linux/block/keyslot-manager.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright 2019 Google LLC
   4 */
   5
   6/**
   7 * DOC: The Keyslot Manager
   8 *
   9 * Many devices with inline encryption support have a limited number of "slots"
  10 * into which encryption contexts may be programmed, and requests can be tagged
  11 * with a slot number to specify the key to use for en/decryption.
  12 *
  13 * As the number of slots is limited, and programming keys is expensive on
  14 * many inline encryption hardware, we don't want to program the same key into
  15 * multiple slots - if multiple requests are using the same key, we want to
  16 * program just one slot with that key and use that slot for all requests.
  17 *
  18 * The keyslot manager manages these keyslots appropriately, and also acts as
  19 * an abstraction between the inline encryption hardware and the upper layers.
  20 *
  21 * Lower layer devices will set up a keyslot manager in their request queue
  22 * and tell it how to perform device specific operations like programming/
  23 * evicting keys from keyslots.
  24 *
  25 * Upper layers will call blk_ksm_get_slot_for_key() to program a
  26 * key into some slot in the inline encryption hardware.
  27 */
  28
  29#define pr_fmt(fmt) "blk-crypto: " fmt
  30
  31#include <linux/keyslot-manager.h>
  32#include <linux/device.h>
  33#include <linux/atomic.h>
  34#include <linux/mutex.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/wait.h>
  37#include <linux/blkdev.h>
  38
  39struct blk_ksm_keyslot {
  40        atomic_t slot_refs;
  41        struct list_head idle_slot_node;
  42        struct hlist_node hash_node;
  43        const struct blk_crypto_key *key;
  44        struct blk_keyslot_manager *ksm;
  45};
  46
  47static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm)
  48{
  49        /*
  50         * Calling into the driver requires ksm->lock held and the device
  51         * resumed.  But we must resume the device first, since that can acquire
  52         * and release ksm->lock via blk_ksm_reprogram_all_keys().
  53         */
  54        if (ksm->dev)
  55                pm_runtime_get_sync(ksm->dev);
  56        down_write(&ksm->lock);
  57}
  58
  59static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
  60{
  61        up_write(&ksm->lock);
  62        if (ksm->dev)
  63                pm_runtime_put_sync(ksm->dev);
  64}
  65
  66static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm)
  67{
  68        return ksm->num_slots == 0;
  69}
  70
  71/**
  72 * blk_ksm_init() - Initialize a keyslot manager
  73 * @ksm: The keyslot_manager to initialize.
  74 * @num_slots: The number of key slots to manage.
  75 *
  76 * Allocate memory for keyslots and initialize a keyslot manager. Called by
  77 * e.g. storage drivers to set up a keyslot manager in their request_queue.
  78 *
  79 * Return: 0 on success, or else a negative error code.
  80 */
  81int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
  82{
  83        unsigned int slot;
  84        unsigned int i;
  85        unsigned int slot_hashtable_size;
  86
  87        memset(ksm, 0, sizeof(*ksm));
  88
  89        if (num_slots == 0)
  90                return -EINVAL;
  91
  92        ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL);
  93        if (!ksm->slots)
  94                return -ENOMEM;
  95
  96        ksm->num_slots = num_slots;
  97
  98        init_rwsem(&ksm->lock);
  99
 100        init_waitqueue_head(&ksm->idle_slots_wait_queue);
 101        INIT_LIST_HEAD(&ksm->idle_slots);
 102
 103        for (slot = 0; slot < num_slots; slot++) {
 104                ksm->slots[slot].ksm = ksm;
 105                list_add_tail(&ksm->slots[slot].idle_slot_node,
 106                              &ksm->idle_slots);
 107        }
 108
 109        spin_lock_init(&ksm->idle_slots_lock);
 110
 111        slot_hashtable_size = roundup_pow_of_two(num_slots);
 112        /*
 113         * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2
 114         * buckets.  This only makes a difference when there is only 1 keyslot.
