->vm_entry_intr_info_field);
2353                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2354                             vmcs12->vm_entry_exception_error_code);
2355                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2356                             vmcs12->vm_entry_instruction_len);
2357                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2358                             vmcs12->guest_interruptibility_info);
2359                vmx->loaded_vmcs->nmi_known_unmasked =
2360                        !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2361        } else {
2362                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2363        }
2364}
2365
2366static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2367{
2368        struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2369
2370        if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2371                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2372                vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2373                vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2374                vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2375                vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2376                vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2377                vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2378                vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2379                vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2380                vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2381                vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2382                vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2383                vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2384                vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2385                vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2386                vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2387                vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2388                vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2389                vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2390                vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2391                vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2392                vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2393                vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2394                vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2395                vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2396                vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2397                vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2398                vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2399                vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2400                vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2401                vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2402                vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2403                vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2404                vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2405                vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2406                vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2407                vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2408
2409                vmx->segment_cache.bitmask = 0;
2410        }
2411
2412        if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2413                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2414                vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2415                vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2416                            vmcs12->guest_pending_dbg_exceptions);
2417                vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2418                vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2419
2420                /*
2421                 * L1 may access the L2's PDPTR, so save them to construct
2422                 * vmcs12
2423                 */
2424                if (enable_ept) {
2425                        vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2426                        vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2427                        vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2428                        vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2429                }
2430
2431                if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2432                    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2433                        vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2434        }
2435
2436        if (nested_cpu_has_xsaves(vmcs12))
2437                vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2438
2439        /*
2440         * Whether page-faults are trapped is determined by a combination of
2441         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2442         * doesn't care about page faults then we should set all of these to
2443         * L1's desires. However, if L0 does care about (some) page faults, it
2444         * is not easy (if at all possible?) to merge L0 and L1's desires, we
2445         * simply ask to exit on each and every L2 page fault. This is done by
2446         * setting MASK=MATCH=0 and (see below) EB.PF=1.
2447         * Note that below we don't need special code to set EB.PF beyond the
2448         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2449         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2450         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2451         */
2452        if (vmx_need_pf_intercept(&vmx->vcpu)) {
2453                /*
2454                 * TODO: if both L0 and L1 need the same MASK and MATCH,
2455                 * go ahead and use it?
2456                 */
2457                vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2458                vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2459        } else {
2460                vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2461                vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2462        }
2463
2464        if (cpu_has_vmx_apicv()) {
2465                vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2466                vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2467                vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2468                vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2469        }
2470
2471        /*
2472         * Make sure the msr_autostore list is up to date before we set the
2473         * count in the vmcs02.
2474         */
2475        prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2476
2477        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2478        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2479        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2480
2481        set_cr4_guest_host_mask(vmx);
2482}
2483
2484/*
2485 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2486 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2487 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2488 * guest in a way that will both be appropriate to L1's requests, and our
2489 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2490 * function also has additional necessary side-effects, like setting various
2491 * vcpu->arch fields.
2492 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2493 * is assigned to entry_failure_code on failure.
2494 */
2495static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2496                          bool from_vmentry,
2497                          enum vm_entry_failure_code *entry_failure_code)
2498{
2499        struct vcpu_vmx *vmx = to_vmx(vcpu);
2500        bool load_guest_pdptrs_vmcs12 = false;
2501
2502        if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2503                prepare_vmcs02_rare(vmx, vmcs12);
2504                vmx->nested.dirty_vmcs12 = false;
2505
2506                load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2507                        !(vmx->nested.hv_evmcs->hv_clean_fields &
2508                          HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2509        }
2510
2511        if (vmx->nested.nested_run_pending &&
2512            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2513                kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2514                vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2515        } else {
2516                kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2517                vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2518        }
2519        if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2520            !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2521                vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2522        vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2523
2524        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2525         * bitwise-or of what L1 wants to trap for L2, and what we want to
2526         * trap. Note that CR0.TS also needs updating - we do this later.
2527         */
2528        vmx_update_exception_bitmap(vcpu);
2529        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2530        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2531
2532        if (vmx->nested.nested_run_pending &&
2533            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2534                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2535                vcpu->arch.pat = vmcs12->guest_ia32_pat;
2536        } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2537                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2538        }
2539
2540        vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2541                        vcpu->arch.l1_tsc_offset,
2542                        vmx_get_l2_tsc_offset(vcpu),
2543                        vmx_get_l2_tsc_multiplier(vcpu));
2544
2545        vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2546                        vcpu->arch.l1_tsc_scaling_ratio,
2547                        vmx_get_l2_tsc_multiplier(vcpu));
2548
2549        vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2550        if (kvm_has_tsc_control)
2551                vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2552
2553        nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2554
2555        if (nested_cpu_has_ept(vmcs12))
2556                nested_ept_init_mmu_context(vcpu);
2557
2558        /*
2559         * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2560         * bits which we consider mandatory enabled.
2561         * The CR0_READ_SHADOW is what L2 should have expected to read given
2562         * the specifications by L1; It's not enough to take
2563         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2564         * have more bits than L1 expected.
2565         */
2566        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2567        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2568
2569        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2570        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2571
2572        vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2573        /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2574        vmx_set_efer(vcpu, vcpu->arch.efer);
2575
2576        /*
2577         * Guest state is invalid and unrestricted guest is disabled,
2578         * which means L1 attempted VMEntry to L2 with invalid state.
2579         * Fail the VMEntry.
2580         */
2581        if (CC(!vmx_guest_state_valid(vcpu))) {
2582                *entry_failure_code = ENTRY_FAIL_DEFAULT;
2583                return -EINVAL;
2584        }
2585
2586        /* Shadow page tables on either EPT or shadow page tables. */
2587        if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2588                                from_vmentry, entry_failure_code))
2589                return -EINVAL;
2590
2591        /*
2592         * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2593         * on nested VM-Exit, which can occur without actually running L2 and
2594         * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2595         * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2596         * transition to HLT instead of running L2.
2597         */
2598        if (enable_ept)
2599                vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2600
2601        /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2602        if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2603            is_pae_paging(vcpu)) {
2604                vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2605                vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2606                vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2607                vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2608        }
2609
2610        if (!enable_ept)
2611                vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2612
2613        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2614            WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2615                                     vmcs12->guest_ia32_perf_global_ctrl)))
2616                return -EINVAL;
2617
2618        kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2619        kvm_rip_write(vcpu, vmcs12->guest_rip);
2620
2621        /*
2622         * It was observed that genuine Hyper-V running in L1 doesn't reset
2623         * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2624         * bits when it changes a field in eVMCS. Mark all fields as clean
2625         * here.
2626         */
2627        if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2628                vmx->nested.hv_evmcs->hv_clean_fields |=
2629                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2630
2631        return 0;
2632}
2633
2634static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2635{
2636        if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2637               nested_cpu_has_virtual_nmis(vmcs12)))
2638                return -EINVAL;
2639
2640        if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2641               nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2642                return -EINVAL;
2643
2644        return 0;
2645}
2646
2647static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2648{
2649        struct vcpu_vmx *vmx = to_vmx(vcpu);
2650
2651        /* Check for memory type validity */
2652        switch (new_eptp & VMX_EPTP_MT_MASK) {
2653        case VMX_EPTP_MT_UC:
2654                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2655                        return false;
2656                break;
2657        case VMX_EPTP_MT_WB:
2658                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2659                        return false;
2660                break;
2661        default:
2662                return false;
2663        }
2664
2665        /* Page-walk levels validity. */
2666        switch (new_eptp & VMX_EPTP_PWL_MASK) {
2667        case VMX_EPTP_PWL_5:
2668                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2669                        return false;
2670                break;
2671        case VMX_EPTP_PWL_4:
2672                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2673                        return false;
2674                break;
2675        default:
2676                return false;
2677        }
2678
2679        /* Reserved bits should not be set */
2680        if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2681                return false;
2682
2683        /* AD, if set, should be supported */
2684        if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2685                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2686                        return false;
2687        }
2688
2689        return true;
2690}
2691
2692/*
2693 * Checks related to VM-Execution Control Fields
2694 */
2695static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2696                                              struct vmcs12 *vmcs12)
2697{
2698        struct vcpu_vmx *vmx = to_vmx(vcpu);
2699
2700        if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2701                                   vmx->nested.msrs.pinbased_ctls_low,
2702                                   vmx->nested.msrs.pinbased_ctls_high)) ||
2703            CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2704                                   vmx->nested.msrs.procbased_ctls_low,
2705                                   vmx->nested.msrs.procbased_ctls_high)))
2706                return -EINVAL;
2707
2708        if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2709            CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2710                                   vmx->nested.msrs.secondary_ctls_low,
2711                                   vmx->nested.msrs.secondary_ctls_high)))
2712                return -EINVAL;
2713
2714        if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2715            nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2716            nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2717            nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2718            nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2719            nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2720            nested_vmx_check_nmi_controls(vmcs12) ||
2721            nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2722            nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2723            nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2724            nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2725            CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2726                return -EINVAL;
2727
2728        if (!nested_cpu_has_preemption_timer(vmcs12) &&
2729            nested_cpu_has_save_preemption_timer(vmcs12))
2730                return -EINVAL;
2731
2732        if (nested_cpu_has_ept(vmcs12) &&
2733            CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2734                return -EINVAL;
2735
2736        if (nested_cpu_has_vmfunc(vmcs12)) {
2737                if (CC(vmcs12->vm_function_control &
2738                       ~vmx->nested.msrs.vmfunc_controls))
2739                        return -EINVAL;
2740
2741                if (nested_cpu_has_eptp_switching(vmcs12)) {
2742                        if (CC(!nested_cpu_has_ept(vmcs12)) ||
2743                            CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2744                                return -EINVAL;
2745                }
2746        }
2747
2748        return 0;
2749}
2750
2751/*
2752 * Checks related to VM-Exit Control Fields
2753 */
2754static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2755                                         struct vmcs12 *vmcs12)
2756{
2757        struct vcpu_vmx *vmx = to_vmx(vcpu);
2758
2759        if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2760                                    vmx->nested.msrs.exit_ctls_low,
2761                                    vmx->nested.msrs.exit_ctls_high)) ||
2762            CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2763                return -EINVAL;
2764
2765        return 0;
2766}
2767
2768/*
2769 * Checks related to VM-Entry Control Fields
2770 */
2771static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2772                                          struct vmcs12 *vmcs12)
2773{
2774        struct vcpu_vmx *vmx = to_vmx(vcpu);
2775
2776        if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2777                                    vmx->nested.msrs.entry_ctls_low,
2778                                    vmx->nested.msrs.entry_ctls_high)))
2779                return -EINVAL;
2780
2781        /*
2782         * From the Intel SDM, volume 3:
2783         * Fields relevant to VM-entry event injection must be set properly.
2784         * These fields are the VM-entry interruption-information field, the
2785         * VM-entry exception error code, and the VM-entry instruction length.
2786         */
2787        if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2788                u32 intr_info = vmcs12->vm_entry_intr_info_field;
2789                u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2790                u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2791                bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2792                bool should_have_error_code;
2793                bool urg = nested_cpu_has2(vmcs12,
2794                                           SECONDARY_EXEC_UNRESTRICTED_GUEST);
2795                bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2796
2797                /* VM-entry interruption-info field: interruption type */
2798                if (CC(intr_type == INTR_TYPE_RESERVED) ||
2799                    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2800                       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2801                        return -EINVAL;
2802
2803                /* VM-entry interruption-info field: vector */
2804                if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2805                    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2806                    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2807                        return -EINVAL;
2808
2809                /* VM-entry interruption-info field: deliver error code */
2810                should_have_error_code =
2811                        intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2812                        x86_exception_has_error_code(vector);
2813                if (CC(has_error_code != should_have_error_code))
2814                        return -EINVAL;
2815
2816                /* VM-entry exception error code */
2817                if (CC(has_error_code &&
2818                       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2819                        return -EINVAL;
2820
2821                /* VM-entry interruption-info field: reserved bits */
2822                if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2823                        return -EINVAL;
2824
2825                /* VM-entry instruction length */
2826                switch (intr_type) {
2827                case INTR_TYPE_SOFT_EXCEPTION:
2828                case INTR_TYPE_SOFT_INTR:
2829                case INTR_TYPE_PRIV_SW_EXCEPTION:
2830                        if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2831                            CC(vmcs12->vm_entry_instruction_len == 0 &&
2832                            CC(!nested_cpu_has_zero_length_injection(vcpu))))
2833                                return -EINVAL;
2834                }
2835        }
2836
2837        if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2838                return -EINVAL;
2839
2840        return 0;
2841}
2842
2843static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2844                                     struct vmcs12 *vmcs12)
2845{
2846        if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2847            nested_check_vm_exit_controls(vcpu, vmcs12) ||
2848            nested_check_vm_entry_controls(vcpu, vmcs12))
2849                return -EINVAL;
2850
2851        if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2852                return nested_evmcs_check_controls(vmcs12);
2853
2854        return 0;
2855}
2856
2857static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2858                                       struct vmcs12 *vmcs12)
2859{
2860        bool ia32e;
2861
2862        if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2863            CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2864            CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2865                return -EINVAL;
2866
2867        if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2868            CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2869                return -EINVAL;
2870
2871        if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2872            CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2873                return -EINVAL;
2874
2875        if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2876            CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2877                                           vmcs12->host_ia32_perf_global_ctrl)))
2878                return -EINVAL;
2879
2880#ifdef CONFIG_X86_64
2881        ia32e = !!(vcpu->arch.efer & EFER_LMA);
2882#else
2883        ia32e = false;
2884#endif
2885
2886        if (ia32e) {
2887                if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2888                    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2889                        return -EINVAL;
2890        } else {
2891                if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2892                    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2893                    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2894                    CC((vmcs12->host_rip) >> 32))
2895                        return -EINVAL;
2896        }
2897
2898        if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2899            CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2900            CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2901            CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2902            CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2903            CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2904            CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2905            CC(vmcs12->host_cs_selector == 0) ||
2906            CC(vmcs12->host_tr_selector == 0) ||
2907            CC(vmcs12->host_ss_selector == 0 && !ia32e))
2908                return -EINVAL;
2909
2910        if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2911            CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2912            CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2913            CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2914            CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2915            CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2916                return -EINVAL;
2917
2918        /*
2919         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2920         * IA32_EFER MSR must be 0 in the field for that register. In addition,
2921         * the values of the LMA and LME bits in the field must each be that of
2922         * the host address-space size VM-exit control.
2923         */
2924        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2925                if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2926                    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2927                    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2928                        return -EINVAL;
2929        }
2930
2931        return 0;
2932}
2933
2934static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2935                                          struct vmcs12 *vmcs12)
2936{
2937        int r = 0;
2938        struct vmcs12 *shadow;
2939        struct kvm_host_map map;
2940
2941        if (vmcs12->vmcs_link_pointer == -1ull)
2942                return 0;
2943
2944        if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2945                return -EINVAL;
2946
2947        if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2948                return -EINVAL;
2949
2950        shadow = map.hva;
2951
2952        if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2953            CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2954                r = -EINVAL;
2955
2956        kvm_vcpu_unmap(vcpu, &map, false);
2957        return r;
2958}
2959
2960/*
2961 * Checks related to Guest Non-register State
2962 */
2963static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2964{
2965        if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2966               vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2967               vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2968                return -EINVAL;
2969
2970        return 0;
2971}
2972
2973static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2974                                        struct vmcs12 *vmcs12,
2975                                        enum vm_entry_failure_code *entry_failure_code)
2976{
2977        bool ia32e;
2978
2979        *entry_failure_code = ENTRY_FAIL_DEFAULT;
2980
2981        if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2982            CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2983                return -EINVAL;
2984
2985        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2986            CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2987                return -EINVAL;
2988
2989        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2990            CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2991                return -EINVAL;
2992
2993        if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2994                *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2995                return -EINVAL;
2996        }
2997
2998        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2999            CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3000                                           vmcs12->guest_ia32_perf_global_ctrl)))
3001                return -EINVAL;
3002
3003        /*
3004         * If the load IA32_EFER VM-entry control is 1, the following checks
3005         * are performed on the field for the IA32_EFER MSR:
3006         * - Bits reserved in the IA32_EFER MSR must be 0.
