linux/drivers/atm/lanai.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
   3 *
   4 * This driver supports ATM cards based on the Efficient "Lanai"
   5 * chipset such as the Speedstream 3010 and the ENI-25p.  The
   6 * Speedstream 3060 is currently not supported since we don't
   7 * have the code to drive the on-board Alcatel DSL chipset (yet).
   8 *
   9 * Thanks to Efficient for supporting this project with hardware,
  10 * documentation, and by answering my questions.
  11 *
  12 * Things not working yet:
  13 *
  14 * o  We don't support the Speedstream 3060 yet - this card has
  15 *    an on-board DSL modem chip by Alcatel and the driver will
  16 *    need some extra code added to handle it
  17 *
  18 * o  Note that due to limitations of the Lanai only one VCC can be
  19 *    in CBR at once
  20 *
  21 * o We don't currently parse the EEPROM at all.  The code is all
  22 *   there as per the spec, but it doesn't actually work.  I think
  23 *   there may be some issues with the docs.  Anyway, do NOT
  24 *   enable it yet - bugs in that code may actually damage your
  25 *   hardware!  Because of this you should hardware an ESI before
  26 *   trying to use this in a LANE or MPOA environment.
  27 *
  28 * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
  29 *      vcc_tx_aal0() needs to send or queue a SKB
  30 *      vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
  31 *      vcc_rx_aal0() needs to handle AAL0 interrupts
  32 *    This isn't too much work - I just wanted to get other things
  33 *    done first.
  34 *
  35 * o  lanai_change_qos() isn't written yet
  36 *
  37 * o  There aren't any ioctl's yet -- I'd like to eventually support
  38 *    setting loopback and LED modes that way.
  39 *
  40 * o  If the segmentation engine or DMA gets shut down we should restart
  41 *    card as per section 17.0i.  (see lanai_reset)
  42 *
  43 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
  44 *   API says it isn't exactly commonly implemented)
  45 */
  46
  47/* Version history:
  48 *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
  49 *   v.0.02 -- 11-JAN-2000 -- Endian fixes
  50 *   v.0.01 -- 30-NOV-1999 -- Initial release
  51 */
  52
  53#include <linux/module.h>
  54#include <linux/slab.h>
  55#include <linux/mm.h>
  56#include <linux/atmdev.h>
  57#include <asm/io.h>
  58#include <asm/byteorder.h>
  59#include <linux/spinlock.h>
  60#include <linux/pci.h>
  61#include <linux/dma-mapping.h>
  62#include <linux/init.h>
  63#include <linux/delay.h>
  64#include <linux/interrupt.h>
  65
  66/* -------------------- TUNABLE PARAMATERS: */
  67
  68/*
  69 * Maximum number of VCIs per card.  Setting it lower could theoretically
  70 * save some memory, but since we allocate our vcc list with get_free_pages,
  71 * it's not really likely for most architectures
  72 */
  73#define NUM_VCI                 (1024)
  74
  75/*
  76 * Enable extra debugging
  77 */
  78#define DEBUG
  79/*
  80 * Debug _all_ register operations with card, except the memory test.
  81 * Also disables the timed poll to prevent extra chattiness.  This
  82 * isn't for normal use
  83 */
  84#undef DEBUG_RW
  85
  86/*
  87 * The programming guide specifies a full test of the on-board SRAM
  88 * at initialization time.  Undefine to remove this
  89 */
  90#define FULL_MEMORY_TEST
  91
  92/*
  93 * This is the number of (4 byte) service entries that we will
  94 * try to allocate at startup.  Note that we will end up with
  95 * one PAGE_SIZE's worth regardless of what this is set to
  96 */
  97#define SERVICE_ENTRIES         (1024)
  98/* TODO: make above a module load-time option */
  99
 100/*
 101 * We normally read the onboard EEPROM in order to discover our MAC
 102 * address.  Undefine to _not_ do this
 103 */
 104/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
 105/* TODO: make above a module load-time option (also) */
 106
 107/*
 108 * Depth of TX fifo (in 128 byte units; range 2-31)
 109 * Smaller numbers are better for network latency
 110 * Larger numbers are better for PCI latency
 111 * I'm really sure where the best tradeoff is, but the BSD driver uses
 112 * 7 and it seems to work ok.
 113 */
 114#define TX_FIFO_DEPTH           (7)
 115/* TODO: make above a module load-time option */
 116
 117/*
 118 * How often (in jiffies) we will try to unstick stuck connections -
 119 * shouldn't need to happen much
 120 */
 121#define LANAI_POLL_PERIOD       (10*HZ)
 122/* TODO: make above a module load-time option */
 123
 124/*
 125 * When allocating an AAL5 receiving buffer, try to make it at least
 126 * large enough to hold this many max_sdu sized PDUs
 127 */
 128#define AAL5_RX_MULTIPLIER      (3)
 129/* TODO: make above a module load-time option */
 130
 131/*
 132 * Same for transmitting buffer
 133 */
 134#define AAL5_TX_MULTIPLIER      (3)
 135/* TODO: make above a module load-time option */
 136
 137/*
 138 * When allocating an AAL0 transmiting buffer, how many cells should fit.
 139 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
 140 * really critical
 141 */
 142#define AAL0_TX_MULTIPLIER      (40)
 143/* TODO: make above a module load-time option */
 144
 145/*
 146 * How large should we make the AAL0 receiving buffer.  Remember that this
 147 * is shared between all AAL0 VC's
 148 */
 149#define AAL0_RX_BUFFER_SIZE     (PAGE_SIZE)
 150/* TODO: make above a module load-time option */
 151
 152/*
 153 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
 154 */
 155/* #define USE_POWERDOWN */
 156/* TODO: make above a module load-time option (also) */
 157
 158/* -------------------- DEBUGGING AIDS: */
 159
 160#define DEV_LABEL "lanai"
 161
 162#ifdef DEBUG
 163
 164#define DPRINTK(format, args...) \
 165        printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 166#define APRINTK(truth, format, args...) \
 167        do { \
 168                if (unlikely(!(truth))) \
 169                        printk(KERN_ERR DEV_LABEL ": " format, ##args); \
 170        } while (0)
 171
 172#else /* !DEBUG */
 173
 174#define DPRINTK(format, args...)
 175#define APRINTK(truth, format, args...)
 176
 177#endif /* DEBUG */
 178
 179#ifdef DEBUG_RW
 180#define RWDEBUG(format, args...) \
 181        printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 182#else /* !DEBUG_RW */
 183#define RWDEBUG(format, args...)
 184#endif
 185
 186/* -------------------- DATA DEFINITIONS: */
 187
 188#define LANAI_MAPPING_SIZE      (0x40000)
 189#define LANAI_EEPROM_SIZE       (128)
 190
 191typedef int vci_t;
 192typedef void __iomem *bus_addr_t;
 193
 194/* DMA buffer in host memory for TX, RX, or service list. */
 195struct lanai_buffer {
 196        u32 *start;     /* From get_free_pages */
 197        u32 *end;       /* One past last byte */
 198        u32 *ptr;       /* Pointer to current host location */
 199        dma_addr_t dmaaddr;
 200};
 201
 202struct lanai_vcc_stats {
 203        unsigned rx_nomem;
 204        union {
 205                struct {
 206                        unsigned rx_badlen;
 207                        unsigned service_trash;
 208                        unsigned service_stream;
 209                        unsigned service_rxcrc;
 210                } aal5;
 211                struct {
 212                } aal0;
 213        } x;
 214};
 215
 216struct lanai_dev;                       /* Forward declaration */
 217
 218/*
 219 * This is the card-specific per-vcc data.  Note that unlike some other
 220 * drivers there is NOT a 1-to-1 correspondance between these and
 221 * atm_vcc's - each one of these represents an actual 2-way vcc, but
 222 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
 223 * direction.  To make it weirder, there can even be 0-way vccs
 224 * bound to us, waiting to do a change_qos
 225 */
 226struct lanai_vcc {
 227        bus_addr_t vbase;               /* Base of VCC's registers */
 228        struct lanai_vcc_stats stats;
 229        int nref;                       /* # of atm_vcc's who reference us */
 230        vci_t vci;
 231        struct {
 232                struct lanai_buffer buf;
 233                struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
 234        } rx;
 235        struct {
 236                struct lanai_buffer buf;
 237                struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
 238                int endptr;             /* last endptr from service entry */
 239                struct sk_buff_head backlog;
 240                void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
 241        } tx;
 242};
 243
 244enum lanai_type {
 245        lanai2  = PCI_DEVICE_ID_EF_ATM_LANAI2,
 246        lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
 247};
 248
 249struct lanai_dev_stats {
 250        unsigned ovfl_trash;    /* # of cells dropped - buffer overflow */
 251        unsigned vci_trash;     /* # of cells dropped - closed vci */
 252        unsigned hec_err;       /* # of cells dropped - bad HEC */
 253        unsigned atm_ovfl;      /* # of cells dropped - rx fifo overflow */
 254        unsigned pcierr_parity_detect;
 255        unsigned pcierr_serr_set;
 256        unsigned pcierr_master_abort;
 257        unsigned pcierr_m_target_abort;
 258        unsigned pcierr_s_target_abort;
 259        unsigned pcierr_master_parity;
 260        unsigned service_notx;
 261        unsigned service_norx;
 262        unsigned service_rxnotaal5;
 263        unsigned dma_reenable;
 264        unsigned card_reset;
 265};
 266
 267struct lanai_dev {
 268        bus_addr_t base;
 269        struct lanai_dev_stats stats;
 270        struct lanai_buffer service;
 271        struct lanai_vcc **vccs;
 272#ifdef USE_POWERDOWN
 273        int nbound;                     /* number of bound vccs */
 274#endif
 275        enum lanai_type type;
 276        vci_t num_vci;                  /* Currently just NUM_VCI */
 277        u8 eeprom[LANAI_EEPROM_SIZE];
 278        u32 serialno, magicno;
 279        struct pci_dev *pci;
 280        DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
 281        DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
 282        struct timer_list timer;
 283        int naal0;
 284        struct lanai_buffer aal0buf;    /* AAL0 RX buffers */
 285        u32 conf1, conf2;               /* CONFIG[12] registers */
 286        u32 status;                     /* STATUS register */
 287        spinlock_t endtxlock;
 288        spinlock_t servicelock;
 289        struct atm_vcc *cbrvcc;
 290        int number;
 291        int board_rev;
 292/* TODO - look at race conditions with maintence of conf1/conf2 */
 293/* TODO - transmit locking: should we use _irq not _irqsave? */
 294/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
 295};
 296
 297/*
 298 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
 299 * This function iterates one of these, calling a given function for each
 300 * vci with their bit set
 301 */
 302static void vci_bitfield_iterate(struct lanai_dev *lanai,
 303        const unsigned long *lp,
 304        void (*func)(struct lanai_dev *,vci_t vci))
 305{
 306        vci_t vci;
 307
 308        for_each_set_bit(vci, lp, NUM_VCI)
 309                func(lanai, vci);
 310}
 311
 312/* -------------------- BUFFER  UTILITIES: */
 313
 314/*
 315 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
 316 * usually any page allocation will do.  Just to be safe in case
 317 * PAGE_SIZE is insanely tiny, though...
 318 */
 319#define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
 320
 321/*
 322 * Allocate a buffer in host RAM for service list, RX, or TX
 323 * Returns buf->start==NULL if no memory
 324 * Note that the size will be rounded up 2^n bytes, and
 325 * if we can't allocate that we'll settle for something smaller
 326 * until minbytes
 327 */
 328static void lanai_buf_allocate(struct lanai_buffer *buf,
 329        size_t bytes, size_t minbytes, struct pci_dev *pci)
 330{
 331        int size;
 332
 333        if (bytes > (128 * 1024))       /* max lanai buffer size */
 334                bytes = 128 * 1024;
 335        for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
 336                ;
 337        if (minbytes < LANAI_PAGE_SIZE)
 338                minbytes = LANAI_PAGE_SIZE;
 339        do {
 340                /*
 341                 * Technically we could use non-consistent mappings for
 342                 * everything, but the way the lanai uses DMA memory would
 343                 * make that a terrific pain.  This is much simpler.
