linux/arch/x86/tools/relocs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* This is included from relocs_32/64.c */
   3
   4#define ElfW(type)              _ElfW(ELF_BITS, type)
   5#define _ElfW(bits, type)       __ElfW(bits, type)
   6#define __ElfW(bits, type)      Elf##bits##_##type
   7
   8#define Elf_Addr                ElfW(Addr)
   9#define Elf_Ehdr                ElfW(Ehdr)
  10#define Elf_Phdr                ElfW(Phdr)
  11#define Elf_Shdr                ElfW(Shdr)
  12#define Elf_Sym                 ElfW(Sym)
  13
  14static Elf_Ehdr         ehdr;
  15static unsigned long    shnum;
  16static unsigned int     shstrndx;
  17
  18struct relocs {
  19        uint32_t        *offset;
  20        unsigned long   count;
  21        unsigned long   size;
  22};
  23
  24static struct relocs relocs16;
  25static struct relocs relocs32;
  26#if ELF_BITS == 64
  27static struct relocs relocs32neg;
  28static struct relocs relocs64;
  29#endif
  30
  31struct section {
  32        Elf_Shdr       shdr;
  33        struct section *link;
  34        Elf_Sym        *symtab;
  35        Elf_Rel        *reltab;
  36        char           *strtab;
  37};
  38static struct section *secs;
  39
  40static const char * const sym_regex_kernel[S_NSYMTYPES] = {
  41/*
  42 * Following symbols have been audited. There values are constant and do
  43 * not change if bzImage is loaded at a different physical address than
  44 * the address for which it has been compiled. Don't warn user about
  45 * absolute relocations present w.r.t these symbols.
  46 */
  47        [S_ABS] =
  48        "^(xen_irq_disable_direct_reloc$|"
  49        "xen_save_fl_direct_reloc$|"
  50        "VDSO|"
  51        "__crc_)",
  52
  53/*
  54 * These symbols are known to be relative, even if the linker marks them
  55 * as absolute (typically defined outside any section in the linker script.)
  56 */
  57        [S_REL] =
  58        "^(__init_(begin|end)|"
  59        "__x86_cpu_dev_(start|end)|"
  60        "(__parainstructions|__alt_instructions)(_end)?|"
  61        "(__iommu_table|__apicdrivers|__smp_locks)(_end)?|"
  62        "__(start|end)_pci_.*|"
  63        "__(start|end)_builtin_fw|"
  64        "__(start|stop)___ksymtab(_gpl)?|"
  65        "__(start|stop)___kcrctab(_gpl)?|"
  66        "__(start|stop)___param|"
  67        "__(start|stop)___modver|"
  68        "__(start|stop)___bug_table|"
  69        "__tracedata_(start|end)|"
  70        "__(start|stop)_notes|"
  71        "__end_rodata|"
  72        "__end_rodata_aligned|"
  73        "__initramfs_start|"
  74        "(jiffies|jiffies_64)|"
  75#if ELF_BITS == 64
  76        "__per_cpu_load|"
  77        "init_per_cpu__.*|"
  78        "__end_rodata_hpage_align|"
  79#endif
  80        "__vvar_page|"
  81        "_end)$"
  82};
  83
  84
  85static const char * const sym_regex_realmode[S_NSYMTYPES] = {
  86/*
  87 * These symbols are known to be relative, even if the linker marks them
  88 * as absolute (typically defined outside any section in the linker script.)
  89 */
  90        [S_REL] =
  91        "^pa_",
  92
  93/*
  94 * These are 16-bit segment symbols when compiling 16-bit code.
  95 */
  96        [S_SEG] =
  97        "^real_mode_seg$",
  98
  99/*
 100 * These are offsets belonging to segments, as opposed to linear addresses,
 101 * when compiling 16-bit code.
