linux/block/blk-mq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/kmemleak.h>
  14#include <linux/mm.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18#include <linux/smp.h>
  19#include <linux/llist.h>
  20#include <linux/list_sort.h>
  21#include <linux/cpu.h>
  22#include <linux/cache.h>
  23#include <linux/sched/sysctl.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29#include <linux/blk-crypto.h>
  30
  31#include <trace/events/block.h>
  32
  33#include <linux/blk-mq.h>
  34#include <linux/t10-pi.h>
  35#include "blk.h"
  36#include "blk-mq.h"
  37#include "blk-mq-debugfs.h"
  38#include "blk-mq-tag.h"
  39#include "blk-pm.h"
  40#include "blk-stat.h"
  41#include "blk-mq-sched.h"
  42#include "blk-rq-qos.h"
  43
  44static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
  45
  46static void blk_mq_poll_stats_start(struct request_queue *q);
  47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  48
  49static int blk_mq_poll_stats_bkt(const struct request *rq)
  50{
  51        int ddir, sectors, bucket;
  52
  53        ddir = rq_data_dir(rq);
  54        sectors = blk_rq_stats_sectors(rq);
  55
  56        bucket = ddir + 2 * ilog2(sectors);
  57
  58        if (bucket < 0)
  59                return -1;
  60        else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  61                return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  62
  63        return bucket;
  64}
  65
  66/*
  67 * Check if any of the ctx, dispatch list or elevator
  68 * have pending work in this hardware queue.
  69 */
  70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  71{
  72        return !list_empty_careful(&hctx->dispatch) ||
  73                sbitmap_any_bit_set(&hctx->ctx_map) ||
  74                        blk_mq_sched_has_work(hctx);
  75}
  76
  77/*
  78 * Mark this ctx as having pending work in this hardware queue
  79 */
  80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  81                                     struct blk_mq_ctx *ctx)
  82{
  83        const int bit = ctx->index_hw[hctx->type];
  84
  85        if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  86                sbitmap_set_bit(&hctx->ctx_map, bit);
  87}
  88
  89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  90                                      struct blk_mq_ctx *ctx)
  91{
  92        const int bit = ctx->index_hw[hctx->type];
  93
  94        sbitmap_clear_bit(&hctx->ctx_map, bit);
  95}
  96
  97struct mq_inflight {
  98        struct block_device *part;
  99        unsigned int inflight[2];
 100};
 101
 102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
 103                                  struct request *rq, void *priv,
 104                                  bool reserved)
 105{
 106        struct mq_inflight *mi = priv;
 107
 108        if ((!mi->part->bd_partno || rq->part == mi->part) &&
 109            blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
 110                mi->inflight[rq_data_dir(rq)]++;
 111
 112        return true;
 113}
 114
 115unsigned int blk_mq_in_flight(struct request_queue *q,
 116                struct block_device *part)
 117{
 118        struct mq_inflight mi = { .part = part };
 119
 120        blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 121
 122        return mi.inflight[0] + mi.inflight[1];
 123}
 124
 125void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 126                unsigned int inflight[2])
 127{
 128        struct mq_inflight mi = { .part = part };
 129
 130        blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 131        inflight[0] = mi.inflight[0];
 132        inflight[1] = mi.inflight[1];
 133}
 134
 135void blk_freeze_queue_start(struct request_queue *q)
 136{
 137        mutex_lock(&q->mq_freeze_lock);
 138        if (++q->mq_freeze_depth == 1) {
 139                percpu_ref_kill(&q->q_usage_counter);
 140                mutex_unlock(&q->mq_freeze_lock);
 141                if (queue_is_mq(q))
 142                        blk_mq_run_hw_queues(q, false);
 143        } else {
 144                mutex_unlock(&q->mq_freeze_lock);
 145        }
 146}
 147EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 148
 149void blk_mq_freeze_queue_wait(struct request_queue *q)
 150{
 151        wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 152}
 153EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 154
 155int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 156                                     unsigned long timeout)
 157{
 158        return wait_event_timeout(q->mq_freeze_wq,
 159                                        percpu_ref_is_zero(&q->q_usage_counter),
 160                                        timeout);
 161}
 162EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 163
 164/*
 165 * Guarantee no request is in use, so we can change any data structure of
 166 * the queue afterward.
 167 */
 168void blk_freeze_queue(struct request_queue *q)
 169{
 170        /*
 171         * In the !blk_mq case we are only calling this to kill the
 172         * q_usage_counter, otherwise this increases the freeze depth
 173         * and waits for it to return to zero.  For this reason there is
 174         * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 175         * exported to drivers as the only user for unfreeze is blk_mq.
 176         */
 177        blk_freeze_queue_start(q);
 178        blk_mq_freeze_queue_wait(q);
 179}
 180
 181void blk_mq_freeze_queue(struct request_queue *q)
 182{
 183        /*
 184         * ...just an alias to keep freeze and unfreeze actions balanced
 185         * in the blk_mq_* namespace
 186         */
 187        blk_freeze_queue(q);
 188}
 189EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 190
 191void blk_mq_unfreeze_queue(struct request_queue *q)
 192{
 193        mutex_lock(&q->mq_freeze_lock);
 194        q->mq_freeze_depth--;
 195        WARN_ON_ONCE(q->mq_freeze_depth < 0);
 196        if (!q->mq_freeze_depth) {
 197                percpu_ref_resurrect(&q->q_usage_counter);
 198                wake_up_all(&q->mq_freeze_wq);
 199        }
 200        mutex_unlock(&q->mq_freeze_lock);
 201}
 202EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 203
 204/*
 205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 206 * mpt3sas driver such that this function can be removed.
 207 */
 208void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 209{
 210        blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 211}
 212EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 213
 214/**
 215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 216 * @q: request queue.
 217 *
 218 * Note: this function does not prevent that the struct request end_io()
 219 * callback function is invoked. Once this function is returned, we make
 220 * sure no dispatch can happen until the queue is unquiesced via
 221 * blk_mq_unquiesce_queue().
 222 */
 223void blk_mq_quiesce_queue(struct request_queue *q)
 224{
 225        struct blk_mq_hw_ctx *hctx;
 226        unsigned int i;
 227        bool rcu = false;
 228
 229        blk_mq_quiesce_queue_nowait(q);
 230
 231        queue_for_each_hw_ctx(q, hctx, i) {
 232                if (hctx->flags & BLK_MQ_F_BLOCKING)
 233                        synchronize_srcu(hctx->srcu);
 234                else
 235                        rcu = true;
 236        }
 237        if (rcu)
 238                synchronize_rcu();
 239}
 240EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 241
 242/*
 243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 244 * @q: request queue.
 245 *
 246 * This function recovers queue into the state before quiescing
 247 * which is done by blk_mq_quiesce_queue.
 248 */
 249void blk_mq_unquiesce_queue(struct request_queue *q)
 250{
 251        blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 252
 253        /* dispatch requests which are inserted during quiescing */
 254        blk_mq_run_hw_queues(q, true);
 255}
 256EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 257
 258void blk_mq_wake_waiters(struct request_queue *q)
 259{
 260        struct blk_mq_hw_ctx *hctx;
 261        unsigned int i;
 262
 263        queue_for_each_hw_ctx(q, hctx, i)
 264                if (blk_mq_hw_queue_mapped(hctx))
 265                        blk_mq_tag_wakeup_all(hctx->tags, true);
 266}
 267
 268/*
 269 * Only need start/end time stamping if we have iostat or
 270 * blk stats enabled, or using an IO scheduler.
 271 */
 272static inline bool blk_mq_need_time_stamp(struct request *rq)
 273{
 274        return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
 275}
 276
 277static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 278                unsigned int tag, u64 alloc_time_ns)
 279{
 280        struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 281        struct request *rq = tags->static_rqs[tag];
 282
 283        if (data->q->elevator) {
 284                rq->tag = BLK_MQ_NO_TAG;
 285                rq->internal_tag = tag;
 286        } else {
 287                rq->tag = tag;
 288                rq->internal_tag = BLK_MQ_NO_TAG;
 289        }
 290
 291        /* csd/requeue_work/fifo_time is initialized before use */
 292        rq->q = data->q;
 293        rq->mq_ctx = data->ctx;
 294        rq->mq_hctx = data->hctx;
 295        rq->rq_flags = 0;
 296        rq->cmd_flags = data->cmd_flags;
 297        if (data->flags & BLK_MQ_REQ_PM)
 298                rq->rq_flags |= RQF_PM;
 299        if (blk_queue_io_stat(data->q))
 300                rq->rq_flags |= RQF_IO_STAT;
 301        INIT_LIST_HEAD(&rq->queuelist);
 302        INIT_HLIST_NODE(&rq->hash);
 303        RB_CLEAR_NODE(&rq->rb_node);
 304        rq->rq_disk = NULL;
 305        rq->part = NULL;
 306#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 307        rq->alloc_time_ns = alloc_time_ns;
 308#endif
 309        if (blk_mq_need_time_stamp(rq))
 310                rq->start_time_ns = ktime_get_ns();
 311        else
 312                rq->start_time_ns = 0;
 313        rq->io_start_time_ns = 0;
 314        rq->stats_sectors = 0;
 315        rq->nr_phys_segments = 0;
 316#if defined(CONFIG_BLK_DEV_INTEGRITY)
 317        rq->nr_integrity_segments = 0;
 318#endif
 319        blk_crypto_rq_set_defaults(rq);
 320        /* tag was already set */
 321        WRITE_ONCE(rq->deadline, 0);
 322
 323        rq->timeout = 0;
 324
 325        rq->end_io = NULL;
 326        rq->end_io_data = NULL;
 327
 328        data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
 329        refcount_set(&rq->ref, 1);
 330
 331        if (!op_is_flush(data->cmd_flags)) {
 332                struct elevator_queue *e = data->q->elevator;
 333
 334                rq->elv.icq = NULL;
 335                if (e && e->type->ops.prepare_request) {
 336                        if (e->type->icq_cache)
 337                                blk_mq_sched_assign_ioc(rq);
 338
 339                        e->type->ops.prepare_request(rq);
 340                        rq->rq_flags |= RQF_ELVPRIV;
 341                }
 342        }
 343
 344        data->hctx->queued++;
 345        return rq;
 346}
 347
 348static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
 349{
 350        struct request_queue *q = data->q;
 351        struct elevator_queue *e = q->elevator;
 352        u64 alloc_time_ns = 0;
 353        unsigned int tag;
 354
 355        /* alloc_time includes depth and tag waits */
 356        if (blk_queue_rq_alloc_time(q))
 357                alloc_time_ns = ktime_get_ns();
 358
 359        if (data->cmd_flags & REQ_NOWAIT)
 360                data->flags |= BLK_MQ_REQ_NOWAIT;
 361
 362        if (e) {
 363                /*
 364                 * Flush/passthrough requests are special and go directly to the
 365                 * dispatch list. Don't include reserved tags in the
 366                 * limiting, as it isn't useful.
 367                 */
 368                if (!op_is_flush(data->cmd_flags) &&
 369                    !blk_op_is_passthrough(data->cmd_flags) &&
 370                    e->type->ops.limit_depth &&
 371                    !(data->flags & BLK_MQ_REQ_RESERVED))
 372                        e->type->ops.limit_depth(data->cmd_flags, data);
 373        }
 374
 375retry:
 376        data->ctx = blk_mq_get_ctx(q);
 377        data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 378        if (!e)
 379                blk_mq_tag_busy(data->hctx);
 380
 381        /*
 382         * Waiting allocations only fail because of an inactive hctx.  In that
 383         * case just retry the hctx assignment and tag allocation as CPU hotplug
 384         * should have migrated us to an online CPU by now.
 385         */
 386        tag = blk_mq_get_tag(data);
 387        if (tag == BLK_MQ_NO_TAG) {
 388                if (data->flags & BLK_MQ_REQ_NOWAIT)
 389                        return NULL;
 390
 391                /*
 392                 * Give up the CPU and sleep for a random short time to ensure
 393                 * that thread using a realtime scheduling class are migrated
 394                 * off the CPU, and thus off the hctx that is going away.
 395                 */
 396                msleep(3);
 397                goto retry;
 398        }
 399        return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
 400}
 401
 402struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 403                blk_mq_req_flags_t flags)
 404{
 405        struct blk_mq_alloc_data data = {
 406                .q              = q,
 407                .flags          = flags,
 408                .cmd_flags      = op,
 409        };
 410        struct request *rq;
 411        int ret;
 412
 413        ret = blk_queue_enter(q, flags);
 414        if (ret)
 415                return ERR_PTR(ret);
 416
 417        rq = __blk_mq_alloc_request(&data);
 418        if (!rq)
 419                goto out_queue_exit;
 420        rq->__data_len = 0;
 421        rq->__sector = (sector_t) -1;
 422        rq->bio = rq->biotail = NULL;
 423        return rq;
 424out_queue_exit:
 425        blk_queue_exit(q);
 426        return ERR_PTR(-EWOULDBLOCK);
 427}
 428EXPORT_SYMBOL(blk_mq_alloc_request);
 429
 430struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 431        unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 432{
 433        struct blk_mq_alloc_data data = {
 434                .q              = q,
 435                .flags          = flags,
 436                .cmd_flags      = op,
 437        };
 438        u64 alloc_time_ns = 0;
 439        unsigned int cpu;
 440        unsigned int tag;
 441        int ret;
 442
 443        /* alloc_time includes depth and tag waits */
 444        if (blk_queue_rq_alloc_time(q))
 445                alloc_time_ns = ktime_get_ns();
 446
 447        /*
 448         * If the tag allocator sleeps we could get an allocation for a
 449         * different hardware context.  No need to complicate the low level
 450         * allocator for this for the rare use case of a command tied to
 451         * a specific queue.
 452         */
 453        if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
 454                return ERR_PTR(-EINVAL);
 455
 456        if (hctx_idx >= q->nr_hw_queues)
 457                return ERR_PTR(-EIO);
 458
 459        ret = blk_queue_enter(q, flags);
 460        if (ret)
 461                return ERR_PTR(ret);
 462
 463        /*
 464         * Check if the hardware context is actually mapped to anything.
 465         * If not tell the caller that it should skip this queue.