 344                 */
 345                buf->start = dma_alloc_coherent(&pci->dev,
 346                                                size, &buf->dmaaddr, GFP_KERNEL);
 347                if (buf->start != NULL) {       /* Success */
 348                        /* Lanai requires 256-byte alignment of DMA bufs */
 349                        APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
 350                            "bad dmaaddr: 0x%lx\n",
 351                            (unsigned long) buf->dmaaddr);
 352                        buf->ptr = buf->start;
 353                        buf->end = (u32 *)
 354                            (&((unsigned char *) buf->start)[size]);
 355                        memset(buf->start, 0, size);
 356                        break;
 357                }
 358                size /= 2;
 359        } while (size >= minbytes);
 360}
 361
 362/* size of buffer in bytes */
 363static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
 364{
 365        return ((unsigned long) buf->end) - ((unsigned long) buf->start);
 366}
 367
 368static void lanai_buf_deallocate(struct lanai_buffer *buf,
 369        struct pci_dev *pci)
 370{
 371        if (buf->start != NULL) {
 372                dma_free_coherent(&pci->dev, lanai_buf_size(buf),
 373                                  buf->start, buf->dmaaddr);
 374                buf->start = buf->end = buf->ptr = NULL;
 375        }
 376}
 377
 378/* size of buffer as "card order" (0=1k .. 7=128k) */
 379static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
 380{
 381        int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
 382
 383        /* This can only happen if PAGE_SIZE is gigantic, but just in case */
 384        if (order > 7)
 385                order = 7;
 386        return order;
 387}
 388
 389/* -------------------- PORT I/O UTILITIES: */
 390
 391/* Registers (and their bit-fields) */
 392enum lanai_register {
 393        Reset_Reg               = 0x00, /* Reset; read for chip type; bits: */
 394#define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)    /* Board revision */
 395#define   RESET_GET_BOARD_ID(x)     (((x)>> 2)&0x03)    /* Board ID */
 396#define     BOARD_ID_LANAI256           (0)     /* 25.6M adapter card */
 397        Endian_Reg              = 0x04, /* Endian setting */
 398        IntStatus_Reg           = 0x08, /* Interrupt status */
 399        IntStatusMasked_Reg     = 0x0C, /* Interrupt status (masked) */
 400        IntAck_Reg              = 0x10, /* Interrupt acknowledge */
 401        IntAckMasked_Reg        = 0x14, /* Interrupt acknowledge (masked) */
 402        IntStatusSet_Reg        = 0x18, /* Get status + enable/disable */
 403        IntStatusSetMasked_Reg  = 0x1C, /* Get status + en/di (masked) */
 404        IntControlEna_Reg       = 0x20, /* Interrupt control enable */
 405        IntControlDis_Reg       = 0x24, /* Interrupt control disable */
 406        Status_Reg              = 0x28, /* Status */
 407#define   STATUS_PROMDATA        (0x00000001)   /* PROM_DATA pin */
 408#define   STATUS_WAITING         (0x00000002)   /* Interrupt being delayed */
 409#define   STATUS_SOOL            (0x00000004)   /* SOOL alarm */
 410#define   STATUS_LOCD            (0x00000008)   /* LOCD alarm */
 411#define   STATUS_LED             (0x00000010)   /* LED (HAPPI) output */
 412#define   STATUS_GPIN            (0x00000020)   /* GPIN pin */
 413#define   STATUS_BUTTBUSY        (0x00000040)   /* Butt register is pending */
 414        Config1_Reg             = 0x2C, /* Config word 1; bits: */
 415#define   CONFIG1_PROMDATA       (0x00000001)   /* PROM_DATA pin */
 416#define   CONFIG1_PROMCLK        (0x00000002)   /* PROM_CLK pin */
 417#define   CONFIG1_SET_READMODE(x) ((x)*0x004)   /* PCI BM reads; values: */
 418#define     READMODE_PLAIN          (0)         /*   Plain memory read */
 419#define     READMODE_LINE           (2)         /*   Memory read line */
 420#define     READMODE_MULTIPLE       (3)         /*   Memory read multiple */
 421#define   CONFIG1_DMA_ENABLE     (0x00000010)   /* Turn on DMA */
 422#define   CONFIG1_POWERDOWN      (0x00000020)   /* Turn off clocks */
 423#define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)   /* Clock&loop mode; values: */
 424#define     LOOPMODE_NORMAL         (0)         /*   Normal - no loop */
 425#define     LOOPMODE_TIME           (1)
 426#define     LOOPMODE_DIAG           (2)
 427#define     LOOPMODE_LINE           (3)
 428#define   CONFIG1_MASK_LOOPMODE  (0x00000180)
 429#define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)   /* Mode of LED; values: */
 430#define     LEDMODE_NOT_SOOL        (0)         /*   !SOOL */
 431#define     LEDMODE_OFF             (1)         /*   0     */
 432#define     LEDMODE_ON              (2)         /*   1     */
 433#define     LEDMODE_NOT_LOCD        (3)         /*   !LOCD */
 434#define     LEDMORE_GPIN            (4)         /*   GPIN  */
 435#define     LEDMODE_NOT_GPIN        (7)         /*   !GPIN */
 436#define   CONFIG1_MASK_LEDMODE   (0x00000E00)
 437#define   CONFIG1_GPOUT1         (0x00001000)   /* Toggle for reset */
 438#define   CONFIG1_GPOUT2         (0x00002000)   /* Loopback PHY */
 439#define   CONFIG1_GPOUT3         (0x00004000)   /* Loopback lanai */
 440        Config2_Reg             = 0x30, /* Config word 2; bits: */
 441#define   CONFIG2_HOWMANY        (0x00000001)   /* >512 VCIs? */
 442#define   CONFIG2_PTI7_MODE      (0x00000002)   /* Make PTI=7 RM, not OAM */
 443#define   CONFIG2_VPI_CHK_DIS    (0x00000004)   /* Ignore RX VPI value */
 444#define   CONFIG2_HEC_DROP       (0x00000008)   /* Drop cells w/ HEC errors */
 445#define   CONFIG2_VCI0_NORMAL    (0x00000010)   /* Treat VCI=0 normally */
 446#define   CONFIG2_CBR_ENABLE     (0x00000020)   /* Deal with CBR traffic */
 447#define   CONFIG2_TRASH_ALL      (0x00000040)   /* Trashing incoming cells */
 448#define   CONFIG2_TX_DISABLE     (0x00000080)   /* Trashing outgoing cells */
 449#define   CONFIG2_SET_TRASH      (0x00000100)   /* Turn trashing on */
 450        Statistics_Reg          = 0x34, /* Statistics; bits: */
 451#define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)    /* FIFO overflowed */
 452#define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)    /* HEC was bad */
 453#define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)    /* VCI not open */
 454#define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)    /* VCC buffer full */
 455        ServiceStuff_Reg        = 0x38, /* Service stuff; bits: */
 456#define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)   /* size of service buffer */
 457#define   SSTUFF_SET_ADDR(x)        ((x)>>8)    /* set address of buffer */
 458        ServWrite_Reg           = 0x3C, /* ServWrite Pointer */
 459        ServRead_Reg            = 0x40, /* ServRead Pointer */
 460        TxDepth_Reg             = 0x44, /* FIFO Transmit Depth */
 461        Butt_Reg                = 0x48, /* Butt register */
 462        CBR_ICG_Reg             = 0x50,
 463        CBR_PTR_Reg             = 0x54,
 464        PingCount_Reg           = 0x58, /* Ping count */
 465        DMA_Addr_Reg            = 0x5C  /* DMA address */
 466};
 467
 468static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
 469        enum lanai_register reg)
 470{
 471        return lanai->base + reg;
 472}
 473
 474static inline u32 reg_read(const struct lanai_dev *lanai,
 475        enum lanai_register reg)
 476{
 477        u32 t;
 478        t = readl(reg_addr(lanai, reg));
 479        RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
 480            (int) reg, t);
 481        return t;
 482}
 483
 484static inline void reg_write(const struct lanai_dev *lanai, u32 val,
 485        enum lanai_register reg)
 486{
 487        RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
 488            (int) reg, val);
 489        writel(val, reg_addr(lanai, reg));
 490}
 491
 492static inline void conf1_write(const struct lanai_dev *lanai)
 493{
 494        reg_write(lanai, lanai->conf1, Config1_Reg);
 495}
 496
 497static inline void conf2_write(const struct lanai_dev *lanai)
 498{
 499        reg_write(lanai, lanai->conf2, Config2_Reg);
 500}
 501
 502/* Same as conf2_write(), but defers I/O if we're powered down */
 503static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
 504{
 505#ifdef USE_POWERDOWN
 506        if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
 507                return;
 508#endif /* USE_POWERDOWN */
 509        conf2_write(lanai);
 510}
 511
 512static inline void reset_board(const struct lanai_dev *lanai)
 513{
 514        DPRINTK("about to reset board\n");
 515        reg_write(lanai, 0, Reset_Reg);
 516        /*
 517         * If we don't delay a little while here then we can end up
 518         * leaving the card in a VERY weird state and lock up the
 519         * PCI bus.  This isn't documented anywhere but I've convinced
 520         * myself after a lot of painful experimentation
 521         */
 522        udelay(5);
 523}
 524
 525/* -------------------- CARD SRAM UTILITIES: */
 526
 527/* The SRAM is mapped into normal PCI memory space - the only catch is
 528 * that it is only 16-bits wide but must be accessed as 32-bit.  The
 529 * 16 high bits will be zero.  We don't hide this, since they get
 530 * programmed mostly like discrete registers anyway
 531 */
 532#define SRAM_START (0x20000)
 533#define SRAM_BYTES (0x20000)    /* Again, half don't really exist */
 534
 535static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
 536{
 537        return lanai->base + SRAM_START + offset;
 538}
 539
 540static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
 541{
 542        return readl(sram_addr(lanai, offset));
 543}
 544
 545static inline void sram_write(const struct lanai_dev *lanai,
 546        u32 val, int offset)
 547{
 548        writel(val, sram_addr(lanai, offset));
 549}
 550
 551static int sram_test_word(const struct lanai_dev *lanai, int offset,
 552                          u32 pattern)
 553{
 554        u32 readback;
 555        sram_write(lanai, pattern, offset);
 556        readback = sram_read(lanai, offset);
 557        if (likely(readback == pattern))
 558                return 0;
 559        printk(KERN_ERR DEV_LABEL