 102 */
 103        [S_LIN] =
 104        "^pa_",
 105};
 106
 107static const char * const *sym_regex;
 108
 109static regex_t sym_regex_c[S_NSYMTYPES];
 110static int is_reloc(enum symtype type, const char *sym_name)
 111{
 112        return sym_regex[type] &&
 113                !regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
 114}
 115
 116static void regex_init(int use_real_mode)
 117{
 118        char errbuf[128];
 119        int err;
 120        int i;
 121
 122        if (use_real_mode)
 123                sym_regex = sym_regex_realmode;
 124        else
 125                sym_regex = sym_regex_kernel;
 126
 127        for (i = 0; i < S_NSYMTYPES; i++) {
 128                if (!sym_regex[i])
 129                        continue;
 130
 131                err = regcomp(&sym_regex_c[i], sym_regex[i],
 132                              REG_EXTENDED|REG_NOSUB);
 133
 134                if (err) {
 135                        regerror(err, &sym_regex_c[i], errbuf, sizeof(errbuf));
 136                        die("%s", errbuf);
 137                }
 138        }
 139}
 140
 141static const char *sym_type(unsigned type)
 142{
 143        static const char *type_name[] = {
 144#define SYM_TYPE(X) [X] = #X
 145                SYM_TYPE(STT_NOTYPE),
 146                SYM_TYPE(STT_OBJECT),
 147                SYM_TYPE(STT_FUNC),
 148                SYM_TYPE(STT_SECTION),
 149                SYM_TYPE(STT_FILE),
 150                SYM_TYPE(STT_COMMON),
 151                SYM_TYPE(STT_TLS),
 152#undef SYM_TYPE
 153        };
 154        const char *name = "unknown sym type name";
 155        if (type < ARRAY_SIZE(type_name)) {
 156                name = type_name[type];
 157        }
 158        return name;
 159}
 160
 161static const char *sym_bind(unsigned bind)
 162{
 163        static const char *bind_name[] = {
 164#define SYM_BIND(X) [X] = #X
 165                SYM_BIND(STB_LOCAL),
 166                SYM_BIND(STB_GLOBAL),
 167                SYM_BIND(STB_WEAK),
 168#undef SYM_BIND
 169        };
 170        const char *name = "unknown sym bind name";
 171        if (bind < ARRAY_SIZE(bind_name)) {
 172                name = bind_name[bind];
 173        }
 174        return name;
 175}
 176
 177static const char *sym_visibility(unsigned visibility)
 178{
 179        static const char *visibility_name[] = {
 180#define SYM_VISIBILITY(X) [X] = #X
 181                SYM_VISIBILITY(STV_DEFAULT),
 182                SYM_VISIBILITY(STV_INTERNAL),
 183                SYM_VISIBILITY(STV_HIDDEN),
 184                SYM_VISIBILITY(STV_PROTECTED),
 185#undef SYM_VISIBILITY
 186        };
 187        const char *name = "unknown sym visibility name";
 188        if (visibility < ARRAY_SIZE(visibility_name)) {
 189                name = visibility_name[visibility];
 190        }
 191        return name;
 192}
 193
 194static const char *rel_type(unsigned type)
 195{
 196        static const char *type_name[] = {
 197#define REL_TYPE(X) [X] = #X
 198#if ELF_BITS == 64
 199                REL_TYPE(R_X86_64_NONE),
 200                REL_TYPE(R_X86_64_64),
 201                REL_TYPE(R_X86_64_PC64),
 202                REL_TYPE(R_X86_64_PC32),
 203                REL_TYPE(R_X86_64_GOT32),
 204                REL_TYPE(R_X86_64_PLT32),
 205                REL_TYPE(R_X86_64_COPY),
 206                REL_TYPE(R_X86_64_GLOB_DAT),
 207                REL_TYPE(R_X86_64_JUMP_SLOT),
 208                REL_TYPE(R_X86_64_RELATIVE),
 209                REL_TYPE(R_X86_64_GOTPCREL),
 210                REL_TYPE(R_X86_64_32),
 211                REL_TYPE(R_X86_64_32S),
 212                REL_TYPE(R_X86_64_16),
 213                REL_TYPE(R_X86_64_PC16),
 214                REL_TYPE(R_X86_64_8),
 215                REL_TYPE(R_X86_64_PC8),
 216#else
 217                REL_TYPE(R_386_NONE),
 218                REL_TYPE(R_386_32),
 219                REL_TYPE(R_386_PC32),
 220                REL_TYPE(R_386_GOT32),
 221                REL_TYPE(R_386_PLT32),
 222                REL_TYPE(R_386_COPY),
 223                REL_TYPE(R_386_GLOB_DAT),
 224                REL_TYPE(R_386_JMP_SLOT),
 225                REL_TYPE(R_386_RELATIVE),
 226                REL_TYPE(R_386_GOTOFF),
 227                REL_TYPE(R_386_GOTPC),
 228                REL_TYPE(R_386_8),
 229                REL_TYPE(R_386_PC8),
 230                REL_TYPE(R_386_16),
 231                REL_TYPE(R_386_PC16),
 232#endif
 233#undef REL_TYPE
 234        };
 235        const char *name = "unknown type rel type name";
 236        if (type < ARRAY_SIZE(type_name) && type_name[type]) {
 237                name = type_name[type];
 238        }
 239        return name;
 240}
 241
 242static const char *sec_name(unsigned shndx)
 243{
 244        const char *sec_strtab;
 245        const char *name;
 246        sec_strtab = secs[shstrndx].strtab;
 247        name = "<noname>";
 248        if (shndx < shnum) {
 249                name = sec_strtab + secs[shndx].shdr.sh_name;
 250        }
 251        else if (shndx == SHN_ABS) {
 252                name = "ABSOLUTE";
 253        }
 254        else if (shndx == SHN_COMMON) {
 255                name = "COMMON";
 256        }
 257        return name;
 258}
 259
 260static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
 261{
 262        const char *name;
 263        name = "<noname>";
 264        if (sym->st_name) {
 265                name = sym_strtab + sym->st_name;
 266        }
 267        else {
 268                name = sec_name(sym->st_shndx);
 269        }
 270        return name;
 271}
 272
 273static Elf_Sym *sym_lookup(const char *symname)
 274{
 275        int i;
 276        for (i = 0; i < shnum; i++) {
 277                struct section *sec = &secs[i];
 278                long nsyms;
 279                char *strtab;
 280                Elf_Sym *symtab;
 281                Elf_Sym *sym;