 466         */
 467        ret = -EXDEV;
 468        data.hctx = q->queue_hw_ctx[hctx_idx];
 469        if (!blk_mq_hw_queue_mapped(data.hctx))
 470                goto out_queue_exit;
 471        cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 472        data.ctx = __blk_mq_get_ctx(q, cpu);
 473
 474        if (!q->elevator)
 475                blk_mq_tag_busy(data.hctx);
 476
 477        ret = -EWOULDBLOCK;
 478        tag = blk_mq_get_tag(&data);
 479        if (tag == BLK_MQ_NO_TAG)
 480                goto out_queue_exit;
 481        return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
 482
 483out_queue_exit:
 484        blk_queue_exit(q);
 485        return ERR_PTR(ret);
 486}
 487EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 488
 489static void __blk_mq_free_request(struct request *rq)
 490{
 491        struct request_queue *q = rq->q;
 492        struct blk_mq_ctx *ctx = rq->mq_ctx;
 493        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 494        const int sched_tag = rq->internal_tag;
 495
 496        blk_crypto_free_request(rq);
 497        blk_pm_mark_last_busy(rq);
 498        rq->mq_hctx = NULL;
 499        if (rq->tag != BLK_MQ_NO_TAG)
 500                blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 501        if (sched_tag != BLK_MQ_NO_TAG)
 502                blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 503        blk_mq_sched_restart(hctx);
 504        blk_queue_exit(q);
 505}
 506
 507void blk_mq_free_request(struct request *rq)
 508{
 509        struct request_queue *q = rq->q;
 510        struct elevator_queue *e = q->elevator;
 511        struct blk_mq_ctx *ctx = rq->mq_ctx;
 512        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 513
 514        if (rq->rq_flags & RQF_ELVPRIV) {
 515                if (e && e->type->ops.finish_request)
 516                        e->type->ops.finish_request(rq);
 517                if (rq->elv.icq) {
 518                        put_io_context(rq->elv.icq->ioc);
 519                        rq->elv.icq = NULL;
 520                }
 521        }
 522
 523        ctx->rq_completed[rq_is_sync(rq)]++;
 524        if (rq->rq_flags & RQF_MQ_INFLIGHT)
 525                __blk_mq_dec_active_requests(hctx);
 526
 527        if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 528                laptop_io_completion(q->backing_dev_info);
 529
 530        rq_qos_done(q, rq);
 531
 532        WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 533        if (refcount_dec_and_test(&rq->ref))
 534                __blk_mq_free_request(rq);
 535}
 536EXPORT_SYMBOL_GPL(blk_mq_free_request);
 537
 538inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 539{
 540        u64 now = 0;
 541
 542        if (blk_mq_need_time_stamp(rq))
 543                now = ktime_get_ns();
 544
 545        if (rq->rq_flags & RQF_STATS) {
 546                blk_mq_poll_stats_start(rq->q);
 547                blk_stat_add(rq, now);
 548        }
 549
 550        blk_mq_sched_completed_request(rq, now);
 551
 552        blk_account_io_done(rq, now);
 553
 554        if (rq->end_io) {
 555                rq_qos_done(rq->q, rq);
 556                rq->end_io(rq, error);
 557        } else {
 558                blk_mq_free_request(rq);
 559        }
 560}
 561EXPORT_SYMBOL(__blk_mq_end_request);
 562
 563void blk_mq_end_request(struct request *rq, blk_status_t error)
 564{
 565        if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 566                BUG();
 567        __blk_mq_end_request(rq, error);
 568}
 569EXPORT_SYMBOL(blk_mq_end_request);
 570
 571static void blk_complete_reqs(struct llist_head *list)
 572{
 573        struct llist_node *entry = llist_reverse_order(llist_del_all(list));
 574        struct request *rq, *next;
 575
 576        llist_for_each_entry_safe(rq, next, entry, ipi_list)
 577                rq->q->mq_ops->complete(rq);
 578}
 579
 580static __latent_entropy void blk_done_softirq(struct softirq_action *h)
 581{
 582        blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
 583}
 584
 585static int blk_softirq_cpu_dead(unsigned int cpu)
 586{
 587        blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
 588        return 0;
 589}
 590
 591static void __blk_mq_complete_request_remote(void *data)
 592{
 593        __raise_softirq_irqoff(BLOCK_SOFTIRQ);
 594}
 595
 596static inline bool blk_mq_complete_need_ipi(struct request *rq)
 597{
 598        int cpu = raw_smp_processor_id();
 599
 600        if (!IS_ENABLED(CONFIG_SMP) ||
 601            !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
 602                return false;
 603        /*
 604         * With force threaded interrupts enabled, raising softirq from an SMP
 605         * function call will always result in waking the ksoftirqd thread.
 606         * This is probably worse than completing the request on a different
 607         * cache domain.
 608         */
 609        if (force_irqthreads)
 610                return false;
 611
 612        /* same CPU or cache domain?  Complete locally */
 613        if (cpu == rq->mq_ctx->cpu ||
 614            (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
 615             cpus_share_cache(cpu, rq->mq_ctx->cpu)))
 616                return false;
 617
 618        /* don't try to IPI to an offline CPU */
 619        return cpu_online(rq->mq_ctx->cpu);
 620}
 621
 622static void blk_mq_complete_send_ipi(struct request *rq)
 623{
 624        struct llist_head *list;
 625        unsigned int cpu;
 626
 627        cpu = rq->mq_ctx->cpu;
 628        list = &per_cpu(blk_cpu_done, cpu);
 629        if (llist_add(&rq->ipi_list, list)) {
 630                INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
 631                smp_call_function_single_async(cpu, &rq->csd);
 632        }
 633}
 634
 635static void blk_mq_raise_softirq(struct request *rq)
 636{
 637        struct llist_head *list;
 638
 639        preempt_disable();
 640        list = this_cpu_ptr(&blk_cpu_done);
 641        if (llist_add(&rq->ipi_list, list))
 642                raise_softirq(BLOCK_SOFTIRQ);
 643        preempt_enable();
 644}
 645
 646bool blk_mq_complete_request_remote(struct request *rq)
 647{
 648        WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
 649
 650        /*
 651         * For a polled request, always complete locallly, it's pointless
 652         * to redirect the completion.
 653         */
 654        if (rq->cmd_flags & REQ_HIPRI)
 655                return false;
 656
 657        if (blk_mq_complete_need_ipi(rq)) {
 658                blk_mq_complete_send_ipi(rq);
 659                return true;
 660        }
 661
 662        if (rq->q->nr_hw_queues == 1) {
 663                blk_mq_raise_softirq(rq);
 664                return true;
 665        }
 666        return false;
 667}
 668EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
 669
 670/**
 671 * blk_mq_complete_request - end I/O on a request
 672 * @rq:         the request being processed
 673 *
 674 * Description:
 675 *      Complete a request by scheduling the ->complete_rq operation.
 676 **/
 677void blk_mq_complete_request(struct request *rq)
 678{
 679        if (!blk_mq_complete_request_remote(rq))
 680                rq->q->mq_ops->complete(rq);
 681}
 682EXPORT_SYMBOL(blk_mq_complete_request);
 683
 684static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 685        __releases(hctx->srcu)
 686{
 687        if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 688                rcu_read_unlock();
 689        else
 690                srcu_read_unlock(hctx->srcu, srcu_idx);
 691}
 692
 693static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 694        __acquires(hctx->srcu)
 695{
 696        if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 697                /* shut up gcc false positive */
 698                *srcu_idx = 0;
 699                rcu_read_lock();
 700        } else
 701                *srcu_idx = srcu_read_lock(hctx->srcu);
 702}
 703
 704/**
 705 * blk_mq_start_request - Start processing a request
 706 * @rq: Pointer to request to be started
 707 *
 708 * Function used by device drivers to notify the block layer that a request
 709 * is going to be processed now, so blk layer can do proper initializations
 710 * such as starting the timeout timer.
 711 */
 712void blk_mq_start_request(struct request *rq)
 713{
 714        struct request_queue *q = rq->q;
 715
 716        trace_block_rq_issue(rq);
 717
 718        if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 719                rq->io_start_time_ns = ktime_get_ns();
 720                rq->stats_sectors = blk_rq_sectors(rq);
 721                rq->rq_flags |= RQF_STATS;
 722                rq_qos_issue(q, rq);
 723        }
 724
 725        WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 726
 727        blk_add_timer(rq);
 728        WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 729
 730#ifdef CONFIG_BLK_DEV_INTEGRITY
 731        if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
 732                q->integrity.profile->prepare_fn(rq);
 733#endif
 734}
 735EXPORT_SYMBOL(blk_mq_start_request);
 736
 737static void __blk_mq_requeue_request(struct request *rq)
 738{
 739        struct request_queue *q = rq->q;
 740
 741        blk_mq_put_driver_tag(rq);
 742
 743        trace_block_rq_requeue(rq);
 744        rq_qos_requeue(q, rq);
 745
 746        if (blk_mq_request_started(rq)) {
 747                WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 748                rq->rq_flags &= ~RQF_TIMED_OUT;
 749        }
 750}
 751
 752void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 753{
 754        __blk_mq_requeue_request(rq);
 755
 756        /* this request will be re-inserted to io scheduler queue */
 757        blk_mq_sched_requeue_request(rq);
 758
 759        BUG_ON(!list_empty(&rq->queuelist));
 760        blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 761}
 762EXPORT_SYMBOL(blk_mq_requeue_request);
 763
 764static void blk_mq_requeue_work(struct work_struct *work)
 765{
 766        struct request_queue *q =
 767                container_of(work, struct request_queue, requeue_work.work);
 768        LIST_HEAD(rq_list);
 769        struct request *rq, *next;
 770
 771        spin_lock_irq(&q->requeue_lock);
 772        list_splice_init(&q->requeue_list, &rq_list);
 773        spin_unlock_irq(&q->requeue_lock);
 774
 775        list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 776                if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
 777                        continue;
 778
 779                rq->rq_flags &= ~RQF_SOFTBARRIER;
 780                list_del_init(&rq->queuelist);
 781                /*
 782                 * If RQF_DONTPREP, rq has contained some driver specific
 783                 * data, so insert it to hctx dispatch list to avoid any
 784                 * merge.
 785                 */
 786                if (rq->rq_flags & RQF_DONTPREP)
 787                        blk_mq_request_bypass_insert(rq, false, false);
 788                else
 789                        blk_mq_sched_insert_request(rq, true, false, false);
 790        }
 791
 792        while (!list_empty(&rq_list)) {
 793                rq = list_entry(rq_list.next, struct request, queuelist);
 794                list_del_init(&rq->queuelist);
 795                blk_mq_sched_insert_request(rq, false, false, false);
 796        }
 797
 798        blk_mq_run_hw_queues(q, false);
 799}
 800
 801void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 802                                bool kick_requeue_list)
 803{
 804        struct request_queue *q = rq->q;
 805        unsigned long flags;
 806
 807        /*
 808         * We abuse this flag that is otherwise used by the I/O scheduler to
 809         * request head insertion from the workqueue.
 810         */
 811        BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 812
 813        spin_lock_irqsave(&q->requeue_lock, flags);
 814        if (at_head) {
 815                rq->rq_flags |= RQF_SOFTBARRIER;
 816                list_add(&rq->queuelist, &q->requeue_list);
 817        } else {
 818                list_add_tail(&rq->queuelist, &q->requeue_list);
 819        }
 820        spin_unlock_irqrestore(&q->requeue_lock, flags);
 821
 822        if (kick_requeue_list)
 823                blk_mq_kick_requeue_list(q);
 824}
 825
 826void blk_mq_kick_requeue_list(struct request_queue *q)
 827{
 828        kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 829}
 830EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 831
 832void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 833                                    unsigned long msecs)
 834{
 835        kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 836                                    msecs_to_jiffies(msecs));
 837}
 838EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 839
 840struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 841{
 842        if (tag < tags->nr_tags) {
 843                prefetch(tags->rqs[tag]);
 844                return tags->rqs[tag];
 845        }
 846
 847        return NULL;
 848}
 849EXPORT_SYMBOL(blk_mq_tag_to_rq);
 850
 851static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
 852                               void *priv, bool reserved)
 853{
 854        /*
 855         * If we find a request that isn't idle and the queue matches,
 856         * we know the queue is busy. Return false to stop the iteration.
 857         */
 858        if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
 859                bool *busy = priv;
 860
 861                *busy = true;
 862                return false;
 863        }
 864
 865        return true;
 866}
 867
 868bool blk_mq_queue_inflight(struct request_queue *q)
 869{
 870        bool busy = false;
 871
 872        blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
 873        return busy;
 874}
 875EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
 876
 877static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 878{
 879        req->rq_flags |= RQF_TIMED_OUT;
 880        if (req->q->mq_ops->timeout) {
 881                enum blk_eh_timer_return ret;
 882
 883                ret = req->q->mq_ops->timeout(req, reserved);
 884                if (ret == BLK_EH_DONE)
 885                        return;
 886                WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
 887        }
 888
 889        blk_add_timer(req);
 890}
 891
 892static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
 893{
 894        unsigned long deadline;
 895
 896        if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
 897                return false;
 898        if (rq->rq_flags & RQF_TIMED_OUT)
 899                return false;
 900
 901        deadline = READ_ONCE(rq->deadline);
 902        if (time_after_eq(jiffies, deadline))
 903                return true;
 904
 905        if (*next == 0)
 906                *next = deadline;
 907        else if (time_after(*next, deadline))
 908                *next = deadline;
 909        return false;
 910}
 911
 912void blk_mq_put_rq_ref(struct request *rq)
 913{
 914        if (is_flush_rq(rq))
 915                rq->end_io(rq, 0);
 916        else if (refcount_dec_and_test(&rq->ref))
 917                __blk_mq_free_request(rq);
 918}
 919
 920static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 921                struct request *rq, void *priv, bool reserved)
 922{
 923        unsigned long *next = priv;
 924
 925        /*
 926         * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
 927         * be reallocated underneath the timeout handler's processing, then
 928         * the expire check is reliable. If the request is not expired, then
 929         * it was completed and reallocated as a new request after returning
 930         * from blk_mq_check_expired().
 931         */
 932        if (blk_mq_req_expired(rq, next))
 933                blk_mq_rq_timed_out(rq, reserved);
 934        return true;
 935}
 936
 937static void blk_mq_timeout_work(struct work_struct *work)
 938{
 939        struct request_queue *q =
 940                container_of(work, struct request_queue, timeout_work);
 941        unsigned long next = 0;
 942        struct blk_mq_hw_ctx *hctx;
 943        int i;
 944
 945        /* A deadlock might occur if a request is stuck requiring a
 946         * timeout at the same time a queue freeze is waiting
 947         * completion, since the timeout code would not be able to
 948         * acquire the queue reference here.
 949         *
 950         * That's why we don't use blk_queue_enter here; instead, we use
 951         * percpu_ref_tryget directly, because we need to be able to
 952         * obtain a reference even in the short window between the queue
 953         * starting to freeze, by dropping the first reference in
 954         * blk_freeze_queue_start, and the moment the last request is
 955         * consumed, marked by the instant q_usage_counter reaches
 956         * zero.
 957         */
 958        if (!percpu_ref_tryget(&q->q_usage_counter))
 959                return;
 960
 961        blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
 962
 963        if (next != 0) {
 964                mod_timer(&q->timeout, next);
 965        } else {
 966                /*
 967                 * Request timeouts are handled as a forward rolling timer. If
 968                 * we end up here it means that no requests are pending and
 969                 * also that no request has been pending for a while. Mark
 970                 * each hctx as idle.