3007         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3008         *   the IA-32e mode guest VM-exit control. It must also be identical
3009         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3010         *   CR0.PG) is 1.
3011         */
3012        if (to_vmx(vcpu)->nested.nested_run_pending &&
3013            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3014                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3015                if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3016                    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3017                    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3018                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3019                        return -EINVAL;
3020        }
3021
3022        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3023            (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3024             CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3025                return -EINVAL;
3026
3027        if (nested_check_guest_non_reg_state(vmcs12))
3028                return -EINVAL;
3029
3030        return 0;
3031}
3032
3033static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3034{
3035        struct vcpu_vmx *vmx = to_vmx(vcpu);
3036        unsigned long cr3, cr4;
3037        bool vm_fail;
3038
3039        if (!nested_early_check)
3040                return 0;
3041
3042        if (vmx->msr_autoload.host.nr)
3043                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3044        if (vmx->msr_autoload.guest.nr)
3045                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3046
3047        preempt_disable();
3048
3049        vmx_prepare_switch_to_guest(vcpu);
3050
3051        /*
3052         * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3053         * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3054         * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3055         * there is no need to preserve other bits or save/restore the field.
3056         */
3057        vmcs_writel(GUEST_RFLAGS, 0);
3058
3059        cr3 = __get_current_cr3_fast();
3060        if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3061                vmcs_writel(HOST_CR3, cr3);
3062                vmx->loaded_vmcs->host_state.cr3 = cr3;
3063        }
3064
3065        cr4 = cr4_read_shadow();
3066        if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3067                vmcs_writel(HOST_CR4, cr4);
3068                vmx->loaded_vmcs->host_state.cr4 = cr4;
3069        }
3070
3071        vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3072                                 vmx->loaded_vmcs->launched);
3073
3074        if (vmx->msr_autoload.host.nr)
3075                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3076        if (vmx->msr_autoload.guest.nr)
3077                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3078
3079        if (vm_fail) {
3080                u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3081
3082                preempt_enable();
3083
3084                trace_kvm_nested_vmenter_failed(
3085                        "early hardware check VM-instruction error: ", error);
3086                WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3087                return 1;
3088        }
3089
3090        /*
3091         * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3092         */
3093        if (hw_breakpoint_active())
3094                set_debugreg(__this_cpu_read(cpu_dr7), 7);
3095        local_irq_enable();
3096        preempt_enable();
3097
3098        /*
3099         * A non-failing VMEntry means we somehow entered guest mode with
3100         * an illegal RIP, and that's just the tip of the iceberg.  There
3101         * is no telling what memory has been modified or what state has
3102         * been exposed to unknown code.  Hitting this all but guarantees
3103         * a (very critical) hardware issue.
3104         */
3105        WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3106                VMX_EXIT_REASONS_FAILED_VMENTRY));
3107
3108        return 0;
3109}
3110
3111static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3112{
3113        struct vcpu_vmx *vmx = to_vmx(vcpu);
3114
3115        /*
3116         * hv_evmcs may end up being not mapped after migration (when
3117         * L2 was running), map it here to make sure vmcs12 changes are
3118         * properly reflected.
3119         */
3120        if (vmx->nested.enlightened_vmcs_enabled &&
3121            vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3122                enum nested_evmptrld_status evmptrld_status =
3123                        nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3124
3125                if (evmptrld_status == EVMPTRLD_VMFAIL ||
3126                    evmptrld_status == EVMPTRLD_ERROR)
3127                        return false;
3128
3129                /*
3130                 * Post migration VMCS12 always provides the most actual
3131                 * information, copy it to eVMCS upon entry.
3132                 */
3133                vmx->nested.need_vmcs12_to_shadow_sync = true;
3134        }
3135
3136        return true;
3137}
3138
3139static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3140{
3141        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3142        struct vcpu_vmx *vmx = to_vmx(vcpu);
3143        struct kvm_host_map *map;
3144        struct page *page;
3145        u64 hpa;
3146
3147        if (!vcpu->arch.pdptrs_from_userspace &&
3148            !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3149                /*
3150                 * Reload the guest's PDPTRs since after a migration
3151                 * the guest CR3 might be restored prior to setting the nested
3152                 * state which can lead to a load of wrong PDPTRs.
3153                 */
3154                if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3155                        return false;
3156        }
3157
3158
3159        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3160                /*
3161                 * Translate L1 physical address to host physical
3162                 * address for vmcs02. Keep the page pinned, so this
3163                 * physical address remains valid. We keep a reference
3164                 * to it so we can release it later.
3165                 */
3166                if (vmx->nested.apic_access_page) { /* shouldn't happen */
3167                        kvm_release_page_clean(vmx->nested.apic_access_page);
3168                        vmx->nested.apic_access_page = NULL;
3169                }
3170                page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3171                if (!is_error_page(page)) {
3172                        vmx->nested.apic_access_page = page;
3173                        hpa = page_to_phys(vmx->nested.apic_access_page);
3174                        vmcs_write64(APIC_ACCESS_ADDR, hpa);
3175                } else {
3176                        pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3177                                             __func__);
3178                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3179                        vcpu->run->internal.suberror =
3180                                KVM_INTERNAL_ERROR_EMULATION;
3181                        vcpu->run->internal.ndata = 0;
3182                        return false;
3183                }
3184        }
3185
3186        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3187                map = &vmx->nested.virtual_apic_map;
3188
3189                if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3190                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3191                } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3192                           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3193                           !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3194                        /*
3195                         * The processor will never use the TPR shadow, simply
3196                         * clear the bit from the execution control.  Such a
3197                         * configuration is useless, but it happens in tests.
3198                         * For any other configuration, failing the vm entry is
3199                         * _not_ what the processor does but it's basically the
3200                         * only possibility we have.
3201                         */
3202                        exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3203                } else {
3204                        /*
3205                         * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3206                         * force VM-Entry to fail.
3207                         */
3208                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3209                }
3210        }
3211
3212        if (nested_cpu_has_posted_intr(vmcs12)) {
3213                map = &vmx->nested.pi_desc_map;
3214
3215                if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3216                        vmx->nested.pi_desc =
3217                                (struct pi_desc *)(((void *)map->hva) +
3218                                offset_in_page(vmcs12->posted_intr_desc_addr));
3219                        vmcs_write64(POSTED_INTR_DESC_ADDR,
3220                                     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3221                } else {
3222                        /*
3223                         * Defer the KVM_INTERNAL_EXIT until KVM tries to
3224                         * access the contents of the VMCS12 posted interrupt
3225                         * descriptor. (Note that KVM may do this when it
3226                         * should not, per the architectural specification.)
3227                         */
3228                        vmx->nested.pi_desc = NULL;
3229                        pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3230                }
3231        }
3232        if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3233                exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3234        else
3235                exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3236
3237        return true;
3238}
3239
3240static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3241{
3242        if (!nested_get_evmcs_page(vcpu)) {
3243                pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3244                                     __func__);
3245                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3246                vcpu->run->internal.suberror =
3247                        KVM_INTERNAL_ERROR_EMULATION;
3248                vcpu->run->internal.ndata = 0;
3249
3250                return false;
3251        }
3252
3253        if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3254                return false;
3255
3256        return true;
3257}
3258
3259static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3260{
3261        struct vmcs12 *vmcs12;
3262        struct vcpu_vmx *vmx = to_vmx(vcpu);
3263        gpa_t dst;
3264
3265        if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3266                return 0;
3267
3268        if (WARN_ON_ONCE(vmx->nested.pml_full))
3269                return 1;
3270
3271        /*
3272         * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3273         * set is already checked as part of A/D emulation.
3274         */
3275        vmcs12 = get_vmcs12(vcpu);
3276        if (!nested_cpu_has_pml(vmcs12))
3277                return 0;
3278
3279        if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3280                vmx->nested.pml_full = true;
3281                return 1;
3282        }
3283
3284        gpa &= ~0xFFFull;
3285        dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3286
3287        if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3288                                 offset_in_page(dst), sizeof(gpa)))
3289                return 0;
3290
3291        vmcs12->guest_pml_index--;
3292
3293        return 0;
3294}
3295
3296/*
3297 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3298 * for running VMX instructions (except VMXON, whose prerequisites are
3299 * slightly different). It also specifies what exception to inject otherwise.
3300 * Note that many of these exceptions have priority over VM exits, so they
3301 * don't have to be checked again here.
3302 */
3303static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3304{
3305        if (!to_vmx(vcpu)->nested.vmxon) {
3306                kvm_queue_exception(vcpu, UD_VECTOR);
3307                return 0;
3308        }
3309
3310        if (vmx_get_cpl(vcpu)) {
3311                kvm_inject_gp(vcpu, 0);
3312                return 0;
3313        }
3314
3315        return 1;
3316}
3317
3318static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3319{
3320        u8 rvi = vmx_get_rvi();
3321        u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3322
3323        return ((rvi & 0xf0) > (vppr & 0xf0));
3324}
3325
3326static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3327                                   struct vmcs12 *vmcs12);
3328
3329/*
3330 * If from_vmentry is false, this is being called from state restore (either RSM
3331 * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3332 *
3333 * Returns:
3334 *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3335 *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3336 *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3337 *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3338 */
3339enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3340                                                        bool from_vmentry)
3341{
3342        struct vcpu_vmx *vmx = to_vmx(vcpu);
3343        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3344        enum vm_entry_failure_code entry_failure_code;
3345        bool evaluate_pending_interrupts;
3346        union vmx_exit_reason exit_reason = {
3347                .basic = EXIT_REASON_INVALID_STATE,
3348                .failed_vmentry = 1,
3349        };
3350        u32 failed_index;
3351
3352        if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3353                kvm_vcpu_flush_tlb_current(vcpu);
3354
3355        evaluate_pending_interrupts = exec_controls_get(vmx) &
3356                (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3357        if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3358                evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3359
3360        if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3361                vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3362        if (kvm_mpx_supported() &&
3363                !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3364                vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3365
3366        /*
3367         * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3368         * nested early checks are disabled.  In the event of a "late" VM-Fail,
3369         * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3370         * software model to the pre-VMEntry host state.  When EPT is disabled,
3371         * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3372         * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3373         * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3374         * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3375         * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3376         * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3377         * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3378         * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3379         * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3380         * path would need to manually save/restore vmcs01.GUEST_CR3.
3381         */
3382        if (!enable_ept && !nested_early_check)
3383                vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3384
3385        vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3386
3387        prepare_vmcs02_early(vmx, vmcs12);
3388
3389        if (from_vmentry) {
3390                if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3391                        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3392                        return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3393                }
3394
3395                if (nested_vmx_check_vmentry_hw(vcpu)) {
3396                        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3397                        return NVMX_VMENTRY_VMFAIL;
3398                }
3399
3400                if (nested_vmx_check_guest_state(vcpu, vmcs12,
3401                                                 &entry_failure_code)) {
3402                        exit_reason.basic = EXIT_REASON_INVALID_STATE;
3403                        vmcs12->exit_qualification = entry_failure_code;
3404                        goto vmentry_fail_vmexit;
3405                }
3406        }
3407
3408        enter_guest_mode(vcpu);
3409
3410        if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3411                exit_reason.basic = EXIT_REASON_INVALID_STATE;
3412                vmcs12->exit_qualification = entry_failure_code;
3413                goto vmentry_fail_vmexit_guest_mode;
3414        }
3415
3416        if (from_vmentry) {
3417                failed_index = nested_vmx_load_msr(vcpu,
3418                                                   vmcs12->vm_entry_msr_load_addr,
3419                                                   vmcs12->vm_entry_msr_load_count);
3420                if (failed_index) {
3421                        exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3422                        vmcs12->exit_qualification = failed_index;
3423                        goto vmentry_fail_vmexit_guest_mode;
3424                }
3425        } else {
3426                /*
3427                 * The MMU is not initialized to point at the right entities yet and
3428                 * "get pages" would need to read data from the guest (i.e. we will
3429                 * need to perform gpa to hpa translation). Request a call
3430                 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3431                 * have already been set at vmentry time and should not be reset.
3432                 */
3433                kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3434        }
3435
3436        /*
3437         * If L1 had a pending IRQ/NMI until it executed
3438         * VMLAUNCH/VMRESUME which wasn't delivered because it was
3439         * disallowed (e.g. interrupts disabled), L0 needs to
3440         * evaluate if this pending event should cause an exit from L2
3441         * to L1 or delivered directly to L2 (e.g. In case L1 don't
3442         * intercept EXTERNAL_INTERRUPT).
3443         *
3444         * Usually this would be handled by the processor noticing an
3445         * IRQ/NMI window request, or checking RVI during evaluation of
3446         * pending virtual interrupts.  However, this setting was done
3447         * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3448         * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3449         */
3450        if (unlikely(evaluate_pending_interrupts))
3451                kvm_make_request(KVM_REQ_EVENT, vcpu);
3452
3453        /*
3454         * Do not start the preemption timer hrtimer until after we know
3455         * we are successful, so that only nested_vmx_vmexit needs to cancel
3456         * the timer.
3457         */
3458        vmx->nested.preemption_timer_expired = false;
3459        if (nested_cpu_has_preemption_timer(vmcs12)) {
3460                u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3461                vmx_start_preemption_timer(vcpu, timer_value);
3462        }
3463
3464        /*
3465         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3466         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3467         * returned as far as L1 is concerned. It will only return (and set
3468         * the success flag) when L2 exits (see nested_vmx_vmexit()).
3469         */
3470        return NVMX_VMENTRY_SUCCESS;
3471
3472        /*
3473         * A failed consistency check that leads to a VMExit during L1's
3474         * VMEnter to L2 is a variation of a normal VMexit, as explained in
3475         * 26.7 "VM-entry failures during or after loading guest state".
3476         */
3477vmentry_fail_vmexit_guest_mode:
3478        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3479                vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3480        leave_guest_mode(vcpu);
3481
3482vmentry_fail_vmexit:
3483        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3484
3485        if (!from_vmentry)
3486                return NVMX_VMENTRY_VMEXIT;
3487
3488        load_vmcs12_host_state(vcpu, vmcs12);
3489        vmcs12->vm_exit_reason = exit_reason.full;
3490        if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3491                vmx->nested.need_vmcs12_to_shadow_sync = true;
3492        return NVMX_VMENTRY_VMEXIT;
3493}
3494
3495/*
3496 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3497 * for running an L2 nested guest.
3498 */
3499static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3500{
3501        struct vmcs12 *vmcs12;
3502        enum nvmx_vmentry_status status;
3503        struct vcpu_vmx *vmx = to_vmx(vcpu);
3504        u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3505        enum nested_evmptrld_status evmptrld_status;
3506
3507        if (!nested_vmx_check_permission(vcpu))
3508                return 1;
3509
3510        evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3511        if (evmptrld_status == EVMPTRLD_ERROR) {
3512                kvm_queue_exception(vcpu, UD_VECTOR);
3513                return 1;
3514        } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3515                return nested_vmx_failInvalid(vcpu);
3516        }
3517
3518        if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3519               vmx->nested.current_vmptr == -1ull))
3520                return nested_vmx_failInvalid(vcpu);
3521
3522        vmcs12 = get_vmcs12(vcpu);
3523
3524        /*
3525         * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3526         * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3527         * rather than RFLAGS.ZF, and no error number is stored to the
3528         * VM-instruction error field.