 115         */
 116        if (slot_hashtable_size < 2)
 117                slot_hashtable_size = 2;
 118
 119        ksm->log_slot_ht_size = ilog2(slot_hashtable_size);
 120        ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size,
 121                                             sizeof(ksm->slot_hashtable[0]),
 122                                             GFP_KERNEL);
 123        if (!ksm->slot_hashtable)
 124                goto err_destroy_ksm;
 125        for (i = 0; i < slot_hashtable_size; i++)
 126                INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
 127
 128        return 0;
 129
 130err_destroy_ksm:
 131        blk_ksm_destroy(ksm);
 132        return -ENOMEM;
 133}
 134EXPORT_SYMBOL_GPL(blk_ksm_init);
 135
 136static void blk_ksm_destroy_callback(void *ksm)
 137{
 138        blk_ksm_destroy(ksm);
 139}
 140
 141/**
 142 * devm_blk_ksm_init() - Resource-managed blk_ksm_init()
 143 * @dev: The device which owns the blk_keyslot_manager.
 144 * @ksm: The blk_keyslot_manager to initialize.
 145 * @num_slots: The number of key slots to manage.
 146 *
 147 * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically
 148 * on driver detach.
 149 *
 150 * Return: 0 on success, or else a negative error code.
 151 */
 152int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm,
 153                      unsigned int num_slots)
 154{
 155        int err = blk_ksm_init(ksm, num_slots);
 156
 157        if (err)
 158                return err;
 159
 160        return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm);
 161}
 162EXPORT_SYMBOL_GPL(devm_blk_ksm_init);
 163
 164static inline struct hlist_head *
 165blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm,
 166                            const struct blk_crypto_key *key)
 167{
 168        return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)];
 169}
 170
 171static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot)
 172{
 173        struct blk_keyslot_manager *ksm = slot->ksm;
 174        unsigned long flags;
 175
 176        spin_lock_irqsave(&ksm->idle_slots_lock, flags);
 177        list_del(&slot->idle_slot_node);
 178        spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
 179}
 180
 181static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
 182                                        struct blk_keyslot_manager *ksm,
 183                                        const struct blk_crypto_key *key)
 184{
 185        const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key);
 186        struct blk_ksm_keyslot *slotp;
 187
 188        hlist_for_each_entry(slotp, head, hash_node) {
 189                if (slotp->key == key)
 190                        return slotp;
 191        }
 192        return NULL;
 193}
 194
 195static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot(
 196                                        struct blk_keyslot_manager *ksm,
 197                                        const struct blk_crypto_key *key)
 198{
 199        struct blk_ksm_keyslot *slot;
 200
 201        slot = blk_ksm_find_keyslot(ksm, key);
 202        if (!slot)
 203                return NULL;
 204        if (atomic_inc_return(&slot->slot_refs) == 1) {
 205                /* Took first reference to this slot; remove it from LRU list */
 206                blk_ksm_remove_slot_from_lru_list(slot);
 207        }
 208        return slot;
 209}
 210
 211unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot)
 212{
 213        return slot - slot->ksm->slots;
 214}
 215EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx);
 216
 217/**
 218 * blk_ksm_get_slot_for_key() - Program a key into a keyslot.
 219 * @ksm: The keyslot manager to program the key into.
 220 * @key: Pointer to the key object to program, including the raw key, crypto
 221 *       mode, and data unit size.
 222 * @slot_ptr: A pointer to return the pointer of the allocated keyslot.
 223 *
 224 * Get a keyslot that's been programmed with the specified key.  If one already
 225 * exists, return it with incremented refcount.  Otherwise, wait for a keyslot
 226 * to become idle and program it.
 227 *
 228 * Context: Process context. Takes and releases ksm->lock.
 229 * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the
 230 *         allocated keyslot), or some other blk_status_t otherwise (and
 231 *         keyslot is set to NULL).