 971                 */
 972                queue_for_each_hw_ctx(q, hctx, i) {
 973                        /* the hctx may be unmapped, so check it here */
 974                        if (blk_mq_hw_queue_mapped(hctx))
 975                                blk_mq_tag_idle(hctx);
 976                }
 977        }
 978        blk_queue_exit(q);
 979}
 980
 981struct flush_busy_ctx_data {
 982        struct blk_mq_hw_ctx *hctx;
 983        struct list_head *list;
 984};
 985
 986static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 987{
 988        struct flush_busy_ctx_data *flush_data = data;
 989        struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 990        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 991        enum hctx_type type = hctx->type;
 992
 993        spin_lock(&ctx->lock);
 994        list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
 995        sbitmap_clear_bit(sb, bitnr);
 996        spin_unlock(&ctx->lock);
 997        return true;
 998}
 999
1000/*
1001 * Process software queues that have been marked busy, splicing them
1002 * to the for-dispatch
1003 */
1004void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1005{
1006        struct flush_busy_ctx_data data = {
1007                .hctx = hctx,
1008                .list = list,
1009        };
1010
1011        sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1012}
1013EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1014
1015struct dispatch_rq_data {
1016        struct blk_mq_hw_ctx *hctx;
1017        struct request *rq;
1018};
1019
1020static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1021                void *data)
1022{
1023        struct dispatch_rq_data *dispatch_data = data;
1024        struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1025        struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1026        enum hctx_type type = hctx->type;
1027
1028        spin_lock(&ctx->lock);
1029        if (!list_empty(&ctx->rq_lists[type])) {
1030                dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1031                list_del_init(&dispatch_data->rq->queuelist);
1032                if (list_empty(&ctx->rq_lists[type]))
1033                        sbitmap_clear_bit(sb, bitnr);
1034        }
1035        spin_unlock(&ctx->lock);
1036
1037        return !dispatch_data->rq;
1038}
1039
1040struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1041                                        struct blk_mq_ctx *start)
1042{
1043        unsigned off = start ? start->index_hw[hctx->type] : 0;
1044        struct dispatch_rq_data data = {
1045                .hctx = hctx,
1046                .rq   = NULL,
1047        };
1048
1049        __sbitmap_for_each_set(&hctx->ctx_map, off,
1050                               dispatch_rq_from_ctx, &data);
1051
1052        return data.rq;
1053}
1054
1055static inline unsigned int queued_to_index(unsigned int queued)
1056{
1057        if (!queued)
1058                return 0;
1059
1060        return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1061}
1062
1063static bool __blk_mq_get_driver_tag(struct request *rq)
1064{
1065        struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1066        unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1067        int tag;
1068
1069        blk_mq_tag_busy(rq->mq_hctx);
1070
1071        if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1072                bt = rq->mq_hctx->tags->breserved_tags;
1073                tag_offset = 0;
1074        } else {
1075                if (!hctx_may_queue(rq->mq_hctx, bt))
1076                        return false;
1077        }
1078
1079        tag = __sbitmap_queue_get(bt);
1080        if (tag == BLK_MQ_NO_TAG)
1081                return false;
1082
1083        rq->tag = tag + tag_offset;
1084        return true;
1085}
1086
1087bool blk_mq_get_driver_tag(struct request *rq)
1088{
1089        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1090
1091        if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1092                return false;
1093
1094        if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1095                        !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1096                rq->rq_flags |= RQF_MQ_INFLIGHT;
1097                __blk_mq_inc_active_requests(hctx);
1098        }
1099        hctx->tags->rqs[rq->tag] = rq;
1100        return true;
1101}
1102
1103static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1104                                int flags, void *key)
1105{
1106        struct blk_mq_hw_ctx *hctx;
1107
1108        hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1109
1110        spin_lock(&hctx->dispatch_wait_lock);
1111        if (!list_empty(&wait->entry)) {
1112                struct sbitmap_queue *sbq;
1113
1114                list_del_init(&wait->entry);
1115                sbq = hctx->tags->bitmap_tags;
1116                atomic_dec(&sbq->ws_active);
1117        }
1118        spin_unlock(&hctx->dispatch_wait_lock);
1119
1120        blk_mq_run_hw_queue(hctx, true);
1121        return 1;
1122}
1123
1124/*
1125 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1126 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1127 * restart. For both cases, take care to check the condition again after
1128 * marking us as waiting.
1129 */
1130static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1131                                 struct request *rq)
1132{
1133        struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1134        struct wait_queue_head *wq;
1135        wait_queue_entry_t *wait;
1136        bool ret;
1137
1138        if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1139                blk_mq_sched_mark_restart_hctx(hctx);
1140
1141                /*
1142                 * It's possible that a tag was freed in the window between the
1143                 * allocation failure and adding the hardware queue to the wait
1144                 * queue.
1145                 *
1146                 * Don't clear RESTART here, someone else could have set it.
1147                 * At most this will cost an extra queue run.
1148                 */
1149                return blk_mq_get_driver_tag(rq);
1150        }
1151
1152        wait = &hctx->dispatch_wait;
1153        if (!list_empty_careful(&wait->entry))
1154                return false;
1155
1156        wq = &bt_wait_ptr(sbq, hctx)->wait;
1157
1158        spin_lock_irq(&wq->lock);
1159        spin_lock(&hctx->dispatch_wait_lock);
1160        if (!list_empty(&wait->entry)) {
1161                spin_unlock(&hctx->dispatch_wait_lock);
1162                spin_unlock_irq(&wq->lock);
1163                return false;
1164        }
1165
1166        atomic_inc(&sbq->ws_active);
1167        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1168        __add_wait_queue(wq, wait);
1169
1170        /*
1171         * It's possible that a tag was freed in the window between the
1172         * allocation failure and adding the hardware queue to the wait
1173         * queue.
1174         */
1175        ret = blk_mq_get_driver_tag(rq);
1176        if (!ret) {
1177                spin_unlock(&hctx->dispatch_wait_lock);
1178                spin_unlock_irq(&wq->lock);
1179                return false;
1180        }
1181
1182        /*
1183         * We got a tag, remove ourselves from the wait queue to ensure
1184         * someone else gets the wakeup.
1185         */
1186        list_del_init(&wait->entry);
1187        atomic_dec(&sbq->ws_active);
1188        spin_unlock(&hctx->dispatch_wait_lock);
1189        spin_unlock_irq(&wq->lock);
1190
1191        return true;
1192}
1193
1194#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1195#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1196/*
1197 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1198 * - EWMA is one simple way to compute running average value
1199 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1200 * - take 4 as factor for avoiding to get too small(0) result, and this
1201 *   factor doesn't matter because EWMA decreases exponentially
1202 */
1203static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1204{
1205        unsigned int ewma;
1206
1207        ewma = hctx->dispatch_busy;
1208
1209        if (!ewma && !busy)
1210                return;
1211
1212        ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1213        if (busy)
1214                ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1215        ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1216
1217        hctx->dispatch_busy = ewma;
1218}
1219
1220#define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1221
1222static void blk_mq_handle_dev_resource(struct request *rq,
1223                                       struct list_head *list)
1224{
1225        struct request *next =
1226                list_first_entry_or_null(list, struct request, queuelist);
1227
1228        /*
1229         * If an I/O scheduler has been configured and we got a driver tag for
1230         * the next request already, free it.
1231         */
1232        if (next)
1233                blk_mq_put_driver_tag(next);
1234
1235        list_add(&rq->queuelist, list);
1236        __blk_mq_requeue_request(rq);
1237}
1238
1239static void blk_mq_handle_zone_resource(struct request *rq,
1240                                        struct list_head *zone_list)
1241{
1242        /*
1243         * If we end up here it is because we cannot dispatch a request to a
1244         * specific zone due to LLD level zone-write locking or other zone
1245         * related resource not being available. In this case, set the request
1246         * aside in zone_list for retrying it later.
1247         */
1248        list_add(&rq->queuelist, zone_list);
1249        __blk_mq_requeue_request(rq);
1250}
1251
1252enum prep_dispatch {
1253        PREP_DISPATCH_OK,
1254        PREP_DISPATCH_NO_TAG,
1255        PREP_DISPATCH_NO_BUDGET,
1256};
1257
1258static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1259                                                  bool need_budget)
1260{
1261        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1262        int budget_token = -1;
1263
1264        if (need_budget) {
1265                budget_token = blk_mq_get_dispatch_budget(rq->q);
1266                if (budget_token < 0) {
1267                        blk_mq_put_driver_tag(rq);
1268                        return PREP_DISPATCH_NO_BUDGET;
1269                }
1270                blk_mq_set_rq_budget_token(rq, budget_token);
1271        }
1272
1273        if (!blk_mq_get_driver_tag(rq)) {
1274                /*
1275                 * The initial allocation attempt failed, so we need to
1276                 * rerun the hardware queue when a tag is freed. The
1277                 * waitqueue takes care of that. If the queue is run
1278                 * before we add this entry back on the dispatch list,
1279                 * we'll re-run it below.
1280                 */
1281                if (!blk_mq_mark_tag_wait(hctx, rq)) {
1282                        /*
1283                         * All budgets not got from this function will be put
1284                         * together during handling partial dispatch
1285                         */
1286                        if (need_budget)
1287                                blk_mq_put_dispatch_budget(rq->q, budget_token);
1288                        return PREP_DISPATCH_NO_TAG;
1289                }
1290        }
1291
1292        return PREP_DISPATCH_OK;
1293}
1294
1295/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1296static void blk_mq_release_budgets(struct request_queue *q,
1297                struct list_head *list)
1298{
1299        struct request *rq;
1300
1301        list_for_each_entry(rq, list, queuelist) {
1302                int budget_token = blk_mq_get_rq_budget_token(rq);
1303
1304                if (budget_token >= 0)
1305                        blk_mq_put_dispatch_budget(q, budget_token);
1306        }
1307}
1308
1309/*
1310 * Returns true if we did some work AND can potentially do more.
1311 */
1312bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1313                             unsigned int nr_budgets)
1314{
1315        enum prep_dispatch prep;
1316        struct request_queue *q = hctx->queue;
1317        struct request *rq, *nxt;
1318        int errors, queued;
1319        blk_status_t ret = BLK_STS_OK;
1320        LIST_HEAD(zone_list);
1321
1322        if (list_empty(list))
1323                return false;
1324
1325        /*
1326         * Now process all the entries, sending them to the driver.
1327         */
1328        errors = queued = 0;
1329        do {
1330                struct blk_mq_queue_data bd;
1331
1332                rq = list_first_entry(list, struct request, queuelist);
1333
1334                WARN_ON_ONCE(hctx != rq->mq_hctx);
1335                prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1336                if (prep != PREP_DISPATCH_OK)
1337                        break;
1338
1339                list_del_init(&rq->queuelist);
1340
1341                bd.rq = rq;
1342
1343                /*
1344                 * Flag last if we have no more requests, or if we have more
1345                 * but can't assign a driver tag to it.
1346                 */
1347                if (list_empty(list))
1348                        bd.last = true;
1349                else {
1350                        nxt = list_first_entry(list, struct request, queuelist);
1351                        bd.last = !blk_mq_get_driver_tag(nxt);
1352                }
1353
1354                /*
1355                 * once the request is queued to lld, no need to cover the
1356                 * budget any more
1357                 */
1358                if (nr_budgets)
1359                        nr_budgets--;
1360                ret = q->mq_ops->queue_rq(hctx, &bd);
1361                switch (ret) {
1362                case BLK_STS_OK:
1363                        queued++;
1364                        break;
1365                case BLK_STS_RESOURCE:
1366                case BLK_STS_DEV_RESOURCE:
1367                        blk_mq_handle_dev_resource(rq, list);
1368                        goto out;
1369                case BLK_STS_ZONE_RESOURCE:
1370                        /*
1371                         * Move the request to zone_list and keep going through
1372                         * the dispatch list to find more requests the drive can
1373                         * accept.
1374                         */
1375                        blk_mq_handle_zone_resource(rq, &zone_list);
1376                        break;
1377                default:
1378                        errors++;
1379                        blk_mq_end_request(rq, ret);
1380                }
1381        } while (!list_empty(list));
1382out:
1383        if (!list_empty(&zone_list))
1384                list_splice_tail_init(&zone_list, list);
1385
1386        hctx->dispatched[queued_to_index(queued)]++;
1387
1388        /* If we didn't flush the entire list, we could have told the driver
1389         * there was more coming, but that turned out to be a lie.
1390         */
1391        if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1392                q->mq_ops->commit_rqs(hctx);
1393        /*
1394         * Any items that need requeuing? Stuff them into hctx->dispatch,
1395         * that is where we will continue on next queue run.
1396         */
1397        if (!list_empty(list)) {
1398                bool needs_restart;
1399                /* For non-shared tags, the RESTART check will suffice */
1400                bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1401                        (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1402                bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1403
1404                if (nr_budgets)
1405                        blk_mq_release_budgets(q, list);
1406
1407                spin_lock(&hctx->lock);
1408                list_splice_tail_init(list, &hctx->dispatch);
1409                spin_unlock(&hctx->lock);
1410
1411                /*
1412                 * Order adding requests to hctx->dispatch and checking
1413                 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1414                 * in blk_mq_sched_restart(). Avoid restart code path to
1415                 * miss the new added requests to hctx->dispatch, meantime
1416                 * SCHED_RESTART is observed here.
1417                 */
1418                smp_mb();
1419
1420                /*
1421                 * If SCHED_RESTART was set by the caller of this function and
1422                 * it is no longer set that means that it was cleared by another
1423                 * thread and hence that a queue rerun is needed.
1424                 *
1425                 * If 'no_tag' is set, that means that we failed getting
1426                 * a driver tag with an I/O scheduler attached. If our dispatch
1427                 * waitqueue is no longer active, ensure that we run the queue
1428                 * AFTER adding our entries back to the list.
1429                 *
1430                 * If no I/O scheduler has been configured it is possible that
1431                 * the hardware queue got stopped and restarted before requests
1432                 * were pushed back onto the dispatch list. Rerun the queue to
1433                 * avoid starvation. Notes:
1434                 * - blk_mq_run_hw_queue() checks whether or not a queue has
1435                 *   been stopped before rerunning a queue.
1436                 * - Some but not all block drivers stop a queue before
1437                 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1438                 *   and dm-rq.
1439                 *
1440                 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1441                 * bit is set, run queue after a delay to avoid IO stalls
1442                 * that could otherwise occur if the queue is idle.  We'll do
1443                 * similar if we couldn't get budget and SCHED_RESTART is set.
1444                 */
1445                needs_restart = blk_mq_sched_needs_restart(hctx);
1446                if (!needs_restart ||
1447                    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1448                        blk_mq_run_hw_queue(hctx, true);
1449                else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1450                                           no_budget_avail))
1451                        blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1452
1453                blk_mq_update_dispatch_busy(hctx, true);
1454                return false;
1455        } else
1456                blk_mq_update_dispatch_busy(hctx, false);
1457
1458        return (queued + errors) != 0;
1459}
1460
1461/**
1462 * __blk_mq_run_hw_queue - Run a hardware queue.
1463 * @hctx: Pointer to the hardware queue to run.
1464 *
1465 * Send pending requests to the hardware.
1466 */
1467static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1468{
1469        int srcu_idx;
1470
1471        /*
1472         * We can't run the queue inline with ints disabled. Ensure that
1473         * we catch bad users of this early.
1474         */
1475        WARN_ON_ONCE(in_interrupt());
1476
1477        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1478
1479        hctx_lock(hctx, &srcu_idx);
1480        blk_mq_sched_dispatch_requests(hctx);
1481        hctx_unlock(hctx, srcu_idx);
1482}
1483
1484static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1485{
1486        int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1487
1488        if (cpu >= nr_cpu_ids)
1489                cpu = cpumask_first(hctx->cpumask);
1490        return cpu;
1491}
1492
1493/*
1494 * It'd be great if the workqueue API had a way to pass
1495 * in a mask and had some smarts for more clever placement.