3529         */
3530        if (CC(vmcs12->hdr.shadow_vmcs))
3531                return nested_vmx_failInvalid(vcpu);
3532
3533        if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3534                copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3535                /* Enlightened VMCS doesn't have launch state */
3536                vmcs12->launch_state = !launch;
3537        } else if (enable_shadow_vmcs) {
3538                copy_shadow_to_vmcs12(vmx);
3539        }
3540
3541        /*
3542         * The nested entry process starts with enforcing various prerequisites
3543         * on vmcs12 as required by the Intel SDM, and act appropriately when
3544         * they fail: As the SDM explains, some conditions should cause the
3545         * instruction to fail, while others will cause the instruction to seem
3546         * to succeed, but return an EXIT_REASON_INVALID_STATE.
3547         * To speed up the normal (success) code path, we should avoid checking
3548         * for misconfigurations which will anyway be caught by the processor
3549         * when using the merged vmcs02.
3550         */
3551        if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3552                return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3553
3554        if (CC(vmcs12->launch_state == launch))
3555                return nested_vmx_fail(vcpu,
3556                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3557                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3558
3559        if (nested_vmx_check_controls(vcpu, vmcs12))
3560                return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3561
3562        if (nested_vmx_check_host_state(vcpu, vmcs12))
3563                return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3564
3565        /*
3566         * We're finally done with prerequisite checking, and can start with
3567         * the nested entry.
3568         */
3569        vmx->nested.nested_run_pending = 1;
3570        vmx->nested.has_preemption_timer_deadline = false;
3571        status = nested_vmx_enter_non_root_mode(vcpu, true);
3572        if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3573                goto vmentry_failed;
3574
3575        /* Emulate processing of posted interrupts on VM-Enter. */
3576        if (nested_cpu_has_posted_intr(vmcs12) &&
3577            kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3578                vmx->nested.pi_pending = true;
3579                kvm_make_request(KVM_REQ_EVENT, vcpu);
3580                kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3581        }
3582
3583        /* Hide L1D cache contents from the nested guest.  */
3584        vmx->vcpu.arch.l1tf_flush_l1d = true;
3585
3586        /*
3587         * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3588         * also be used as part of restoring nVMX state for
3589         * snapshot restore (migration).
3590         *
3591         * In this flow, it is assumed that vmcs12 cache was
3592         * transferred as part of captured nVMX state and should
3593         * therefore not be read from guest memory (which may not
3594         * exist on destination host yet).
3595         */
3596        nested_cache_shadow_vmcs12(vcpu, vmcs12);
3597
3598        switch (vmcs12->guest_activity_state) {
3599        case GUEST_ACTIVITY_HLT:
3600                /*
3601                 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3602                 * awakened by event injection or by an NMI-window VM-exit or
3603                 * by an interrupt-window VM-exit, halt the vcpu.
3604                 */
3605                if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3606                    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3607                    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3608                      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3609                        vmx->nested.nested_run_pending = 0;
3610                        return kvm_vcpu_halt(vcpu);
3611                }
3612                break;
3613        case GUEST_ACTIVITY_WAIT_SIPI:
3614                vmx->nested.nested_run_pending = 0;
3615                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3616                break;
3617        default:
3618                break;
3619        }
3620
3621        return 1;
3622
3623vmentry_failed:
3624        vmx->nested.nested_run_pending = 0;
3625        if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3626                return 0;
3627        if (status == NVMX_VMENTRY_VMEXIT)
3628                return 1;
3629        WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3630        return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3631}
3632
3633/*
3634 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3635 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3636 * This function returns the new value we should put in vmcs12.guest_cr0.
3637 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3638 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3639 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3640 *     didn't trap the bit, because if L1 did, so would L0).
3641 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3642 *     been modified by L2, and L1 knows it. So just leave the old value of
3643 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3644 *     isn't relevant, because if L0 traps this bit it can set it to anything.
3645 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3646 *     changed these bits, and therefore they need to be updated, but L0
3647 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3648 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3649 */
3650static inline unsigned long
3651vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3652{
3653        return
3654        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3655        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3656        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3657                        vcpu->arch.cr0_guest_owned_bits));
3658}
3659
3660static inline unsigned long
3661vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3662{
3663        return
3664        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3665        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3666        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3667                        vcpu->arch.cr4_guest_owned_bits));
3668}
3669
3670static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3671                                      struct vmcs12 *vmcs12)
3672{
3673        u32 idt_vectoring;
3674        unsigned int nr;
3675
3676        if (vcpu->arch.exception.injected) {
3677                nr = vcpu->arch.exception.nr;
3678                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3679
3680                if (kvm_exception_is_soft(nr)) {
3681                        vmcs12->vm_exit_instruction_len =
3682                                vcpu->arch.event_exit_inst_len;
3683                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3684                } else
3685                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3686
3687                if (vcpu->arch.exception.has_error_code) {
3688                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3689                        vmcs12->idt_vectoring_error_code =
3690                                vcpu->arch.exception.error_code;
3691                }
3692
3693                vmcs12->idt_vectoring_info_field = idt_vectoring;
3694        } else if (vcpu->arch.nmi_injected) {
3695                vmcs12->idt_vectoring_info_field =
3696                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3697        } else if (vcpu->arch.interrupt.injected) {
3698                nr = vcpu->arch.interrupt.nr;
3699                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3700
3701                if (vcpu->arch.interrupt.soft) {
3702                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
3703                        vmcs12->vm_entry_instruction_len =
3704                                vcpu->arch.event_exit_inst_len;
3705                } else
3706                        idt_vectoring |= INTR_TYPE_EXT_INTR;
3707
3708                vmcs12->idt_vectoring_info_field = idt_vectoring;
3709        }
3710}
3711
3712
3713void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3714{
3715        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3716        gfn_t gfn;
3717
3718        /*
3719         * Don't need to mark the APIC access page dirty; it is never
3720         * written to by the CPU during APIC virtualization.
3721         */
3722
3723        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3724                gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3725                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3726        }
3727
3728        if (nested_cpu_has_posted_intr(vmcs12)) {
3729                gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3730                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3731        }
3732}
3733
3734static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3735{
3736        struct vcpu_vmx *vmx = to_vmx(vcpu);
3737        int max_irr;
3738        void *vapic_page;
3739        u16 status;
3740
3741        if (!vmx->nested.pi_pending)
3742                return 0;
3743
3744        if (!vmx->nested.pi_desc)
3745                goto mmio_needed;
3746
3747        vmx->nested.pi_pending = false;
3748
3749        if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3750                return 0;
3751
3752        max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3753        if (max_irr != 256) {
3754                vapic_page = vmx->nested.virtual_apic_map.hva;
3755                if (!vapic_page)
3756                        goto mmio_needed;
3757
3758                __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3759                        vapic_page, &max_irr);
3760                status = vmcs_read16(GUEST_INTR_STATUS);
3761                if ((u8)max_irr > ((u8)status & 0xff)) {
3762                        status &= ~0xff;
3763                        status |= (u8)max_irr;
3764                        vmcs_write16(GUEST_INTR_STATUS, status);
3765                }
3766        }
3767
3768        nested_mark_vmcs12_pages_dirty(vcpu);
3769        return 0;
3770
3771mmio_needed:
3772        kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3773        return -ENXIO;
3774}
3775
3776static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3777                                               unsigned long exit_qual)
3778{
3779        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3780        unsigned int nr = vcpu->arch.exception.nr;
3781        u32 intr_info = nr | INTR_INFO_VALID_MASK;
3782
3783        if (vcpu->arch.exception.has_error_code) {
3784                vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3785                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3786        }
3787
3788        if (kvm_exception_is_soft(nr))
3789                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3790        else
3791                intr_info |= INTR_TYPE_HARD_EXCEPTION;
3792
3793        if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3794            vmx_get_nmi_mask(vcpu))
3795                intr_info |= INTR_INFO_UNBLOCK_NMI;
3796
3797        nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3798}
3799
3800/*
3801 * Returns true if a debug trap is pending delivery.
3802 *
3803 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3804 * exception may be inferred from the presence of an exception payload.
3805 */
3806static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3807{
3808        return vcpu->arch.exception.pending &&
3809                        vcpu->arch.exception.nr == DB_VECTOR &&
3810                        vcpu->arch.exception.payload;
3811}
3812
3813/*
3814 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3815 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3816 * represents these debug traps with a payload that is said to be compatible
3817 * with the 'pending debug exceptions' field, write the payload to the VMCS
3818 * field if a VM-exit is delivered before the debug trap.
3819 */
3820static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3821{
3822        if (vmx_pending_dbg_trap(vcpu))
3823                vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3824                            vcpu->arch.exception.payload);
3825}
3826
3827static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3828{
3829        return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3830               to_vmx(vcpu)->nested.preemption_timer_expired;
3831}
3832
3833static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3834{
3835        struct vcpu_vmx *vmx = to_vmx(vcpu);
3836        unsigned long exit_qual;
3837        bool block_nested_events =
3838            vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3839        bool mtf_pending = vmx->nested.mtf_pending;
3840        struct kvm_lapic *apic = vcpu->arch.apic;
3841
3842        /*
3843         * Clear the MTF state. If a higher priority VM-exit is delivered first,
3844         * this state is discarded.
3845         */
3846        if (!block_nested_events)
3847                vmx->nested.mtf_pending = false;
3848
3849        if (lapic_in_kernel(vcpu) &&
3850                test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3851                if (block_nested_events)
3852                        return -EBUSY;
3853                nested_vmx_update_pending_dbg(vcpu);
3854                clear_bit(KVM_APIC_INIT, &apic->pending_events);
3855                if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3856                        nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3857                return 0;
3858        }
3859
3860        if (lapic_in_kernel(vcpu) &&
3861            test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3862                if (block_nested_events)
3863                        return -EBUSY;
3864
3865                clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3866                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3867                        nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3868                                                apic->sipi_vector & 0xFFUL);
3869                return 0;
3870        }
3871
3872        /*
3873         * Process any exceptions that are not debug traps before MTF.
3874         *
3875         * Note that only a pending nested run can block a pending exception.
3876         * Otherwise an injected NMI/interrupt should either be
3877         * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3878         * while delivering the pending exception.
3879         */
3880
3881        if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3882                if (vmx->nested.nested_run_pending)
3883                        return -EBUSY;
3884                if (!nested_vmx_check_exception(vcpu, &exit_qual))
3885                        goto no_vmexit;
3886                nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3887                return 0;
3888        }
3889
3890        if (mtf_pending) {
3891                if (block_nested_events)
3892                        return -EBUSY;
3893                nested_vmx_update_pending_dbg(vcpu);
3894                nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3895                return 0;
3896        }
3897
3898        if (vcpu->arch.exception.pending) {
3899                if (vmx->nested.nested_run_pending)
3900                        return -EBUSY;
3901                if (!nested_vmx_check_exception(vcpu, &exit_qual))
3902                        goto no_vmexit;
3903                nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3904                return 0;
3905        }
3906
3907        if (nested_vmx_preemption_timer_pending(vcpu)) {
3908                if (block_nested_events)
3909                        return -EBUSY;
3910                nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3911                return 0;
3912        }
3913
3914        if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3915                if (block_nested_events)
3916                        return -EBUSY;
3917                goto no_vmexit;
3918        }
3919
3920        if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3921                if (block_nested_events)
3922                        return -EBUSY;
3923                if (!nested_exit_on_nmi(vcpu))
3924                        goto no_vmexit;
3925
3926                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3927                                  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3928                                  INTR_INFO_VALID_MASK, 0);
3929                /*
3930                 * The NMI-triggered VM exit counts as injection:
3931                 * clear this one and block further NMIs.
3932                 */
3933                vcpu->arch.nmi_pending = 0;
3934                vmx_set_nmi_mask(vcpu, true);
3935                return 0;
3936        }
3937
3938        if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3939                if (block_nested_events)
3940                        return -EBUSY;
3941                if (!nested_exit_on_intr(vcpu))
3942                        goto no_vmexit;
3943                nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3944                return 0;
3945        }
3946
3947no_vmexit:
3948        return vmx_complete_nested_posted_interrupt(vcpu);
3949}
3950
3951static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3952{
3953        ktime_t remaining =
3954                hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3955        u64 value;
3956
3957        if (ktime_to_ns(remaining) <= 0)
3958                return 0;
3959
3960        value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3961        do_div(value, 1000000);
3962        return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3963}
3964
3965static bool is_vmcs12_ext_field(unsigned long field)
3966{
3967        switch (field) {
3968        case GUEST_ES_SELECTOR:
3969        case GUEST_CS_SELECTOR:
3970        case GUEST_SS_SELECTOR:
3971        case GUEST_DS_SELECTOR:
3972        case GUEST_FS_SELECTOR:
3973        case GUEST_GS_SELECTOR:
3974        case GUEST_LDTR_SELECTOR:
3975        case GUEST_TR_SELECTOR:
3976        case GUEST_ES_LIMIT:
3977        case GUEST_CS_LIMIT:
3978        case GUEST_SS_LIMIT:
3979        case GUEST_DS_LIMIT:
3980        case GUEST_FS_LIMIT:
3981        case GUEST_GS_LIMIT:
3982        case GUEST_LDTR_LIMIT:
3983        case GUEST_TR_LIMIT:
3984        case GUEST_GDTR_LIMIT:
3985        case GUEST_IDTR_LIMIT:
3986        case GUEST_ES_AR_BYTES:
3987        case GUEST_DS_AR_BYTES:
3988        case GUEST_FS_AR_BYTES:
3989        case GUEST_GS_AR_BYTES:
3990        case GUEST_LDTR_AR_BYTES:
3991        case GUEST_TR_AR_BYTES:
3992        case GUEST_ES_BASE:
3993        case GUEST_CS_BASE:
3994        case GUEST_SS_BASE:
3995        case GUEST_DS_BASE:
3996        case GUEST_FS_BASE:
3997        case GUEST_GS_BASE:
3998        case GUEST_LDTR_BASE:
3999        case GUEST_TR_BASE:
4000        case GUEST_GDTR_BASE:
4001        case GUEST_IDTR_BASE:
4002        case GUEST_PENDING_DBG_EXCEPTIONS:
4003        case GUEST_BNDCFGS:
4004                return true;
4005        default:
4006                break;
4007        }
4008
4009        return false;
4010}
4011
4012static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4013                                       struct vmcs12 *vmcs12)
4014{
4015        struct vcpu_vmx *vmx = to_vmx(vcpu);
4016
4017        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4018        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4019        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4020        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4021        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4022        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4023        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4024        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4025        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4026        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4027        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4028        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4029        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4030        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4031        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4032        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4033        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4034        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4035        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4036        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4037        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4038        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4039        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4040        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4041        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4042        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4043        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4044        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4045        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4046        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4047        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4048        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4049        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4050        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4051        vmcs12->guest_pending_dbg_exceptions =
4052                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4053        if (kvm_mpx_supported())
4054                vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4055
4056        vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4057}
4058
4059static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4060                                       struct vmcs12 *vmcs12)
4061{
4062        struct vcpu_vmx *vmx = to_vmx(vcpu);
4063        int cpu;
4064
4065        if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4066                return;
4067
4068
4069        WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4070
4071        cpu = get_cpu();
4072        vmx->loaded_vmcs = &vmx->nested.vmcs02;
4073        vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4074
4075        sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4076
4077        vmx->loaded_vmcs = &vmx->vmcs01;
4078        vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4079        put_cpu();
4080}
4081
4082/*
4083 * Update the guest state fields of vmcs12 to reflect changes that
4084 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4085 * VM-entry controls is also updated, since this is really a guest
4086 * state bit.)
4087 */
4088static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4089{
4090        struct vcpu_vmx *vmx = to_vmx(vcpu);
4091
4092        if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4093                sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4094
4095        vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4096                !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4097
4098        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4099        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4100
4101        vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4102        vmcs12->guest_rip = kvm_rip_read(vcpu);
4103        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4104
4105        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4106        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4107
4108        vmcs12->guest_interruptibility_info =
4109                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4110
4111        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4112                vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4113        else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4114                vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4115        else
4116                vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4117
4118        if (nested_cpu_has_preemption_timer(vmcs12) &&
4119            vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4120            !vmx->nested.nested_run_pending)
4121                vmcs12->vmx_preemption_timer_value =
4122                        vmx_get_preemption_timer_value(vcpu);
4123
4124        /*
4125         * In some cases (usually, nested EPT), L2 is allowed to change its
4126         * own CR3 without exiting. If it has changed it, we must keep it.