 282
 283                if (sec->shdr.sh_type != SHT_SYMTAB)
 284                        continue;
 285
 286                nsyms = sec->shdr.sh_size/sizeof(Elf_Sym);
 287                symtab = sec->symtab;
 288                strtab = sec->link->strtab;
 289
 290                for (sym = symtab; --nsyms >= 0; sym++) {
 291                        if (!sym->st_name)
 292                                continue;
 293                        if (strcmp(symname, strtab + sym->st_name) == 0)
 294                                return sym;
 295                }
 296        }
 297        return 0;
 298}
 299
 300#if BYTE_ORDER == LITTLE_ENDIAN
 301#define le16_to_cpu(val) (val)
 302#define le32_to_cpu(val) (val)
 303#define le64_to_cpu(val) (val)
 304#endif
 305#if BYTE_ORDER == BIG_ENDIAN
 306#define le16_to_cpu(val) bswap_16(val)
 307#define le32_to_cpu(val) bswap_32(val)
 308#define le64_to_cpu(val) bswap_64(val)
 309#endif
 310
 311static uint16_t elf16_to_cpu(uint16_t val)
 312{
 313        return le16_to_cpu(val);
 314}
 315
 316static uint32_t elf32_to_cpu(uint32_t val)
 317{
 318        return le32_to_cpu(val);
 319}
 320
 321#define elf_half_to_cpu(x)      elf16_to_cpu(x)
 322#define elf_word_to_cpu(x)      elf32_to_cpu(x)
 323
 324#if ELF_BITS == 64
 325static uint64_t elf64_to_cpu(uint64_t val)
 326{
 327        return le64_to_cpu(val);
 328}
 329#define elf_addr_to_cpu(x)      elf64_to_cpu(x)
 330#define elf_off_to_cpu(x)       elf64_to_cpu(x)
 331#define elf_xword_to_cpu(x)     elf64_to_cpu(x)
 332#else
 333#define elf_addr_to_cpu(x)      elf32_to_cpu(x)
 334#define elf_off_to_cpu(x)       elf32_to_cpu(x)
 335#define elf_xword_to_cpu(x)     elf32_to_cpu(x)
 336#endif
 337
 338static void read_ehdr(FILE *fp)
 339{
 340        if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) {
 341                die("Cannot read ELF header: %s\n",
 342                        strerror(errno));
 343        }
 344        if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) {
 345                die("No ELF magic\n");
 346        }
 347        if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) {
 348                die("Not a %d bit executable\n", ELF_BITS);
 349        }
 350        if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) {
 351                die("Not a LSB ELF executable\n");
 352        }
 353        if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
 354                die("Unknown ELF version\n");
 355        }
 356        /* Convert the fields to native endian */
 357        ehdr.e_type      = elf_half_to_cpu(ehdr.e_type);
 358        ehdr.e_machine   = elf_half_to_cpu(ehdr.e_machine);
 359        ehdr.e_version   = elf_word_to_cpu(ehdr.e_version);
 360        ehdr.e_entry     = elf_addr_to_cpu(ehdr.e_entry);
 361        ehdr.e_phoff     = elf_off_to_cpu(ehdr.e_phoff);
 362        ehdr.e_shoff     = elf_off_to_cpu(ehdr.e_shoff);
 363        ehdr.e_flags     = elf_word_to_cpu(ehdr.e_flags);
 364        ehdr.e_ehsize    = elf_half_to_cpu(ehdr.e_ehsize);
 365        ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
 366        ehdr.e_phnum     = elf_half_to_cpu(ehdr.e_phnum);
 367        ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
 368        ehdr.e_shnum     = elf_half_to_cpu(ehdr.e_shnum);
 369        ehdr.e_shstrndx  = elf_half_to_cpu(ehdr.e_shstrndx);
 370
 371        shnum = ehdr.e_shnum;
 372        shstrndx = ehdr.e_shstrndx;
 373
 374        if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN))
 375                die("Unsupported ELF header type\n");
 376        if (ehdr.e_machine != ELF_MACHINE)
 377                die("Not for %s\n", ELF_MACHINE_NAME);
 378        if (ehdr.e_version != EV_CURRENT)
 379                die("Unknown ELF version\n");
 380        if (ehdr.e_ehsize != sizeof(Elf_Ehdr))
 381                die("Bad Elf header size\n");
 382        if (ehdr.e_phentsize != sizeof(Elf_Phdr))
 383                die("Bad program header entry\n");
 384        if (ehdr.e_shentsize != sizeof(Elf_Shdr))
 385                die("Bad section header entry\n");
 386
 387
 388        if (shnum == SHN_UNDEF || shstrndx == SHN_XINDEX) {
 389                Elf_Shdr shdr;
 390
 391                if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0)
 392                        die("Seek to %d failed: %s\n", ehdr.e_shoff, strerror(errno));
 393
 394                if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
 395                        die("Cannot read initial ELF section header: %s\n", strerror(errno));
 396
 397                if (shnum == SHN_UNDEF)
 398                        shnum = elf_xword_to_cpu(shdr.sh_size);
 399
 400                if (shstrndx == SHN_XINDEX)
 401                        shstrndx = elf_word_to_cpu(shdr.sh_link);
 402        }
 403
 404        if (shstrndx >= shnum)
 405                die("String table index out of bounds\n");
 406}
 407
 408static void read_shdrs(FILE *fp)
 409{
 410        int i;
 411        Elf_Shdr shdr;
 412
 413        secs = calloc(shnum, sizeof(struct section));
 414        if (!secs) {
 415                die("Unable to allocate %d section headers\n",
 416                    shnum);
 417        }
 418        if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) {
 419                die("Seek to %d failed: %s\n",
 420                        ehdr.e_shoff, strerror(errno));
 421        }
 422        for (i = 0; i < shnum; i++) {
 423                struct section *sec = &secs[i];
 424                if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
 425                        die("Cannot read ELF section headers %d/%d: %s\n",
 426                            i, shnum, strerror(errno));
 427                sec->shdr.sh_name      = elf_word_to_cpu(shdr.sh_name);
 428                sec->shdr.sh_type      = elf_word_to_cpu(shdr.sh_type);
 429                sec->shdr.sh_flags     = elf_xword_to_cpu(shdr.sh_flags);