1496 * For now we just round-robin here, switching for every
1497 * BLK_MQ_CPU_WORK_BATCH queued items.
1498 */
1499static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1500{
1501        bool tried = false;
1502        int next_cpu = hctx->next_cpu;
1503
1504        if (hctx->queue->nr_hw_queues == 1)
1505                return WORK_CPU_UNBOUND;
1506
1507        if (--hctx->next_cpu_batch <= 0) {
1508select_cpu:
1509                next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1510                                cpu_online_mask);
1511                if (next_cpu >= nr_cpu_ids)
1512                        next_cpu = blk_mq_first_mapped_cpu(hctx);
1513                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1514        }
1515
1516        /*
1517         * Do unbound schedule if we can't find a online CPU for this hctx,
1518         * and it should only happen in the path of handling CPU DEAD.
1519         */
1520        if (!cpu_online(next_cpu)) {
1521                if (!tried) {
1522                        tried = true;
1523                        goto select_cpu;
1524                }
1525
1526                /*
1527                 * Make sure to re-select CPU next time once after CPUs
1528                 * in hctx->cpumask become online again.
1529                 */
1530                hctx->next_cpu = next_cpu;
1531                hctx->next_cpu_batch = 1;
1532                return WORK_CPU_UNBOUND;
1533        }
1534
1535        hctx->next_cpu = next_cpu;
1536        return next_cpu;
1537}
1538
1539/**
1540 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1541 * @hctx: Pointer to the hardware queue to run.
1542 * @async: If we want to run the queue asynchronously.
1543 * @msecs: Milliseconds of delay to wait before running the queue.
1544 *
1545 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1546 * with a delay of @msecs.
1547 */
1548static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1549                                        unsigned long msecs)
1550{
1551        if (unlikely(blk_mq_hctx_stopped(hctx)))
1552                return;
1553
1554        if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1555                int cpu = get_cpu();
1556                if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1557                        __blk_mq_run_hw_queue(hctx);
1558                        put_cpu();
1559                        return;
1560                }
1561
1562                put_cpu();
1563        }
1564
1565        kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1566                                    msecs_to_jiffies(msecs));
1567}
1568
1569/**
1570 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1571 * @hctx: Pointer to the hardware queue to run.
1572 * @msecs: Milliseconds of delay to wait before running the queue.
1573 *
1574 * Run a hardware queue asynchronously with a delay of @msecs.
1575 */
1576void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1577{
1578        __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1579}
1580EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1581
1582/**
1583 * blk_mq_run_hw_queue - Start to run a hardware queue.
1584 * @hctx: Pointer to the hardware queue to run.
1585 * @async: If we want to run the queue asynchronously.
1586 *
1587 * Check if the request queue is not in a quiesced state and if there are
1588 * pending requests to be sent. If this is true, run the queue to send requests
1589 * to hardware.
1590 */
1591void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1592{
1593        int srcu_idx;
1594        bool need_run;
1595
1596        /*
1597         * When queue is quiesced, we may be switching io scheduler, or
1598         * updating nr_hw_queues, or other things, and we can't run queue
1599         * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1600         *
1601         * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1602         * quiesced.
1603         */
1604        hctx_lock(hctx, &srcu_idx);
1605        need_run = !blk_queue_quiesced(hctx->queue) &&
1606                blk_mq_hctx_has_pending(hctx);
1607        hctx_unlock(hctx, srcu_idx);
1608
1609        if (need_run)
1610                __blk_mq_delay_run_hw_queue(hctx, async, 0);
1611}
1612EXPORT_SYMBOL(blk_mq_run_hw_queue);
1613
1614/*
1615 * Is the request queue handled by an IO scheduler that does not respect
1616 * hardware queues when dispatching?
1617 */
1618static bool blk_mq_has_sqsched(struct request_queue *q)
1619{
1620        struct elevator_queue *e = q->elevator;
1621
1622        if (e && e->type->ops.dispatch_request &&
1623            !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1624                return true;
1625        return false;
1626}
1627
1628/*
1629 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1630 * scheduler.
1631 */
1632static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1633{
1634        struct blk_mq_hw_ctx *hctx;
1635
1636        /*
1637         * If the IO scheduler does not respect hardware queues when
1638         * dispatching, we just don't bother with multiple HW queues and
1639         * dispatch from hctx for the current CPU since running multiple queues
1640         * just causes lock contention inside the scheduler and pointless cache
1641         * bouncing.
1642         */
1643        hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1644                                     raw_smp_processor_id());
1645        if (!blk_mq_hctx_stopped(hctx))
1646                return hctx;
1647        return NULL;
1648}
1649
1650/**
1651 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1652 * @q: Pointer to the request queue to run.
1653 * @async: If we want to run the queue asynchronously.
1654 */
1655void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1656{
1657        struct blk_mq_hw_ctx *hctx, *sq_hctx;
1658        int i;
1659
1660        sq_hctx = NULL;
1661        if (blk_mq_has_sqsched(q))
1662                sq_hctx = blk_mq_get_sq_hctx(q);
1663        queue_for_each_hw_ctx(q, hctx, i) {
1664                if (blk_mq_hctx_stopped(hctx))
1665                        continue;
1666                /*
1667                 * Dispatch from this hctx either if there's no hctx preferred
1668                 * by IO scheduler or if it has requests that bypass the
1669                 * scheduler.
1670                 */
1671                if (!sq_hctx || sq_hctx == hctx ||
1672                    !list_empty_careful(&hctx->dispatch))
1673                        blk_mq_run_hw_queue(hctx, async);
1674        }
1675}
1676EXPORT_SYMBOL(blk_mq_run_hw_queues);
1677
1678/**
1679 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1680 * @q: Pointer to the request queue to run.
1681 * @msecs: Milliseconds of delay to wait before running the queues.
1682 */
1683void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1684{
1685        struct blk_mq_hw_ctx *hctx, *sq_hctx;
1686        int i;
1687
1688        sq_hctx = NULL;
1689        if (blk_mq_has_sqsched(q))
1690                sq_hctx = blk_mq_get_sq_hctx(q);
1691        queue_for_each_hw_ctx(q, hctx, i) {
1692                if (blk_mq_hctx_stopped(hctx))
1693                        continue;
1694                /*
1695                 * Dispatch from this hctx either if there's no hctx preferred
1696                 * by IO scheduler or if it has requests that bypass the
1697                 * scheduler.
1698                 */
1699                if (!sq_hctx || sq_hctx == hctx ||
1700                    !list_empty_careful(&hctx->dispatch))
1701                        blk_mq_delay_run_hw_queue(hctx, msecs);
1702        }
1703}
1704EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705
1706/**
1707 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708 * @q: request queue.
1709 *
1710 * The caller is responsible for serializing this function against
1711 * blk_mq_{start,stop}_hw_queue().
1712 */
1713bool blk_mq_queue_stopped(struct request_queue *q)
1714{
1715        struct blk_mq_hw_ctx *hctx;
1716        int i;
1717
1718        queue_for_each_hw_ctx(q, hctx, i)
1719                if (blk_mq_hctx_stopped(hctx))
1720                        return true;
1721
1722        return false;
1723}
1724EXPORT_SYMBOL(blk_mq_queue_stopped);
1725
1726/*
1727 * This function is often used for pausing .queue_rq() by driver when
1728 * there isn't enough resource or some conditions aren't satisfied, and
1729 * BLK_STS_RESOURCE is usually returned.
1730 *
1731 * We do not guarantee that dispatch can be drained or blocked
1732 * after blk_mq_stop_hw_queue() returns. Please use
1733 * blk_mq_quiesce_queue() for that requirement.
1734 */
1735void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736{
1737        cancel_delayed_work(&hctx->run_work);
1738
1739        set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740}
1741EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742
1743/*
1744 * This function is often used for pausing .queue_rq() by driver when
1745 * there isn't enough resource or some conditions aren't satisfied, and
1746 * BLK_STS_RESOURCE is usually returned.
1747 *
1748 * We do not guarantee that dispatch can be drained or blocked
1749 * after blk_mq_stop_hw_queues() returns. Please use
1750 * blk_mq_quiesce_queue() for that requirement.
1751 */
1752void blk_mq_stop_hw_queues(struct request_queue *q)
1753{
1754        struct blk_mq_hw_ctx *hctx;
1755        int i;
1756
1757        queue_for_each_hw_ctx(q, hctx, i)
1758                blk_mq_stop_hw_queue(hctx);
1759}
1760EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761
1762void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763{
1764        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765
1766        blk_mq_run_hw_queue(hctx, false);
1767}
1768EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769
1770void blk_mq_start_hw_queues(struct request_queue *q)
1771{
1772        struct blk_mq_hw_ctx *hctx;
1773        int i;
1774
1775        queue_for_each_hw_ctx(q, hctx, i)
1776                blk_mq_start_hw_queue(hctx);
1777}
1778EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779
1780void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781{
1782        if (!blk_mq_hctx_stopped(hctx))
1783                return;
1784
1785        clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786        blk_mq_run_hw_queue(hctx, async);
1787}
1788EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789
1790void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791{
1792        struct blk_mq_hw_ctx *hctx;
1793        int i;
1794
1795        queue_for_each_hw_ctx(q, hctx, i)
1796                blk_mq_start_stopped_hw_queue(hctx, async);
1797}
1798EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799
1800static void blk_mq_run_work_fn(struct work_struct *work)
1801{
1802        struct blk_mq_hw_ctx *hctx;
1803
1804        hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805
1806        /*
1807         * If we are stopped, don't run the queue.
1808         */
1809        if (blk_mq_hctx_stopped(hctx))
1810                return;
1811
1812        __blk_mq_run_hw_queue(hctx);
1813}
1814
1815static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816                                            struct request *rq,
1817                                            bool at_head)
1818{
1819        struct blk_mq_ctx *ctx = rq->mq_ctx;
1820        enum hctx_type type = hctx->type;
1821
1822        lockdep_assert_held(&ctx->lock);
1823
1824        trace_block_rq_insert(rq);
1825
1826        if (at_head)
1827                list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828        else
1829                list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830}
1831
1832void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833                             bool at_head)
1834{
1835        struct blk_mq_ctx *ctx = rq->mq_ctx;
1836
1837        lockdep_assert_held(&ctx->lock);
1838
1839        __blk_mq_insert_req_list(hctx, rq, at_head);
1840        blk_mq_hctx_mark_pending(hctx, ctx);
1841}
1842
1843/**
1844 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845 * @rq: Pointer to request to be inserted.
1846 * @at_head: true if the request should be inserted at the head of the list.
1847 * @run_queue: If we should run the hardware queue after inserting the request.
1848 *
1849 * Should only be used carefully, when the caller knows we want to
1850 * bypass a potential IO scheduler on the target device.
1851 */
1852void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853                                  bool run_queue)
1854{
1855        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856
1857        spin_lock(&hctx->lock);
1858        if (at_head)
1859                list_add(&rq->queuelist, &hctx->dispatch);
1860        else
1861                list_add_tail(&rq->queuelist, &hctx->dispatch);
1862        spin_unlock(&hctx->lock);
1863
1864        if (run_queue)
1865                blk_mq_run_hw_queue(hctx, false);
1866}
1867
1868void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869                            struct list_head *list)
1870
1871{
1872        struct request *rq;
1873        enum hctx_type type = hctx->type;
1874
1875        /*
1876         * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877         * offline now
1878         */
1879        list_for_each_entry(rq, list, queuelist) {
1880                BUG_ON(rq->mq_ctx != ctx);
1881                trace_block_rq_insert(rq);
1882        }
1883
1884        spin_lock(&ctx->lock);
1885        list_splice_tail_init(list, &ctx->rq_lists[type]);
1886        blk_mq_hctx_mark_pending(hctx, ctx);
1887        spin_unlock(&ctx->lock);
1888}
1889
1890static int plug_rq_cmp(void *priv, const struct list_head *a,
1891                       const struct list_head *b)
1892{
1893        struct request *rqa = container_of(a, struct request, queuelist);
1894        struct request *rqb = container_of(b, struct request, queuelist);
1895
1896        if (rqa->mq_ctx != rqb->mq_ctx)
1897                return rqa->mq_ctx > rqb->mq_ctx;
1898        if (rqa->mq_hctx != rqb->mq_hctx)
1899                return rqa->mq_hctx > rqb->mq_hctx;
1900
1901        return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1902}
1903
1904void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1905{
1906        LIST_HEAD(list);
1907
1908        if (list_empty(&plug->mq_list))
1909                return;
1910        list_splice_init(&plug->mq_list, &list);
1911
1912        if (plug->rq_count > 2 && plug->multiple_queues)
1913                list_sort(NULL, &list, plug_rq_cmp);
1914
1915        plug->rq_count = 0;
1916
1917        do {
1918                struct list_head rq_list;
1919                struct request *rq, *head_rq = list_entry_rq(list.next);
1920                struct list_head *pos = &head_rq->queuelist; /* skip first */
1921                struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1922                struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1923                unsigned int depth = 1;
1924
1925                list_for_each_continue(pos, &list) {
1926                        rq = list_entry_rq(pos);
1927                        BUG_ON(!rq->q);
1928                        if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1929                                break;
1930                        depth++;
1931                }
1932
1933                list_cut_before(&rq_list, &list, pos);
1934                trace_block_unplug(head_rq->q, depth, !from_schedule);
1935                blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1936                                                from_schedule);
1937        } while(!list_empty(&list));
1938}
1939
1940static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1941                unsigned int nr_segs)
1942{
1943        int err;
1944
1945        if (bio->bi_opf & REQ_RAHEAD)
1946                rq->cmd_flags |= REQ_FAILFAST_MASK;
1947
1948        rq->__sector = bio->bi_iter.bi_sector;
1949        rq->write_hint = bio->bi_write_hint;
1950        blk_rq_bio_prep(rq, bio, nr_segs);
1951
1952        /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1953        err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1954        WARN_ON_ONCE(err);
1955
1956        blk_account_io_start(rq);
1957}
1958
1959static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1960                                            struct request *rq,
1961                                            blk_qc_t *cookie, bool last)
1962{
1963        struct request_queue *q = rq->q;
1964        struct blk_mq_queue_data bd = {
1965                .rq = rq,
1966                .last = last,
1967        };
1968        blk_qc_t new_cookie;
1969        blk_status_t ret;
1970
1971        new_cookie = request_to_qc_t(hctx, rq);
1972
1973        /*
1974         * For OK queue, we are done. For error, caller may kill it.
1975         * Any other error (busy), just add it to our list as we
1976         * previously would have done.
1977         */
1978        ret = q->mq_ops->queue_rq(hctx, &bd);
1979        switch (ret) {
1980        case BLK_STS_OK:
1981                blk_mq_update_dispatch_busy(hctx, false);
1982                *cookie = new_cookie;
1983                break;
1984        case BLK_STS_RESOURCE:
1985        case BLK_STS_DEV_RESOURCE:
1986                blk_mq_update_dispatch_busy(hctx, true);
1987                __blk_mq_requeue_request(rq);
1988                break;
1989        default:
1990                blk_mq_update_dispatch_busy(hctx, false);
1991                *cookie = BLK_QC_T_NONE;
1992                break;
1993        }
1994
1995        return ret;
1996}
1997
1998static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1999                                                struct request *rq,
2000                                                blk_qc_t *cookie,
2001                                                bool bypass_insert, bool last)
2002{
2003        struct request_queue *q = rq->q;
2004        bool run_queue = true;
2005        int budget_token;
2006
2007        /*
2008         * RCU or SRCU read lock is needed before checking quiesced flag.