 560            "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
 561            lanai->number, offset,
 562            (unsigned int) pattern, (unsigned int) readback);
 563        return -EIO;
 564}
 565
 566static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
 567{
 568        int offset, result = 0;
 569        for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
 570                result = sram_test_word(lanai, offset, pattern);
 571        return result;
 572}
 573
 574static int sram_test_and_clear(const struct lanai_dev *lanai)
 575{
 576#ifdef FULL_MEMORY_TEST
 577        int result;
 578        DPRINTK("testing SRAM\n");
 579        if ((result = sram_test_pass(lanai, 0x5555)) != 0)
 580                return result;
 581        if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
 582                return result;
 583#endif
 584        DPRINTK("clearing SRAM\n");
 585        return sram_test_pass(lanai, 0x0000);
 586}
 587
 588/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
 589
 590/* vcc table */
 591enum lanai_vcc_offset {
 592        vcc_rxaddr1             = 0x00, /* Location1, plus bits: */
 593#define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of RX buffer */
 594#define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)   /* RM cell action; values: */
 595#define     RMMODE_TRASH          (0)           /*   discard */
 596#define     RMMODE_PRESERVE       (1)           /*   input as AAL0 */
 597#define     RMMODE_PIPE           (2)           /*   pipe to coscheduler */
 598#define     RMMODE_PIPEALL        (3)           /*   pipe non-RM too */
 599#define   RXADDR1_OAM_PRESERVE   (0x00002000)   /* Input OAM cells as AAL0 */
 600#define   RXADDR1_SET_MODE(x) ((x)*0x0004000)   /* Reassembly mode */
 601#define     RXMODE_TRASH          (0)           /*   discard */
 602#define     RXMODE_AAL0           (1)           /*   non-AAL5 mode */
 603#define     RXMODE_AAL5           (2)           /*   AAL5, intr. each PDU */
 604#define     RXMODE_AAL5_STREAM    (3)           /*   AAL5 w/o per-PDU intr */
 605        vcc_rxaddr2             = 0x04, /* Location2 */
 606        vcc_rxcrc1              = 0x08, /* RX CRC claculation space */
 607        vcc_rxcrc2              = 0x0C,
 608        vcc_rxwriteptr          = 0x10, /* RX writeptr, plus bits: */
 609#define   RXWRITEPTR_LASTEFCI    (0x00002000)   /* Last PDU had EFCI bit */
 610#define   RXWRITEPTR_DROPPING    (0x00004000)   /* Had error, dropping */
 611#define   RXWRITEPTR_TRASHING    (0x00008000)   /* Trashing */
 612        vcc_rxbufstart          = 0x14, /* RX bufstart, plus bits: */
 613#define   RXBUFSTART_CLP         (0x00004000)
 614#define   RXBUFSTART_CI          (0x00008000)
 615        vcc_rxreadptr           = 0x18, /* RX readptr */
 616        vcc_txicg               = 0x1C, /* TX ICG */
 617        vcc_txaddr1             = 0x20, /* Location1, plus bits: */
 618#define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)   /* size of TX buffer */
 619#define   TXADDR1_ABR            (0x00008000)   /* use ABR (doesn't work) */
 620        vcc_txaddr2             = 0x24, /* Location2 */
 621        vcc_txcrc1              = 0x28, /* TX CRC claculation space */
 622        vcc_txcrc2              = 0x2C,
 623        vcc_txreadptr           = 0x30, /* TX Readptr, plus bits: */
 624#define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
 625#define   TXREADPTR_MASK_DELTA  (0x0000E000)    /* ? */
 626        vcc_txendptr            = 0x34, /* TX Endptr, plus bits: */
 627#define   TXENDPTR_CLP          (0x00002000)
 628#define   TXENDPTR_MASK_PDUMODE (0x0000C000)    /* PDU mode; values: */
 629#define     PDUMODE_AAL0         (0*0x04000)
 630#define     PDUMODE_AAL5         (2*0x04000)
 631#define     PDUMODE_AAL5STREAM   (3*0x04000)
 632        vcc_txwriteptr          = 0x38, /* TX Writeptr */
 633#define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
 634        vcc_txcbr_next          = 0x3C  /* # of next CBR VCI in ring */
 635#define   TXCBR_NEXT_BOZO       (0x00008000)    /* "bozo bit" */
 636};
 637
 638#define CARDVCC_SIZE    (0x40)
 639
 640static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
 641        vci_t vci)
 642{
 643        return sram_addr(lanai, vci * CARDVCC_SIZE);
 644}
 645
 646static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
 647        enum lanai_vcc_offset offset)
 648{
 649        u32 val;
 650        APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
 651        val= readl(lvcc->vbase + offset);
 652        RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
 653            lvcc->vci, (int) offset, val);
 654        return val;
 655}
 656
 657static inline void cardvcc_write(const struct lanai_vcc *lvcc,
 658        u32 val, enum lanai_vcc_offset offset)
 659{
 660        APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
 661        APRINTK((val & ~0xFFFF) == 0,
 662            "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
 663            (unsigned int) val, lvcc->vci, (unsigned int) offset);
 664        RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
 665            lvcc->vci, (unsigned int) offset, (unsigned int) val);
 666        writel(val, lvcc->vbase + offset);
 667}
 668
 669/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
 670
 671/* How many bytes will an AAL5 PDU take to transmit - remember that:
 672 *   o  we need to add 8 bytes for length, CPI, UU, and CRC
 673 *   o  we need to round up to 48 bytes for cells
 674 */
 675static inline int aal5_size(int size)
 676{
 677        int cells = (size + 8 + 47) / 48;
 678        return cells * 48;
 679}
 680
 681/* -------------------- FREE AN ATM SKB: */
 682
 683static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
 684{
 685        if (atmvcc->pop != NULL)
 686                atmvcc->pop(atmvcc, skb);
 687        else
 688                dev_kfree_skb_any(skb);
 689}
 690
 691/* -------------------- TURN VCCS ON AND OFF: */
 692
 693static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
 694{
 695        u32 addr1;
 696        if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
 697                dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
 698                cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
 699                cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
 700                cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 701                cardvcc_write(lvcc, 0, vcc_rxbufstart);
 702                cardvcc_write(lvcc, 0, vcc_rxreadptr);
 703                cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
 704                addr1 = ((dmaaddr >> 8) & 0xFF) |
 705                    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
 706                    RXADDR1_SET_RMMODE(RMMODE_TRASH) |  /* ??? */
 707                 /* RXADDR1_OAM_PRESERVE |      --- no OAM support yet */
 708                    RXADDR1_SET_MODE(RXMODE_AAL5);
 709        } else
 710                addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
 711                    RXADDR1_OAM_PRESERVE |                    /* ??? */
 712                    RXADDR1_SET_MODE(RXMODE_AAL0);
 713        /* This one must be last! */
 714        cardvcc_write(lvcc, addr1, vcc_rxaddr1);
 715}
 716
 717static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
 718{
 719        dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
 720        cardvcc_write(lvcc, 0, vcc_txicg);
 721        cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
 722        cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
 723        cardvcc_write(lvcc, 0, vcc_txreadptr);
 724        cardvcc_write(lvcc, 0, vcc_txendptr);
 725        cardvcc_write(lvcc, 0, vcc_txwriteptr);
 726        cardvcc_write(lvcc,
 727                (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
 728                TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
 729        cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
 730        cardvcc_write(lvcc,
 731            ((dmaaddr >> 8) & 0xFF) |
 732            TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
 733            vcc_txaddr1);
 734}
 735
 736/* Shutdown receiving on card */
 737static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
 738{
 739        if (lvcc->vbase == NULL)        /* We were never bound to a VCI */
 740                return;
 741        /* 15.1.1 - set to trashing, wait one cell time (15us) */
 742        cardvcc_write(lvcc,
 743            RXADDR1_SET_RMMODE(RMMODE_TRASH) |
 744            RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
 745        udelay(15);
 746        /* 15.1.2 - clear rest of entries */
 747        cardvcc_write(lvcc, 0, vcc_rxaddr2);
 748        cardvcc_write(lvcc, 0, vcc_rxcrc1);
 749        cardvcc_write(lvcc, 0, vcc_rxcrc2);
 750        cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 751        cardvcc_write(lvcc, 0, vcc_rxbufstart);
 752        cardvcc_write(lvcc, 0, vcc_rxreadptr);
 753}
 754
 755/* Shutdown transmitting on card.
 756 * Unfortunately the lanai needs us to wait until all the data
 757 * drains out of the buffer before we can dealloc it, so this
 758 * can take awhile -- up to 370ms for a full 128KB buffer
 759 * assuming everone else is quiet.  In theory the time is
 760 * boundless if there's a CBR VCC holding things up.
 761 */
 762static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
 763        struct lanai_vcc *lvcc)
 764{
 765        struct sk_buff *skb;
 766        unsigned long flags, timeout;
 767        int read, write, lastread = -1;
 768
 769        if (lvcc->vbase == NULL)        /* We were never bound to a VCI */
 770                return;
 771        /* 15.2.1 - wait for queue to drain */
 772        while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
 773                lanai_free_skb(lvcc->tx.atmvcc, skb);
 774        read_lock_irqsave(&vcc_sklist_lock, flags);
 775        __clear_bit(lvcc->vci, lanai->backlog_vccs);
 776        read_unlock_irqrestore(&vcc_sklist_lock, flags);
 777        /*
 778         * We need to wait for the VCC to drain but don't wait forever.  We
 779         * give each 1K of buffer size 1/128th of a second to clear out.
 780         * TODO: maybe disable CBR if we're about to timeout?