 430                sec->shdr.sh_addr      = elf_addr_to_cpu(shdr.sh_addr);
 431                sec->shdr.sh_offset    = elf_off_to_cpu(shdr.sh_offset);
 432                sec->shdr.sh_size      = elf_xword_to_cpu(shdr.sh_size);
 433                sec->shdr.sh_link      = elf_word_to_cpu(shdr.sh_link);
 434                sec->shdr.sh_info      = elf_word_to_cpu(shdr.sh_info);
 435                sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
 436                sec->shdr.sh_entsize   = elf_xword_to_cpu(shdr.sh_entsize);
 437                if (sec->shdr.sh_link < shnum)
 438                        sec->link = &secs[sec->shdr.sh_link];
 439        }
 440
 441}
 442
 443static void read_strtabs(FILE *fp)
 444{
 445        int i;
 446        for (i = 0; i < shnum; i++) {
 447                struct section *sec = &secs[i];
 448                if (sec->shdr.sh_type != SHT_STRTAB) {
 449                        continue;
 450                }
 451                sec->strtab = malloc(sec->shdr.sh_size);
 452                if (!sec->strtab) {
 453                        die("malloc of %d bytes for strtab failed\n",
 454                                sec->shdr.sh_size);
 455                }
 456                if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
 457                        die("Seek to %d failed: %s\n",
 458                                sec->shdr.sh_offset, strerror(errno));
 459                }
 460                if (fread(sec->strtab, 1, sec->shdr.sh_size, fp)
 461                    != sec->shdr.sh_size) {
 462                        die("Cannot read symbol table: %s\n",
 463                                strerror(errno));
 464                }
 465        }
 466}
 467
 468static void read_symtabs(FILE *fp)
 469{
 470        int i,j;
 471        for (i = 0; i < shnum; i++) {
 472                struct section *sec = &secs[i];
 473                if (sec->shdr.sh_type != SHT_SYMTAB) {
 474                        continue;
 475                }
 476                sec->symtab = malloc(sec->shdr.sh_size);
 477                if (!sec->symtab) {
 478                        die("malloc of %d bytes for symtab failed\n",
 479                                sec->shdr.sh_size);
 480                }
 481                if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
 482                        die("Seek to %d failed: %s\n",
 483                                sec->shdr.sh_offset, strerror(errno));
 484                }
 485                if (fread(sec->symtab, 1, sec->shdr.sh_size, fp)
 486                    != sec->shdr.sh_size) {
 487                        die("Cannot read symbol table: %s\n",
 488                                strerror(errno));
 489                }
 490                for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
 491                        Elf_Sym *sym = &sec->symtab[j];
 492                        sym->st_name  = elf_word_to_cpu(sym->st_name);
 493                        sym->st_value = elf_addr_to_cpu(sym->st_value);
 494                        sym->st_size  = elf_xword_to_cpu(sym->st_size);
 495                        sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
 496                }
 497        }
 498}
 499
 500
 501static void read_relocs(FILE *fp)
 502{
 503        int i,j;
 504        for (i = 0; i < shnum; i++) {
 505                struct section *sec = &secs[i];
 506                if (sec->shdr.sh_type != SHT_REL_TYPE) {
 507                        continue;
 508                }
 509                sec->reltab = malloc(sec->shdr.sh_size);
 510                if (!sec->reltab) {
 511                        die("malloc of %d bytes for relocs failed\n",
 512                                sec->shdr.sh_size);
 513                }
 514                if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
 515                        die("Seek to %d failed: %s\n",
 516                                sec->shdr.sh_offset, strerror(errno));
 517                }
 518                if (fread(sec->reltab, 1, sec->shdr.sh_size, fp)
 519                    != sec->shdr.sh_size) {
 520                        die("Cannot read symbol table: %s\n",
 521                                strerror(errno));
 522                }
 523                for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
 524                        Elf_Rel *rel = &sec->reltab[j];
 525                        rel->r_offset = elf_addr_to_cpu(rel->r_offset);
 526                        rel->r_info   = elf_xword_to_cpu(rel->r_info);
 527#if (SHT_REL_TYPE == SHT_RELA)
 528                        rel->r_addend = elf_xword_to_cpu(rel->r_addend);
 529#endif
 530                }
 531        }
 532}
 533
 534
 535static void print_absolute_symbols(void)
 536{
 537        int i;
 538        const char *format;
 539
 540        if (ELF_BITS == 64)
 541                format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n";
 542        else
 543                format = "%5d %08"PRIx32"  %5"PRId32" %10s %10s %12s %s\n";
 544
 545        printf("Absolute symbols\n");
 546        printf(" Num:    Value Size  Type       Bind        Visibility  Name\n");
 547        for (i = 0; i < shnum; i++) {
 548                struct section *sec = &secs[i];
 549                char *sym_strtab;
 550                int j;
 551
 552                if (sec->shdr.sh_type != SHT_SYMTAB) {
 553                        continue;
 554                }
 555                sym_strtab = sec->link->strtab;
 556                for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
 557                        Elf_Sym *sym;
 558                        const char *name;
 559                        sym = &sec->symtab[j];
 560                        name = sym_name(sym_strtab, sym);
 561                        if (sym->st_shndx != SHN_ABS) {