2009         *
2010         * When queue is stopped or quiesced, ignore 'bypass_insert' from
2011         * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2012         * and avoid driver to try to dispatch again.
2013         */
2014        if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2015                run_queue = false;
2016                bypass_insert = false;
2017                goto insert;
2018        }
2019
2020        if (q->elevator && !bypass_insert)
2021                goto insert;
2022
2023        budget_token = blk_mq_get_dispatch_budget(q);
2024        if (budget_token < 0)
2025                goto insert;
2026
2027        blk_mq_set_rq_budget_token(rq, budget_token);
2028
2029        if (!blk_mq_get_driver_tag(rq)) {
2030                blk_mq_put_dispatch_budget(q, budget_token);
2031                goto insert;
2032        }
2033
2034        return __blk_mq_issue_directly(hctx, rq, cookie, last);
2035insert:
2036        if (bypass_insert)
2037                return BLK_STS_RESOURCE;
2038
2039        blk_mq_sched_insert_request(rq, false, run_queue, false);
2040
2041        return BLK_STS_OK;
2042}
2043
2044/**
2045 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2046 * @hctx: Pointer of the associated hardware queue.
2047 * @rq: Pointer to request to be sent.
2048 * @cookie: Request queue cookie.
2049 *
2050 * If the device has enough resources to accept a new request now, send the
2051 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2052 * we can try send it another time in the future. Requests inserted at this
2053 * queue have higher priority.
2054 */
2055static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2056                struct request *rq, blk_qc_t *cookie)
2057{
2058        blk_status_t ret;
2059        int srcu_idx;
2060
2061        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2062
2063        hctx_lock(hctx, &srcu_idx);
2064
2065        ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2066        if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2067                blk_mq_request_bypass_insert(rq, false, true);
2068        else if (ret != BLK_STS_OK)
2069                blk_mq_end_request(rq, ret);
2070
2071        hctx_unlock(hctx, srcu_idx);
2072}
2073
2074blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2075{
2076        blk_status_t ret;
2077        int srcu_idx;
2078        blk_qc_t unused_cookie;
2079        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2080
2081        hctx_lock(hctx, &srcu_idx);
2082        ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2083        hctx_unlock(hctx, srcu_idx);
2084
2085        return ret;
2086}
2087
2088void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2089                struct list_head *list)
2090{
2091        int queued = 0;
2092        int errors = 0;
2093
2094        while (!list_empty(list)) {
2095                blk_status_t ret;
2096                struct request *rq = list_first_entry(list, struct request,
2097                                queuelist);
2098
2099                list_del_init(&rq->queuelist);
2100                ret = blk_mq_request_issue_directly(rq, list_empty(list));
2101                if (ret != BLK_STS_OK) {
2102                        if (ret == BLK_STS_RESOURCE ||
2103                                        ret == BLK_STS_DEV_RESOURCE) {
2104                                blk_mq_request_bypass_insert(rq, false,
2105                                                        list_empty(list));
2106                                break;
2107                        }
2108                        blk_mq_end_request(rq, ret);
2109                        errors++;
2110                } else
2111                        queued++;
2112        }
2113
2114        /*
2115         * If we didn't flush the entire list, we could have told
2116         * the driver there was more coming, but that turned out to
2117         * be a lie.
2118         */
2119        if ((!list_empty(list) || errors) &&
2120             hctx->queue->mq_ops->commit_rqs && queued)
2121                hctx->queue->mq_ops->commit_rqs(hctx);
2122}
2123
2124static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125{
2126        list_add_tail(&rq->queuelist, &plug->mq_list);
2127        plug->rq_count++;
2128        if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129                struct request *tmp;
2130
2131                tmp = list_first_entry(&plug->mq_list, struct request,
2132                                                queuelist);
2133                if (tmp->q != rq->q)
2134                        plug->multiple_queues = true;
2135        }
2136}
2137
2138/**
2139 * blk_mq_submit_bio - Create and send a request to block device.
2140 * @bio: Bio pointer.
2141 *
2142 * Builds up a request structure from @q and @bio and send to the device. The
2143 * request may not be queued directly to hardware if:
2144 * * This request can be merged with another one
2145 * * We want to place request at plug queue for possible future merging
2146 * * There is an IO scheduler active at this queue
2147 *
2148 * It will not queue the request if there is an error with the bio, or at the
2149 * request creation.
2150 *
2151 * Returns: Request queue cookie.
2152 */
2153blk_qc_t blk_mq_submit_bio(struct bio *bio)
2154{
2155        struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2156        const int is_sync = op_is_sync(bio->bi_opf);
2157        const int is_flush_fua = op_is_flush(bio->bi_opf);
2158        struct blk_mq_alloc_data data = {
2159                .q              = q,
2160        };
2161        struct request *rq;
2162        struct blk_plug *plug;
2163        struct request *same_queue_rq = NULL;
2164        unsigned int nr_segs;
2165        blk_qc_t cookie;
2166        blk_status_t ret;
2167        bool hipri;
2168
2169        blk_queue_bounce(q, &bio);
2170        __blk_queue_split(&bio, &nr_segs);
2171
2172        if (!bio_integrity_prep(bio))
2173                goto queue_exit;
2174
2175        if (!is_flush_fua && !blk_queue_nomerges(q) &&
2176            blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2177                goto queue_exit;
2178
2179        if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2180                goto queue_exit;
2181
2182        rq_qos_throttle(q, bio);
2183
2184        hipri = bio->bi_opf & REQ_HIPRI;
2185
2186        data.cmd_flags = bio->bi_opf;
2187        rq = __blk_mq_alloc_request(&data);
2188        if (unlikely(!rq)) {
2189                rq_qos_cleanup(q, bio);
2190                if (bio->bi_opf & REQ_NOWAIT)
2191                        bio_wouldblock_error(bio);
2192                goto queue_exit;
2193        }
2194
2195        trace_block_getrq(bio);
2196
2197        rq_qos_track(q, rq, bio);
2198
2199        cookie = request_to_qc_t(data.hctx, rq);
2200
2201        blk_mq_bio_to_request(rq, bio, nr_segs);
2202
2203        ret = blk_crypto_init_request(rq);
2204        if (ret != BLK_STS_OK) {
2205                bio->bi_status = ret;
2206                bio_endio(bio);
2207                blk_mq_free_request(rq);
2208                return BLK_QC_T_NONE;
2209        }
2210
2211        plug = blk_mq_plug(q, bio);
2212        if (unlikely(is_flush_fua)) {
2213                /* Bypass scheduler for flush requests */
2214                blk_insert_flush(rq);
2215                blk_mq_run_hw_queue(data.hctx, true);
2216        } else if (plug && (q->nr_hw_queues == 1 ||
2217                   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2218                   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2219                /*
2220                 * Use plugging if we have a ->commit_rqs() hook as well, as
2221                 * we know the driver uses bd->last in a smart fashion.
2222                 *
2223                 * Use normal plugging if this disk is slow HDD, as sequential
2224                 * IO may benefit a lot from plug merging.
2225                 */
2226                unsigned int request_count = plug->rq_count;
2227                struct request *last = NULL;
2228
2229                if (!request_count)
2230                        trace_block_plug(q);
2231                else
2232                        last = list_entry_rq(plug->mq_list.prev);
2233
2234                if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2235                    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2236                        blk_flush_plug_list(plug, false);
2237                        trace_block_plug(q);
2238                }
2239
2240                blk_add_rq_to_plug(plug, rq);
2241        } else if (q->elevator) {
2242                /* Insert the request at the IO scheduler queue */
2243                blk_mq_sched_insert_request(rq, false, true, true);
2244        } else if (plug && !blk_queue_nomerges(q)) {
2245                /*
2246                 * We do limited plugging. If the bio can be merged, do that.
2247                 * Otherwise the existing request in the plug list will be
2248                 * issued. So the plug list will have one request at most
2249                 * The plug list might get flushed before this. If that happens,
2250                 * the plug list is empty, and same_queue_rq is invalid.
2251                 */
2252                if (list_empty(&plug->mq_list))
2253                        same_queue_rq = NULL;
2254                if (same_queue_rq) {
2255                        list_del_init(&same_queue_rq->queuelist);
2256                        plug->rq_count--;
2257                }
2258                blk_add_rq_to_plug(plug, rq);
2259                trace_block_plug(q);
2260
2261                if (same_queue_rq) {
2262                        data.hctx = same_queue_rq->mq_hctx;
2263                        trace_block_unplug(q, 1, true);
2264                        blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2265                                        &cookie);
2266                }
2267        } else if ((q->nr_hw_queues > 1 && is_sync) ||
2268                        !data.hctx->dispatch_busy) {
2269                /*
2270                 * There is no scheduler and we can try to send directly
2271                 * to the hardware.
2272                 */
2273                blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2274        } else {
2275                /* Default case. */
2276                blk_mq_sched_insert_request(rq, false, true, true);
2277        }
2278
2279        if (!hipri)
2280                return BLK_QC_T_NONE;
2281        return cookie;
2282queue_exit:
2283        blk_queue_exit(q);
2284        return BLK_QC_T_NONE;
2285}
2286
2287static size_t order_to_size(unsigned int order)
2288{
2289        return (size_t)PAGE_SIZE << order;
2290}
2291
2292/* called before freeing request pool in @tags */
2293static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2294                struct blk_mq_tags *tags, unsigned int hctx_idx)
2295{
2296        struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2297        struct page *page;
2298        unsigned long flags;
2299
2300        list_for_each_entry(page, &tags->page_list, lru) {
2301                unsigned long start = (unsigned long)page_address(page);
2302                unsigned long end = start + order_to_size(page->private);
2303                int i;
2304
2305                for (i = 0; i < set->queue_depth; i++) {
2306                        struct request *rq = drv_tags->rqs[i];
2307                        unsigned long rq_addr = (unsigned long)rq;
2308
2309                        if (rq_addr >= start && rq_addr < end) {
2310                                WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2311                                cmpxchg(&drv_tags->rqs[i], rq, NULL);
2312                        }
2313                }
2314        }
2315
2316        /*
2317         * Wait until all pending iteration is done.
2318         *
2319         * Request reference is cleared and it is guaranteed to be observed
2320         * after the ->lock is released.
2321         */
2322        spin_lock_irqsave(&drv_tags->lock, flags);
2323        spin_unlock_irqrestore(&drv_tags->lock, flags);
2324}
2325
2326void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2327                     unsigned int hctx_idx)
2328{
2329        struct page *page;
2330
2331        if (tags->rqs && set->ops->exit_request) {
2332                int i;
2333
2334                for (i = 0; i < tags->nr_tags; i++) {
2335                        struct request *rq = tags->static_rqs[i];
2336
2337                        if (!rq)
2338                                continue;
2339                        set->ops->exit_request(set, rq, hctx_idx);
2340                        tags->static_rqs[i] = NULL;
2341                }
2342        }
2343
2344        blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2345
2346        while (!list_empty(&tags->page_list)) {
2347                page = list_first_entry(&tags->page_list, struct page, lru);
2348                list_del_init(&page->lru);
2349                /*
2350                 * Remove kmemleak object previously allocated in
2351                 * blk_mq_alloc_rqs().
2352                 */
2353                kmemleak_free(page_address(page));
2354                __free_pages(page, page->private);
2355        }
2356}
2357
2358void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2359{
2360        kfree(tags->rqs);
2361        tags->rqs = NULL;
2362        kfree(tags->static_rqs);
2363        tags->static_rqs = NULL;
2364
2365        blk_mq_free_tags(tags, flags);
2366}
2367
2368struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2369                                        unsigned int hctx_idx,
2370                                        unsigned int nr_tags,
2371                                        unsigned int reserved_tags,
2372                                        unsigned int flags)
2373{
2374        struct blk_mq_tags *tags;
2375        int node;
2376
2377        node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2378        if (node == NUMA_NO_NODE)
2379                node = set->numa_node;
2380
2381        tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2382        if (!tags)
2383                return NULL;
2384
2385        tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2386                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2387                                 node);
2388        if (!tags->rqs) {
2389                blk_mq_free_tags(tags, flags);
2390                return NULL;
2391        }
2392
2393        tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2394                                        GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2395                                        node);
2396        if (!tags->static_rqs) {
2397                kfree(tags->rqs);
2398                blk_mq_free_tags(tags, flags);
2399                return NULL;
2400        }
2401
2402        return tags;
2403}
2404
2405static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2406                               unsigned int hctx_idx, int node)
2407{
2408        int ret;
2409
2410        if (set->ops->init_request) {
2411                ret = set->ops->init_request(set, rq, hctx_idx, node);
2412                if (ret)
2413                        return ret;
2414        }
2415
2416        WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2417        return 0;
2418}
2419
2420int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2421                     unsigned int hctx_idx, unsigned int depth)
2422{
2423        unsigned int i, j, entries_per_page, max_order = 4;
2424        size_t rq_size, left;
2425        int node;
2426
2427        node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2428        if (node == NUMA_NO_NODE)
2429                node = set->numa_node;
2430
2431        INIT_LIST_HEAD(&tags->page_list);
2432
2433        /*
2434         * rq_size is the size of the request plus driver payload, rounded
2435         * to the cacheline size
2436         */
2437        rq_size = round_up(sizeof(struct request) + set->cmd_size,
2438                                cache_line_size());
2439        left = rq_size * depth;
2440
2441        for (i = 0; i < depth; ) {
2442                int this_order = max_order;
2443                struct page *page;
2444                int to_do;
2445                void *p;
2446
2447                while (this_order && left < order_to_size(this_order - 1))
2448                        this_order--;
2449
2450                do {
2451                        page = alloc_pages_node(node,
2452                                GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2453                                this_order);
2454                        if (page)
2455                                break;
2456                        if (!this_order--)
2457                                break;
2458                        if (order_to_size(this_order) < rq_size)
2459                                break;
2460                } while (1);
2461
2462                if (!page)
2463                        goto fail;
2464
2465                page->private = this_order;
2466                list_add_tail(&page->lru, &tags->page_list);
2467
2468                p = page_address(page);
2469                /*
2470                 * Allow kmemleak to scan these pages as they contain pointers
2471                 * to additional allocations like via ops->init_request().
2472                 */
2473                kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2474                entries_per_page = order_to_size(this_order) / rq_size;
2475                to_do = min(entries_per_page, depth - i);
2476                left -= to_do * rq_size;
2477                for (j = 0; j < to_do; j++) {
2478                        struct request *rq = p;
2479
2480                        tags->static_rqs[i] = rq;
2481                        if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2482                                tags->static_rqs[i] = NULL;
2483                                goto fail;
2484                        }
2485
2486                        p += rq_size;
2487                        i++;
2488                }
2489        }
2490        return 0;
2491
2492fail:
2493        blk_mq_free_rqs(set, tags, hctx_idx);
2494        return -ENOMEM;
2495}
2496
2497struct rq_iter_data {
2498        struct blk_mq_hw_ctx *hctx;
2499        bool has_rq;
2500};
2501
2502static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2503{
2504        struct rq_iter_data *iter_data = data;
2505
2506        if (rq->mq_hctx != iter_data->hctx)
2507                return true;
2508        iter_data->has_rq = true;
2509        return false;
2510}
2511
2512static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2513{
2514        struct blk_mq_tags *tags = hctx->sched_tags ?