 781         */
 782        timeout = jiffies +
 783            (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
 784        write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
 785        for (;;) {
 786                read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
 787                if (read == write &&       /* Is TX buffer empty? */
 788                    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
 789                    (cardvcc_read(lvcc, vcc_txcbr_next) &
 790                    TXCBR_NEXT_BOZO) == 0))
 791                        break;
 792                if (read != lastread) {    /* Has there been any progress? */
 793                        lastread = read;
 794                        timeout += HZ / 10;
 795                }
 796                if (unlikely(time_after(jiffies, timeout))) {
 797                        printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
 798                            "backlog closing vci %d\n",
 799                            lvcc->tx.atmvcc->dev->number, lvcc->vci);
 800                        DPRINTK("read, write = %d, %d\n", read, write);
 801                        break;
 802                }
 803                msleep(40);
 804        }
 805        /* 15.2.2 - clear out all tx registers */
 806        cardvcc_write(lvcc, 0, vcc_txreadptr);
 807        cardvcc_write(lvcc, 0, vcc_txwriteptr);
 808        cardvcc_write(lvcc, 0, vcc_txendptr);
 809        cardvcc_write(lvcc, 0, vcc_txcrc1);
 810        cardvcc_write(lvcc, 0, vcc_txcrc2);
 811        cardvcc_write(lvcc, 0, vcc_txaddr2);
 812        cardvcc_write(lvcc, 0, vcc_txaddr1);
 813}
 814
 815/* -------------------- MANAGING AAL0 RX BUFFER: */
 816
 817static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
 818{
 819        DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
 820        lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
 821                           lanai->pci);
 822        return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
 823}
 824
 825static inline void aal0_buffer_free(struct lanai_dev *lanai)
 826{
 827        DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
 828        lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
 829}
 830
 831/* -------------------- EEPROM UTILITIES: */
 832
 833/* Offsets of data in the EEPROM */
 834#define EEPROM_COPYRIGHT        (0)
 835#define EEPROM_COPYRIGHT_LEN    (44)
 836#define EEPROM_CHECKSUM         (62)
 837#define EEPROM_CHECKSUM_REV     (63)
 838#define EEPROM_MAC              (64)
 839#define EEPROM_MAC_REV          (70)
 840#define EEPROM_SERIAL           (112)
 841#define EEPROM_SERIAL_REV       (116)
 842#define EEPROM_MAGIC            (120)
 843#define EEPROM_MAGIC_REV        (124)
 844
 845#define EEPROM_MAGIC_VALUE      (0x5AB478D2)
 846
 847#ifndef READ_EEPROM
 848
 849/* Stub functions to use if EEPROM reading is disabled */
 850static int eeprom_read(struct lanai_dev *lanai)
 851{
 852        printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
 853            lanai->number);
 854        memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
 855        return 0;
 856}
 857
 858static int eeprom_validate(struct lanai_dev *lanai)
 859{
 860        lanai->serialno = 0;
 861        lanai->magicno = EEPROM_MAGIC_VALUE;
 862        return 0;
 863}
 864
 865#else /* READ_EEPROM */
 866
 867static int eeprom_read(struct lanai_dev *lanai)
 868{
 869        int i, address;
 870        u8 data;
 871        u32 tmp;
 872#define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
 873                            } while (0)
 874#define clock_h()        set_config1(lanai->conf1 | CONFIG1_PROMCLK)
 875#define clock_l()        set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
 876#define data_h()         set_config1(lanai->conf1 | CONFIG1_PROMDATA)
 877#define data_l()         set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
 878#define pre_read()       do { data_h(); clock_h(); udelay(5); } while (0)
 879#define read_pin()       (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
 880#define send_stop()      do { data_l(); udelay(5); clock_h(); udelay(5); \
 881                              data_h(); udelay(5); } while (0)
 882        /* start with both clock and data high */
 883        data_h(); clock_h(); udelay(5);
 884        for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
 885                data = (address << 1) | 1;      /* Command=read + address */
 886                /* send start bit */
 887                data_l(); udelay(5);
 888                clock_l(); udelay(5);
 889                for (i = 128; i != 0; i >>= 1) {   /* write command out */
 890                        tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
 891                            ((data & i) ? CONFIG1_PROMDATA : 0);
 892                        if (lanai->conf1 != tmp) {
 893                                set_config1(tmp);
 894                                udelay(5);      /* Let new data settle */
 895                        }
 896                        clock_h(); udelay(5); clock_l(); udelay(5);
 897                }
 898                /* look for ack */
 899                data_h(); clock_h(); udelay(5);
 900                if (read_pin() != 0)
 901                        goto error;     /* No ack seen */
 902                clock_l(); udelay(5);
 903                /* read back result */
 904                for (data = 0, i = 7; i >= 0; i--) {
 905                        data_h(); clock_h(); udelay(5);
 906                        data = (data << 1) | !!read_pin();
 907                        clock_l(); udelay(5);
 908                }
 909                /* look again for ack */
 910                data_h(); clock_h(); udelay(5);
 911                if (read_pin() == 0)
 912                        goto error;     /* Spurious ack */
 913                clock_l(); udelay(5);
 914                send_stop();
 915                lanai->eeprom[address] = data;
 916                DPRINTK("EEPROM 0x%04X %02X\n",
 917                    (unsigned int) address, (unsigned int) data);
 918        }
 919        return 0;
 920    error:
 921        clock_l(); udelay(5);           /* finish read */
 922        send_stop();
 923        printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
 924            lanai->number, address);
 925        return -EIO;
 926#undef set_config1
 927#undef clock_h
 928#undef clock_l
 929#undef data_h
 930#undef data_l
 931#undef pre_read
 932#undef read_pin
 933#undef send_stop
 934}
 935
 936/* read a big-endian 4-byte value out of eeprom */
 937static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
 938{
 939        return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
 940}
 941
 942/* Checksum/validate EEPROM contents */
 943static int eeprom_validate(struct lanai_dev *lanai)
 944{
 945        int i, s;
 946        u32 v;
 947        const u8 *e = lanai->eeprom;
 948#ifdef DEBUG
 949        /* First, see if we can get an ASCIIZ string out of the copyright */
 950        for (i = EEPROM_COPYRIGHT;
 951            i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
 952                if (e[i] < 0x20 || e[i] > 0x7E)
 953                        break;
 954        if ( i != EEPROM_COPYRIGHT &&
 955            i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
 956                DPRINTK("eeprom: copyright = \"%s\"\n",
 957                    (char *) &e[EEPROM_COPYRIGHT]);
 958        else
 959                DPRINTK("eeprom: copyright not found\n");
 960#endif
 961        /* Validate checksum */
 962        for (i = s = 0; i < EEPROM_CHECKSUM; i++)
 963                s += e[i];
 964        s &= 0xFF;
 965        if (s != e[EEPROM_CHECKSUM]) {
 966                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
 967                    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
 968                    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
 969                return -EIO;
 970        }
 971        s ^= 0xFF;
 972        if (s != e[EEPROM_CHECKSUM_REV]) {
 973                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
 974                    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
 975                    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
 976                return -EIO;
 977        }
 978        /* Verify MAC address */
 979        for (i = 0; i < 6; i++)
 980                if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
 981                        printk(KERN_ERR DEV_LABEL
 982                            "(itf %d) : EEPROM MAC addresses don't match "
 983                            "(0x%02X, inverse 0x%02X)\n", lanai->number,
 984                            (unsigned int) e[EEPROM_MAC + i],
 985                            (unsigned int) e[EEPROM_MAC_REV + i]);
 986                        return -EIO;
 987                }
 988        DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
 989        /* Verify serial number */
 990        lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
 991        v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
 992        if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
 993                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
 994                    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
 995                    (unsigned int) lanai->serialno, (unsigned int) v);
 996                return -EIO;
 997        }
 998        DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
 999        /* Verify magic number */
1000        lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1001        v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1002        if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1003                printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1004                    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1005                    lanai->magicno, v);
1006                return -EIO;
1007        }
1008        DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1009        if (lanai->magicno != EEPROM_MAGIC_VALUE)
1010                printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1011                    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1012                    lanai->number, (unsigned int) lanai->magicno,
1013                    (unsigned int) EEPROM_MAGIC_VALUE);
1014        return 0;
1015}
1016
1017#endif /* READ_EEPROM */
1018
1019static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1020{
1021        return &lanai->eeprom[EEPROM_MAC];
1022}
1023
1024/* -------------------- INTERRUPT HANDLING UTILITIES: */
1025
1026/* Interrupt types */
1027#define INT_STATS       (0x00000002)    /* Statistics counter overflow */
1028#define INT_SOOL        (0x00000004)    /* SOOL changed state */
1029#define INT_LOCD        (0x00000008)    /* LOCD changed state */
1030#define INT_LED         (0x00000010)    /* LED (HAPPI) changed state */
1031#define INT_GPIN        (0x00000020)    /* GPIN changed state */
1032#define INT_PING        (0x00000040)    /* PING_COUNT fulfilled */
1033#define INT_WAKE        (0x00000080)    /* Lanai wants bus */
1034#define INT_CBR0        (0x00000100)    /* CBR sched hit VCI 0 */
1035#define INT_LOCK        (0x00000200)    /* Service list overflow */
1036#define INT_MISMATCH    (0x00000400)    /* TX magic list mismatch */
1037#define INT_AAL0_STR    (0x00000800)    /* Non-AAL5 buffer half filled */
1038#define INT_AAL0        (0x00001000)    /* Non-AAL5 data available */
1039#define INT_SERVICE     (0x00002000)    /* Service list entries available */
1040#define INT_TABORTSENT  (0x00004000)    /* Target abort sent by lanai */
1041#define INT_TABORTBM    (0x00008000)    /* Abort rcv'd as bus master */
1042#define INT_TIMEOUTBM   (0x00010000)    /* No response to bus master */
1043#define INT_PCIPARITY   (0x00020000)    /* Parity error on PCI */
1044
1045/* Sets of the above */
1046#define INT_ALL         (0x0003FFFE)    /* All interrupts */
1047#define INT_STATUS      (0x0000003C)    /* Some status pin changed */
1048#define INT_DMASHUT     (0x00038000)    /* DMA engine got shut down */
1049#define INT_SEGSHUT     (0x00000700)    /* Segmentation got shut down */
1050
1051static inline u32 intr_pending(const struct lanai_dev *lanai)
1052{
1053        return reg_read(lanai, IntStatusMasked_Reg);
1054}
1055
1056static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1057{
1058        reg_write(lanai, i, IntControlEna_Reg);
1059}
1060
1061static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1062{
1063        reg_write(lanai, i, IntControlDis_Reg);
1064}
1065
1066/* -------------------- CARD/PCI STATUS: */
1067
1068static void status_message(int itf, const char *name, int status)
1069{
1070        static const char *onoff[2] = { "off to on", "on to off" };
1071        printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1072            itf, name, onoff[!status]);
1073}
1074
1075static void lanai_check_status(struct lanai_dev *lanai)
1076{
1077        u32 new = reg_read(lanai, Status_Reg);
1078        u32 changes = new ^ lanai->status;
1079        lanai->status = new;
1080#define e(flag, name) \
1081                if (changes & flag) \
1082                        status_message(lanai->number, name, new & flag)
1083        e(STATUS_SOOL, "SOOL");
1084        e(STATUS_LOCD, "LOCD");
1085        e(STATUS_LED, "LED");
1086        e(STATUS_GPIN, "GPIN");
1087#undef e
1088}
1089
1090static void pcistatus_got(int itf, const char *name)
1091{
1092        printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1093}
1094
1095static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1096{
1097        u16 s;
1098        int result;
1099        result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1100        if (result != PCIBIOS_SUCCESSFUL) {
1101                printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1102                    "%d\n", lanai->number, result);
1103                return;
1104        }
1105        s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1106            PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1107            PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1108        if (s == 0)
1109                return;
1110        result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1111        if (result != PCIBIOS_SUCCESSFUL)
1112                printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1113                    "%d\n", lanai->number, result);
1114        if (clearonly)
1115                return;
1116#define e(flag, name, stat) \
1117                if (s & flag) { \
1118                        pcistatus_got(lanai->number, name); \
1119                        ++lanai->stats.pcierr_##stat; \
1120                }
1121        e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1122        e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1123        e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1124        e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1125        e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1126        e(PCI_STATUS_PARITY, "master parity", master_parity);
1127#undef e
1128}
1129
1130/* -------------------- VCC TX BUFFER UTILITIES: */
1131
1132/* space left in tx buffer in bytes */
1133static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1134{
1135        int r;
1136        r = endptr * 16;
1137        r -= ((unsigned long) lvcc->tx.buf.ptr) -
1138            ((unsigned long) lvcc->tx.buf.start);
1139        r -= 16;        /* Leave "bubble" - if start==end it looks empty */
1140        if (r < 0)
1141                r += lanai_buf_size(&lvcc->tx.buf);
1142        return r;
1143}
1144
1145/* test if VCC is currently backlogged */
1146static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1147{
1148        return !skb_queue_empty(&lvcc->tx.backlog);
1149}
1150
1151/* Bit fields in the segmentation buffer descriptor */
1152#define DESCRIPTOR_MAGIC        (0xD0000000)
1153#define DESCRIPTOR_AAL5         (0x00008000)
1154#define DESCRIPTOR_AAL5_STREAM  (0x00004000)
1155#define DESCRIPTOR_CLP          (0x00002000)
1156
1157/* Add 32-bit descriptor with its padding */
1158static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1159        u32 flags, int len)
1160{
1161        int pos;
1162        APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1163            "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1164        lvcc->tx.buf.ptr += 4;  /* Hope the values REALLY don't matter */
1165        pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1166            (unsigned char *) lvcc->tx.buf.start;
1167        APRINTK((pos & ~0x0001FFF0) == 0,
1168            "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1169            "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1170            lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1171        pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1172        APRINTK((pos & ~0x0001FFF0) == 0,
1173            "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1174            "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1175            lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1176        lvcc->tx.buf.ptr[-1] =
1177            cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1178            ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1179            DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1180        if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1181                lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1182}
1183
1184/* Add 32-bit AAL5 trailer and leave room for its CRC */
1185static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1186        int len, int cpi, int uu)
1187{
1188        APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1189            "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1190        lvcc->tx.buf.ptr += 2;
1191        lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1192        if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1193                lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1194}
1195
1196static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1197        const unsigned char *src, int n)
1198{
1199        unsigned char *e;
1200        int m;
1201        e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1202        m = e - (unsigned char *) lvcc->tx.buf.end;
1203        if (m < 0)
1204                m = 0;
1205        memcpy(lvcc->tx.buf.ptr, src, n - m);
1206        if (m != 0) {
1207                memcpy(lvcc->tx.buf.start, src + n - m, m);
1208                e = ((unsigned char *) lvcc->tx.buf.start) + m;
1209        }
1210        lvcc->tx.buf.ptr = (u32 *) e;
1211}
1212
1213static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1214{
1215        unsigned char *e;
1216        int m;
1217        if (n == 0)
1218                return;
1219        e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1220        m = e - (unsigned char *) lvcc->tx.buf.end;
1221        if (m < 0)
1222                m = 0;
1223        memset(lvcc->tx.buf.ptr, 0, n - m);
1224        if (m != 0) {
1225                memset(lvcc->tx.buf.start, 0, m);
1226                e = ((unsigned char *) lvcc->tx.buf.start) + m;
1227        }
1228        lvcc->tx.buf.ptr = (u32 *) e;
1229}
1230
1231/* Update "butt" register to specify new WritePtr */
1232static inline void lanai_endtx(struct lanai_dev *lanai,
1233        const struct lanai_vcc *lvcc)
1234{
1235        int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1236            (unsigned char *) lvcc->tx.buf.start;
1237        APRINTK((ptr & ~0x0001FFF0) == 0,
1238            "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1239            ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1240            lvcc->tx.buf.end);
1241
1242        /*
1243         * Since the "butt register" is a shared resounce on the card we
1244         * serialize all accesses to it through this spinlock.  This is
1245         * mostly just paranoia since the register is rarely "busy" anyway
1246         * but is needed for correctness.