4127         * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4128         * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4129         *
4130         * Additionally, restore L2's PDPTR to vmcs12.
4131         */
4132        if (enable_ept) {
4133                vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4134                if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4135                        vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4136                        vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4137                        vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4138                        vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4139                }
4140        }
4141
4142        vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4143
4144        if (nested_cpu_has_vid(vmcs12))
4145                vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4146
4147        vmcs12->vm_entry_controls =
4148                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4149                (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4150
4151        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4152                kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4153
4154        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4155                vmcs12->guest_ia32_efer = vcpu->arch.efer;
4156}
4157
4158/*
4159 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4160 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4161 * and this function updates it to reflect the changes to the guest state while
4162 * L2 was running (and perhaps made some exits which were handled directly by L0
4163 * without going back to L1), and to reflect the exit reason.
4164 * Note that we do not have to copy here all VMCS fields, just those that
4165 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4166 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4167 * which already writes to vmcs12 directly.
4168 */
4169static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4170                           u32 vm_exit_reason, u32 exit_intr_info,
4171                           unsigned long exit_qualification)
4172{
4173        /* update exit information fields: */
4174        vmcs12->vm_exit_reason = vm_exit_reason;
4175        if (to_vmx(vcpu)->exit_reason.enclave_mode)
4176                vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4177        vmcs12->exit_qualification = exit_qualification;
4178        vmcs12->vm_exit_intr_info = exit_intr_info;
4179
4180        vmcs12->idt_vectoring_info_field = 0;
4181        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4182        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4183
4184        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4185                vmcs12->launch_state = 1;
4186
4187                /* vm_entry_intr_info_field is cleared on exit. Emulate this
4188                 * instead of reading the real value. */
4189                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4190
4191                /*
4192                 * Transfer the event that L0 or L1 may wanted to inject into
4193                 * L2 to IDT_VECTORING_INFO_FIELD.
4194                 */
4195                vmcs12_save_pending_event(vcpu, vmcs12);
4196
4197                /*
4198                 * According to spec, there's no need to store the guest's
4199                 * MSRs if the exit is due to a VM-entry failure that occurs
4200                 * during or after loading the guest state. Since this exit
4201                 * does not fall in that category, we need to save the MSRs.
4202                 */
4203                if (nested_vmx_store_msr(vcpu,
4204                                         vmcs12->vm_exit_msr_store_addr,
4205                                         vmcs12->vm_exit_msr_store_count))
4206                        nested_vmx_abort(vcpu,
4207                                         VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4208        }
4209
4210        /*
4211         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4212         * preserved above and would only end up incorrectly in L1.
4213         */
4214        vcpu->arch.nmi_injected = false;
4215        kvm_clear_exception_queue(vcpu);
4216        kvm_clear_interrupt_queue(vcpu);
4217}
4218
4219/*
4220 * A part of what we need to when the nested L2 guest exits and we want to
4221 * run its L1 parent, is to reset L1's guest state to the host state specified
4222 * in vmcs12.
4223 * This function is to be called not only on normal nested exit, but also on
4224 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4225 * Failures During or After Loading Guest State").
4226 * This function should be called when the active VMCS is L1's (vmcs01).
4227 */
4228static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4229                                   struct vmcs12 *vmcs12)
4230{
4231        enum vm_entry_failure_code ignored;
4232        struct kvm_segment seg;
4233
4234        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4235                vcpu->arch.efer = vmcs12->host_ia32_efer;
4236        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4237                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4238        else
4239                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4240        vmx_set_efer(vcpu, vcpu->arch.efer);
4241
4242        kvm_rsp_write(vcpu, vmcs12->host_rsp);
4243        kvm_rip_write(vcpu, vmcs12->host_rip);
4244        vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4245        vmx_set_interrupt_shadow(vcpu, 0);
4246
4247        /*
4248         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4249         * actually changed, because vmx_set_cr0 refers to efer set above.
4250         *
4251         * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4252         * (KVM doesn't change it);
4253         */
4254        vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4255        vmx_set_cr0(vcpu, vmcs12->host_cr0);
4256
4257        /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4258        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4259        vmx_set_cr4(vcpu, vmcs12->host_cr4);
4260
4261        nested_ept_uninit_mmu_context(vcpu);
4262
4263        /*
4264         * Only PDPTE load can fail as the value of cr3 was checked on entry and
4265         * couldn't have changed.
4266         */
4267        if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4268                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4269
4270        nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4271
4272        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4273        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4274        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4275        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4276        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4277        vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4278        vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4279
4280        /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4281        if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4282                vmcs_write64(GUEST_BNDCFGS, 0);
4283
4284        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4285                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4286                vcpu->arch.pat = vmcs12->host_ia32_pat;
4287        }
4288        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4289                WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4290                                         vmcs12->host_ia32_perf_global_ctrl));
4291
4292        /* Set L1 segment info according to Intel SDM
4293            27.5.2 Loading Host Segment and Descriptor-Table Registers */
4294        seg = (struct kvm_segment) {
4295                .base = 0,
4296                .limit = 0xFFFFFFFF,
4297                .selector = vmcs12->host_cs_selector,
4298                .type = 11,
4299                .present = 1,
4300                .s = 1,
4301                .g = 1
4302        };
4303        if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4304                seg.l = 1;
4305        else
4306                seg.db = 1;
4307        vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4308        seg = (struct kvm_segment) {
4309                .base = 0,
4310                .limit = 0xFFFFFFFF,
4311                .type = 3,
4312                .present = 1,
4313                .s = 1,
4314                .db = 1,
4315                .g = 1
4316        };
4317        seg.selector = vmcs12->host_ds_selector;
4318        vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4319        seg.selector = vmcs12->host_es_selector;
4320        vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4321        seg.selector = vmcs12->host_ss_selector;
4322        vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4323        seg.selector = vmcs12->host_fs_selector;
4324        seg.base = vmcs12->host_fs_base;
4325        vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4326        seg.selector = vmcs12->host_gs_selector;
4327        seg.base = vmcs12->host_gs_base;
4328        vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4329        seg = (struct kvm_segment) {
4330                .base = vmcs12->host_tr_base,
4331                .limit = 0x67,
4332                .selector = vmcs12->host_tr_selector,
4333                .type = 11,
4334                .present = 1
4335        };
4336        vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4337
4338        kvm_set_dr(vcpu, 7, 0x400);
4339        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4340
4341        if (cpu_has_vmx_msr_bitmap())
4342                vmx_update_msr_bitmap(vcpu);
4343
4344        if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4345                                vmcs12->vm_exit_msr_load_count))
4346                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4347}
4348
4349static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4350{
4351        struct vmx_uret_msr *efer_msr;
4352        unsigned int i;
4353
4354        if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4355                return vmcs_read64(GUEST_IA32_EFER);
4356
4357        if (cpu_has_load_ia32_efer())
4358                return host_efer;
4359
4360        for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4361                if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4362                        return vmx->msr_autoload.guest.val[i].value;
4363        }
4364
4365        efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4366        if (efer_msr)
4367                return efer_msr->data;
4368
4369        return host_efer;
4370}
4371
4372static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4373{
4374        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4375        struct vcpu_vmx *vmx = to_vmx(vcpu);
4376        struct vmx_msr_entry g, h;
4377        gpa_t gpa;
4378        u32 i, j;
4379
4380        vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4381
4382        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4383                /*
4384                 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4385                 * as vmcs01.GUEST_DR7 contains a userspace defined value
4386                 * and vcpu->arch.dr7 is not squirreled away before the
4387                 * nested VMENTER (not worth adding a variable in nested_vmx).
4388                 */
4389                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4390                        kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4391                else
4392                        WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4393        }
4394
4395        /*
4396         * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4397         * handle a variety of side effects to KVM's software model.
4398         */
4399        vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4400
4401        vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4402        vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4403
4404        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4405        vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4406
4407        nested_ept_uninit_mmu_context(vcpu);
4408        vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4409        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4410
4411        /*
4412         * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4413         * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4414         * VMFail, like everything else we just need to ensure our
4415         * software model is up-to-date.
4416         */
4417        if (enable_ept && is_pae_paging(vcpu))
4418                ept_save_pdptrs(vcpu);
4419
4420        kvm_mmu_reset_context(vcpu);
4421
4422        if (cpu_has_vmx_msr_bitmap())
4423                vmx_update_msr_bitmap(vcpu);
4424
4425        /*
4426         * This nasty bit of open coding is a compromise between blindly
4427         * loading L1's MSRs using the exit load lists (incorrect emulation
4428         * of VMFail), leaving the nested VM's MSRs in the software model
4429         * (incorrect behavior) and snapshotting the modified MSRs (too
4430         * expensive since the lists are unbound by hardware).  For each
4431         * MSR that was (prematurely) loaded from the nested VMEntry load
4432         * list, reload it from the exit load list if it exists and differs
4433         * from the guest value.  The intent is to stuff host state as
4434         * silently as possible, not to fully process the exit load list.
4435         */
4436        for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4437                gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4438                if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4439                        pr_debug_ratelimited(
4440                                "%s read MSR index failed (%u, 0x%08llx)\n",
4441                                __func__, i, gpa);
4442                        goto vmabort;
4443                }
4444
4445                for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4446                        gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4447                        if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4448                                pr_debug_ratelimited(
4449                                        "%s read MSR failed (%u, 0x%08llx)\n",
4450                                        __func__, j, gpa);
4451                                goto vmabort;
4452                        }
4453                        if (h.index != g.index)
4454                                continue;
4455                        if (h.value == g.value)
4456                                break;
4457
4458                        if (nested_vmx_load_msr_check(vcpu, &h)) {
4459                                pr_debug_ratelimited(
4460                                        "%s check failed (%u, 0x%x, 0x%x)\n",
4461                                        __func__, j, h.index, h.reserved);
4462                                goto vmabort;
4463                        }
4464
4465                        if (kvm_set_msr(vcpu, h.index, h.value)) {
4466                                pr_debug_ratelimited(
4467                                        "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4468                                        __func__, j, h.index, h.value);
4469                                goto vmabort;
4470                        }
4471                }
4472        }
4473
4474        return;
4475
4476vmabort:
4477        nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4478}
4479
4480/*
4481 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4482 * and modify vmcs12 to make it see what it would expect to see there if
4483 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4484 */
4485void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4486                       u32 exit_intr_info, unsigned long exit_qualification)
4487{
4488        struct vcpu_vmx *vmx = to_vmx(vcpu);
4489        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4490
4491        /* trying to cancel vmlaunch/vmresume is a bug */
4492        WARN_ON_ONCE(vmx->nested.nested_run_pending);
4493
4494        /* Similarly, triple faults in L2 should never escape. */
4495        WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4496
4497        if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4498                /*
4499                 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4500                 * Enlightened VMCS after migration and we still need to
4501                 * do that when something is forcing L2->L1 exit prior to
4502                 * the first L2 run.
4503                 */
4504                (void)nested_get_evmcs_page(vcpu);
4505        }
4506
4507        /* Service the TLB flush request for L2 before switching to L1. */
4508        if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4509                kvm_vcpu_flush_tlb_current(vcpu);
4510
4511        /*
4512         * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4513         * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4514         * up-to-date before switching to L1.
4515         */
4516        if (enable_ept && is_pae_paging(vcpu))
4517                vmx_ept_load_pdptrs(vcpu);
4518
4519        leave_guest_mode(vcpu);
4520
4521        if (nested_cpu_has_preemption_timer(vmcs12))
4522                hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4523
4524        if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4525                vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4526                if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4527                        vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4528        }
4529
4530        if (likely(!vmx->fail)) {
4531                sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4532
4533                if (vm_exit_reason != -1)
4534                        prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4535                                       exit_intr_info, exit_qualification);
4536
4537                /*
4538                 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4539                 * also be used to capture vmcs12 cache as part of
4540                 * capturing nVMX state for snapshot (migration).
4541                 *
4542                 * Otherwise, this flush will dirty guest memory at a
4543                 * point it is already assumed by user-space to be
4544                 * immutable.
4545                 */
4546                nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4547        } else {
4548                /*
4549                 * The only expected VM-instruction error is "VM entry with
4550                 * invalid control field(s)." Anything else indicates a
4551                 * problem with L0.  And we should never get here with a
4552                 * VMFail of any type if early consistency checks are enabled.
4553                 */
4554                WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4555                             VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4556                WARN_ON_ONCE(nested_early_check);
4557        }
4558
4559        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4560
4561        /* Update any VMCS fields that might have changed while L2 ran */
4562        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4563        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4564        vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4565        if (kvm_has_tsc_control)
4566                vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4567
4568        if (vmx->nested.l1_tpr_threshold != -1)
4569                vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4570
4571        if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4572                vmx->nested.change_vmcs01_virtual_apic_mode = false;
4573                vmx_set_virtual_apic_mode(vcpu);
4574        }
4575
4576        if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4577                vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4578                vmx_update_cpu_dirty_logging(vcpu);
4579        }
4580
4581        /* Unpin physical memory we referred to in vmcs02 */
4582        if (vmx->nested.apic_access_page) {
4583                kvm_release_page_clean(vmx->nested.apic_access_page);
4584                vmx->nested.apic_access_page = NULL;
4585        }
4586        kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4587        kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4588        vmx->nested.pi_desc = NULL;
4589
4590        if (vmx->nested.reload_vmcs01_apic_access_page) {
4591                vmx->nested.reload_vmcs01_apic_access_page = false;
4592                kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4593        }
4594
4595        if ((vm_exit_reason != -1) &&
4596            (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4597                vmx->nested.need_vmcs12_to_shadow_sync = true;
4598
4599        /* in case we halted in L2 */
4600        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4601
4602        if (likely(!vmx->fail)) {
4603                if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4604                    nested_exit_intr_ack_set(vcpu)) {
4605                        int irq = kvm_cpu_get_interrupt(vcpu);
4606                        WARN_ON(irq < 0);
4607                        vmcs12->vm_exit_intr_info = irq |
4608                                INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4609                }
4610
4611                if (vm_exit_reason != -1)
4612                        trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4613                                                       vmcs12->exit_qualification,
4614                                                       vmcs12->idt_vectoring_info_field,
4615                                                       vmcs12->vm_exit_intr_info,
4616                                                       vmcs12->vm_exit_intr_error_code,
4617                                                       KVM_ISA_VMX);
4618
4619                load_vmcs12_host_state(vcpu, vmcs12);
4620
4621                return;
4622        }
4623
4624        /*
4625         * After an early L2 VM-entry failure, we're now back
4626         * in L1 which thinks it just finished a VMLAUNCH or
4627         * VMRESUME instruction, so we need to set the failure
4628         * flag and the VM-instruction error field of the VMCS
4629         * accordingly, and skip the emulated instruction.
4630         */
4631        (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4632
4633        /*
4634         * Restore L1's host state to KVM's software model.  We're here
4635         * because a consistency check was caught by hardware, which
4636         * means some amount of guest state has been propagated to KVM's
4637         * model and needs to be unwound to the host's state.
4638         */
4639        nested_vmx_restore_host_state(vcpu);
4640
4641        vmx->fail = 0;
4642}
4643
4644static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4645{
4646        nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4647}
4648
4649/*
4650 * Decode the memory-address operand of a vmx instruction, as recorded on an
4651 * exit caused by such an instruction (run by a guest hypervisor).
4652 * On success, returns 0. When the operand is invalid, returns 1 and throws
4653 * #UD, #GP, or #SS.