2515                        hctx->sched_tags : hctx->tags;
2516        struct rq_iter_data data = {
2517                .hctx   = hctx,
2518        };
2519
2520        blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2521        return data.has_rq;
2522}
2523
2524static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2525                struct blk_mq_hw_ctx *hctx)
2526{
2527        if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2528                return false;
2529        if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2530                return false;
2531        return true;
2532}
2533
2534static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2535{
2536        struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2537                        struct blk_mq_hw_ctx, cpuhp_online);
2538
2539        if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2540            !blk_mq_last_cpu_in_hctx(cpu, hctx))
2541                return 0;
2542
2543        /*
2544         * Prevent new request from being allocated on the current hctx.
2545         *
2546         * The smp_mb__after_atomic() Pairs with the implied barrier in
2547         * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2548         * seen once we return from the tag allocator.
2549         */
2550        set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2551        smp_mb__after_atomic();
2552
2553        /*
2554         * Try to grab a reference to the queue and wait for any outstanding
2555         * requests.  If we could not grab a reference the queue has been
2556         * frozen and there are no requests.
2557         */
2558        if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2559                while (blk_mq_hctx_has_requests(hctx))
2560                        msleep(5);
2561                percpu_ref_put(&hctx->queue->q_usage_counter);
2562        }
2563
2564        return 0;
2565}
2566
2567static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2568{
2569        struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2570                        struct blk_mq_hw_ctx, cpuhp_online);
2571
2572        if (cpumask_test_cpu(cpu, hctx->cpumask))
2573                clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2574        return 0;
2575}
2576
2577/*
2578 * 'cpu' is going away. splice any existing rq_list entries from this
2579 * software queue to the hw queue dispatch list, and ensure that it
2580 * gets run.
2581 */
2582static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2583{
2584        struct blk_mq_hw_ctx *hctx;
2585        struct blk_mq_ctx *ctx;
2586        LIST_HEAD(tmp);
2587        enum hctx_type type;
2588
2589        hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2590        if (!cpumask_test_cpu(cpu, hctx->cpumask))
2591                return 0;
2592
2593        ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2594        type = hctx->type;
2595
2596        spin_lock(&ctx->lock);
2597        if (!list_empty(&ctx->rq_lists[type])) {
2598                list_splice_init(&ctx->rq_lists[type], &tmp);
2599                blk_mq_hctx_clear_pending(hctx, ctx);
2600        }
2601        spin_unlock(&ctx->lock);
2602
2603        if (list_empty(&tmp))
2604                return 0;
2605
2606        spin_lock(&hctx->lock);
2607        list_splice_tail_init(&tmp, &hctx->dispatch);
2608        spin_unlock(&hctx->lock);
2609
2610        blk_mq_run_hw_queue(hctx, true);
2611        return 0;
2612}
2613
2614static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2615{
2616        if (!(hctx->flags & BLK_MQ_F_STACKING))
2617                cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2618                                                    &hctx->cpuhp_online);
2619        cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2620                                            &hctx->cpuhp_dead);
2621}
2622
2623/*
2624 * Before freeing hw queue, clearing the flush request reference in
2625 * tags->rqs[] for avoiding potential UAF.
2626 */
2627static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2628                unsigned int queue_depth, struct request *flush_rq)
2629{
2630        int i;
2631        unsigned long flags;
2632
2633        /* The hw queue may not be mapped yet */
2634        if (!tags)
2635                return;
2636
2637        WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2638
2639        for (i = 0; i < queue_depth; i++)
2640                cmpxchg(&tags->rqs[i], flush_rq, NULL);
2641
2642        /*
2643         * Wait until all pending iteration is done.
2644         *
2645         * Request reference is cleared and it is guaranteed to be observed
2646         * after the ->lock is released.
2647         */
2648        spin_lock_irqsave(&tags->lock, flags);
2649        spin_unlock_irqrestore(&tags->lock, flags);
2650}
2651
2652/* hctx->ctxs will be freed in queue's release handler */
2653static void blk_mq_exit_hctx(struct request_queue *q,
2654                struct blk_mq_tag_set *set,
2655                struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2656{
2657        struct request *flush_rq = hctx->fq->flush_rq;
2658
2659        if (blk_mq_hw_queue_mapped(hctx))
2660                blk_mq_tag_idle(hctx);
2661
2662        blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2663                        set->queue_depth, flush_rq);
2664        if (set->ops->exit_request)
2665                set->ops->exit_request(set, flush_rq, hctx_idx);
2666
2667        if (set->ops->exit_hctx)
2668                set->ops->exit_hctx(hctx, hctx_idx);
2669
2670        blk_mq_remove_cpuhp(hctx);
2671
2672        spin_lock(&q->unused_hctx_lock);
2673        list_add(&hctx->hctx_list, &q->unused_hctx_list);
2674        spin_unlock(&q->unused_hctx_lock);
2675}
2676
2677static void blk_mq_exit_hw_queues(struct request_queue *q,
2678                struct blk_mq_tag_set *set, int nr_queue)
2679{
2680        struct blk_mq_hw_ctx *hctx;
2681        unsigned int i;
2682
2683        queue_for_each_hw_ctx(q, hctx, i) {
2684                if (i == nr_queue)
2685                        break;
2686                blk_mq_debugfs_unregister_hctx(hctx);
2687                blk_mq_exit_hctx(q, set, hctx, i);
2688        }
2689}
2690
2691static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2692{
2693        int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2694
2695        BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2696                           __alignof__(struct blk_mq_hw_ctx)) !=
2697                     sizeof(struct blk_mq_hw_ctx));
2698
2699        if (tag_set->flags & BLK_MQ_F_BLOCKING)
2700                hw_ctx_size += sizeof(struct srcu_struct);
2701
2702        return hw_ctx_size;
2703}
2704
2705static int blk_mq_init_hctx(struct request_queue *q,
2706                struct blk_mq_tag_set *set,
2707                struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2708{
2709        hctx->queue_num = hctx_idx;
2710
2711        if (!(hctx->flags & BLK_MQ_F_STACKING))
2712                cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2713                                &hctx->cpuhp_online);
2714        cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2715
2716        hctx->tags = set->tags[hctx_idx];
2717
2718        if (set->ops->init_hctx &&
2719            set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2720                goto unregister_cpu_notifier;
2721
2722        if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2723                                hctx->numa_node))
2724                goto exit_hctx;
2725        return 0;
2726
2727 exit_hctx:
2728        if (set->ops->exit_hctx)
2729                set->ops->exit_hctx(hctx, hctx_idx);
2730 unregister_cpu_notifier:
2731        blk_mq_remove_cpuhp(hctx);
2732        return -1;
2733}
2734
2735static struct blk_mq_hw_ctx *
2736blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2737                int node)
2738{
2739        struct blk_mq_hw_ctx *hctx;
2740        gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2741
2742        hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2743        if (!hctx)
2744                goto fail_alloc_hctx;
2745
2746        if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2747                goto free_hctx;
2748
2749        atomic_set(&hctx->nr_active, 0);
2750        if (node == NUMA_NO_NODE)
2751                node = set->numa_node;
2752        hctx->numa_node = node;
2753
2754        INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2755        spin_lock_init(&hctx->lock);
2756        INIT_LIST_HEAD(&hctx->dispatch);
2757        hctx->queue = q;
2758        hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2759
2760        INIT_LIST_HEAD(&hctx->hctx_list);
2761
2762        /*
2763         * Allocate space for all possible cpus to avoid allocation at
2764         * runtime
2765         */
2766        hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2767                        gfp, node);
2768        if (!hctx->ctxs)
2769                goto free_cpumask;
2770
2771        if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2772                                gfp, node, false, false))
2773                goto free_ctxs;
2774        hctx->nr_ctx = 0;
2775
2776        spin_lock_init(&hctx->dispatch_wait_lock);
2777        init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2778        INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2779
2780        hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2781        if (!hctx->fq)
2782                goto free_bitmap;
2783
2784        if (hctx->flags & BLK_MQ_F_BLOCKING)
2785                init_srcu_struct(hctx->srcu);
2786        blk_mq_hctx_kobj_init(hctx);
2787
2788        return hctx;
2789
2790 free_bitmap:
2791        sbitmap_free(&hctx->ctx_map);
2792 free_ctxs:
2793        kfree(hctx->ctxs);
2794 free_cpumask:
2795        free_cpumask_var(hctx->cpumask);
2796 free_hctx:
2797        kfree(hctx);
2798 fail_alloc_hctx:
2799        return NULL;
2800}
2801
2802static void blk_mq_init_cpu_queues(struct request_queue *q,
2803                                   unsigned int nr_hw_queues)
2804{
2805        struct blk_mq_tag_set *set = q->tag_set;
2806        unsigned int i, j;
2807
2808        for_each_possible_cpu(i) {
2809                struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2810                struct blk_mq_hw_ctx *hctx;
2811                int k;
2812
2813                __ctx->cpu = i;
2814                spin_lock_init(&__ctx->lock);
2815                for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2816                        INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2817
2818                __ctx->queue = q;
2819
2820                /*
2821                 * Set local node, IFF we have more than one hw queue. If
2822                 * not, we remain on the home node of the device
2823                 */
2824                for (j = 0; j < set->nr_maps; j++) {
2825                        hctx = blk_mq_map_queue_type(q, j, i);
2826                        if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2827                                hctx->numa_node = cpu_to_node(i);
2828                }
2829        }
2830}
2831
2832static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2833                                        int hctx_idx)
2834{
2835        unsigned int flags = set->flags;
2836        int ret = 0;
2837
2838        set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2839                                        set->queue_depth, set->reserved_tags, flags);
2840        if (!set->tags[hctx_idx])
2841                return false;
2842
2843        ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2844                                set->queue_depth);
2845        if (!ret)
2846                return true;
2847
2848        blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2849        set->tags[hctx_idx] = NULL;
2850        return false;
2851}
2852
2853static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2854                                         unsigned int hctx_idx)
2855{
2856        unsigned int flags = set->flags;
2857
2858        if (set->tags && set->tags[hctx_idx]) {
2859                blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2860                blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2861                set->tags[hctx_idx] = NULL;
2862        }
2863}
2864
2865static void blk_mq_map_swqueue(struct request_queue *q)
2866{
2867        unsigned int i, j, hctx_idx;
2868        struct blk_mq_hw_ctx *hctx;
2869        struct blk_mq_ctx *ctx;
2870        struct blk_mq_tag_set *set = q->tag_set;
2871
2872        queue_for_each_hw_ctx(q, hctx, i) {
2873                cpumask_clear(hctx->cpumask);
2874                hctx->nr_ctx = 0;
2875                hctx->dispatch_from = NULL;
2876        }
2877
2878        /*
2879         * Map software to hardware queues.
2880         *
2881         * If the cpu isn't present, the cpu is mapped to first hctx.
2882         */
2883        for_each_possible_cpu(i) {
2884
2885                ctx = per_cpu_ptr(q->queue_ctx, i);
2886                for (j = 0; j < set->nr_maps; j++) {
2887                        if (!set->map[j].nr_queues) {
2888                                ctx->hctxs[j] = blk_mq_map_queue_type(q,
2889                                                HCTX_TYPE_DEFAULT, i);
2890                                continue;
2891                        }
2892                        hctx_idx = set->map[j].mq_map[i];
2893                        /* unmapped hw queue can be remapped after CPU topo changed */
2894                        if (!set->tags[hctx_idx] &&
2895                            !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2896                                /*
2897                                 * If tags initialization fail for some hctx,
2898                                 * that hctx won't be brought online.  In this
2899                                 * case, remap the current ctx to hctx[0] which
2900                                 * is guaranteed to always have tags allocated
2901                                 */
2902                                set->map[j].mq_map[i] = 0;
2903                        }
2904
2905                        hctx = blk_mq_map_queue_type(q, j, i);
2906                        ctx->hctxs[j] = hctx;
2907                        /*
2908                         * If the CPU is already set in the mask, then we've
2909                         * mapped this one already. This can happen if
2910                         * devices share queues across queue maps.
2911                         */
2912                        if (cpumask_test_cpu(i, hctx->cpumask))
2913                                continue;
2914
2915                        cpumask_set_cpu(i, hctx->cpumask);
2916                        hctx->type = j;
2917                        ctx->index_hw[hctx->type] = hctx->nr_ctx;
2918                        hctx->ctxs[hctx->nr_ctx++] = ctx;
2919
2920                        /*
2921                         * If the nr_ctx type overflows, we have exceeded the
2922                         * amount of sw queues we can support.
2923                         */
2924                        BUG_ON(!hctx->nr_ctx);
2925                }
2926
2927                for (; j < HCTX_MAX_TYPES; j++)
2928                        ctx->hctxs[j] = blk_mq_map_queue_type(q,
2929                                        HCTX_TYPE_DEFAULT, i);
2930        }
2931
2932        queue_for_each_hw_ctx(q, hctx, i) {
2933                /*
2934                 * If no software queues are mapped to this hardware queue,
2935                 * disable it and free the request entries.
2936                 */
2937                if (!hctx->nr_ctx) {
2938                        /* Never unmap queue 0.  We need it as a
2939                         * fallback in case of a new remap fails
2940                         * allocation
2941                         */
2942                        if (i && set->tags[i])
2943                                blk_mq_free_map_and_requests(set, i);
2944
2945                        hctx->tags = NULL;
2946                        continue;
2947                }
2948
2949                hctx->tags = set->tags[i];
2950                WARN_ON(!hctx->tags);
2951
2952                /*
2953                 * Set the map size to the number of mapped software queues.
2954                 * This is more accurate and more efficient than looping
2955                 * over all possibly mapped software queues.
2956                 */
2957                sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2958
2959                /*
2960                 * Initialize batch roundrobin counts
2961                 */
2962                hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2963                hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2964        }
2965}
2966
2967/*
2968 * Caller needs to ensure that we're either frozen/quiesced, or that
2969 * the queue isn't live yet.
2970 */
2971static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2972{
2973        struct blk_mq_hw_ctx *hctx;
2974        int i;
2975
2976        queue_for_each_hw_ctx(q, hctx, i) {
2977                if (shared) {
2978                        hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2979                } else {
2980                        blk_mq_tag_idle(hctx);
2981                        hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2982                }
2983        }
2984}
2985
2986static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2987                                         bool shared)
2988{
2989        struct request_queue *q;
2990
2991        lockdep_assert_held(&set->tag_list_lock);
2992
2993        list_for_each_entry(q, &set->tag_list, tag_set_list) {
2994                blk_mq_freeze_queue(q);
2995                queue_set_hctx_shared(q, shared);
2996                blk_mq_unfreeze_queue(q);
2997        }
2998}
2999
3000static void blk_mq_del_queue_tag_set(struct request_queue *q)
3001{
3002        struct blk_mq_tag_set *set = q->tag_set;
3003
3004        mutex_lock(&set->tag_list_lock);
3005        list_del(&q->tag_set_list);
3006        if (list_is_singular(&set->tag_list)) {
3007                /* just transitioned to unshared */
3008                set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3009                /* update existing queue */
3010                blk_mq_update_tag_set_shared(set, false);
3011        }
3012        mutex_unlock(&set->tag_list_lock);
3013        INIT_LIST_HEAD(&q->tag_set_list);
3014}
3015
3016static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3017                                     struct request_queue *q)
3018{
3019        mutex_lock(&set->tag_list_lock);
3020
3021        /*
3022         * Check to see if we're transitioning to shared (from 1 to 2 queues).