1247         */
1248        spin_lock(&lanai->endtxlock);
1249        /*
1250         * We need to check if the "butt busy" bit is set before
1251         * updating the butt register.  In theory this should
1252         * never happen because the ATM card is plenty fast at
1253         * updating the register.  Still, we should make sure
1254         */
1255        for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1256                if (unlikely(i > 50)) {
1257                        printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1258                            "always busy!\n", lanai->number);
1259                        break;
1260                }
1261                udelay(5);
1262        }
1263        /*
1264         * Before we tall the card to start work we need to be sure 100% of
1265         * the info in the service buffer has been written before we tell
1266         * the card about it
1267         */
1268        wmb();
1269        reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1270        spin_unlock(&lanai->endtxlock);
1271}
1272
1273/*
1274 * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1275 * space available.  "pdusize" is the number of bytes the PDU will take
1276 */
1277static void lanai_send_one_aal5(struct lanai_dev *lanai,
1278        struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1279{
1280        int pad;
1281        APRINTK(pdusize == aal5_size(skb->len),
1282            "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1283            pdusize, aal5_size(skb->len));
1284        vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1285        pad = pdusize - skb->len - 8;
1286        APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1287        APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1288        vcc_tx_memcpy(lvcc, skb->data, skb->len);
1289        vcc_tx_memzero(lvcc, pad);
1290        vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1291        lanai_endtx(lanai, lvcc);
1292        lanai_free_skb(lvcc->tx.atmvcc, skb);
1293        atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1294}
1295
1296/* Try to fill the buffer - don't call unless there is backlog */
1297static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1298        struct lanai_vcc *lvcc, int endptr)
1299{
1300        int n;
1301        struct sk_buff *skb;
1302        int space = vcc_tx_space(lvcc, endptr);
1303        APRINTK(vcc_is_backlogged(lvcc),
1304            "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1305            lvcc->vci);
1306        while (space >= 64) {
1307                skb = skb_dequeue(&lvcc->tx.backlog);
1308                if (skb == NULL)
1309                        goto no_backlog;
1310                n = aal5_size(skb->len);
1311                if (n + 16 > space) {
1312                        /* No room for this packet - put it back on queue */
1313                        skb_queue_head(&lvcc->tx.backlog, skb);
1314                        return;
1315                }
1316                lanai_send_one_aal5(lanai, lvcc, skb, n);
1317                space -= n + 16;
1318        }
1319        if (!vcc_is_backlogged(lvcc)) {
1320            no_backlog:
1321                __clear_bit(lvcc->vci, lanai->backlog_vccs);
1322        }
1323}
1324
1325/* Given an skb that we want to transmit either send it now or queue */
1326static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1327        struct sk_buff *skb)
1328{
1329        int space, n;
1330        if (vcc_is_backlogged(lvcc))            /* Already backlogged */
1331                goto queue_it;
1332        space = vcc_tx_space(lvcc,
1333                    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1334        n = aal5_size(skb->len);
1335        APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1336        if (space < n + 16) {                   /* No space for this PDU */
1337                __set_bit(lvcc->vci, lanai->backlog_vccs);
1338            queue_it:
1339                skb_queue_tail(&lvcc->tx.backlog, skb);
1340                return;
1341        }
1342        lanai_send_one_aal5(lanai, lvcc, skb, n);
1343}
1344
1345static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1346        struct lanai_vcc *lvcc, int endptr)
1347{
1348        printk(KERN_INFO DEV_LABEL
1349            ": vcc_tx_unqueue_aal0: not implemented\n");
1350}
1351
1352static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1353        struct sk_buff *skb)
1354{
1355        printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1356        /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1357        lanai_free_skb(lvcc->tx.atmvcc, skb);
1358}
1359
1360/* -------------------- VCC RX BUFFER UTILITIES: */
1361
1362/* unlike the _tx_ cousins, this doesn't update ptr */
1363static inline void vcc_rx_memcpy(unsigned char *dest,
1364        const struct lanai_vcc *lvcc, int n)
1365{
1366        int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1367            ((const unsigned char *) (lvcc->rx.buf.end));
1368        if (m < 0)
1369                m = 0;
1370        memcpy(dest, lvcc->rx.buf.ptr, n - m);
1371        memcpy(dest + n - m, lvcc->rx.buf.start, m);
1372        /* Make sure that these copies don't get reordered */
1373        barrier();
1374}
1375
1376/* Receive AAL5 data on a VCC with a particular endptr */
1377static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1378{
1379        int size;
1380        struct sk_buff *skb;
1381        const u32 *x;
1382        u32 *end = &lvcc->rx.buf.start[endptr * 4];
1383        int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1384        if (n < 0)
1385                n += lanai_buf_size(&lvcc->rx.buf);
1386        APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1387            "vcc_rx_aal5: n out of range (%d/%zu)\n",
1388            n, lanai_buf_size(&lvcc->rx.buf));
1389        /* Recover the second-to-last word to get true pdu length */
1390        if ((x = &end[-2]) < lvcc->rx.buf.start)
1391                x = &lvcc->rx.buf.end[-2];
1392        /*
1393         * Before we actually read from the buffer, make sure the memory
1394         * changes have arrived
1395         */
1396        rmb();
1397        size = be32_to_cpup(x) & 0xffff;
1398        if (unlikely(n != aal5_size(size))) {
1399                /* Make sure size matches padding */
1400                printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1401                    "on vci=%d - size=%d n=%d\n",
1402                    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1403                lvcc->stats.x.aal5.rx_badlen++;
1404                goto out;
1405        }
1406        skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1407        if (unlikely(skb == NULL)) {
1408                lvcc->stats.rx_nomem++;
1409                goto out;
1410        }
1411        skb_put(skb, size);
1412        vcc_rx_memcpy(skb->data, lvcc, size);
1413        ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1414        __net_timestamp(skb);
1415        lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1416        atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1417    out:
1418        lvcc->rx.buf.ptr = end;
1419        cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1420}
1421
1422static void vcc_rx_aal0(struct lanai_dev *lanai)
1423{
1424        printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1425        /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1426        /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1427}
1428
1429/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1430
1431/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1432#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1433#define VCCTABLE_GETFREEPAGE
1434#else
1435#include <linux/vmalloc.h>
1436#endif
1437
1438static int vcc_table_allocate(struct lanai_dev *lanai)
1439{
1440#ifdef VCCTABLE_GETFREEPAGE
1441        APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1442            "vcc table > PAGE_SIZE!");
1443        lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1444        return (lanai->vccs == NULL) ? -ENOMEM : 0;
1445#else
1446        int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1447        lanai->vccs = vzalloc(bytes);
1448        if (unlikely(lanai->vccs == NULL))
1449                return -ENOMEM;
1450        return 0;
1451#endif
1452}
1453
1454static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1455{
1456#ifdef VCCTABLE_GETFREEPAGE
1457        free_page((unsigned long) lanai->vccs);
1458#else
1459        vfree(lanai->vccs);
1460#endif
1461}
1462
1463/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1464static inline struct lanai_vcc *new_lanai_vcc(void)
1465{
1466        struct lanai_vcc *lvcc;
1467        lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1468        if (likely(lvcc != NULL)) {
1469                skb_queue_head_init(&lvcc->tx.backlog);
1470#ifdef DEBUG
1471                lvcc->vci = -1;
1472#endif
1473        }
1474        return lvcc;
1475}
1476
1477static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1478        struct lanai_buffer *buf, int max_sdu, int multiplier,
1479        const char *name)
1480{
1481        int size;
1482        if (unlikely(max_sdu < 1))
1483                max_sdu = 1;
1484        max_sdu = aal5_size(max_sdu);
1485        size = (max_sdu + 16) * multiplier + 16;
1486        lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1487        if (unlikely(buf->start == NULL))
1488                return -ENOMEM;
1489        if (unlikely(lanai_buf_size(buf) < size))
1490                printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1491                    "for %s buffer, got only %zu\n", lanai->number, size,
1492                    name, lanai_buf_size(buf));
1493        DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1494        return 0;
1495}
1496
1497/* Setup a RX buffer for a currently unbound AAL5 vci */
1498static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1499        struct lanai_vcc *lvcc, const struct atm_qos *qos)
1500{
1501        return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1502            qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1503}
1504
1505/* Setup a TX buffer for a currently unbound AAL5 vci */
1506static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1507        const struct atm_qos *qos)
1508{
1509        int max_sdu, multiplier;
1510        if (qos->aal == ATM_AAL0) {
1511                lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1512                max_sdu = ATM_CELL_SIZE - 1;
1513                multiplier = AAL0_TX_MULTIPLIER;
1514        } else {
1515                lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1516                max_sdu = qos->txtp.max_sdu;
1517                multiplier = AAL5_TX_MULTIPLIER;
1518        }
1519        return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1520            multiplier, "TX");
1521}
1522
1523static inline void host_vcc_bind(struct lanai_dev *lanai,
1524        struct lanai_vcc *lvcc, vci_t vci)
1525{
1526        if (lvcc->vbase != NULL)
1527                return;    /* We already were bound in the other direction */
1528        DPRINTK("Binding vci %d\n", vci);
1529#ifdef USE_POWERDOWN
1530        if (lanai->nbound++ == 0) {
1531                DPRINTK("Coming out of powerdown\n");
1532                lanai->conf1 &= ~CONFIG1_POWERDOWN;
1533                conf1_write(lanai);
1534                conf2_write(lanai);
1535        }
1536#endif
1537        lvcc->vbase = cardvcc_addr(lanai, vci);
1538        lanai->vccs[lvcc->vci = vci] = lvcc;
1539}
1540
1541static inline void host_vcc_unbind(struct lanai_dev *lanai,
1542        struct lanai_vcc *lvcc)
1543{
1544        if (lvcc->vbase == NULL)
1545                return; /* This vcc was never bound */
1546        DPRINTK("Unbinding vci %d\n", lvcc->vci);
1547        lvcc->vbase = NULL;
1548        lanai->vccs[lvcc->vci] = NULL;
1549#ifdef USE_POWERDOWN
1550        if (--lanai->nbound == 0) {
1551                DPRINTK("Going into powerdown\n");
1552                lanai->conf1 |= CONFIG1_POWERDOWN;
1553                conf1_write(lanai);
1554        }
1555#endif
1556}
1557
1558/* -------------------- RESET CARD: */
1559
1560static void lanai_reset(struct lanai_dev *lanai)
1561{
1562        printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1563            "implemented\n", lanai->number);
1564        /* TODO */
1565        /* The following is just a hack until we write the real
1566         * resetter - at least ack whatever interrupt sent us
1567         * here
1568         */
1569        reg_write(lanai, INT_ALL, IntAck_Reg);
1570        lanai->stats.card_reset++;
1571}
1572
1573/* -------------------- SERVICE LIST UTILITIES: */
1574
1575/*
1576 * Allocate service buffer and tell card about it
1577 */
1578static int service_buffer_allocate(struct lanai_dev *lanai)
1579{
1580        lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1581            lanai->pci);
1582        if (unlikely(lanai->service.start == NULL))
1583                return -ENOMEM;
1584        DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1585            lanai->service.start,
1586            lanai_buf_size(&lanai->service),
1587            lanai_buf_size_cardorder(&lanai->service));
1588        /* Clear ServWrite register to be safe */
1589        reg_write(lanai, 0, ServWrite_Reg);
1590        /* ServiceStuff register contains size and address of buffer */
1591        reg_write(lanai,
1592            SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1593            SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1594            ServiceStuff_Reg);
1595        return 0;
1596}
1597
1598static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1599{
1600        lanai_buf_deallocate(&lanai->service, lanai->pci);