 562                                continue;
 563                        }
 564                        printf(format,
 565                                j, sym->st_value, sym->st_size,
 566                                sym_type(ELF_ST_TYPE(sym->st_info)),
 567                                sym_bind(ELF_ST_BIND(sym->st_info)),
 568                                sym_visibility(ELF_ST_VISIBILITY(sym->st_other)),
 569                                name);
 570                }
 571        }
 572        printf("\n");
 573}
 574
 575static void print_absolute_relocs(void)
 576{
 577        int i, printed = 0;
 578        const char *format;
 579
 580        if (ELF_BITS == 64)
 581                format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64"  %s\n";
 582        else
 583                format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32"  %s\n";
 584
 585        for (i = 0; i < shnum; i++) {
 586                struct section *sec = &secs[i];
 587                struct section *sec_applies, *sec_symtab;
 588                char *sym_strtab;
 589                Elf_Sym *sh_symtab;
 590                int j;
 591                if (sec->shdr.sh_type != SHT_REL_TYPE) {
 592                        continue;
 593                }
 594                sec_symtab  = sec->link;
 595                sec_applies = &secs[sec->shdr.sh_info];
 596                if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
 597                        continue;
 598                }
 599                sh_symtab  = sec_symtab->symtab;
 600                sym_strtab = sec_symtab->link->strtab;
 601                for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
 602                        Elf_Rel *rel;
 603                        Elf_Sym *sym;
 604                        const char *name;
 605                        rel = &sec->reltab[j];
 606                        sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
 607                        name = sym_name(sym_strtab, sym);
 608                        if (sym->st_shndx != SHN_ABS) {
 609                                continue;
 610                        }
 611
 612                        /* Absolute symbols are not relocated if bzImage is
 613                         * loaded at a non-compiled address. Display a warning
 614                         * to user at compile time about the absolute
 615                         * relocations present.
 616                         *
 617                         * User need to audit the code to make sure
 618                         * some symbols which should have been section
 619                         * relative have not become absolute because of some
 620                         * linker optimization or wrong programming usage.
 621                         *
 622                         * Before warning check if this absolute symbol
 623                         * relocation is harmless.
 624                         */
 625                        if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
 626                                continue;
 627
 628                        if (!printed) {
 629                                printf("WARNING: Absolute relocations"
 630                                        " present\n");
 631                                printf("Offset     Info     Type     Sym.Value "
 632                                        "Sym.Name\n");
 633                                printed = 1;
 634                        }
 635
 636                        printf(format,
 637                                rel->r_offset,
 638                                rel->r_info,
 639                                rel_type(ELF_R_TYPE(rel->r_info)),
 640                                sym->st_value,
 641                                name);
 642                }
 643        }
 644
 645        if (printed)
 646                printf("\n");
 647}
 648
 649static void add_reloc(struct relocs *r, uint32_t offset)
 650{
 651        if (r->count == r->size) {
 652                unsigned long newsize = r->size + 50000;
 653                void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
 654
 655                if (!mem)
 656                        die("realloc of %ld entries for relocs failed\n",
 657                                newsize);
 658                r->offset = mem;
 659                r->size = newsize;
 660        }
 661        r->offset[r->count++] = offset;
 662}
 663
 664static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
 665                        Elf_Sym *sym, const char *symname))
 666{
 667        int i;
 668        /* Walk through the relocations */
 669        for (i = 0; i < shnum; i++) {
 670                char *sym_strtab;
 671                Elf_Sym *sh_symtab;
 672                struct section *sec_applies, *sec_symtab;
 673                int j;
 674                struct section *sec = &secs[i];
 675
 676                if (sec->shdr.sh_type != SHT_REL_TYPE) {
 677                        continue;
 678                }
 679                sec_symtab  = sec->link;
 680                sec_applies = &secs[sec->shdr.sh_info];
 681                if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
 682                        continue;
 683                }
 684                sh_symtab = sec_symtab->symtab;
 685                sym_strtab = sec_symtab->link->strtab;
 686                for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
 687                        Elf_Rel *rel = &sec->reltab[j];
 688                        Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
 689                        const char *symname = sym_name(sym_strtab, sym);
 690
 691                        process(sec, rel, sym, symname);
 692                }
 693        }
 694}
 695
 696/*
 697 * The .data..percpu section is a special case for x86_64 SMP kernels.