4654 */
4655int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4656                        u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4657{
4658        gva_t off;
4659        bool exn;
4660        struct kvm_segment s;
4661
4662        /*
4663         * According to Vol. 3B, "Information for VM Exits Due to Instruction
4664         * Execution", on an exit, vmx_instruction_info holds most of the
4665         * addressing components of the operand. Only the displacement part
4666         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4667         * For how an actual address is calculated from all these components,
4668         * refer to Vol. 1, "Operand Addressing".
4669         */
4670        int  scaling = vmx_instruction_info & 3;
4671        int  addr_size = (vmx_instruction_info >> 7) & 7;
4672        bool is_reg = vmx_instruction_info & (1u << 10);
4673        int  seg_reg = (vmx_instruction_info >> 15) & 7;
4674        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4675        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4676        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4677        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4678
4679        if (is_reg) {
4680                kvm_queue_exception(vcpu, UD_VECTOR);
4681                return 1;
4682        }
4683
4684        /* Addr = segment_base + offset */
4685        /* offset = base + [index * scale] + displacement */
4686        off = exit_qualification; /* holds the displacement */
4687        if (addr_size == 1)
4688                off = (gva_t)sign_extend64(off, 31);
4689        else if (addr_size == 0)
4690                off = (gva_t)sign_extend64(off, 15);
4691        if (base_is_valid)
4692                off += kvm_register_read(vcpu, base_reg);
4693        if (index_is_valid)
4694                off += kvm_register_read(vcpu, index_reg) << scaling;
4695        vmx_get_segment(vcpu, &s, seg_reg);
4696
4697        /*
4698         * The effective address, i.e. @off, of a memory operand is truncated
4699         * based on the address size of the instruction.  Note that this is
4700         * the *effective address*, i.e. the address prior to accounting for
4701         * the segment's base.
4702         */
4703        if (addr_size == 1) /* 32 bit */
4704                off &= 0xffffffff;
4705        else if (addr_size == 0) /* 16 bit */
4706                off &= 0xffff;
4707
4708        /* Checks for #GP/#SS exceptions. */
4709        exn = false;
4710        if (is_long_mode(vcpu)) {
4711                /*
4712                 * The virtual/linear address is never truncated in 64-bit
4713                 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4714                 * address when using FS/GS with a non-zero base.
4715                 */
4716                if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4717                        *ret = s.base + off;
4718                else
4719                        *ret = off;
4720
4721                /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4722                 * non-canonical form. This is the only check on the memory
4723                 * destination for long mode!
4724                 */
4725                exn = is_noncanonical_address(*ret, vcpu);
4726        } else {
4727                /*
4728                 * When not in long mode, the virtual/linear address is
4729                 * unconditionally truncated to 32 bits regardless of the
4730                 * address size.
4731                 */
4732                *ret = (s.base + off) & 0xffffffff;
4733
4734                /* Protected mode: apply checks for segment validity in the
4735                 * following order:
4736                 * - segment type check (#GP(0) may be thrown)
4737                 * - usability check (#GP(0)/#SS(0))
4738                 * - limit check (#GP(0)/#SS(0))
4739                 */
4740                if (wr)
4741                        /* #GP(0) if the destination operand is located in a
4742                         * read-only data segment or any code segment.
4743                         */
4744                        exn = ((s.type & 0xa) == 0 || (s.type & 8));
4745                else
4746                        /* #GP(0) if the source operand is located in an
4747                         * execute-only code segment
4748                         */
4749                        exn = ((s.type & 0xa) == 8);
4750                if (exn) {
4751                        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4752                        return 1;
4753                }
4754                /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4755                 */
4756                exn = (s.unusable != 0);
4757
4758                /*
4759                 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4760                 * outside the segment limit.  All CPUs that support VMX ignore
4761                 * limit checks for flat segments, i.e. segments with base==0,
4762                 * limit==0xffffffff and of type expand-up data or code.
4763                 */
4764                if (!(s.base == 0 && s.limit == 0xffffffff &&
4765                     ((s.type & 8) || !(s.type & 4))))
4766                        exn = exn || ((u64)off + len - 1 > s.limit);
4767        }
4768        if (exn) {
4769                kvm_queue_exception_e(vcpu,
4770                                      seg_reg == VCPU_SREG_SS ?
4771                                                SS_VECTOR : GP_VECTOR,
4772                                      0);
4773                return 1;
4774        }
4775
4776        return 0;
4777}
4778
4779void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4780{
4781        struct vcpu_vmx *vmx;
4782
4783        if (!nested_vmx_allowed(vcpu))
4784                return;
4785
4786        vmx = to_vmx(vcpu);
4787        if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4788                vmx->nested.msrs.entry_ctls_high |=
4789                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4790                vmx->nested.msrs.exit_ctls_high |=
4791                                VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4792        } else {
4793                vmx->nested.msrs.entry_ctls_high &=
4794                                ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4795                vmx->nested.msrs.exit_ctls_high &=
4796                                ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4797        }
4798}
4799
4800static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4801                                int *ret)
4802{
4803        gva_t gva;
4804        struct x86_exception e;
4805        int r;
4806
4807        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4808                                vmcs_read32(VMX_INSTRUCTION_INFO), false,
4809                                sizeof(*vmpointer), &gva)) {
4810                *ret = 1;
4811                return -EINVAL;
4812        }
4813
4814        r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4815        if (r != X86EMUL_CONTINUE) {
4816                *ret = kvm_handle_memory_failure(vcpu, r, &e);
4817                return -EINVAL;
4818        }
4819
4820        return 0;
4821}
4822
4823/*
4824 * Allocate a shadow VMCS and associate it with the currently loaded
4825 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4826 * VMCS is also VMCLEARed, so that it is ready for use.
4827 */
4828static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4829{
4830        struct vcpu_vmx *vmx = to_vmx(vcpu);
4831        struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4832
4833        /*
4834         * We should allocate a shadow vmcs for vmcs01 only when L1
4835         * executes VMXON and free it when L1 executes VMXOFF.
4836         * As it is invalid to execute VMXON twice, we shouldn't reach
4837         * here when vmcs01 already have an allocated shadow vmcs.
4838         */
4839        WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4840
4841        if (!loaded_vmcs->shadow_vmcs) {
4842                loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4843                if (loaded_vmcs->shadow_vmcs)
4844                        vmcs_clear(loaded_vmcs->shadow_vmcs);
4845        }
4846        return loaded_vmcs->shadow_vmcs;
4847}
4848
4849static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4850{
4851        struct vcpu_vmx *vmx = to_vmx(vcpu);
4852        int r;
4853
4854        r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4855        if (r < 0)
4856                goto out_vmcs02;
4857
4858        vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4859        if (!vmx->nested.cached_vmcs12)
4860                goto out_cached_vmcs12;
4861
4862        vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4863        if (!vmx->nested.cached_shadow_vmcs12)
4864                goto out_cached_shadow_vmcs12;
4865
4866        if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4867                goto out_shadow_vmcs;
4868
4869        hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4870                     HRTIMER_MODE_ABS_PINNED);
4871        vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4872
4873        vmx->nested.vpid02 = allocate_vpid();
4874
4875        vmx->nested.vmcs02_initialized = false;
4876        vmx->nested.vmxon = true;
4877
4878        if (vmx_pt_mode_is_host_guest()) {
4879                vmx->pt_desc.guest.ctl = 0;
4880                pt_update_intercept_for_msr(vcpu);
4881        }
4882
4883        return 0;
4884
4885out_shadow_vmcs:
4886        kfree(vmx->nested.cached_shadow_vmcs12);
4887
4888out_cached_shadow_vmcs12:
4889        kfree(vmx->nested.cached_vmcs12);
4890
4891out_cached_vmcs12:
4892        free_loaded_vmcs(&vmx->nested.vmcs02);
4893
4894out_vmcs02:
4895        return -ENOMEM;
4896}
4897
4898/*
4899 * Emulate the VMXON instruction.
4900 * Currently, we just remember that VMX is active, and do not save or even
4901 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4902 * do not currently need to store anything in that guest-allocated memory
4903 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4904 * argument is different from the VMXON pointer (which the spec says they do).
4905 */
4906static int handle_vmon(struct kvm_vcpu *vcpu)
4907{
4908        int ret;
4909        gpa_t vmptr;
4910        uint32_t revision;
4911        struct vcpu_vmx *vmx = to_vmx(vcpu);
4912        const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4913                | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4914
4915        /*
4916         * The Intel VMX Instruction Reference lists a bunch of bits that are
4917         * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4918         * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4919         * Otherwise, we should fail with #UD.  But most faulting conditions
4920         * have already been checked by hardware, prior to the VM-exit for
4921         * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4922         * that bit set to 1 in non-root mode.
4923         */
4924        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4925                kvm_queue_exception(vcpu, UD_VECTOR);
4926                return 1;
4927        }
4928
4929        /* CPL=0 must be checked manually. */
4930        if (vmx_get_cpl(vcpu)) {
4931                kvm_inject_gp(vcpu, 0);
4932                return 1;
4933        }
4934
4935        if (vmx->nested.vmxon)
4936                return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4937
4938        if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4939                        != VMXON_NEEDED_FEATURES) {
4940                kvm_inject_gp(vcpu, 0);
4941                return 1;
4942        }
4943
4944        if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4945                return ret;
4946
4947        /*
4948         * SDM 3: 24.11.5
4949         * The first 4 bytes of VMXON region contain the supported
4950         * VMCS revision identifier
4951         *
4952         * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4953         * which replaces physical address width with 32
4954         */
4955        if (!page_address_valid(vcpu, vmptr))
4956                return nested_vmx_failInvalid(vcpu);
4957
4958        if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4959            revision != VMCS12_REVISION)
4960                return nested_vmx_failInvalid(vcpu);
4961
4962        vmx->nested.vmxon_ptr = vmptr;
4963        ret = enter_vmx_operation(vcpu);
4964        if (ret)
4965                return ret;
4966
4967        return nested_vmx_succeed(vcpu);
4968}
4969
4970static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4971{
4972        struct vcpu_vmx *vmx = to_vmx(vcpu);
4973
4974        if (vmx->nested.current_vmptr == -1ull)
4975                return;
4976
4977        copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4978
4979        if (enable_shadow_vmcs) {
4980                /* copy to memory all shadowed fields in case
4981                   they were modified */
4982                copy_shadow_to_vmcs12(vmx);
4983                vmx_disable_shadow_vmcs(vmx);
4984        }
4985        vmx->nested.posted_intr_nv = -1;
4986
4987        /* Flush VMCS12 to guest memory */
4988        kvm_vcpu_write_guest_page(vcpu,
4989                                  vmx->nested.current_vmptr >> PAGE_SHIFT,
4990                                  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4991
4992        kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4993
4994        vmx->nested.current_vmptr = -1ull;
4995}
4996
4997/* Emulate the VMXOFF instruction */
4998static int handle_vmoff(struct kvm_vcpu *vcpu)
4999{
5000        if (!nested_vmx_check_permission(vcpu))
5001                return 1;
5002
5003        free_nested(vcpu);
5004
5005        /* Process a latched INIT during time CPU was in VMX operation */
5006        kvm_make_request(KVM_REQ_EVENT, vcpu);
5007
5008        return nested_vmx_succeed(vcpu);
5009}
5010
5011/* Emulate the VMCLEAR instruction */
5012static int handle_vmclear(struct kvm_vcpu *vcpu)
5013{
5014        struct vcpu_vmx *vmx = to_vmx(vcpu);
5015        u32 zero = 0;
5016        gpa_t vmptr;
5017        u64 evmcs_gpa;
5018        int r;
5019
5020        if (!nested_vmx_check_permission(vcpu))
5021                return 1;
5022
5023        if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5024                return r;
5025
5026        if (!page_address_valid(vcpu, vmptr))
5027                return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5028
5029        if (vmptr == vmx->nested.vmxon_ptr)
5030                return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5031
5032        /*
5033         * When Enlightened VMEntry is enabled on the calling CPU we treat
5034         * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5035         * way to distinguish it from VMCS12) and we must not corrupt it by
5036         * writing to the non-existent 'launch_state' field. The area doesn't
5037         * have to be the currently active EVMCS on the calling CPU and there's
5038         * nothing KVM has to do to transition it from 'active' to 'non-active'
5039         * state. It is possible that the area will stay mapped as
5040         * vmx->nested.hv_evmcs but this shouldn't be a problem.
5041         */
5042        if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5043                   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5044                if (vmptr == vmx->nested.current_vmptr)
5045                        nested_release_vmcs12(vcpu);
5046
5047                kvm_vcpu_write_guest(vcpu,
5048                                     vmptr + offsetof(struct vmcs12,
5049                                                      launch_state),
5050                                     &zero, sizeof(zero));
5051        } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5052                nested_release_evmcs(vcpu);
5053        }
5054
5055        return nested_vmx_succeed(vcpu);
5056}
5057
5058/* Emulate the VMLAUNCH instruction */
5059static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5060{
5061        return nested_vmx_run(vcpu, true);
5062}
5063
5064/* Emulate the VMRESUME instruction */
5065static int handle_vmresume(struct kvm_vcpu *vcpu)
5066{
5067
5068        return nested_vmx_run(vcpu, false);
5069}
5070
5071static int handle_vmread(struct kvm_vcpu *vcpu)
5072{
5073        struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5074                                                    : get_vmcs12(vcpu);
5075        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5076        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5077        struct vcpu_vmx *vmx = to_vmx(vcpu);
5078        struct x86_exception e;
5079        unsigned long field;
5080        u64 value;
5081        gva_t gva = 0;
5082        short offset;
5083        int len, r;
5084
5085        if (!nested_vmx_check_permission(vcpu))
5086                return 1;
5087
5088        /*
5089         * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5090         * any VMREAD sets the ALU flags for VMfailInvalid.
5091         */
5092        if (vmx->nested.current_vmptr == -1ull ||
5093            (is_guest_mode(vcpu) &&
5094             get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5095                return nested_vmx_failInvalid(vcpu);
5096
5097        /* Decode instruction info and find the field to read */
5098        field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5099
5100        offset = vmcs_field_to_offset(field);
5101        if (offset < 0)
5102                return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5103
5104        if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5105                copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5106
5107        /* Read the field, zero-extended to a u64 value */
5108        value = vmcs12_read_any(vmcs12, field, offset);
5109
5110        /*
5111         * Now copy part of this value to register or memory, as requested.
5112         * Note that the number of bits actually copied is 32 or 64 depending
5113         * on the guest's mode (32 or 64 bit), not on the given field's length.
5114         */
5115        if (instr_info & BIT(10)) {
5116                kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5117        } else {
5118                len = is_64_bit_mode(vcpu) ? 8 : 4;
5119                if (get_vmx_mem_address(vcpu, exit_qualification,
5120                                        instr_info, true, len, &gva))
5121                        return 1;
5122                /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5123                r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5124                if (r != X86EMUL_CONTINUE)
5125                        return kvm_handle_memory_failure(vcpu, r, &e);
5126        }
5127
5128        return nested_vmx_succeed(vcpu);
5129}
5130
5131static bool is_shadow_field_rw(unsigned long field)
5132{
5133        switch (field) {
5134#define SHADOW_FIELD_RW(x, y) case x:
5135#include "vmcs_shadow_fields.h"
5136                return true;
5137        default:
5138                break;
5139        }
5140        return false;
5141}
5142
5143static bool is_shadow_field_ro(unsigned long field)
5144{
5145        switch (field) {
5146#define SHADOW_FIELD_RO(x, y) case x:
5147#include "vmcs_shadow_fields.h"
5148                return true;
5149        default:
5150                break;
5151        }
5152        return false;
5153}
5154
5155static int handle_vmwrite(struct kvm_vcpu *vcpu)
5156{
5157        struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5158                                                    : get_vmcs12(vcpu);
5159        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5160        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5161        struct vcpu_vmx *vmx = to_vmx(vcpu);
5162        struct x86_exception e;
5163        unsigned long field;
5164        short offset;
5165        gva_t gva;
5166        int len, r;
5167
5168        /*
5169         * The value to write might be 32 or 64 bits, depending on L1's long
5170         * mode, and eventually we need to write that into a field of several
5171         * possible lengths. The code below first zero-extends the value to 64
5172         * bit (value), and then copies only the appropriate number of
5173         * bits into the vmcs12 field.