1601}
1602
1603/* Bitfields in service list */
1604#define SERVICE_TX      (0x80000000)    /* Was from transmission */
1605#define SERVICE_TRASH   (0x40000000)    /* RXed PDU was trashed */
1606#define SERVICE_CRCERR  (0x20000000)    /* RXed PDU had CRC error */
1607#define SERVICE_CI      (0x10000000)    /* RXed PDU had CI set */
1608#define SERVICE_CLP     (0x08000000)    /* RXed PDU had CLP set */
1609#define SERVICE_STREAM  (0x04000000)    /* RX Stream mode */
1610#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1611#define SERVICE_GET_END(x) ((x)&0x1FFF)
1612
1613/* Handle one thing from the service list - returns true if it marked a
1614 * VCC ready for xmit
1615 */
1616static int handle_service(struct lanai_dev *lanai, u32 s)
1617{
1618        vci_t vci = SERVICE_GET_VCI(s);
1619        struct lanai_vcc *lvcc;
1620        read_lock(&vcc_sklist_lock);
1621        lvcc = lanai->vccs[vci];
1622        if (unlikely(lvcc == NULL)) {
1623                read_unlock(&vcc_sklist_lock);
1624                DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1625                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1626                if (s & SERVICE_TX)
1627                        lanai->stats.service_notx++;
1628                else
1629                        lanai->stats.service_norx++;
1630                return 0;
1631        }
1632        if (s & SERVICE_TX) {                   /* segmentation interrupt */
1633                if (unlikely(lvcc->tx.atmvcc == NULL)) {
1634                        read_unlock(&vcc_sklist_lock);
1635                        DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1636                            "vcc %d\n", lanai->number, (unsigned int) s, vci);
1637                        lanai->stats.service_notx++;
1638                        return 0;
1639                }
1640                __set_bit(vci, lanai->transmit_ready);
1641                lvcc->tx.endptr = SERVICE_GET_END(s);
1642                read_unlock(&vcc_sklist_lock);
1643                return 1;
1644        }
1645        if (unlikely(lvcc->rx.atmvcc == NULL)) {
1646                read_unlock(&vcc_sklist_lock);
1647                DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1648                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1649                lanai->stats.service_norx++;
1650                return 0;
1651        }
1652        if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1653                read_unlock(&vcc_sklist_lock);
1654                DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1655                    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1656                lanai->stats.service_rxnotaal5++;
1657                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1658                return 0;
1659        }
1660        if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1661                vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1662                read_unlock(&vcc_sklist_lock);
1663                return 0;
1664        }
1665        if (s & SERVICE_TRASH) {
1666                int bytes;
1667                read_unlock(&vcc_sklist_lock);
1668                DPRINTK("got trashed rx pdu on vci %d\n", vci);
1669                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1670                lvcc->stats.x.aal5.service_trash++;
1671                bytes = (SERVICE_GET_END(s) * 16) -
1672                    (((unsigned long) lvcc->rx.buf.ptr) -
1673                    ((unsigned long) lvcc->rx.buf.start)) + 47;
1674                if (bytes < 0)
1675                        bytes += lanai_buf_size(&lvcc->rx.buf);
1676                lanai->stats.ovfl_trash += (bytes / 48);
1677                return 0;
1678        }
1679        if (s & SERVICE_STREAM) {
1680                read_unlock(&vcc_sklist_lock);
1681                atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1682                lvcc->stats.x.aal5.service_stream++;
1683                printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1684                    "PDU on VCI %d!\n", lanai->number, vci);
1685                lanai_reset(lanai);
1686                return 0;
1687        }
1688        DPRINTK("got rx crc error on vci %d\n", vci);
1689        atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1690        lvcc->stats.x.aal5.service_rxcrc++;
1691        lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1692        cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1693        read_unlock(&vcc_sklist_lock);
1694        return 0;
1695}
1696
1697/* Try transmitting on all VCIs that we marked ready to serve */
1698static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1699{
1700        struct lanai_vcc *lvcc = lanai->vccs[vci];
1701        if (vcc_is_backlogged(lvcc))
1702                lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1703}
1704
1705/* Run service queue -- called from interrupt context or with
1706 * interrupts otherwise disabled and with the lanai->servicelock
1707 * lock held
1708 */
1709static void run_service(struct lanai_dev *lanai)
1710{
1711        int ntx = 0;
1712        u32 wreg = reg_read(lanai, ServWrite_Reg);
1713        const u32 *end = lanai->service.start + wreg;
1714        while (lanai->service.ptr != end) {
1715                ntx += handle_service(lanai,
1716                    le32_to_cpup(lanai->service.ptr++));
1717                if (lanai->service.ptr >= lanai->service.end)
1718                        lanai->service.ptr = lanai->service.start;
1719        }
1720        reg_write(lanai, wreg, ServRead_Reg);
1721        if (ntx != 0) {
1722                read_lock(&vcc_sklist_lock);
1723                vci_bitfield_iterate(lanai, lanai->transmit_ready,
1724                    iter_transmit);
1725                bitmap_zero(lanai->transmit_ready, NUM_VCI);
1726                read_unlock(&vcc_sklist_lock);
1727        }
1728}
1729
1730/* -------------------- GATHER STATISTICS: */
1731
1732static void get_statistics(struct lanai_dev *lanai)
1733{
1734        u32 statreg = reg_read(lanai, Statistics_Reg);
1735        lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1736        lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1737        lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1738        lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1739}
1740
1741/* -------------------- POLLING TIMER: */
1742
1743#ifndef DEBUG_RW
1744/* Try to undequeue 1 backlogged vcc */
1745static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1746{
1747        struct lanai_vcc *lvcc = lanai->vccs[vci];
1748        int endptr;
1749        if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1750            !vcc_is_backlogged(lvcc)) {
1751                __clear_bit(vci, lanai->backlog_vccs);
1752                return;
1753        }
1754        endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1755        lvcc->tx.unqueue(lanai, lvcc, endptr);
1756}
1757#endif /* !DEBUG_RW */
1758
1759static void lanai_timed_poll(struct timer_list *t)
1760{
1761        struct lanai_dev *lanai = from_timer(lanai, t, timer);
1762#ifndef DEBUG_RW
1763        unsigned long flags;
1764#ifdef USE_POWERDOWN
1765        if (lanai->conf1 & CONFIG1_POWERDOWN)
1766                return;
1767#endif /* USE_POWERDOWN */
1768        local_irq_save(flags);
1769        /* If we can grab the spinlock, check if any services need to be run */
1770        if (spin_trylock(&lanai->servicelock)) {
1771                run_service(lanai);
1772                spin_unlock(&lanai->servicelock);
1773        }
1774        /* ...and see if any backlogged VCs can make progress */
1775        /* unfortunately linux has no read_trylock() currently */
1776        read_lock(&vcc_sklist_lock);
1777        vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1778        read_unlock(&vcc_sklist_lock);
1779        local_irq_restore(flags);
1780
1781        get_statistics(lanai);
1782#endif /* !DEBUG_RW */
1783        mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1784}
1785
1786static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1787{
1788        timer_setup(&lanai->timer, lanai_timed_poll, 0);
1789        lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1790        add_timer(&lanai->timer);
1791}
1792
1793static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1794{
1795        del_timer_sync(&lanai->timer);
1796}
1797
1798/* -------------------- INTERRUPT SERVICE: */
1799
1800static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1801{
1802        u32 ack = 0;
1803        if (reason & INT_SERVICE) {
1804                ack = INT_SERVICE;
1805                spin_lock(&lanai->servicelock);
1806                run_service(lanai);
1807                spin_unlock(&lanai->servicelock);
1808        }
1809        if (reason & (INT_AAL0_STR | INT_AAL0)) {
1810                ack |= reason & (INT_AAL0_STR | INT_AAL0);
1811                vcc_rx_aal0(lanai);
1812        }
1813        /* The rest of the interrupts are pretty rare */
1814        if (ack == reason)
1815                goto done;
1816        if (reason & INT_STATS) {
1817                reason &= ~INT_STATS;   /* No need to ack */
1818                get_statistics(lanai);
1819        }
1820        if (reason & INT_STATUS) {
1821                ack |= reason & INT_STATUS;
1822                lanai_check_status(lanai);
1823        }
1824        if (unlikely(reason & INT_DMASHUT)) {
1825                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1826                    "shutdown, reason=0x%08X, address=0x%08X\n",
1827                    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1828                    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1829                if (reason & INT_TABORTBM) {
1830                        lanai_reset(lanai);
1831                        return;
1832                }
1833                ack |= (reason & INT_DMASHUT);
1834                printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1835                    lanai->number);
1836                conf1_write(lanai);
1837                lanai->stats.dma_reenable++;
1838                pcistatus_check(lanai, 0);
1839        }
1840        if (unlikely(reason & INT_TABORTSENT)) {
1841                ack |= (reason & INT_TABORTSENT);
1842                printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1843                    lanai->number);
1844                pcistatus_check(lanai, 0);
1845        }
1846        if (unlikely(reason & INT_SEGSHUT)) {
1847                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1848                    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1849                    (unsigned int) (reason & INT_SEGSHUT));
1850                lanai_reset(lanai);
1851                return;
1852        }
1853        if (unlikely(reason & (INT_PING | INT_WAKE))) {
1854                printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1855                    "unexpected interrupt 0x%08X, resetting\n",
1856                    lanai->number,
1857                    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1858                lanai_reset(lanai);
1859                return;
1860        }
1861#ifdef DEBUG
1862        if (unlikely(ack != reason)) {
1863                DPRINTK("unacked ints: 0x%08X\n",
1864                    (unsigned int) (reason & ~ack));
1865                ack = reason;
1866        }
1867#endif
1868   done:
1869        if (ack != 0)
1870                reg_write(lanai, ack, IntAck_Reg);
1871}
1872
1873static irqreturn_t lanai_int(int irq, void *devid)
1874{
1875        struct lanai_dev *lanai = devid;
1876        u32 reason;
1877
1878#ifdef USE_POWERDOWN
1879        /*
1880         * If we're powered down we shouldn't be generating any interrupts -
1881         * so assume that this is a shared interrupt line and it's for someone
1882         * else
1883         */
1884        if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1885                return IRQ_NONE;
1886#endif
1887
1888        reason = intr_pending(lanai);
1889        if (reason == 0)
1890                return IRQ_NONE;        /* Must be for someone else */
1891
1892        do {
1893                if (unlikely(reason == 0xFFFFFFFF))
1894                        break;          /* Maybe we've been unplugged? */
1895                lanai_int_1(lanai, reason);
1896                reason = intr_pending(lanai);
1897        } while (reason != 0);
1898
1899        return IRQ_HANDLED;
1900}
1901
1902/* TODO - it would be nice if we could use the "delayed interrupt" system
1903 *   to some advantage
1904 */
1905
1906/* -------------------- CHECK BOARD ID/REV: */
1907
1908/*
1909 * The board id and revision are stored both in the reset register and
1910 * in the PCI configuration space - the documentation says to check
1911 * each of them.  If revp!=NULL we store the revision there
1912 */
1913static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1914{
1915        DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1916                (int) RESET_GET_BOARD_ID(val),
1917                (int) RESET_GET_BOARD_REV(val));
1918        if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1919                printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1920                    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1921                return -ENODEV;
1922        }
1923        if (revp != NULL)
1924                *revp = RESET_GET_BOARD_REV(val);
1925        return 0;
1926}
1927
1928/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1929
1930static int lanai_pci_start(struct lanai_dev *lanai)
1931{
1932        struct pci_dev *pci = lanai->pci;
1933        int result;
1934
1935        if (pci_enable_device(pci) != 0) {