3023         */
3024        if (!list_empty(&set->tag_list) &&
3025            !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3026                set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3027                /* update existing queue */
3028                blk_mq_update_tag_set_shared(set, true);
3029        }
3030        if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3031                queue_set_hctx_shared(q, true);
3032        list_add_tail(&q->tag_set_list, &set->tag_list);
3033
3034        mutex_unlock(&set->tag_list_lock);
3035}
3036
3037/* All allocations will be freed in release handler of q->mq_kobj */
3038static int blk_mq_alloc_ctxs(struct request_queue *q)
3039{
3040        struct blk_mq_ctxs *ctxs;
3041        int cpu;
3042
3043        ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3044        if (!ctxs)
3045                return -ENOMEM;
3046
3047        ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3048        if (!ctxs->queue_ctx)
3049                goto fail;
3050
3051        for_each_possible_cpu(cpu) {
3052                struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3053                ctx->ctxs = ctxs;
3054        }
3055
3056        q->mq_kobj = &ctxs->kobj;
3057        q->queue_ctx = ctxs->queue_ctx;
3058
3059        return 0;
3060 fail:
3061        kfree(ctxs);
3062        return -ENOMEM;
3063}
3064
3065/*
3066 * It is the actual release handler for mq, but we do it from
3067 * request queue's release handler for avoiding use-after-free
3068 * and headache because q->mq_kobj shouldn't have been introduced,
3069 * but we can't group ctx/kctx kobj without it.
3070 */
3071void blk_mq_release(struct request_queue *q)
3072{
3073        struct blk_mq_hw_ctx *hctx, *next;
3074        int i;
3075
3076        queue_for_each_hw_ctx(q, hctx, i)
3077                WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3078
3079        /* all hctx are in .unused_hctx_list now */
3080        list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3081                list_del_init(&hctx->hctx_list);
3082                kobject_put(&hctx->kobj);
3083        }
3084
3085        kfree(q->queue_hw_ctx);
3086
3087        /*
3088         * release .mq_kobj and sw queue's kobject now because
3089         * both share lifetime with request queue.
3090         */
3091        blk_mq_sysfs_deinit(q);
3092}
3093
3094static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3095                void *queuedata)
3096{
3097        struct request_queue *q;
3098        int ret;
3099
3100        q = blk_alloc_queue(set->numa_node);
3101        if (!q)
3102                return ERR_PTR(-ENOMEM);
3103        q->queuedata = queuedata;
3104        ret = blk_mq_init_allocated_queue(set, q);
3105        if (ret) {
3106                blk_cleanup_queue(q);
3107                return ERR_PTR(ret);
3108        }
3109        return q;
3110}
3111
3112struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3113{
3114        return blk_mq_init_queue_data(set, NULL);
3115}
3116EXPORT_SYMBOL(blk_mq_init_queue);
3117
3118struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata)
3119{
3120        struct request_queue *q;
3121        struct gendisk *disk;
3122
3123        q = blk_mq_init_queue_data(set, queuedata);
3124        if (IS_ERR(q))
3125                return ERR_CAST(q);
3126
3127        disk = __alloc_disk_node(0, set->numa_node);
3128        if (!disk) {
3129                blk_cleanup_queue(q);
3130                return ERR_PTR(-ENOMEM);
3131        }
3132        disk->queue = q;
3133        return disk;
3134}
3135EXPORT_SYMBOL(__blk_mq_alloc_disk);
3136
3137static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3138                struct blk_mq_tag_set *set, struct request_queue *q,
3139                int hctx_idx, int node)
3140{
3141        struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3142
3143        /* reuse dead hctx first */
3144        spin_lock(&q->unused_hctx_lock);
3145        list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3146                if (tmp->numa_node == node) {
3147                        hctx = tmp;
3148                        break;
3149                }
3150        }
3151        if (hctx)
3152                list_del_init(&hctx->hctx_list);
3153        spin_unlock(&q->unused_hctx_lock);
3154
3155        if (!hctx)
3156                hctx = blk_mq_alloc_hctx(q, set, node);
3157        if (!hctx)
3158                goto fail;
3159
3160        if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3161                goto free_hctx;
3162
3163        return hctx;
3164
3165 free_hctx:
3166        kobject_put(&hctx->kobj);
3167 fail:
3168        return NULL;
3169}
3170
3171static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3172                                                struct request_queue *q)
3173{
3174        int i, j, end;
3175        struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3176
3177        if (q->nr_hw_queues < set->nr_hw_queues) {
3178                struct blk_mq_hw_ctx **new_hctxs;
3179
3180                new_hctxs = kcalloc_node(set->nr_hw_queues,
3181                                       sizeof(*new_hctxs), GFP_KERNEL,
3182                                       set->numa_node);
3183                if (!new_hctxs)
3184                        return;
3185                if (hctxs)
3186                        memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3187                               sizeof(*hctxs));
3188                q->queue_hw_ctx = new_hctxs;
3189                kfree(hctxs);
3190                hctxs = new_hctxs;
3191        }
3192
3193        /* protect against switching io scheduler  */
3194        mutex_lock(&q->sysfs_lock);
3195        for (i = 0; i < set->nr_hw_queues; i++) {
3196                int node;
3197                struct blk_mq_hw_ctx *hctx;
3198
3199                node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3200                /*
3201                 * If the hw queue has been mapped to another numa node,
3202                 * we need to realloc the hctx. If allocation fails, fallback
3203                 * to use the previous one.
3204                 */
3205                if (hctxs[i] && (hctxs[i]->numa_node == node))
3206                        continue;
3207
3208                hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3209                if (hctx) {
3210                        if (hctxs[i])
3211                                blk_mq_exit_hctx(q, set, hctxs[i], i);
3212                        hctxs[i] = hctx;
3213                } else {
3214                        if (hctxs[i])
3215                                pr_warn("Allocate new hctx on node %d fails,\
3216                                                fallback to previous one on node %d\n",
3217                                                node, hctxs[i]->numa_node);
3218                        else
3219                                break;
3220                }
3221        }
3222        /*
3223         * Increasing nr_hw_queues fails. Free the newly allocated
3224         * hctxs and keep the previous q->nr_hw_queues.
3225         */
3226        if (i != set->nr_hw_queues) {
3227                j = q->nr_hw_queues;
3228                end = i;
3229        } else {
3230                j = i;
3231                end = q->nr_hw_queues;
3232                q->nr_hw_queues = set->nr_hw_queues;
3233        }
3234
3235        for (; j < end; j++) {
3236                struct blk_mq_hw_ctx *hctx = hctxs[j];
3237
3238                if (hctx) {
3239                        if (hctx->tags)
3240                                blk_mq_free_map_and_requests(set, j);
3241                        blk_mq_exit_hctx(q, set, hctx, j);
3242                        hctxs[j] = NULL;
3243                }
3244        }
3245        mutex_unlock(&q->sysfs_lock);
3246}
3247
3248int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3249                struct request_queue *q)
3250{
3251        /* mark the queue as mq asap */
3252        q->mq_ops = set->ops;
3253
3254        q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3255                                             blk_mq_poll_stats_bkt,
3256                                             BLK_MQ_POLL_STATS_BKTS, q);
3257        if (!q->poll_cb)
3258                goto err_exit;
3259
3260        if (blk_mq_alloc_ctxs(q))
3261                goto err_poll;
3262
3263        /* init q->mq_kobj and sw queues' kobjects */
3264        blk_mq_sysfs_init(q);
3265
3266        INIT_LIST_HEAD(&q->unused_hctx_list);
3267        spin_lock_init(&q->unused_hctx_lock);
3268
3269        blk_mq_realloc_hw_ctxs(set, q);
3270        if (!q->nr_hw_queues)
3271                goto err_hctxs;
3272
3273        INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3274        blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3275
3276        q->tag_set = set;
3277
3278        q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3279        if (set->nr_maps > HCTX_TYPE_POLL &&
3280            set->map[HCTX_TYPE_POLL].nr_queues)
3281                blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3282
3283        q->sg_reserved_size = INT_MAX;
3284
3285        INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3286        INIT_LIST_HEAD(&q->requeue_list);
3287        spin_lock_init(&q->requeue_lock);
3288
3289        q->nr_requests = set->queue_depth;
3290
3291        /*
3292         * Default to classic polling
3293         */
3294        q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3295
3296        blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3297        blk_mq_add_queue_tag_set(set, q);
3298        blk_mq_map_swqueue(q);
3299        return 0;
3300
3301err_hctxs:
3302        kfree(q->queue_hw_ctx);
3303        q->nr_hw_queues = 0;
3304        blk_mq_sysfs_deinit(q);
3305err_poll:
3306        blk_stat_free_callback(q->poll_cb);
3307        q->poll_cb = NULL;
3308err_exit:
3309        q->mq_ops = NULL;
3310        return -ENOMEM;
3311}
3312EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3313
3314/* tags can _not_ be used after returning from blk_mq_exit_queue */
3315void blk_mq_exit_queue(struct request_queue *q)
3316{
3317        struct blk_mq_tag_set *set = q->tag_set;
3318
3319        /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3320        blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3321        /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3322        blk_mq_del_queue_tag_set(q);
3323}
3324
3325static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3326{
3327        int i;
3328
3329        for (i = 0; i < set->nr_hw_queues; i++) {
3330                if (!__blk_mq_alloc_map_and_request(set, i))
3331                        goto out_unwind;
3332                cond_resched();
3333        }
3334
3335        return 0;
3336
3337out_unwind:
3338        while (--i >= 0)
3339                blk_mq_free_map_and_requests(set, i);
3340
3341        return -ENOMEM;
3342}
3343
3344/*
3345 * Allocate the request maps associated with this tag_set. Note that this
3346 * may reduce the depth asked for, if memory is tight. set->queue_depth
3347 * will be updated to reflect the allocated depth.
3348 */
3349static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3350{
3351        unsigned int depth;
3352        int err;
3353
3354        depth = set->queue_depth;
3355        do {
3356                err = __blk_mq_alloc_rq_maps(set);
3357                if (!err)
3358                        break;
3359
3360                set->queue_depth >>= 1;
3361                if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3362                        err = -ENOMEM;
3363                        break;
3364                }
3365        } while (set->queue_depth);
3366
3367        if (!set->queue_depth || err) {
3368                pr_err("blk-mq: failed to allocate request map\n");
3369                return -ENOMEM;
3370        }
3371
3372        if (depth != set->queue_depth)
3373                pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3374                                                depth, set->queue_depth);
3375
3376        return 0;
3377}
3378
3379static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3380{
3381        /*
3382         * blk_mq_map_queues() and multiple .map_queues() implementations
3383         * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3384         * number of hardware queues.
3385         */
3386        if (set->nr_maps == 1)
3387                set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3388
3389        if (set->ops->map_queues && !is_kdump_kernel()) {
3390                int i;
3391
3392                /*
3393                 * transport .map_queues is usually done in the following
3394                 * way:
3395                 *
3396                 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3397                 *      mask = get_cpu_mask(queue)
3398                 *      for_each_cpu(cpu, mask)
3399                 *              set->map[x].mq_map[cpu] = queue;
3400                 * }
3401                 *
3402                 * When we need to remap, the table has to be cleared for
3403                 * killing stale mapping since one CPU may not be mapped
3404                 * to any hw queue.
3405                 */
3406                for (i = 0; i < set->nr_maps; i++)
3407                        blk_mq_clear_mq_map(&set->map[i]);
3408
3409                return set->ops->map_queues(set);
3410        } else {
3411                BUG_ON(set->nr_maps > 1);
3412                return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3413        }
3414}
3415
3416static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3417                                  int cur_nr_hw_queues, int new_nr_hw_queues)
3418{
3419        struct blk_mq_tags **new_tags;
3420
3421        if (cur_nr_hw_queues >= new_nr_hw_queues)
3422                return 0;
3423
3424        new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3425                                GFP_KERNEL, set->numa_node);
3426        if (!new_tags)
3427                return -ENOMEM;
3428
3429        if (set->tags)
3430                memcpy(new_tags, set->tags, cur_nr_hw_queues *
3431                       sizeof(*set->tags));
3432        kfree(set->tags);
3433        set->tags = new_tags;
3434        set->nr_hw_queues = new_nr_hw_queues;
3435
3436        return 0;
3437}
3438
3439static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3440                                int new_nr_hw_queues)
3441{
3442        return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3443}
3444
3445/*
3446 * Alloc a tag set to be associated with one or more request queues.
3447 * May fail with EINVAL for various error conditions. May adjust the
3448 * requested depth down, if it's too large. In that case, the set
3449 * value will be stored in set->queue_depth.
3450 */
3451int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3452{
3453        int i, ret;
3454
3455        BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3456
3457        if (!set->nr_hw_queues)
3458                return -EINVAL;
3459        if (!set->queue_depth)
3460                return -EINVAL;
3461        if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3462                return -EINVAL;
3463
3464        if (!set->ops->queue_rq)
3465                return -EINVAL;
3466
3467        if (!set->ops->get_budget ^ !set->ops->put_budget)
3468                return -EINVAL;
3469
3470        if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3471                pr_info("blk-mq: reduced tag depth to %u\n",
3472                        BLK_MQ_MAX_DEPTH);
3473                set->queue_depth = BLK_MQ_MAX_DEPTH;
3474        }
3475
3476        if (!set->nr_maps)
3477                set->nr_maps = 1;
3478        else if (set->nr_maps > HCTX_MAX_TYPES)
3479                return -EINVAL;
3480
3481        /*
3482         * If a crashdump is active, then we are potentially in a very
3483         * memory constrained environment. Limit us to 1 queue and
3484         * 64 tags to prevent using too much memory.