5174         */
5175        u64 value = 0;
5176
5177        if (!nested_vmx_check_permission(vcpu))
5178                return 1;
5179
5180        /*
5181         * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5182         * any VMWRITE sets the ALU flags for VMfailInvalid.
5183         */
5184        if (vmx->nested.current_vmptr == -1ull ||
5185            (is_guest_mode(vcpu) &&
5186             get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5187                return nested_vmx_failInvalid(vcpu);
5188
5189        if (instr_info & BIT(10))
5190                value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5191        else {
5192                len = is_64_bit_mode(vcpu) ? 8 : 4;
5193                if (get_vmx_mem_address(vcpu, exit_qualification,
5194                                        instr_info, false, len, &gva))
5195                        return 1;
5196                r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5197                if (r != X86EMUL_CONTINUE)
5198                        return kvm_handle_memory_failure(vcpu, r, &e);
5199        }
5200
5201        field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5202
5203        offset = vmcs_field_to_offset(field);
5204        if (offset < 0)
5205                return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5206
5207        /*
5208         * If the vCPU supports "VMWRITE to any supported field in the
5209         * VMCS," then the "read-only" fields are actually read/write.
5210         */
5211        if (vmcs_field_readonly(field) &&
5212            !nested_cpu_has_vmwrite_any_field(vcpu))
5213                return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5214
5215        /*
5216         * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5217         * vmcs12, else we may crush a field or consume a stale value.
5218         */
5219        if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5220                copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5221
5222        /*
5223         * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5224         * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5225         * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5226         * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5227         * from L1 will return a different value than VMREAD from L2 (L1 sees
5228         * the stripped down value, L2 sees the full value as stored by KVM).
5229         */
5230        if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5231                value &= 0x1f0ff;
5232
5233        vmcs12_write_any(vmcs12, field, offset, value);
5234
5235        /*
5236         * Do not track vmcs12 dirty-state if in guest-mode as we actually
5237         * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5238         * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5239         * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5240         */
5241        if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5242                /*
5243                 * L1 can read these fields without exiting, ensure the
5244                 * shadow VMCS is up-to-date.
5245                 */
5246                if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5247                        preempt_disable();
5248                        vmcs_load(vmx->vmcs01.shadow_vmcs);
5249
5250                        __vmcs_writel(field, value);
5251
5252                        vmcs_clear(vmx->vmcs01.shadow_vmcs);
5253                        vmcs_load(vmx->loaded_vmcs->vmcs);
5254                        preempt_enable();
5255                }
5256                vmx->nested.dirty_vmcs12 = true;
5257        }
5258
5259        return nested_vmx_succeed(vcpu);
5260}
5261
5262static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5263{
5264        vmx->nested.current_vmptr = vmptr;
5265        if (enable_shadow_vmcs) {
5266                secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5267                vmcs_write64(VMCS_LINK_POINTER,
5268                             __pa(vmx->vmcs01.shadow_vmcs));
5269                vmx->nested.need_vmcs12_to_shadow_sync = true;
5270        }
5271        vmx->nested.dirty_vmcs12 = true;
5272}
5273
5274/* Emulate the VMPTRLD instruction */
5275static int handle_vmptrld(struct kvm_vcpu *vcpu)
5276{
5277        struct vcpu_vmx *vmx = to_vmx(vcpu);
5278        gpa_t vmptr;
5279        int r;
5280
5281        if (!nested_vmx_check_permission(vcpu))
5282                return 1;
5283
5284        if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5285                return r;
5286
5287        if (!page_address_valid(vcpu, vmptr))
5288                return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5289
5290        if (vmptr == vmx->nested.vmxon_ptr)
5291                return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5292
5293        /* Forbid normal VMPTRLD if Enlightened version was used */
5294        if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5295                return 1;
5296
5297        if (vmx->nested.current_vmptr != vmptr) {
5298                struct kvm_host_map map;
5299                struct vmcs12 *new_vmcs12;
5300
5301                if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5302                        /*
5303                         * Reads from an unbacked page return all 1s,
5304                         * which means that the 32 bits located at the
5305                         * given physical address won't match the required
5306                         * VMCS12_REVISION identifier.
5307                         */
5308                        return nested_vmx_fail(vcpu,
5309                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5310                }
5311
5312                new_vmcs12 = map.hva;
5313
5314                if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5315                    (new_vmcs12->hdr.shadow_vmcs &&
5316                     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5317                        kvm_vcpu_unmap(vcpu, &map, false);
5318                        return nested_vmx_fail(vcpu,
5319                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5320                }
5321
5322                nested_release_vmcs12(vcpu);
5323
5324                /*
5325                 * Load VMCS12 from guest memory since it is not already
5326                 * cached.
5327                 */
5328                memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5329                kvm_vcpu_unmap(vcpu, &map, false);
5330
5331                set_current_vmptr(vmx, vmptr);
5332        }
5333
5334        return nested_vmx_succeed(vcpu);
5335}
5336
5337/* Emulate the VMPTRST instruction */
5338static int handle_vmptrst(struct kvm_vcpu *vcpu)
5339{
5340        unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5341        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5342        gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5343        struct x86_exception e;
5344        gva_t gva;
5345        int r;
5346
5347        if (!nested_vmx_check_permission(vcpu))
5348                return 1;
5349
5350        if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5351                return 1;
5352
5353        if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5354                                true, sizeof(gpa_t), &gva))
5355                return 1;
5356        /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5357        r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5358                                        sizeof(gpa_t), &e);
5359        if (r != X86EMUL_CONTINUE)
5360                return kvm_handle_memory_failure(vcpu, r, &e);
5361
5362        return nested_vmx_succeed(vcpu);
5363}
5364
5365/* Emulate the INVEPT instruction */
5366static int handle_invept(struct kvm_vcpu *vcpu)
5367{
5368        struct vcpu_vmx *vmx = to_vmx(vcpu);
5369        u32 vmx_instruction_info, types;
5370        unsigned long type, roots_to_free;
5371        struct kvm_mmu *mmu;
5372        gva_t gva;
5373        struct x86_exception e;
5374        struct {
5375                u64 eptp, gpa;
5376        } operand;
5377        int i, r;
5378
5379        if (!(vmx->nested.msrs.secondary_ctls_high &
5380              SECONDARY_EXEC_ENABLE_EPT) ||
5381            !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5382                kvm_queue_exception(vcpu, UD_VECTOR);
5383                return 1;
5384        }
5385
5386        if (!nested_vmx_check_permission(vcpu))
5387                return 1;
5388
5389        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5390        type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5391
5392        types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5393
5394        if (type >= 32 || !(types & (1 << type)))
5395                return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5396
5397        /* According to the Intel VMX instruction reference, the memory
5398         * operand is read even if it isn't needed (e.g., for type==global)
5399         */
5400        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5401                        vmx_instruction_info, false, sizeof(operand), &gva))
5402                return 1;
5403        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5404        if (r != X86EMUL_CONTINUE)
5405                return kvm_handle_memory_failure(vcpu, r, &e);
5406
5407        /*
5408         * Nested EPT roots are always held through guest_mmu,
5409         * not root_mmu.
5410         */
5411        mmu = &vcpu->arch.guest_mmu;
5412
5413        switch (type) {
5414        case VMX_EPT_EXTENT_CONTEXT:
5415                if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5416                        return nested_vmx_fail(vcpu,
5417                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5418
5419                roots_to_free = 0;
5420                if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5421                                            operand.eptp))
5422                        roots_to_free |= KVM_MMU_ROOT_CURRENT;
5423
5424                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5425                        if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5426                                                    mmu->prev_roots[i].pgd,
5427                                                    operand.eptp))
5428                                roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5429                }
5430                break;
5431        case VMX_EPT_EXTENT_GLOBAL:
5432                roots_to_free = KVM_MMU_ROOTS_ALL;
5433                break;
5434        default:
5435                BUG();
5436                break;
5437        }
5438
5439        if (roots_to_free)
5440                kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5441
5442        return nested_vmx_succeed(vcpu);
5443}
5444
5445static int handle_invvpid(struct kvm_vcpu *vcpu)
5446{
5447        struct vcpu_vmx *vmx = to_vmx(vcpu);
5448        u32 vmx_instruction_info;
5449        unsigned long type, types;
5450        gva_t gva;
5451        struct x86_exception e;
5452        struct {
5453                u64 vpid;
5454                u64 gla;
5455        } operand;
5456        u16 vpid02;
5457        int r;
5458
5459        if (!(vmx->nested.msrs.secondary_ctls_high &
5460              SECONDARY_EXEC_ENABLE_VPID) ||
5461                        !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5462                kvm_queue_exception(vcpu, UD_VECTOR);
5463                return 1;
5464        }
5465
5466        if (!nested_vmx_check_permission(vcpu))
5467                return 1;
5468
5469        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5470        type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5471
5472        types = (vmx->nested.msrs.vpid_caps &
5473                        VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5474
5475        if (type >= 32 || !(types & (1 << type)))
5476                return nested_vmx_fail(vcpu,
5477                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5478
5479        /* according to the intel vmx instruction reference, the memory
5480         * operand is read even if it isn't needed (e.g., for type==global)
5481         */
5482        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5483                        vmx_instruction_info, false, sizeof(operand), &gva))
5484                return 1;
5485        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5486        if (r != X86EMUL_CONTINUE)
5487                return kvm_handle_memory_failure(vcpu, r, &e);
5488
5489        if (operand.vpid >> 16)
5490                return nested_vmx_fail(vcpu,
5491                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5492
5493        vpid02 = nested_get_vpid02(vcpu);
5494        switch (type) {
5495        case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5496                if (!operand.vpid ||
5497                    is_noncanonical_address(operand.gla, vcpu))
5498                        return nested_vmx_fail(vcpu,
5499                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5500                vpid_sync_vcpu_addr(vpid02, operand.gla);
5501                break;
5502        case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5503        case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5504                if (!operand.vpid)
5505                        return nested_vmx_fail(vcpu,
5506                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5507                vpid_sync_context(vpid02);
5508                break;
5509        case VMX_VPID_EXTENT_ALL_CONTEXT:
5510                vpid_sync_context(vpid02);
5511                break;
5512        default:
5513                WARN_ON_ONCE(1);
5514                return kvm_skip_emulated_instruction(vcpu);
5515        }
5516
5517        /*
5518         * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5519         * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5520         * roots as VPIDs are not tracked in the MMU role.
5521         *
5522         * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5523         * an MMU when EPT is disabled.
5524         *
5525         * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5526         */
5527        if (!enable_ept)
5528                kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5529
5530        return nested_vmx_succeed(vcpu);
5531}
5532
5533static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5534                                     struct vmcs12 *vmcs12)
5535{
5536        u32 index = kvm_rcx_read(vcpu);
5537        u64 new_eptp;
5538
5539        if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5540                return 1;
5541        if (index >= VMFUNC_EPTP_ENTRIES)
5542                return 1;
5543
5544        if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5545                                     &new_eptp, index * 8, 8))
5546                return 1;
5547
5548        /*
5549         * If the (L2) guest does a vmfunc to the currently
5550         * active ept pointer, we don't have to do anything else
5551         */
5552        if (vmcs12->ept_pointer != new_eptp) {
5553                if (!nested_vmx_check_eptp(vcpu, new_eptp))
5554                        return 1;
5555
5556                vmcs12->ept_pointer = new_eptp;
5557                nested_ept_new_eptp(vcpu);
5558
5559                if (!nested_cpu_has_vpid(vmcs12))
5560                        kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5561        }
5562
5563        return 0;
5564}
5565
5566static int handle_vmfunc(struct kvm_vcpu *vcpu)
5567{
5568        struct vcpu_vmx *vmx = to_vmx(vcpu);
5569        struct vmcs12 *vmcs12;
5570        u32 function = kvm_rax_read(vcpu);
5571
5572        /*
5573         * VMFUNC is only supported for nested guests, but we always enable the
5574         * secondary control for simplicity; for non-nested mode, fake that we
5575         * didn't by injecting #UD.
5576         */
5577        if (!is_guest_mode(vcpu)) {
5578                kvm_queue_exception(vcpu, UD_VECTOR);
5579                return 1;
5580        }
5581
5582        vmcs12 = get_vmcs12(vcpu);
5583
5584        /*
5585         * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5586         * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5587         */
5588        if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5589                kvm_queue_exception(vcpu, UD_VECTOR);
5590                return 1;
5591        }
5592
5593        if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5594                goto fail;
5595
5596        switch (function) {
5597        case 0:
5598                if (nested_vmx_eptp_switching(vcpu, vmcs12))
5599                        goto fail;
5600                break;
5601        default:
5602                goto fail;
5603        }
5604        return kvm_skip_emulated_instruction(vcpu);
5605
5606fail:
5607        /*
5608         * This is effectively a reflected VM-Exit, as opposed to a synthesized
5609         * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5610         * EXIT_REASON_VMFUNC as the exit reason.
5611         */
5612        nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5613                          vmx_get_intr_info(vcpu),
5614                          vmx_get_exit_qual(vcpu));
5615        return 1;
5616}
5617
5618/*
5619 * Return true if an IO instruction with the specified port and size should cause
5620 * a VM-exit into L1.
5621 */
5622bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5623                                 int size)
5624{
5625        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5626        gpa_t bitmap, last_bitmap;
5627        u8 b;
5628
5629        last_bitmap = (gpa_t)-1;
5630        b = -1;
5631
5632        while (size > 0) {
5633                if (port < 0x8000)
5634                        bitmap = vmcs12->io_bitmap_a;
5635                else if (port < 0x10000)
5636                        bitmap = vmcs12->io_bitmap_b;
5637                else
5638                        return true;
5639                bitmap += (port & 0x7fff) / 8;
5640
5641                if (last_bitmap != bitmap)
5642                        if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5643                                return true;
5644                if (b & (1 << (port & 7)))
5645                        return true;
5646
5647                port++;
5648                size--;
5649                last_bitmap = bitmap;
5650        }
5651
5652        return false;
5653}
5654
5655static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5656                                       struct vmcs12 *vmcs12)
5657{
5658        unsigned long exit_qualification;
5659        unsigned short port;
5660        int size;
5661
5662        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5663                return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5664
5665        exit_qualification = vmx_get_exit_qual(vcpu);
5666
5667        port = exit_qualification >> 16;
5668        size = (exit_qualification & 7) + 1;
5669
5670        return nested_vmx_check_io_bitmaps(vcpu, port, size);
5671}
5672
5673/*
5674 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5675 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5676 * disinterest in the current event (read or write a specific MSR) by using an
5677 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5678 */
5679static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5680                                        struct vmcs12 *vmcs12,
5681                                        union vmx_exit_reason exit_reason)
5682{
5683        u32 msr_index = kvm_rcx_read(vcpu);
5684        gpa_t bitmap;
5685
5686        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5687                return true;
5688
5689        /*
5690         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5691         * for the four combinations of read/write and low/high MSR numbers.
5692         * First we need to figure out which of the four to use:
5693         */
5694        bitmap = vmcs12->msr_bitmap;
5695        if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5696                bitmap += 2048;
5697        if (msr_index >= 0xc0000000) {
5698                msr_index -= 0xc0000000;
5699                bitmap += 1024;
5700        }
5701
5702        /* Then read the msr_index'th bit from this bitmap: */
5703        if (msr_index < 1024*8) {
5704                unsigned char b;
5705                if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5706                        return true;
5707                return 1 & (b >> (msr_index & 7));
5708        } else
5709                return true; /* let L1 handle the wrong parameter */
5710}
5711
5712/*
5713 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5714 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5715 * intercept (via guest_host_mask etc.) the current event.