 698 * It is used to initialize the actual per_cpu areas and to provide
 699 * definitions for the per_cpu variables that correspond to their offsets
 700 * within the percpu area. Since the values of all of the symbols need
 701 * to be offsets from the start of the per_cpu area the virtual address
 702 * (sh_addr) of .data..percpu is 0 in SMP kernels.
 703 *
 704 * This means that:
 705 *
 706 *      Relocations that reference symbols in the per_cpu area do not
 707 *      need further relocation (since the value is an offset relative
 708 *      to the start of the per_cpu area that does not change).
 709 *
 710 *      Relocations that apply to the per_cpu area need to have their
 711 *      offset adjusted by by the value of __per_cpu_load to make them
 712 *      point to the correct place in the loaded image (because the
 713 *      virtual address of .data..percpu is 0).
 714 *
 715 * For non SMP kernels .data..percpu is linked as part of the normal
 716 * kernel data and does not require special treatment.
 717 *
 718 */
 719static int per_cpu_shndx        = -1;
 720static Elf_Addr per_cpu_load_addr;
 721
 722static void percpu_init(void)
 723{
 724        int i;
 725        for (i = 0; i < shnum; i++) {
 726                ElfW(Sym) *sym;
 727                if (strcmp(sec_name(i), ".data..percpu"))
 728                        continue;
 729
 730                if (secs[i].shdr.sh_addr != 0)  /* non SMP kernel */
 731                        return;
 732
 733                sym = sym_lookup("__per_cpu_load");
 734                if (!sym)
 735                        die("can't find __per_cpu_load\n");
 736
 737                per_cpu_shndx = i;
 738                per_cpu_load_addr = sym->st_value;
 739                return;
 740        }
 741}
 742
 743#if ELF_BITS == 64
 744
 745/*
 746 * Check to see if a symbol lies in the .data..percpu section.
 747 *
 748 * The linker incorrectly associates some symbols with the
 749 * .data..percpu section so we also need to check the symbol
 750 * name to make sure that we classify the symbol correctly.
 751 *
 752 * The GNU linker incorrectly associates:
 753 *      __init_begin
 754 *      __per_cpu_load
 755 *
 756 * The "gold" linker incorrectly associates:
 757 *      init_per_cpu__fixed_percpu_data
 758 *      init_per_cpu__gdt_page
 759 */
 760static int is_percpu_sym(ElfW(Sym) *sym, const char *symname)
 761{
 762        return (sym->st_shndx == per_cpu_shndx) &&
 763                strcmp(symname, "__init_begin") &&
 764                strcmp(symname, "__per_cpu_load") &&
 765                strncmp(symname, "init_per_cpu_", 13);
 766}
 767
 768
 769static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
 770                      const char *symname)
 771{
 772        unsigned r_type = ELF64_R_TYPE(rel->r_info);
 773        ElfW(Addr) offset = rel->r_offset;
 774        int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
 775
 776        if (sym->st_shndx == SHN_UNDEF)
 777                return 0;
 778
 779        /*
 780         * Adjust the offset if this reloc applies to the percpu section.
 781         */
 782        if (sec->shdr.sh_info == per_cpu_shndx)
 783                offset += per_cpu_load_addr;
 784
 785        switch (r_type) {
 786        case R_X86_64_NONE:
 787                /* NONE can be ignored. */
 788                break;
 789
 790        case R_X86_64_PC32:
 791        case R_X86_64_PLT32:
 792                /*
 793                 * PC relative relocations don't need to be adjusted unless
 794                 * referencing a percpu symbol.
 795                 *
 796                 * NB: R_X86_64_PLT32 can be treated as R_X86_64_PC32.