 232 */
 233blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
 234                                      const struct blk_crypto_key *key,
 235                                      struct blk_ksm_keyslot **slot_ptr)
 236{
 237        struct blk_ksm_keyslot *slot;
 238        int slot_idx;
 239        int err;
 240
 241        *slot_ptr = NULL;
 242
 243        if (blk_ksm_is_passthrough(ksm))
 244                return BLK_STS_OK;
 245
 246        down_read(&ksm->lock);
 247        slot = blk_ksm_find_and_grab_keyslot(ksm, key);
 248        up_read(&ksm->lock);
 249        if (slot)
 250                goto success;
 251
 252        for (;;) {
 253                blk_ksm_hw_enter(ksm);
 254                slot = blk_ksm_find_and_grab_keyslot(ksm, key);
 255                if (slot) {
 256                        blk_ksm_hw_exit(ksm);
 257                        goto success;
 258                }
 259
 260                /*
 261                 * If we're here, that means there wasn't a slot that was
 262                 * already programmed with the key. So try to program it.
 263                 */
 264                if (!list_empty(&ksm->idle_slots))
 265                        break;
 266
 267                blk_ksm_hw_exit(ksm);
 268                wait_event(ksm->idle_slots_wait_queue,
 269                           !list_empty(&ksm->idle_slots));
 270        }
 271
 272        slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot,
 273                                idle_slot_node);
 274        slot_idx = blk_ksm_get_slot_idx(slot);
 275
 276        err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx);
 277        if (err) {
 278                wake_up(&ksm->idle_slots_wait_queue);
 279                blk_ksm_hw_exit(ksm);
 280                return errno_to_blk_status(err);
 281        }
 282
 283        /* Move this slot to the hash list for the new key. */
 284        if (slot->key)
 285                hlist_del(&slot->hash_node);
 286        slot->key = key;
 287        hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key));
 288
 289        atomic_set(&slot->slot_refs, 1);
 290
 291        blk_ksm_remove_slot_from_lru_list(slot);
 292
 293        blk_ksm_hw_exit(ksm);
 294success:
 295        *slot_ptr = slot;
 296        return BLK_STS_OK;
 297}
 298
 299/**
 300 * blk_ksm_put_slot() - Release a reference to a slot
 301 * @slot: The keyslot to release the reference of.
 302 *
 303 * Context: Any context.
 304 */
 305void blk_ksm_put_slot(struct blk_ksm_keyslot *slot)
 306{
 307        struct blk_keyslot_manager *ksm;
 308        unsigned long flags;
 309
 310        if (!slot)
 311                return;
 312
 313        ksm = slot->ksm;
 314
 315        if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
 316                                        &ksm->idle_slots_lock, flags)) {
 317                list_add_tail(&slot->idle_slot_node, &ksm->idle_slots);
 318                spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
 319                wake_up(&ksm->idle_slots_wait_queue);
 320        }
 321}
 322
 323/**
 324 * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is
 325 *                                  supported by a ksm.
 326 * @ksm: The keyslot manager to check
 327 * @cfg: The crypto configuration to check for.
 328 *
 329 * Checks for crypto_mode/data unit size/dun bytes support.
 330 *
 331 * Return: Whether or not this ksm supports the specified crypto config.
 332 */
 333bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
 334                                  const struct blk_crypto_config *cfg)
 335{
 336        if (!ksm)
 337                return false;
 338        if (!(ksm->crypto_modes_supported[cfg->crypto_mode] &
 339              cfg->data_unit_size))
 340                return false;
 341        if (ksm->max_dun_bytes_supported < cfg->dun_bytes)
 342                return false;
 343        return true;
 344}
 345
 346/**
 347 * blk_ksm_evict_key() - Evict a key from the lower layer device.
 348 * @ksm: The keyslot manager to evict from
 349 * @key: The key to evict
 350 *
 351 * Find the keyslot that the specified key was programmed into, and evict that
 352 * slot from the lower layer device. The slot must not be in use by any
 353 * in-flight IO when this function is called.