5716 */
5717static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5718        struct vmcs12 *vmcs12)
5719{
5720        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5721        int cr = exit_qualification & 15;
5722        int reg;
5723        unsigned long val;
5724
5725        switch ((exit_qualification >> 4) & 3) {
5726        case 0: /* mov to cr */
5727                reg = (exit_qualification >> 8) & 15;
5728                val = kvm_register_read(vcpu, reg);
5729                switch (cr) {
5730                case 0:
5731                        if (vmcs12->cr0_guest_host_mask &
5732                            (val ^ vmcs12->cr0_read_shadow))
5733                                return true;
5734                        break;
5735                case 3:
5736                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5737                                return true;
5738                        break;
5739                case 4:
5740                        if (vmcs12->cr4_guest_host_mask &
5741                            (vmcs12->cr4_read_shadow ^ val))
5742                                return true;
5743                        break;
5744                case 8:
5745                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5746                                return true;
5747                        break;
5748                }
5749                break;
5750        case 2: /* clts */
5751                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5752                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5753                        return true;
5754                break;
5755        case 1: /* mov from cr */
5756                switch (cr) {
5757                case 3:
5758                        if (vmcs12->cpu_based_vm_exec_control &
5759                            CPU_BASED_CR3_STORE_EXITING)
5760                                return true;
5761                        break;
5762                case 8:
5763                        if (vmcs12->cpu_based_vm_exec_control &
5764                            CPU_BASED_CR8_STORE_EXITING)
5765                                return true;
5766                        break;
5767                }
5768                break;
5769        case 3: /* lmsw */
5770                /*
5771                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5772                 * cr0. Other attempted changes are ignored, with no exit.
5773                 */
5774                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5775                if (vmcs12->cr0_guest_host_mask & 0xe &
5776                    (val ^ vmcs12->cr0_read_shadow))
5777                        return true;
5778                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5779                    !(vmcs12->cr0_read_shadow & 0x1) &&
5780                    (val & 0x1))
5781                        return true;
5782                break;
5783        }
5784        return false;
5785}
5786
5787static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5788                                          struct vmcs12 *vmcs12)
5789{
5790        u32 encls_leaf;
5791
5792        if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5793            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5794                return false;
5795
5796        encls_leaf = kvm_rax_read(vcpu);
5797        if (encls_leaf > 62)
5798                encls_leaf = 63;
5799        return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5800}
5801
5802static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5803        struct vmcs12 *vmcs12, gpa_t bitmap)
5804{
5805        u32 vmx_instruction_info;
5806        unsigned long field;
5807        u8 b;
5808
5809        if (!nested_cpu_has_shadow_vmcs(vmcs12))
5810                return true;
5811
5812        /* Decode instruction info and find the field to access */
5813        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5814        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5815
5816        /* Out-of-range fields always cause a VM exit from L2 to L1 */
5817        if (field >> 15)
5818                return true;
5819
5820        if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5821                return true;
5822
5823        return 1 & (b >> (field & 7));
5824}
5825
5826static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5827{
5828        u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5829
5830        if (nested_cpu_has_mtf(vmcs12))
5831                return true;
5832
5833        /*
5834         * An MTF VM-exit may be injected into the guest by setting the
5835         * interruption-type to 7 (other event) and the vector field to 0. Such
5836         * is the case regardless of the 'monitor trap flag' VM-execution
5837         * control.
5838         */
5839        return entry_intr_info == (INTR_INFO_VALID_MASK
5840                                   | INTR_TYPE_OTHER_EVENT);
5841}
5842
5843/*
5844 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5845 * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5846 */
5847static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5848                                     union vmx_exit_reason exit_reason)
5849{
5850        u32 intr_info;
5851
5852        switch ((u16)exit_reason.basic) {
5853        case EXIT_REASON_EXCEPTION_NMI:
5854                intr_info = vmx_get_intr_info(vcpu);
5855                if (is_nmi(intr_info))
5856                        return true;
5857                else if (is_page_fault(intr_info))
5858                        return vcpu->arch.apf.host_apf_flags ||
5859                               vmx_need_pf_intercept(vcpu);
5860                else if (is_debug(intr_info) &&
5861                         vcpu->guest_debug &
5862                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5863                        return true;
5864                else if (is_breakpoint(intr_info) &&
5865                         vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5866                        return true;
5867                else if (is_alignment_check(intr_info) &&
5868                         !vmx_guest_inject_ac(vcpu))
5869                        return true;
5870                return false;
5871        case EXIT_REASON_EXTERNAL_INTERRUPT:
5872                return true;
5873        case EXIT_REASON_MCE_DURING_VMENTRY:
5874                return true;
5875        case EXIT_REASON_EPT_VIOLATION:
5876                /*
5877                 * L0 always deals with the EPT violation. If nested EPT is
5878                 * used, and the nested mmu code discovers that the address is
5879                 * missing in the guest EPT table (EPT12), the EPT violation
5880                 * will be injected with nested_ept_inject_page_fault()
5881                 */
5882                return true;
5883        case EXIT_REASON_EPT_MISCONFIG:
5884                /*
5885                 * L2 never uses directly L1's EPT, but rather L0's own EPT
5886                 * table (shadow on EPT) or a merged EPT table that L0 built
5887                 * (EPT on EPT). So any problems with the structure of the
5888                 * table is L0's fault.
5889                 */
5890                return true;
5891        case EXIT_REASON_PREEMPTION_TIMER:
5892                return true;
5893        case EXIT_REASON_PML_FULL:
5894                /*
5895                 * PML is emulated for an L1 VMM and should never be enabled in
5896                 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5897                 */
5898                return true;
5899        case EXIT_REASON_VMFUNC:
5900                /* VM functions are emulated through L2->L0 vmexits. */
5901                return true;
5902        default:
5903                break;
5904        }
5905        return false;
5906}
5907
5908/*
5909 * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5910 * is_guest_mode (L2).
5911 */
5912static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5913                                     union vmx_exit_reason exit_reason)
5914{
5915        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5916        u32 intr_info;
5917
5918        switch ((u16)exit_reason.basic) {
5919        case EXIT_REASON_EXCEPTION_NMI:
5920                intr_info = vmx_get_intr_info(vcpu);
5921                if (is_nmi(intr_info))
5922                        return true;
5923                else if (is_page_fault(intr_info))
5924                        return true;
5925                return vmcs12->exception_bitmap &
5926                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5927        case EXIT_REASON_EXTERNAL_INTERRUPT:
5928                return nested_exit_on_intr(vcpu);
5929        case EXIT_REASON_TRIPLE_FAULT:
5930                return true;
5931        case EXIT_REASON_INTERRUPT_WINDOW:
5932                return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5933        case EXIT_REASON_NMI_WINDOW:
5934                return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5935        case EXIT_REASON_TASK_SWITCH:
5936                return true;
5937        case EXIT_REASON_CPUID:
5938                return true;
5939        case EXIT_REASON_HLT:
5940                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5941        case EXIT_REASON_INVD:
5942                return true;
5943        case EXIT_REASON_INVLPG:
5944                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5945        case EXIT_REASON_RDPMC:
5946                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5947        case EXIT_REASON_RDRAND:
5948                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5949        case EXIT_REASON_RDSEED:
5950                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5951        case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5952                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5953        case EXIT_REASON_VMREAD:
5954                return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5955                        vmcs12->vmread_bitmap);
5956        case EXIT_REASON_VMWRITE:
5957                return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5958                        vmcs12->vmwrite_bitmap);
5959        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5960        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5961        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5962        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5963        case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5964                /*
5965                 * VMX instructions trap unconditionally. This allows L1 to
5966                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5967                 */
5968                return true;
5969        case EXIT_REASON_CR_ACCESS:
5970                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5971        case EXIT_REASON_DR_ACCESS:
5972                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5973        case EXIT_REASON_IO_INSTRUCTION:
5974                return nested_vmx_exit_handled_io(vcpu, vmcs12);
5975        case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5976                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5977        case EXIT_REASON_MSR_READ:
5978        case EXIT_REASON_MSR_WRITE:
5979                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5980        case EXIT_REASON_INVALID_STATE:
5981                return true;
5982        case EXIT_REASON_MWAIT_INSTRUCTION:
5983                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5984        case EXIT_REASON_MONITOR_TRAP_FLAG:
5985                return nested_vmx_exit_handled_mtf(vmcs12);
5986        case EXIT_REASON_MONITOR_INSTRUCTION:
5987                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5988        case EXIT_REASON_PAUSE_INSTRUCTION:
5989                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5990                        nested_cpu_has2(vmcs12,
5991                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5992        case EXIT_REASON_MCE_DURING_VMENTRY:
5993                return true;
5994        case EXIT_REASON_TPR_BELOW_THRESHOLD:
5995                return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5996        case EXIT_REASON_APIC_ACCESS:
5997        case EXIT_REASON_APIC_WRITE:
5998        case EXIT_REASON_EOI_INDUCED:
5999                /*
6000                 * The controls for "virtualize APIC accesses," "APIC-
6001                 * register virtualization," and "virtual-interrupt
6002                 * delivery" only come from vmcs12.
6003                 */
6004                return true;
6005        case EXIT_REASON_INVPCID:
6006                return
6007                        nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6008                        nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6009        case EXIT_REASON_WBINVD:
6010                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6011        case EXIT_REASON_XSETBV:
6012                return true;
6013        case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6014                /*
6015                 * This should never happen, since it is not possible to
6016                 * set XSS to a non-zero value---neither in L1 nor in L2.
6017                 * If if it were, XSS would have to be checked against
6018                 * the XSS exit bitmap in vmcs12.
6019                 */
6020                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6021        case EXIT_REASON_UMWAIT:
6022        case EXIT_REASON_TPAUSE:
6023                return nested_cpu_has2(vmcs12,
6024                        SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6025        case EXIT_REASON_ENCLS:
6026                return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6027        default:
6028                return true;
6029        }
6030}
6031
6032/*
6033 * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6034 * reflected into L1.
6035 */
6036bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6037{
6038        struct vcpu_vmx *vmx = to_vmx(vcpu);
6039        union vmx_exit_reason exit_reason = vmx->exit_reason;
6040        unsigned long exit_qual;
6041        u32 exit_intr_info;
6042
6043        WARN_ON_ONCE(vmx->nested.nested_run_pending);
6044
6045        /*
6046         * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6047         * has already loaded L2's state.
6048         */
6049        if (unlikely(vmx->fail)) {
6050                trace_kvm_nested_vmenter_failed(
6051                        "hardware VM-instruction error: ",
6052                        vmcs_read32(VM_INSTRUCTION_ERROR));
6053                exit_intr_info = 0;
6054                exit_qual = 0;
6055                goto reflect_vmexit;
6056        }
6057
6058        trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6059
6060        /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6061        if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6062                return false;
6063
6064        /* If L1 doesn't want the exit, handle it in L0. */
6065        if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6066                return false;
6067
6068        /*
6069         * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6070         * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6071         * need to be synthesized by querying the in-kernel LAPIC, but external
6072         * interrupts are never reflected to L1 so it's a non-issue.
6073         */
6074        exit_intr_info = vmx_get_intr_info(vcpu);
6075        if (is_exception_with_error_code(exit_intr_info)) {
6076                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6077
6078                vmcs12->vm_exit_intr_error_code =
6079                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6080        }
6081        exit_qual = vmx_get_exit_qual(vcpu);
6082
6083reflect_vmexit:
6084        nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6085        return true;
6086}
6087
6088static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6089                                struct kvm_nested_state __user *user_kvm_nested_state,
6090                                u32 user_data_size)
6091{
6092        struct vcpu_vmx *vmx;
6093        struct vmcs12 *vmcs12;
6094        struct kvm_nested_state kvm_state = {
6095                .flags = 0,
6096                .format = KVM_STATE_NESTED_FORMAT_VMX,
6097                .size = sizeof(kvm_state),
6098                .hdr.vmx.flags = 0,
6099                .hdr.vmx.vmxon_pa = -1ull,
6100                .hdr.vmx.vmcs12_pa = -1ull,
6101                .hdr.vmx.preemption_timer_deadline = 0,
6102        };
6103        struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6104                &user_kvm_nested_state->data.vmx[0];
6105
6106        if (!vcpu)
6107                return kvm_state.size + sizeof(*user_vmx_nested_state);
6108
6109        vmx = to_vmx(vcpu);
6110        vmcs12 = get_vmcs12(vcpu);
6111
6112        if (nested_vmx_allowed(vcpu) &&
6113            (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6114                kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6115                kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6116
6117                if (vmx_has_valid_vmcs12(vcpu)) {
6118                        kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6119
6120                        /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6121                        if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6122                                kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6123
6124                        if (is_guest_mode(vcpu) &&
6125                            nested_cpu_has_shadow_vmcs(vmcs12) &&
6126                            vmcs12->vmcs_link_pointer != -1ull)
6127                                kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6128                }
6129
6130                if (vmx->nested.smm.vmxon)
6131                        kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6132
6133                if (vmx->nested.smm.guest_mode)
6134                        kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6135
6136                if (is_guest_mode(vcpu)) {
6137                        kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6138
6139                        if (vmx->nested.nested_run_pending)
6140                                kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6141
6142                        if (vmx->nested.mtf_pending)
6143                                kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6144
6145                        if (nested_cpu_has_preemption_timer(vmcs12) &&
6146                            vmx->nested.has_preemption_timer_deadline) {
6147                                kvm_state.hdr.vmx.flags |=
6148                                        KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6149                                kvm_state.hdr.vmx.preemption_timer_deadline =
6150                                        vmx->nested.preemption_timer_deadline;
6151                        }
6152                }
6153        }
6154
6155        if (user_data_size < kvm_state.size)
6156                goto out;
6157
6158        if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6159                return -EFAULT;
6160
6161        if (!vmx_has_valid_vmcs12(vcpu))
6162                goto out;
6163
6164        /*
6165         * When running L2, the authoritative vmcs12 state is in the
6166         * vmcs02. When running L1, the authoritative vmcs12 state is
6167         * in the shadow or enlightened vmcs linked to vmcs01, unless
6168         * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6169         * vmcs12 state is in the vmcs12 already.
6170         */
6171        if (is_guest_mode(vcpu)) {
6172                sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6173                sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6174        } else  {
6175                copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6176                if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6177                        if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6178                                /*
6179                                 * L1 hypervisor is not obliged to keep eVMCS
6180                                 * clean fields data always up-to-date while
6181                                 * not in guest mode, 'hv_clean_fields' is only
6182                                 * supposed to be actual upon vmentry so we need
6183                                 * to ignore it here and do full copy.
6184                                 */
6185                                copy_enlightened_to_vmcs12(vmx, 0);
6186                        else if (enable_shadow_vmcs)
6187                                copy_shadow_to_vmcs12(vmx);
6188                }
6189        }
6190
6191        BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6192        BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6193
6194        /*
6195         * Copy over the full allocated size of vmcs12 rather than just the size
6196         * of the struct.
6197         */
6198        if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6199                return -EFAULT;
6200
6201        if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6202            vmcs12->vmcs_link_pointer != -1ull) {
6203                if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6204                                 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6205                        return -EFAULT;
6206        }
6207out:
6208        return kvm_state.size;
6209}
6210
6211/*
6212 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6213 */
6214void vmx_leave_nested(struct kvm_vcpu *vcpu)
6215{
6216        if (is_guest_mode(vcpu)) {
6217                to_vmx(vcpu)->nested.nested_run_pending = 0;
6218                nested_vmx_vmexit(vcpu, -1, 0, 0);
6219        }
6220        free_nested(vcpu);
6221}
6222
6223static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6224                                struct kvm_nested_state __user *user_kvm_nested_state,
6225                                struct kvm_nested_state *kvm_state)
6226{
6227        struct vcpu_vmx *vmx = to_vmx(vcpu);
6228        struct vmcs12 *vmcs12;
6229        enum vm_entry_failure_code ignored;
6230        struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6231                &user_kvm_nested_state->data.vmx[0];
6232        int ret;
6233
6234        if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6235                return -EINVAL;
6236
6237        if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6238                if (kvm_state->hdr.vmx.smm.flags)
6239                        return -EINVAL;
6240
6241                if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6242                        return -EINVAL;
6243
6244                /*
6245                 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6246                 * enable eVMCS capability on vCPU. However, since then
6247                 * code was changed such that flag signals vmcs12 should
6248                 * be copied into eVMCS in guest memory.