 797                 */
 798                if (is_percpu_sym(sym, symname))
 799                        add_reloc(&relocs32neg, offset);
 800                break;
 801
 802        case R_X86_64_PC64:
 803                /*
 804                 * Only used by jump labels
 805                 */
 806                if (is_percpu_sym(sym, symname))
 807                        die("Invalid R_X86_64_PC64 relocation against per-CPU symbol %s\n",
 808                            symname);
 809                break;
 810
 811        case R_X86_64_32:
 812        case R_X86_64_32S:
 813        case R_X86_64_64:
 814                /*
 815                 * References to the percpu area don't need to be adjusted.
 816                 */
 817                if (is_percpu_sym(sym, symname))
 818                        break;
 819
 820                if (shn_abs) {
 821                        /*
 822                         * Whitelisted absolute symbols do not require
 823                         * relocation.
 824                         */
 825                        if (is_reloc(S_ABS, symname))
 826                                break;
 827
 828                        die("Invalid absolute %s relocation: %s\n",
 829                            rel_type(r_type), symname);
 830                        break;
 831                }
 832
 833                /*
 834                 * Relocation offsets for 64 bit kernels are output
 835                 * as 32 bits and sign extended back to 64 bits when
 836                 * the relocations are processed.
 837                 * Make sure that the offset will fit.
 838                 */
 839                if ((int32_t)offset != (int64_t)offset)
 840                        die("Relocation offset doesn't fit in 32 bits\n");
 841
 842                if (r_type == R_X86_64_64)
 843                        add_reloc(&relocs64, offset);
 844                else
 845                        add_reloc(&relocs32, offset);
 846                break;
 847
 848        default:
 849                die("Unsupported relocation type: %s (%d)\n",
 850                    rel_type(r_type), r_type);
 851                break;
 852        }
 853
 854        return 0;
 855}
 856
 857#else
 858
 859static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
 860                      const char *symname)
 861{
 862        unsigned r_type = ELF32_R_TYPE(rel->r_info);
 863        int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
 864
 865        switch (r_type) {
 866        case R_386_NONE:
 867        case R_386_PC32:
 868        case R_386_PC16:
 869        case R_386_PC8:
 870        case R_386_PLT32:
 871                /*
 872                 * NONE can be ignored and PC relative relocations don't need
 873                 * to be adjusted. Because sym must be defined, R_386_PLT32 can
 874                 * be treated the same way as R_386_PC32.
 875                 */
 876                break;
 877
 878        case R_386_32:
 879                if (shn_abs) {
 880                        /*
 881                         * Whitelisted absolute symbols do not require
 882                         * relocation.
 883                         */
 884                        if (is_reloc(S_ABS, symname))
 885                                break;
 886
 887                        die("Invalid absolute %s relocation: %s\n",
 888                            rel_type(r_type), symname);
 889                        break;
 890                }
 891
 892                add_reloc(&relocs32, rel->r_offset);
 893                break;
 894
 895        default:
 896                die("Unsupported relocation type: %s (%d)\n",
 897                    rel_type(r_type), r_type);
 898                break;
 899        }
 900
 901        return 0;
 902}
 903
 904static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
 905                         const char *symname)
 906{
 907        unsigned r_type = ELF32_R_TYPE(rel->r_info);
 908        int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
 909
 910        switch (r_type) {
 911        case R_386_NONE:
 912        case R_386_PC32:
 913        case R_386_PC16:
 914        case R_386_PC8:
 915        case R_386_PLT32:
 916                /*
 917                 * NONE can be ignored and PC relative relocations don't need
 918                 * to be adjusted. Because sym must be defined, R_386_PLT32 can
 919                 * be treated the same way as R_386_PC32.
 920                 */
 921                break;
 922
 923        case R_386_16:
 924                if (shn_abs) {
 925                        /*
 926                         * Whitelisted absolute symbols do not require
 927                         * relocation.
 928                         */
 929                        if (is_reloc(S_ABS, symname))
 930                                break;
 931
 932                        if (is_reloc(S_SEG, symname)) {
 933                                add_reloc(&relocs16, rel->r_offset);
 934                                break;
 935                        }
 936                } else {
 937                        if (!is_reloc(S_LIN, symname))
 938                                break;
 939                }
 940                die("Invalid %s %s relocation: %s\n",
 941                    shn_abs ? "absolute" : "relative",
 942                    rel_type(r_type), symname);
 943                break;
 944
 945        case R_386_32:
 946                if (shn_abs) {
 947                        /*
 948                         * Whitelisted absolute symbols do not require
 949                         * relocation.