 354 *
 355 * Context: Process context. Takes and releases ksm->lock.
 356 * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY
 357 *         if the keyslot is still in use, or another -errno value on other
 358 *         error.
 359 */
 360int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
 361                      const struct blk_crypto_key *key)
 362{
 363        struct blk_ksm_keyslot *slot;
 364        int err = 0;
 365
 366        if (blk_ksm_is_passthrough(ksm)) {
 367                if (ksm->ksm_ll_ops.keyslot_evict) {
 368                        blk_ksm_hw_enter(ksm);
 369                        err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
 370                        blk_ksm_hw_exit(ksm);
 371                        return err;
 372                }
 373                return 0;
 374        }
 375
 376        blk_ksm_hw_enter(ksm);
 377        slot = blk_ksm_find_keyslot(ksm, key);
 378        if (!slot)
 379                goto out_unlock;
 380
 381        if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
 382                err = -EBUSY;
 383                goto out_unlock;
 384        }
 385        err = ksm->ksm_ll_ops.keyslot_evict(ksm, key,
 386                                            blk_ksm_get_slot_idx(slot));
 387        if (err)
 388                goto out_unlock;
 389
 390        hlist_del(&slot->hash_node);
 391        slot->key = NULL;
 392        err = 0;
 393out_unlock:
 394        blk_ksm_hw_exit(ksm);
 395        return err;
 396}
 397
 398/**
 399 * blk_ksm_reprogram_all_keys() - Re-program all keyslots.
 400 * @ksm: The keyslot manager
 401 *
 402 * Re-program all keyslots that are supposed to have a key programmed.  This is
 403 * intended only for use by drivers for hardware that loses its keys on reset.
 404 *
 405 * Context: Process context. Takes and releases ksm->lock.
 406 */
 407void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
 408{
 409        unsigned int slot;
 410
 411        if (blk_ksm_is_passthrough(ksm))
 412                return;
 413
 414        /* This is for device initialization, so don't resume the device */
 415        down_write(&ksm->lock);
 416        for (slot = 0; slot < ksm->num_slots; slot++) {
 417                const struct blk_crypto_key *key = ksm->slots[slot].key;
 418                int err;
 419
 420                if (!key)
 421                        continue;
 422
 423                err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
 424                WARN_ON(err);
 425        }
 426        up_write(&ksm->lock);
 427}
 428EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys);
 429
 430void blk_ksm_destroy(struct blk_keyslot_manager *ksm)
 431{
 432        if (!ksm)
 433                return;
 434        kvfree(ksm->slot_hashtable);
 435        kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots);
 436        memzero_explicit(ksm, sizeof(*ksm));
 437}
 438EXPORT_SYMBOL_GPL(blk_ksm_destroy);
 439
 440bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q)
 441{
 442        if (blk_integrity_queue_supports_integrity(q)) {
 443                pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
 444                return false;
 445        }
 446        q->ksm = ksm;
 447        return true;
 448}
 449EXPORT_SYMBOL_GPL(blk_ksm_register);
 450
 451void blk_ksm_unregister(struct request_queue *q)
 452{
 453        q->ksm = NULL;
 454}
 455
 456/**
 457 * blk_ksm_intersect_modes() - restrict supported modes by child device
 458 * @parent: The keyslot manager for parent device
 459 * @child: The keyslot manager for child device, or NULL
 460 *
 461 * Clear any crypto mode support bits in @parent that aren't set in @child.
 462 * If @child is NULL, then all parent bits are cleared.
 463 *
 464 * Only use this when setting up the keyslot manager for a layered device,
 465 * before it's been exposed yet.