6249                 *
6250                 * To preserve backwards compatability, allow user
6251                 * to set this flag even when there is no VMXON region.
6252                 */
6253                if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6254                        return -EINVAL;
6255        } else {
6256                if (!nested_vmx_allowed(vcpu))
6257                        return -EINVAL;
6258
6259                if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6260                        return -EINVAL;
6261        }
6262
6263        if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6264            (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6265                return -EINVAL;
6266
6267        if (kvm_state->hdr.vmx.smm.flags &
6268            ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6269                return -EINVAL;
6270
6271        if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6272                return -EINVAL;
6273
6274        /*
6275         * SMM temporarily disables VMX, so we cannot be in guest mode,
6276         * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6277         * must be zero.
6278         */
6279        if (is_smm(vcpu) ?
6280                (kvm_state->flags &
6281                 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6282                : kvm_state->hdr.vmx.smm.flags)
6283                return -EINVAL;
6284
6285        if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6286            !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6287                return -EINVAL;
6288
6289        if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6290                (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6291                        return -EINVAL;
6292
6293        vmx_leave_nested(vcpu);
6294
6295        if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6296                return 0;
6297
6298        vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6299        ret = enter_vmx_operation(vcpu);
6300        if (ret)
6301                return ret;
6302
6303        /* Empty 'VMXON' state is permitted if no VMCS loaded */
6304        if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6305                /* See vmx_has_valid_vmcs12.  */
6306                if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6307                    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6308                    (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6309                        return -EINVAL;
6310                else
6311                        return 0;
6312        }
6313
6314        if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6315                if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6316                    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6317                        return -EINVAL;
6318
6319                set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6320        } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6321                /*
6322                 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6323                 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6324                 * restored yet. EVMCS will be mapped from
6325                 * nested_get_vmcs12_pages().
6326                 */
6327                vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6328                kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6329        } else {
6330                return -EINVAL;
6331        }
6332
6333        if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6334                vmx->nested.smm.vmxon = true;
6335                vmx->nested.vmxon = false;
6336
6337                if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6338                        vmx->nested.smm.guest_mode = true;
6339        }
6340
6341        vmcs12 = get_vmcs12(vcpu);
6342        if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6343                return -EFAULT;
6344
6345        if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6346                return -EINVAL;
6347
6348        if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6349                return 0;
6350
6351        vmx->nested.nested_run_pending =
6352                !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6353
6354        vmx->nested.mtf_pending =
6355                !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6356
6357        ret = -EINVAL;
6358        if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6359            vmcs12->vmcs_link_pointer != -1ull) {
6360                struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6361
6362                if (kvm_state->size <
6363                    sizeof(*kvm_state) +
6364                    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6365                        goto error_guest_mode;
6366
6367                if (copy_from_user(shadow_vmcs12,
6368                                   user_vmx_nested_state->shadow_vmcs12,
6369                                   sizeof(*shadow_vmcs12))) {
6370                        ret = -EFAULT;
6371                        goto error_guest_mode;
6372                }
6373
6374                if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6375                    !shadow_vmcs12->hdr.shadow_vmcs)
6376                        goto error_guest_mode;
6377        }
6378
6379        vmx->nested.has_preemption_timer_deadline = false;
6380        if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6381                vmx->nested.has_preemption_timer_deadline = true;
6382                vmx->nested.preemption_timer_deadline =
6383                        kvm_state->hdr.vmx.preemption_timer_deadline;
6384        }
6385
6386        if (nested_vmx_check_controls(vcpu, vmcs12) ||
6387            nested_vmx_check_host_state(vcpu, vmcs12) ||
6388            nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6389                goto error_guest_mode;
6390
6391        vmx->nested.dirty_vmcs12 = true;
6392        ret = nested_vmx_enter_non_root_mode(vcpu, false);
6393        if (ret)
6394                goto error_guest_mode;
6395
6396        return 0;
6397
6398error_guest_mode:
6399        vmx->nested.nested_run_pending = 0;
6400        return ret;
6401}
6402
6403void nested_vmx_set_vmcs_shadowing_bitmap(void)
6404{
6405        if (enable_shadow_vmcs) {
6406                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6407                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6408        }
6409}
6410
6411/*
6412 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6413 * that madness to get the encoding for comparison.
6414 */
6415#define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6416
6417static u64 nested_vmx_calc_vmcs_enum_msr(void)
6418{
6419        /*
6420         * Note these are the so called "index" of the VMCS field encoding, not
6421         * the index into vmcs12.
6422         */
6423        unsigned int max_idx, idx;
6424        int i;
6425
6426        /*
6427         * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6428         * vmcs12, regardless of whether or not the associated feature is
6429         * exposed to L1.  Simply find the field with the highest index.
6430         */
6431        max_idx = 0;
6432        for (i = 0; i < nr_vmcs12_fields; i++) {
6433                /* The vmcs12 table is very, very sparsely populated. */
6434                if (!vmcs_field_to_offset_table[i])
6435                        continue;
6436
6437                idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6438                if (idx > max_idx)
6439                        max_idx = idx;
6440        }
6441
6442        return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6443}
6444
6445/*
6446 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6447 * returned for the various VMX controls MSRs when nested VMX is enabled.
6448 * The same values should also be used to verify that vmcs12 control fields are
6449 * valid during nested entry from L1 to L2.
6450 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6451 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6452 * bit in the high half is on if the corresponding bit in the control field
6453 * may be on. See also vmx_control_verify().
6454 */
6455void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6456{
6457        /*
6458         * Note that as a general rule, the high half of the MSRs (bits in
6459         * the control fields which may be 1) should be initialized by the
6460         * intersection of the underlying hardware's MSR (i.e., features which
6461         * can be supported) and the list of features we want to expose -
6462         * because they are known to be properly supported in our code.
6463         * Also, usually, the low half of the MSRs (bits which must be 1) can
6464         * be set to 0, meaning that L1 may turn off any of these bits. The
6465         * reason is that if one of these bits is necessary, it will appear
6466         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6467         * fields of vmcs01 and vmcs02, will turn these bits off - and
6468         * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6469         * These rules have exceptions below.
6470         */
6471
6472        /* pin-based controls */
6473        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6474                msrs->pinbased_ctls_low,
6475                msrs->pinbased_ctls_high);
6476        msrs->pinbased_ctls_low |=
6477                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6478        msrs->pinbased_ctls_high &=
6479                PIN_BASED_EXT_INTR_MASK |
6480                PIN_BASED_NMI_EXITING |
6481                PIN_BASED_VIRTUAL_NMIS |
6482                (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6483        msrs->pinbased_ctls_high |=
6484                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6485                PIN_BASED_VMX_PREEMPTION_TIMER;
6486
6487        /* exit controls */
6488        rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6489                msrs->exit_ctls_low,
6490                msrs->exit_ctls_high);
6491        msrs->exit_ctls_low =
6492                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6493
6494        msrs->exit_ctls_high &=
6495#ifdef CONFIG_X86_64
6496                VM_EXIT_HOST_ADDR_SPACE_SIZE |
6497#endif
6498                VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6499                VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6500        msrs->exit_ctls_high |=
6501                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6502                VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6503                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6504
6505        /* We support free control of debug control saving. */
6506        msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6507
6508        /* entry controls */
6509        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6510                msrs->entry_ctls_low,
6511                msrs->entry_ctls_high);
6512        msrs->entry_ctls_low =
6513                VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6514        msrs->entry_ctls_high &=
6515#ifdef CONFIG_X86_64
6516                VM_ENTRY_IA32E_MODE |
6517#endif
6518                VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6519                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6520        msrs->entry_ctls_high |=
6521                (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6522
6523        /* We support free control of debug control loading. */
6524        msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6525
6526        /* cpu-based controls */
6527        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6528                msrs->procbased_ctls_low,
6529                msrs->procbased_ctls_high);
6530        msrs->procbased_ctls_low =
6531                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6532        msrs->procbased_ctls_high &=
6533                CPU_BASED_INTR_WINDOW_EXITING |
6534                CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6535                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6536                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6537                CPU_BASED_CR3_STORE_EXITING |
6538#ifdef CONFIG_X86_64
6539                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6540#endif
6541                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6542                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6543                CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6544                CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6545                CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6546        /*
6547         * We can allow some features even when not supported by the
6548         * hardware. For example, L1 can specify an MSR bitmap - and we
6549         * can use it to avoid exits to L1 - even when L0 runs L2
6550         * without MSR bitmaps.
6551         */
6552        msrs->procbased_ctls_high |=
6553                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6554                CPU_BASED_USE_MSR_BITMAPS;
6555
6556        /* We support free control of CR3 access interception. */
6557        msrs->procbased_ctls_low &=
6558                ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6559
6560        /*
6561         * secondary cpu-based controls.  Do not include those that
6562         * depend on CPUID bits, they are added later by
6563         * vmx_vcpu_after_set_cpuid.
6564         */
6565        if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6566                rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6567                      msrs->secondary_ctls_low,
6568                      msrs->secondary_ctls_high);
6569
6570        msrs->secondary_ctls_low = 0;
6571        msrs->secondary_ctls_high &=
6572                SECONDARY_EXEC_DESC |
6573                SECONDARY_EXEC_ENABLE_RDTSCP |
6574                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6575                SECONDARY_EXEC_WBINVD_EXITING |
6576                SECONDARY_EXEC_APIC_REGISTER_VIRT |
6577                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6578                SECONDARY_EXEC_RDRAND_EXITING |
6579                SECONDARY_EXEC_ENABLE_INVPCID |
6580                SECONDARY_EXEC_RDSEED_EXITING |
6581                SECONDARY_EXEC_XSAVES |
6582                SECONDARY_EXEC_TSC_SCALING;
6583
6584        /*
6585         * We can emulate "VMCS shadowing," even if the hardware
6586         * doesn't support it.
6587         */
6588        msrs->secondary_ctls_high |=
6589                SECONDARY_EXEC_SHADOW_VMCS;
6590
6591        if (enable_ept) {
6592                /* nested EPT: emulate EPT also to L1 */
6593                msrs->secondary_ctls_high |=
6594                        SECONDARY_EXEC_ENABLE_EPT;
6595                msrs->ept_caps =
6596                        VMX_EPT_PAGE_WALK_4_BIT |
6597                        VMX_EPT_PAGE_WALK_5_BIT |
6598                        VMX_EPTP_WB_BIT |
6599                        VMX_EPT_INVEPT_BIT |
6600                        VMX_EPT_EXECUTE_ONLY_BIT;
6601
6602                msrs->ept_caps &= ept_caps;
6603                msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6604                        VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6605                        VMX_EPT_1GB_PAGE_BIT;
6606                if (enable_ept_ad_bits) {
6607                        msrs->secondary_ctls_high |=
6608                                SECONDARY_EXEC_ENABLE_PML;
6609                        msrs->ept_caps |= VMX_EPT_AD_BIT;
6610                }
6611        }
6612
6613        if (cpu_has_vmx_vmfunc()) {
6614                msrs->secondary_ctls_high |=
6615                        SECONDARY_EXEC_ENABLE_VMFUNC;
6616                /*
6617                 * Advertise EPTP switching unconditionally
6618                 * since we emulate it
6619                 */
6620                if (enable_ept)
6621                        msrs->vmfunc_controls =
6622                                VMX_VMFUNC_EPTP_SWITCHING;
6623        }
6624
6625        /*
6626         * Old versions of KVM use the single-context version without
6627         * checking for support, so declare that it is supported even
6628         * though it is treated as global context.  The alternative is
6629         * not failing the single-context invvpid, and it is worse.
6630         */
6631        if (enable_vpid) {
6632                msrs->secondary_ctls_high |=
6633                        SECONDARY_EXEC_ENABLE_VPID;
6634                msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6635                        VMX_VPID_EXTENT_SUPPORTED_MASK;
6636        }
6637
6638        if (enable_unrestricted_guest)
6639                msrs->secondary_ctls_high |=
6640                        SECONDARY_EXEC_UNRESTRICTED_GUEST;
6641
6642        if (flexpriority_enabled)
6643                msrs->secondary_ctls_high |=
6644                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6645
6646        if (enable_sgx)
6647                msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6648
6649        /* miscellaneous data */
6650        rdmsr(MSR_IA32_VMX_MISC,
6651                msrs->misc_low,
6652                msrs->misc_high);
6653        msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6654        msrs->misc_low |=
6655                MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6656                VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6657                VMX_MISC_ACTIVITY_HLT |
6658                VMX_MISC_ACTIVITY_WAIT_SIPI;
6659        msrs->misc_high = 0;
6660
6661        /*
6662         * This MSR reports some information about VMX support. We
6663         * should return information about the VMX we emulate for the
6664         * guest, and the VMCS structure we give it - not about the
6665         * VMX support of the underlying hardware.
6666         */
6667        msrs->basic =
6668                VMCS12_REVISION |
6669                VMX_BASIC_TRUE_CTLS |
6670                ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6671                (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6672
6673        if (cpu_has_vmx_basic_inout())
6674                msrs->basic |= VMX_BASIC_INOUT;
6675
6676        /*
6677         * These MSRs specify bits which the guest must keep fixed on
6678         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6679         * We picked the standard core2 setting.
6680         */
6681#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6682#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6683        msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6684        msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6685
6686        /* These MSRs specify bits which the guest must keep fixed off. */
6687        rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6688        rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6689
6690        msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6691}
6692
6693void nested_vmx_hardware_unsetup(void)
6694{
6695        int i;
6696
6697        if (enable_shadow_vmcs) {
6698                for (i = 0; i < VMX_BITMAP_NR; i++)
6699                        free_page((unsigned long)vmx_bitmap[i]);
6700        }
6701}
6702
6703__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6704{
6705        int i;
6706
6707        if (!cpu_has_vmx_shadow_vmcs())
6708                enable_shadow_vmcs = 0;
6709        if (enable_shadow_vmcs) {
6710                for (i = 0; i < VMX_BITMAP_NR; i++) {
6711                        /*
6712                         * The vmx_bitmap is not tied to a VM and so should
6713                         * not be charged to a memcg.
6714                         */
6715                        vmx_bitmap[i] = (unsigned long *)
6716                                __get_free_page(GFP_KERNEL);
6717                        if (!vmx_bitmap[i]) {
6718                                nested_vmx_hardware_unsetup();
6719                                return -ENOMEM;
6720                        }
6721                }
6722
6723                init_vmcs_shadow_fields();
6724        }
6725
6726        exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6727        exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6728        exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6729        exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6730        exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6731        exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6732        exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6733        exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6734        exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6735        exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6736        exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6737        exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6738
6739        return 0;
6740}
6741
6742struct kvm_x86_nested_ops vmx_nested_ops = {
6743        .check_events = vmx_check_nested_events,
6744        .hv_timer_pending = nested_vmx_preemption_timer_pending,
6745        .triple_fault = nested_vmx_triple_fault,
6746        .get_state = vmx_get_nested_state,
6747        .set_state = vmx_set_nested_state,
6748        .get_nested_state_pages = vmx_get_nested_state_pages,
6749        .write_log_dirty = nested_vmx_write_pml_buffer,
6750        .enable_evmcs = nested_enable_evmcs,
6751        .get_evmcs_version = nested_get_evmcs_version,
6752};
6753