1936                printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1937                    "PCI device", lanai->number);
1938                return -ENXIO;
1939        }
1940        pci_set_master(pci);
1941        if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1942                printk(KERN_WARNING DEV_LABEL
1943                    "(itf %d): No suitable DMA available.\n", lanai->number);
1944                return -EBUSY;
1945        }
1946        result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1947        if (result != 0)
1948                return result;
1949        /* Set latency timer to zero as per lanai docs */
1950        result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1951        if (result != PCIBIOS_SUCCESSFUL) {
1952                printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1953                    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1954                return -EINVAL;
1955        }
1956        pcistatus_check(lanai, 1);
1957        pcistatus_check(lanai, 0);
1958        return 0;
1959}
1960
1961/* -------------------- VPI/VCI ALLOCATION: */
1962
1963/*
1964 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1965 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1966 * AAL0 traffic (since they will use the same queue) - according to the
1967 * docs we shouldn't even use it for AAL0 traffic
1968 */
1969static inline int vci0_is_ok(struct lanai_dev *lanai,
1970        const struct atm_qos *qos)
1971{
1972        if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1973                return 0;
1974        if (qos->rxtp.traffic_class != ATM_NONE) {
1975                if (lanai->naal0 != 0)
1976                        return 0;
1977                lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1978                conf2_write_if_powerup(lanai);
1979        }
1980        return 1;
1981}
1982
1983/* return true if vci is currently unused, or if requested qos is
1984 * compatible
1985 */
1986static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1987        const struct atm_vcc *atmvcc)
1988{
1989        const struct atm_qos *qos = &atmvcc->qos;
1990        const struct lanai_vcc *lvcc = lanai->vccs[vci];
1991        if (vci == 0 && !vci0_is_ok(lanai, qos))
1992                return 0;
1993        if (unlikely(lvcc != NULL)) {
1994                if (qos->rxtp.traffic_class != ATM_NONE &&
1995                    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
1996                        return 0;
1997                if (qos->txtp.traffic_class != ATM_NONE &&
1998                    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
1999                        return 0;
2000                if (qos->txtp.traffic_class == ATM_CBR &&
2001                    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2002                        return 0;
2003        }
2004        if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2005            qos->rxtp.traffic_class != ATM_NONE) {
2006                const struct lanai_vcc *vci0 = lanai->vccs[0];
2007                if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2008                        return 0;
2009                lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2010                conf2_write_if_powerup(lanai);
2011        }
2012        return 1;
2013}
2014
2015static int lanai_normalize_ci(struct lanai_dev *lanai,
2016        const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2017{
2018        switch (*vpip) {
2019                case ATM_VPI_ANY:
2020                        *vpip = 0;
2021                        fallthrough;
2022                case 0:
2023                        break;
2024                default:
2025                        return -EADDRINUSE;
2026        }
2027        switch (*vcip) {
2028                case ATM_VCI_ANY:
2029                        for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2030                            (*vcip)++)
2031                                if (vci_is_ok(lanai, *vcip, atmvcc))
2032                                        return 0;
2033                        return -EADDRINUSE;
2034                default:
2035                        if (*vcip >= lanai->num_vci || *vcip < 0 ||
2036                            !vci_is_ok(lanai, *vcip, atmvcc))
2037                                return -EADDRINUSE;
2038        }
2039        return 0;
2040}
2041
2042/* -------------------- MANAGE CBR: */
2043
2044/*
2045 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2046 * Note that storing a number greater than 2046.0 will result in
2047 * incorrect shaping
2048 */
2049#define CBRICG_FRAC_BITS        (4)
2050#define CBRICG_MAX              (2046 << CBRICG_FRAC_BITS)
2051
2052/*
2053 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2054 * where MAXPCR is (according to the docs) 25600000/(54*8),
2055 * which is equal to (3125<<9)/27.
2056 *
2057 * Solving for ICG, we get:
2058 *    ICG = MAXPCR/PCR - 1
2059 *    ICG = (3125<<9)/(27*PCR) - 1
2060 *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2061 *
2062 * The end result is supposed to be a fixed-point number with FRAC_BITS
2063 * bits of a fractional part, so we keep everything in the numerator
2064 * shifted by that much as we compute
2065 *
2066 */
2067static int pcr_to_cbricg(const struct atm_qos *qos)
2068{
2069        int rounddown = 0;      /* 1 = Round PCR down, i.e. round ICG _up_ */
2070        int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2071        if (pcr == 0)           /* Use maximum bandwidth */
2072                return 0;
2073        if (pcr < 0) {
2074                rounddown = 1;
2075                pcr = -pcr;
2076        }
2077        x = pcr * 27;
2078        icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2079        if (rounddown)
2080                icg += x - 1;
2081        icg /= x;
2082        if (icg > CBRICG_MAX)
2083                icg = CBRICG_MAX;
2084        DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2085            pcr, rounddown ? 'Y' : 'N', icg);
2086        return icg;
2087}
2088
2089static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2090{
2091        reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2092        reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2093        lanai->conf2 |= CONFIG2_CBR_ENABLE;
2094        conf2_write(lanai);
2095}
2096
2097static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2098{
2099        lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2100        conf2_write(lanai);
2101}
2102
2103/* -------------------- OPERATIONS: */
2104
2105/* setup a newly detected device */
2106static int lanai_dev_open(struct atm_dev *atmdev)
2107{
2108        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2109        unsigned long raw_base;
2110        int result;
2111
2112        DPRINTK("In lanai_dev_open()\n");
2113        /* Basic device fields */
2114        lanai->number = atmdev->number;
2115        lanai->num_vci = NUM_VCI;
2116        bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2117        bitmap_zero(lanai->transmit_ready, NUM_VCI);
2118        lanai->naal0 = 0;
2119#ifdef USE_POWERDOWN
2120        lanai->nbound = 0;
2121#endif
2122        lanai->cbrvcc = NULL;
2123        memset(&lanai->stats, 0, sizeof lanai->stats);
2124        spin_lock_init(&lanai->endtxlock);
2125        spin_lock_init(&lanai->servicelock);
2126        atmdev->ci_range.vpi_bits = 0;
2127        atmdev->ci_range.vci_bits = 0;
2128        while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2129                atmdev->ci_range.vci_bits++;
2130        atmdev->link_rate = ATM_25_PCR;
2131
2132        /* 3.2: PCI initialization */
2133        if ((result = lanai_pci_start(lanai)) != 0)
2134                goto error;
2135        raw_base = lanai->pci->resource[0].start;
2136        lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2137        if (lanai->base == NULL) {
2138                printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2139                result = -ENOMEM;
2140                goto error_pci;
2141        }
2142        /* 3.3: Reset lanai and PHY */
2143        reset_board(lanai);
2144        lanai->conf1 = reg_read(lanai, Config1_Reg);
2145        lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2146            CONFIG1_MASK_LEDMODE);
2147        lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2148        reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2149        udelay(1000);
2150        conf1_write(lanai);
2151
2152        /*
2153         * 3.4: Turn on endian mode for big-endian hardware
2154         *   We don't actually want to do this - the actual bit fields
2155         *   in the endian register are not documented anywhere.
2156         *   Instead we do the bit-flipping ourselves on big-endian
2157         *   hardware.
2158         *
2159         * 3.5: get the board ID/rev by reading the reset register
2160         */
2161        result = check_board_id_and_rev("register",
2162            reg_read(lanai, Reset_Reg), &lanai->board_rev);
2163        if (result != 0)
2164                goto error_unmap;
2165
2166        /* 3.6: read EEPROM */
2167        if ((result = eeprom_read(lanai)) != 0)
2168                goto error_unmap;
2169        if ((result = eeprom_validate(lanai)) != 0)
2170                goto error_unmap;
2171
2172        /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2173        reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2174        udelay(1000);
2175        conf1_write(lanai);
2176        /* TODO - loopback tests */
2177        lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2178        conf1_write(lanai);
2179
2180        /* 3.8/3.9: test and initialize card SRAM */
2181        if ((result = sram_test_and_clear(lanai)) != 0)
2182                goto error_unmap;
2183
2184        /* 3.10: initialize lanai registers */
2185        lanai->conf1 |= CONFIG1_DMA_ENABLE;
2186        conf1_write(lanai);
2187        if ((result = service_buffer_allocate(lanai)) != 0)
2188                goto error_unmap;
2189        if ((result = vcc_table_allocate(lanai)) != 0)
2190                goto error_service;
2191        lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2192            CONFIG2_HEC_DROP |  /* ??? */ CONFIG2_PTI7_MODE;
2193        conf2_write(lanai);
2194        reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2195        reg_write(lanai, 0, CBR_ICG_Reg);       /* CBR defaults to no limit */
2196        if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2197            DEV_LABEL, lanai)) != 0) {
2198                printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2199                goto error_vcctable;
2200        }
2201        mb();                           /* Make sure that all that made it */
2202        intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2203        /* 3.11: initialize loop mode (i.e. turn looping off) */
2204        lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2205            CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2206            CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2207        conf1_write(lanai);
2208        lanai->status = reg_read(lanai, Status_Reg);
2209        /* We're now done initializing this card */
2210#ifdef USE_POWERDOWN
2211        lanai->conf1 |= CONFIG1_POWERDOWN;
2212        conf1_write(lanai);
2213#endif
2214        memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2215        lanai_timed_poll_start(lanai);
2216        printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2217                "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2218                lanai->base, lanai->pci->irq, atmdev->esi);
2219        printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2220            "board_rev=%d\n", lanai->number,
2221            lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2222            (unsigned int) lanai->serialno, lanai->board_rev);
2223        return 0;
2224
2225    error_vcctable:
2226        vcc_table_deallocate(lanai);
2227    error_service:
2228        service_buffer_deallocate(lanai);
2229    error_unmap:
2230        reset_board(lanai);
2231#ifdef USE_POWERDOWN
2232        lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2233        conf1_write(lanai);
2234#endif
2235        iounmap(lanai->base);
2236        lanai->base = NULL;
2237    error_pci:
2238        pci_disable_device(lanai->pci);
2239    error:
2240        return result;
2241}
2242
2243/* called when device is being shutdown, and all vcc's are gone - higher
2244 * levels will deallocate the atm device for us
2245 */
2246static void lanai_dev_close(struct atm_dev *atmdev)
2247{
2248        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2249        if (lanai->base==NULL)
2250                return;
2251        printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2252            lanai->number);
2253        lanai_timed_poll_stop(lanai);
2254#ifdef USE_POWERDOWN
2255        lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2256        conf1_write(lanai);
2257#endif
2258        intr_disable(lanai, INT_ALL);
2259        free_irq(lanai->pci->irq, lanai);
2260        reset_board(lanai);
2261#ifdef USE_POWERDOWN
2262        lanai->conf1 |= CONFIG1_POWERDOWN;
2263        conf1_write(lanai);
2264#endif
2265        pci_disable_device(lanai->pci);
2266        vcc_table_deallocate(lanai);
2267        service_buffer_deallocate(lanai);
2268        iounmap(lanai->base);
2269        kfree(lanai);
2270}
2271
2272/* close a vcc */
2273static void lanai_close(struct atm_vcc *atmvcc)
2274{
2275        struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2276        struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2277        if (lvcc == NULL)
2278                return;
2279        clear_bit(ATM_VF_READY, &atmvcc->flags);