3485         */
3486        if (is_kdump_kernel()) {
3487                set->nr_hw_queues = 1;
3488                set->nr_maps = 1;
3489                set->queue_depth = min(64U, set->queue_depth);
3490        }
3491        /*
3492         * There is no use for more h/w queues than cpus if we just have
3493         * a single map
3494         */
3495        if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3496                set->nr_hw_queues = nr_cpu_ids;
3497
3498        if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3499                return -ENOMEM;
3500
3501        ret = -ENOMEM;
3502        for (i = 0; i < set->nr_maps; i++) {
3503                set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3504                                                  sizeof(set->map[i].mq_map[0]),
3505                                                  GFP_KERNEL, set->numa_node);
3506                if (!set->map[i].mq_map)
3507                        goto out_free_mq_map;
3508                set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3509        }
3510
3511        ret = blk_mq_update_queue_map(set);
3512        if (ret)
3513                goto out_free_mq_map;
3514
3515        ret = blk_mq_alloc_map_and_requests(set);
3516        if (ret)
3517                goto out_free_mq_map;
3518
3519        if (blk_mq_is_sbitmap_shared(set->flags)) {
3520                atomic_set(&set->active_queues_shared_sbitmap, 0);
3521
3522                if (blk_mq_init_shared_sbitmap(set)) {
3523                        ret = -ENOMEM;
3524                        goto out_free_mq_rq_maps;
3525                }
3526        }
3527
3528        mutex_init(&set->tag_list_lock);
3529        INIT_LIST_HEAD(&set->tag_list);
3530
3531        return 0;
3532
3533out_free_mq_rq_maps:
3534        for (i = 0; i < set->nr_hw_queues; i++)
3535                blk_mq_free_map_and_requests(set, i);
3536out_free_mq_map:
3537        for (i = 0; i < set->nr_maps; i++) {
3538                kfree(set->map[i].mq_map);
3539                set->map[i].mq_map = NULL;
3540        }
3541        kfree(set->tags);
3542        set->tags = NULL;
3543        return ret;
3544}
3545EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3546
3547/* allocate and initialize a tagset for a simple single-queue device */
3548int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3549                const struct blk_mq_ops *ops, unsigned int queue_depth,
3550                unsigned int set_flags)
3551{
3552        memset(set, 0, sizeof(*set));
3553        set->ops = ops;
3554        set->nr_hw_queues = 1;
3555        set->nr_maps = 1;
3556        set->queue_depth = queue_depth;
3557        set->numa_node = NUMA_NO_NODE;
3558        set->flags = set_flags;
3559        return blk_mq_alloc_tag_set(set);
3560}
3561EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3562
3563void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3564{
3565        int i, j;
3566
3567        for (i = 0; i < set->nr_hw_queues; i++)
3568                blk_mq_free_map_and_requests(set, i);
3569
3570        if (blk_mq_is_sbitmap_shared(set->flags))
3571                blk_mq_exit_shared_sbitmap(set);
3572
3573        for (j = 0; j < set->nr_maps; j++) {
3574                kfree(set->map[j].mq_map);
3575                set->map[j].mq_map = NULL;
3576        }
3577
3578        kfree(set->tags);
3579        set->tags = NULL;
3580}
3581EXPORT_SYMBOL(blk_mq_free_tag_set);
3582
3583int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3584{
3585        struct blk_mq_tag_set *set = q->tag_set;
3586        struct blk_mq_hw_ctx *hctx;
3587        int i, ret;
3588
3589        if (!set)
3590                return -EINVAL;
3591
3592        if (q->nr_requests == nr)
3593                return 0;
3594
3595        blk_mq_freeze_queue(q);
3596        blk_mq_quiesce_queue(q);
3597
3598        ret = 0;
3599        queue_for_each_hw_ctx(q, hctx, i) {
3600                if (!hctx->tags)
3601                        continue;
3602                /*
3603                 * If we're using an MQ scheduler, just update the scheduler
3604                 * queue depth. This is similar to what the old code would do.
3605                 */
3606                if (!hctx->sched_tags) {
3607                        ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3608                                                        false);
3609                        if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3610                                blk_mq_tag_resize_shared_sbitmap(set, nr);
3611                } else {
3612                        ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3613                                                        nr, true);
3614                        if (blk_mq_is_sbitmap_shared(set->flags)) {
3615                                hctx->sched_tags->bitmap_tags =
3616                                        &q->sched_bitmap_tags;
3617                                hctx->sched_tags->breserved_tags =
3618                                        &q->sched_breserved_tags;
3619                        }
3620                }
3621                if (ret)
3622                        break;
3623                if (q->elevator && q->elevator->type->ops.depth_updated)
3624                        q->elevator->type->ops.depth_updated(hctx);
3625        }
3626        if (!ret) {
3627                q->nr_requests = nr;
3628                if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3629                        sbitmap_queue_resize(&q->sched_bitmap_tags,
3630                                             nr - set->reserved_tags);
3631        }
3632
3633        blk_mq_unquiesce_queue(q);
3634        blk_mq_unfreeze_queue(q);
3635
3636        return ret;
3637}
3638
3639/*
3640 * request_queue and elevator_type pair.
3641 * It is just used by __blk_mq_update_nr_hw_queues to cache
3642 * the elevator_type associated with a request_queue.
3643 */
3644struct blk_mq_qe_pair {
3645        struct list_head node;
3646        struct request_queue *q;
3647        struct elevator_type *type;
3648};
3649
3650/*
3651 * Cache the elevator_type in qe pair list and switch the
3652 * io scheduler to 'none'
3653 */
3654static bool blk_mq_elv_switch_none(struct list_head *head,
3655                struct request_queue *q)
3656{
3657        struct blk_mq_qe_pair *qe;
3658
3659        if (!q->elevator)
3660                return true;
3661
3662        qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3663        if (!qe)
3664                return false;
3665
3666        INIT_LIST_HEAD(&qe->node);
3667        qe->q = q;
3668        qe->type = q->elevator->type;
3669        list_add(&qe->node, head);
3670
3671        mutex_lock(&q->sysfs_lock);
3672        /*
3673         * After elevator_switch_mq, the previous elevator_queue will be
3674         * released by elevator_release. The reference of the io scheduler
3675         * module get by elevator_get will also be put. So we need to get
3676         * a reference of the io scheduler module here to prevent it to be
3677         * removed.
3678         */
3679        __module_get(qe->type->elevator_owner);
3680        elevator_switch_mq(q, NULL);
3681        mutex_unlock(&q->sysfs_lock);
3682
3683        return true;
3684}
3685
3686static void blk_mq_elv_switch_back(struct list_head *head,
3687                struct request_queue *q)
3688{
3689        struct blk_mq_qe_pair *qe;
3690        struct elevator_type *t = NULL;
3691
3692        list_for_each_entry(qe, head, node)
3693                if (qe->q == q) {
3694                        t = qe->type;
3695                        break;
3696                }
3697
3698        if (!t)
3699                return;
3700
3701        list_del(&qe->node);
3702        kfree(qe);
3703
3704        mutex_lock(&q->sysfs_lock);
3705        elevator_switch_mq(q, t);
3706        mutex_unlock(&q->sysfs_lock);
3707}
3708
3709static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3710                                                        int nr_hw_queues)
3711{
3712        struct request_queue *q;
3713        LIST_HEAD(head);
3714        int prev_nr_hw_queues;
3715
3716        lockdep_assert_held(&set->tag_list_lock);
3717
3718        if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3719                nr_hw_queues = nr_cpu_ids;
3720        if (nr_hw_queues < 1)
3721                return;
3722        if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3723                return;
3724
3725        list_for_each_entry(q, &set->tag_list, tag_set_list)
3726                blk_mq_freeze_queue(q);
3727        /*
3728         * Switch IO scheduler to 'none', cleaning up the data associated
3729         * with the previous scheduler. We will switch back once we are done
3730         * updating the new sw to hw queue mappings.
3731         */
3732        list_for_each_entry(q, &set->tag_list, tag_set_list)
3733                if (!blk_mq_elv_switch_none(&head, q))
3734                        goto switch_back;
3735
3736        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3737                blk_mq_debugfs_unregister_hctxs(q);
3738                blk_mq_sysfs_unregister(q);
3739        }
3740
3741        prev_nr_hw_queues = set->nr_hw_queues;
3742        if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3743            0)
3744                goto reregister;
3745
3746        set->nr_hw_queues = nr_hw_queues;
3747fallback:
3748        blk_mq_update_queue_map(set);
3749        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3750                blk_mq_realloc_hw_ctxs(set, q);
3751                if (q->nr_hw_queues != set->nr_hw_queues) {
3752                        pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3753                                        nr_hw_queues, prev_nr_hw_queues);
3754                        set->nr_hw_queues = prev_nr_hw_queues;
3755                        blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3756                        goto fallback;
3757                }
3758                blk_mq_map_swqueue(q);
3759        }
3760
3761reregister:
3762        list_for_each_entry(q, &set->tag_list, tag_set_list) {
3763                blk_mq_sysfs_register(q);
3764                blk_mq_debugfs_register_hctxs(q);
3765        }
3766
3767switch_back:
3768        list_for_each_entry(q, &set->tag_list, tag_set_list)
3769                blk_mq_elv_switch_back(&head, q);
3770
3771        list_for_each_entry(q, &set->tag_list, tag_set_list)
3772                blk_mq_unfreeze_queue(q);
3773}
3774
3775void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3776{
3777        mutex_lock(&set->tag_list_lock);
3778        __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3779        mutex_unlock(&set->tag_list_lock);
3780}
3781EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3782
3783/* Enable polling stats and return whether they were already enabled. */
3784static bool blk_poll_stats_enable(struct request_queue *q)
3785{
3786        if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3787            blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3788                return true;
3789        blk_stat_add_callback(q, q->poll_cb);
3790        return false;
3791}
3792
3793static void blk_mq_poll_stats_start(struct request_queue *q)
3794{
3795        /*
3796         * We don't arm the callback if polling stats are not enabled or the
3797         * callback is already active.
3798         */
3799        if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3800            blk_stat_is_active(q->poll_cb))
3801                return;
3802
3803        blk_stat_activate_msecs(q->poll_cb, 100);
3804}
3805
3806static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3807{
3808        struct request_queue *q = cb->data;
3809        int bucket;
3810
3811        for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3812                if (cb->stat[bucket].nr_samples)
3813                        q->poll_stat[bucket] = cb->stat[bucket];
3814        }
3815}
3816
3817static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3818                                       struct request *rq)
3819{
3820        unsigned long ret = 0;
3821        int bucket;
3822
3823        /*
3824         * If stats collection isn't on, don't sleep but turn it on for
3825         * future users
3826         */
3827        if (!blk_poll_stats_enable(q))
3828                return 0;
3829
3830        /*
3831         * As an optimistic guess, use half of the mean service time
3832         * for this type of request. We can (and should) make this smarter.
3833         * For instance, if the completion latencies are tight, we can
3834         * get closer than just half the mean. This is especially
3835         * important on devices where the completion latencies are longer
3836         * than ~10 usec. We do use the stats for the relevant IO size
3837         * if available which does lead to better estimates.
3838         */
3839        bucket = blk_mq_poll_stats_bkt(rq);
3840        if (bucket < 0)
3841                return ret;
3842
3843        if (q->poll_stat[bucket].nr_samples)
3844                ret = (q->poll_stat[bucket].mean + 1) / 2;
3845
3846        return ret;
3847}
3848
3849static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3850                                     struct request *rq)
3851{
3852        struct hrtimer_sleeper hs;
3853        enum hrtimer_mode mode;
3854        unsigned int nsecs;
3855        ktime_t kt;
3856
3857        if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3858                return false;
3859
3860        /*
3861         * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3862         *
3863         *  0:  use half of prev avg
3864         * >0:  use this specific value
3865         */
3866        if (q->poll_nsec > 0)
3867                nsecs = q->poll_nsec;
3868        else
3869                nsecs = blk_mq_poll_nsecs(q, rq);
3870
3871        if (!nsecs)
3872                return false;
3873
3874        rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3875
3876        /*
3877         * This will be replaced with the stats tracking code, using
3878         * 'avg_completion_time / 2' as the pre-sleep target.
3879         */
3880        kt = nsecs;
3881
3882        mode = HRTIMER_MODE_REL;
3883        hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3884        hrtimer_set_expires(&hs.timer, kt);
3885
3886        do {
3887                if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3888                        break;
3889                set_current_state(TASK_UNINTERRUPTIBLE);
3890                hrtimer_sleeper_start_expires(&hs, mode);
3891                if (hs.task)
3892                        io_schedule();
3893                hrtimer_cancel(&hs.timer);
3894                mode = HRTIMER_MODE_ABS;
3895        } while (hs.task && !signal_pending(current));
3896
3897        __set_current_state(TASK_RUNNING);
3898        destroy_hrtimer_on_stack(&hs.timer);
3899        return true;
3900}
3901
3902static bool blk_mq_poll_hybrid(struct request_queue *q,
3903                               struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3904{
3905        struct request *rq;
3906
3907        if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3908                return false;
3909
3910        if (!blk_qc_t_is_internal(cookie))
3911                rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3912        else {
3913                rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3914                /*
3915                 * With scheduling, if the request has completed, we'll
3916                 * get a NULL return here, as we clear the sched tag when
3917                 * that happens. The request still remains valid, like always,
3918                 * so we should be safe with just the NULL check.
3919                 */
3920                if (!rq)
3921                        return false;
3922        }
3923
3924        return blk_mq_poll_hybrid_sleep(q, rq);
3925}
3926
3927/**
3928 * blk_poll - poll for IO completions
3929 * @q:  the queue
3930 * @cookie: cookie passed back at IO submission time
3931 * @spin: whether to spin for completions
3932 *
3933 * Description:
3934 *    Poll for completions on the passed in queue. Returns number of
3935 *    completed entries found. If @spin is true, then blk_poll will continue
3936 *    looping until at least one completion is found, unless the task is
3937 *    otherwise marked running (or we need to reschedule).
3938 */
3939int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3940{
3941        struct blk_mq_hw_ctx *hctx;
3942        unsigned int state;
3943
3944        if (!blk_qc_t_valid(cookie) ||
3945            !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3946                return 0;
3947
3948        if (current->plug)
3949                blk_flush_plug_list(current->plug, false);
3950
3951        hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3952
3953        /*
3954         * If we sleep, have the caller restart the poll loop to reset
3955         * the state. Like for the other success return cases, the
3956         * caller is responsible for checking if the IO completed. If
3957         * the IO isn't complete, we'll get called again and will go
3958         * straight to the busy poll loop. If specified not to spin,
3959         * we also should not sleep.
3960         */
3961        if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3962                return 1;
3963
3964        hctx->poll_considered++;
3965
3966        state = get_current_state();
3967        do {
3968                int ret;
3969
3970                hctx->poll_invoked++;
3971
3972                ret = q->mq_ops->poll(hctx);
3973                if (ret > 0) {
3974                        hctx->poll_success++;
3975                        __set_current_state(TASK_RUNNING);
3976                        return ret;
3977                }
3978
3979                if (signal_pending_state(state, current))
3980                        __set_current_state(TASK_RUNNING);
3981
3982                if (task_is_running(current))
3983                        return 1;
3984                if (ret < 0 || !spin)
3985                        break;
3986                cpu_relax();
3987        } while (!need_resched());
3988
3989        __set_current_state(TASK_RUNNING);
3990        return 0;
3991}
3992EXPORT_SYMBOL_GPL(blk_poll);
3993
3994unsigned int blk_mq_rq_cpu(struct request *rq)
3995{
3996        return rq->mq_ctx->cpu;
3997}
3998EXPORT_SYMBOL(blk_mq_rq_cpu);
3999
4000static int __init blk_mq_init(void)
4001{
4002        int i;
4003
4004        for_each_possible_cpu(i)
4005                init_llist_head(&per_cpu(blk_cpu_done, i));
4006        open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4007
4008        cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4009                                  "block/softirq:dead", NULL,
4010                                  blk_softirq_cpu_dead);
4011        cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4012                                blk_mq_hctx_notify_dead);
4013        cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4014                                blk_mq_hctx_notify_online,
4015                                blk_mq_hctx_notify_offline);
4016        return 0;
4017}
4018subsys_initcall(blk_mq_init);
4019