 466 */
 467void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
 468                             const struct blk_keyslot_manager *child)
 469{
 470        if (child) {
 471                unsigned int i;
 472
 473                parent->max_dun_bytes_supported =
 474                        min(parent->max_dun_bytes_supported,
 475                            child->max_dun_bytes_supported);
 476                for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported);
 477                     i++) {
 478                        parent->crypto_modes_supported[i] &=
 479                                child->crypto_modes_supported[i];
 480                }
 481        } else {
 482                parent->max_dun_bytes_supported = 0;
 483                memset(parent->crypto_modes_supported, 0,
 484                       sizeof(parent->crypto_modes_supported));
 485        }
 486}
 487EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes);
 488
 489/**
 490 * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes
 491 *                         and DUN bytes that another KSM supports. Here,
 492 *                         "superset" refers to the mathematical meaning of the
 493 *                         word - i.e. if two KSMs have the *same* capabilities,
 494 *                         they *are* considered supersets of each other.
 495 * @ksm_superset: The KSM that we want to verify is a superset
 496 * @ksm_subset: The KSM that we want to verify is a subset
 497 *
 498 * Return: True if @ksm_superset supports a superset of the crypto modes and DUN
 499 *         bytes that @ksm_subset supports.
 500 */
 501bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
 502                         struct blk_keyslot_manager *ksm_subset)
 503{
 504        int i;
 505
 506        if (!ksm_subset)
 507                return true;
 508
 509        if (!ksm_superset)
 510                return false;
 511
 512        for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) {
 513                if (ksm_subset->crypto_modes_supported[i] &
 514                    (~ksm_superset->crypto_modes_supported[i])) {
 515                        return false;
 516                }
 517        }
 518
 519        if (ksm_subset->max_dun_bytes_supported >
 520            ksm_superset->max_dun_bytes_supported) {
 521                return false;
 522        }
 523
 524        return true;
 525}
 526EXPORT_SYMBOL_GPL(blk_ksm_is_superset);
 527
 528/**
 529 * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of
 530 *                                 another KSM
 531 * @target_ksm: The KSM whose restrictions to update.
 532 * @reference_ksm: The KSM to whose restrictions this function will update
 533 *                 @target_ksm's restrictions to.
 534 *
 535 * Blk-crypto requires that crypto capabilities that were
 536 * advertised when a bio was created continue to be supported by the
 537 * device until that bio is ended. This is turn means that a device cannot
 538 * shrink its advertised crypto capabilities without any explicit
 539 * synchronization with upper layers. So if there's no such explicit
 540 * synchronization, @reference_ksm must support all the crypto capabilities that
 541 * @target_ksm does
 542 * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true).
 543 *
 544 * Note also that as long as the crypto capabilities are being expanded, the
 545 * order of updates becoming visible is not important because it's alright
 546 * for blk-crypto to see stale values - they only cause blk-crypto to
 547 * believe that a crypto capability isn't supported when it actually is (which
 548 * might result in blk-crypto-fallback being used if available, or the bio being
 549 * failed).
 550 */
 551void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
 552                                 struct blk_keyslot_manager *reference_ksm)
 553{
 554        memcpy(target_ksm->crypto_modes_supported,
 555               reference_ksm->crypto_modes_supported,
 556               sizeof(target_ksm->crypto_modes_supported));
 557
 558        target_ksm->max_dun_bytes_supported =
 559                                reference_ksm->max_dun_bytes_supported;
 560}
 561EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities);
 562
 563/**
 564 * blk_ksm_init_passthrough() - Init a passthrough keyslot manager
 565 * @ksm: The keyslot manager to init
 566 *
 567 * Initialize a passthrough keyslot manager.
 568 * Called by e.g. storage drivers to set up a keyslot manager in their
 569 * request_queue, when the storage driver wants to manage its keys by itself.
 570 * This is useful for inline encryption hardware that doesn't have the concept
 571 * of keyslots, and for layered devices.
 572 */
 573void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm)
 574{
 575        memset(ksm, 0, sizeof(*ksm));
 576        init_rwsem(&ksm->lock);
 577}
 578EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);
 579