 950                         */
 951                        if (is_reloc(S_ABS, symname))
 952                                break;
 953
 954                        if (is_reloc(S_REL, symname)) {
 955                                add_reloc(&relocs32, rel->r_offset);
 956                                break;
 957                        }
 958                } else {
 959                        if (is_reloc(S_LIN, symname))
 960                                add_reloc(&relocs32, rel->r_offset);
 961                        break;
 962                }
 963                die("Invalid %s %s relocation: %s\n",
 964                    shn_abs ? "absolute" : "relative",
 965                    rel_type(r_type), symname);
 966                break;
 967
 968        default:
 969                die("Unsupported relocation type: %s (%d)\n",
 970                    rel_type(r_type), r_type);
 971                break;
 972        }
 973
 974        return 0;
 975}
 976
 977#endif
 978
 979static int cmp_relocs(const void *va, const void *vb)
 980{
 981        const uint32_t *a, *b;
 982        a = va; b = vb;
 983        return (*a == *b)? 0 : (*a > *b)? 1 : -1;
 984}
 985
 986static void sort_relocs(struct relocs *r)
 987{
 988        qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs);
 989}
 990
 991static int write32(uint32_t v, FILE *f)
 992{
 993        unsigned char buf[4];
 994
 995        put_unaligned_le32(v, buf);
 996        return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
 997}
 998
 999static int write32_as_text(uint32_t v, FILE *f)
1000{
1001        return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1;
1002}
1003
1004static void emit_relocs(int as_text, int use_real_mode)
1005{
1006        int i;
1007        int (*write_reloc)(uint32_t, FILE *) = write32;
1008        int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
1009                        const char *symname);
1010
1011#if ELF_BITS == 64
1012        if (!use_real_mode)
1013                do_reloc = do_reloc64;
1014        else
1015                die("--realmode not valid for a 64-bit ELF file");
1016#else
1017        if (!use_real_mode)
1018                do_reloc = do_reloc32;
1019        else
1020                do_reloc = do_reloc_real;
1021#endif
1022
1023        /* Collect up the relocations */
1024        walk_relocs(do_reloc);
1025
1026        if (relocs16.count && !use_real_mode)
1027                die("Segment relocations found but --realmode not specified\n");
1028
1029        /* Order the relocations for more efficient processing */
1030        sort_relocs(&relocs32);
1031#if ELF_BITS == 64
1032        sort_relocs(&relocs32neg);
1033        sort_relocs(&relocs64);
1034#else
1035        sort_relocs(&relocs16);
1036#endif
1037
1038        /* Print the relocations */
1039        if (as_text) {
1040                /* Print the relocations in a form suitable that
1041                 * gas will like.
1042                 */
1043                printf(".section \".data.reloc\",\"a\"\n");
1044                printf(".balign 4\n");
1045                write_reloc = write32_as_text;
1046        }
1047
1048        if (use_real_mode) {
1049                write_reloc(relocs16.count, stdout);
1050                for (i = 0; i < relocs16.count; i++)
1051                        write_reloc(relocs16.offset[i], stdout);
1052
1053                write_reloc(relocs32.count, stdout);
1054                for (i = 0; i < relocs32.count; i++)
1055                        write_reloc(relocs32.offset[i], stdout);
1056        } else {
1057#if ELF_BITS == 64
1058                /* Print a stop */
1059                write_reloc(0, stdout);
1060
1061                /* Now print each relocation */
1062                for (i = 0; i < relocs64.count; i++)
1063                        write_reloc(relocs64.offset[i], stdout);
1064
1065                /* Print a stop */
1066                write_reloc(0, stdout);
1067
1068                /* Now print each inverse 32-bit relocation */
1069                for (i = 0; i < relocs32neg.count; i++)
1070                        write_reloc(relocs32neg.offset[i], stdout);
1071#endif
1072
1073                /* Print a stop */
1074                write_reloc(0, stdout);
1075
1076                /* Now print each relocation */
1077                for (i = 0; i < relocs32.count; i++)
1078                        write_reloc(relocs32.offset[i], stdout);
1079        }
1080}
1081
1082/*
1083 * As an aid to debugging problems with different linkers
1084 * print summary information about the relocs.
1085 * Since different linkers tend to emit the sections in
1086 * different orders we use the section names in the output.
1087 */
1088static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
1089                                const char *symname)
1090{
1091        printf("%s\t%s\t%s\t%s\n",
1092                sec_name(sec->shdr.sh_info),
1093                rel_type(ELF_R_TYPE(rel->r_info)),
1094                symname,
1095                sec_name(sym->st_shndx));
1096        return 0;
1097}
1098
1099static void print_reloc_info(void)
1100{
1101        printf("reloc section\treloc type\tsymbol\tsymbol section\n");
1102        walk_relocs(do_reloc_info);
1103}
1104
1105#if ELF_BITS == 64
1106# define process process_64
1107#else
1108# define process process_32
1109#endif
1110
1111void process(FILE *fp, int use_real_mode, int as_text,
1112             int show_absolute_syms, int show_absolute_relocs,
1113             int show_reloc_info)
1114{
1115        regex_init(use_real_mode);
1116        read_ehdr(fp);
1117        read_shdrs(fp);
1118        read_strtabs(fp);
1119        read_symtabs(fp);
1120        read_relocs(fp);
1121        if (ELF_BITS == 64)
1122                percpu_init();
1123        if (show_absolute_syms) {
1124                print_absolute_symbols();
1125                return;
1126        }
1127        if (show_absolute_relocs) {
1128                print_absolute_relocs();
1129                return;
1130        }
1131        if (show_reloc_info) {
1132                print_reloc_info();
1133                return;
1134        }
1135        emit_relocs(as_text, use_real_mode);
1136}
1137