2280        clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2281        if (lvcc->rx.atmvcc == atmvcc) {
2282                lanai_shutdown_rx_vci(lvcc);
2283                if (atmvcc->qos.aal == ATM_AAL0) {
2284                        if (--lanai->naal0 <= 0)
2285                                aal0_buffer_free(lanai);
2286                } else
2287                        lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2288                lvcc->rx.atmvcc = NULL;
2289        }
2290        if (lvcc->tx.atmvcc == atmvcc) {
2291                if (atmvcc == lanai->cbrvcc) {
2292                        if (lvcc->vbase != NULL)
2293                                lanai_cbr_shutdown(lanai);
2294                        lanai->cbrvcc = NULL;
2295                }
2296                lanai_shutdown_tx_vci(lanai, lvcc);
2297                lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2298                lvcc->tx.atmvcc = NULL;
2299        }
2300        if (--lvcc->nref == 0) {
2301                host_vcc_unbind(lanai, lvcc);
2302                kfree(lvcc);
2303        }
2304        atmvcc->dev_data = NULL;
2305        clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2306}
2307
2308/* open a vcc on the card to vpi/vci */
2309static int lanai_open(struct atm_vcc *atmvcc)
2310{
2311        struct lanai_dev *lanai;
2312        struct lanai_vcc *lvcc;
2313        int result = 0;
2314        int vci = atmvcc->vci;
2315        short vpi = atmvcc->vpi;
2316        /* we don't support partial open - it's not really useful anyway */
2317        if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2318            (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2319                return -EINVAL;
2320        lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2321        result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2322        if (unlikely(result != 0))
2323                goto out;
2324        set_bit(ATM_VF_ADDR, &atmvcc->flags);
2325        if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2326                return -EINVAL;
2327        DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2328            (int) vpi, vci);
2329        lvcc = lanai->vccs[vci];
2330        if (lvcc == NULL) {
2331                lvcc = new_lanai_vcc();
2332                if (unlikely(lvcc == NULL))
2333                        return -ENOMEM;
2334                atmvcc->dev_data = lvcc;
2335        }
2336        lvcc->nref++;
2337        if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2338                APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2339                    vci);
2340                if (atmvcc->qos.aal == ATM_AAL0) {
2341                        if (lanai->naal0 == 0)
2342                                result = aal0_buffer_allocate(lanai);
2343                } else
2344                        result = lanai_setup_rx_vci_aal5(
2345                            lanai, lvcc, &atmvcc->qos);
2346                if (unlikely(result != 0))
2347                        goto out_free;
2348                lvcc->rx.atmvcc = atmvcc;
2349                lvcc->stats.rx_nomem = 0;
2350                lvcc->stats.x.aal5.rx_badlen = 0;
2351                lvcc->stats.x.aal5.service_trash = 0;
2352                lvcc->stats.x.aal5.service_stream = 0;
2353                lvcc->stats.x.aal5.service_rxcrc = 0;
2354                if (atmvcc->qos.aal == ATM_AAL0)
2355                        lanai->naal0++;
2356        }
2357        if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2358                APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2359                    vci);
2360                result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2361                if (unlikely(result != 0))
2362                        goto out_free;
2363                lvcc->tx.atmvcc = atmvcc;
2364                if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2365                        APRINTK(lanai->cbrvcc == NULL,
2366                            "cbrvcc!=NULL, vci=%d\n", vci);
2367                        lanai->cbrvcc = atmvcc;
2368                }
2369        }
2370        host_vcc_bind(lanai, lvcc, vci);
2371        /*
2372         * Make sure everything made it to RAM before we tell the card about
2373         * the VCC
2374         */
2375        wmb();
2376        if (atmvcc == lvcc->rx.atmvcc)
2377                host_vcc_start_rx(lvcc);
2378        if (atmvcc == lvcc->tx.atmvcc) {
2379                host_vcc_start_tx(lvcc);
2380                if (lanai->cbrvcc == atmvcc)
2381                        lanai_cbr_setup(lanai);
2382        }
2383        set_bit(ATM_VF_READY, &atmvcc->flags);
2384        return 0;
2385    out_free:
2386        lanai_close(atmvcc);
2387    out:
2388        return result;
2389}
2390
2391static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2392{
2393        struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2394        struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2395        unsigned long flags;
2396        if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2397              lvcc->tx.atmvcc != atmvcc))
2398                goto einval;
2399#ifdef DEBUG
2400        if (unlikely(skb == NULL)) {
2401                DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2402                goto einval;
2403        }
2404        if (unlikely(lanai == NULL)) {
2405                DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2406                goto einval;
2407        }
2408#endif
2409        ATM_SKB(skb)->vcc = atmvcc;
2410        switch (atmvcc->qos.aal) {
2411                case ATM_AAL5:
2412                        read_lock_irqsave(&vcc_sklist_lock, flags);
2413                        vcc_tx_aal5(lanai, lvcc, skb);
2414                        read_unlock_irqrestore(&vcc_sklist_lock, flags);
2415                        return 0;
2416                case ATM_AAL0:
2417                        if (unlikely(skb->len != ATM_CELL_SIZE-1))
2418                                goto einval;
2419  /* NOTE - this next line is technically invalid - we haven't unshared skb */
2420                        cpu_to_be32s((u32 *) skb->data);
2421                        read_lock_irqsave(&vcc_sklist_lock, flags);
2422                        vcc_tx_aal0(lanai, lvcc, skb);
2423                        read_unlock_irqrestore(&vcc_sklist_lock, flags);
2424                        return 0;
2425        }
2426        DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2427            atmvcc->vci);
2428    einval:
2429        lanai_free_skb(atmvcc, skb);
2430        return -EINVAL;
2431}
2432
2433static int lanai_change_qos(struct atm_vcc *atmvcc,
2434        /*const*/ struct atm_qos *qos, int flags)
2435{
2436        return -EBUSY;          /* TODO: need to write this */
2437}
2438
2439#ifndef CONFIG_PROC_FS
2440#define lanai_proc_read NULL
2441#else
2442static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2443{
2444        struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2445        loff_t left = *pos;
2446        struct lanai_vcc *lvcc;
2447        if (left-- == 0)
2448                return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2449                    "serial=%u, magic=0x%08X, num_vci=%d\n",
2450                    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2451                    (unsigned int) lanai->serialno,
2452                    (unsigned int) lanai->magicno, lanai->num_vci);
2453        if (left-- == 0)
2454                return sprintf(page, "revision: board=%d, pci_if=%d\n",
2455                    lanai->board_rev, (int) lanai->pci->revision);
2456        if (left-- == 0)
2457                return sprintf(page, "EEPROM ESI: %pM\n",
2458                    &lanai->eeprom[EEPROM_MAC]);
2459        if (left-- == 0)
2460                return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2461                    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2462                    (lanai->status & STATUS_LOCD) ? 1 : 0,
2463                    (lanai->status & STATUS_LED) ? 1 : 0,
2464                    (lanai->status & STATUS_GPIN) ? 1 : 0);
2465        if (left-- == 0)
2466                return sprintf(page, "global buffer sizes: service=%zu, "
2467                    "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2468                    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2469        if (left-- == 0) {
2470                get_statistics(lanai);
2471                return sprintf(page, "cells in error: overflow=%u, "
2472                    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2473                    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2474                    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2475        }
2476        if (left-- == 0)
2477                return sprintf(page, "PCI errors: parity_detect=%u, "
2478                    "master_abort=%u, master_target_abort=%u,\n",
2479                    lanai->stats.pcierr_parity_detect,
2480                    lanai->stats.pcierr_serr_set,
2481                    lanai->stats.pcierr_m_target_abort);
2482        if (left-- == 0)
2483                return sprintf(page, "            slave_target_abort=%u, "
2484                    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2485                    lanai->stats.pcierr_master_parity);
2486        if (left-- == 0)
2487                return sprintf(page, "                     no_tx=%u, "
2488                    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2489                    lanai->stats.service_notx,
2490                    lanai->stats.service_rxnotaal5);
2491        if (left-- == 0)
2492                return sprintf(page, "resets: dma=%u, card=%u\n",
2493                    lanai->stats.dma_reenable, lanai->stats.card_reset);
2494        /* At this point, "left" should be the VCI we're looking for */
2495        read_lock(&vcc_sklist_lock);
2496        for (; ; left++) {
2497                if (left >= NUM_VCI) {
2498                        left = 0;
2499                        goto out;
2500                }
2501                if ((lvcc = lanai->vccs[left]) != NULL)
2502                        break;
2503                (*pos)++;
2504        }
2505        /* Note that we re-use "left" here since we're done with it */
2506        left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2507            lvcc->nref, lvcc->stats.rx_nomem);
2508        if (lvcc->rx.atmvcc != NULL) {
2509                left += sprintf(&page[left], ",\n          rx_AAL=%d",
2510                    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2511                if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2512                        left += sprintf(&page[left], ", rx_buf_size=%zu, "
2513                            "rx_bad_len=%u,\n          rx_service_trash=%u, "
2514                            "rx_service_stream=%u, rx_bad_crc=%u",
2515                            lanai_buf_size(&lvcc->rx.buf),
2516                            lvcc->stats.x.aal5.rx_badlen,
2517                            lvcc->stats.x.aal5.service_trash,
2518                            lvcc->stats.x.aal5.service_stream,
2519                            lvcc->stats.x.aal5.service_rxcrc);
2520        }
2521        if (lvcc->tx.atmvcc != NULL)
2522                left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2523                    "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2524                    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2525                    lanai_buf_size(&lvcc->tx.buf),
2526                    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2527                    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2528        page[left++] = '\n';
2529        page[left] = '\0';
2530    out:
2531        read_unlock(&vcc_sklist_lock);
2532        return left;
2533}
2534#endif /* CONFIG_PROC_FS */
2535
2536/* -------------------- HOOKS: */
2537
2538static const struct atmdev_ops ops = {
2539        .dev_close      = lanai_dev_close,
2540        .open           = lanai_open,
2541        .close          = lanai_close,
2542        .send           = lanai_send,
2543        .phy_put        = NULL,
2544        .phy_get        = NULL,
2545        .change_qos     = lanai_change_qos,
2546        .proc_read      = lanai_proc_read,
2547        .owner          = THIS_MODULE
2548};
2549
2550/* initialize one probed card */
2551static int lanai_init_one(struct pci_dev *pci,
2552                          const struct pci_device_id *ident)
2553{
2554        struct lanai_dev *lanai;
2555        struct atm_dev *atmdev;
2556        int result;
2557
2558        lanai = kzalloc(sizeof(*lanai), GFP_KERNEL);
2559        if (lanai == NULL) {
2560                printk(KERN_ERR DEV_LABEL
2561                       ": couldn't allocate dev_data structure!\n");
2562                return -ENOMEM;
2563        }
2564
2565        atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2566        if (atmdev == NULL) {
2567                printk(KERN_ERR DEV_LABEL
2568                    ": couldn't register atm device!\n");
2569                kfree(lanai);
2570                return -EBUSY;
2571        }
2572
2573        atmdev->dev_data = lanai;
2574        lanai->pci = pci;
2575        lanai->type = (enum lanai_type) ident->device;
2576
2577        result = lanai_dev_open(atmdev);
2578        if (result != 0) {
2579                DPRINTK("lanai_start() failed, err=%d\n", -result);
2580                atm_dev_deregister(atmdev);
2581                kfree(lanai);
2582        }
2583        return result;
2584}
2585
2586static const struct pci_device_id lanai_pci_tbl[] = {
2587        { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2588        { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2589        { 0, }  /* terminal entry */
2590};
2591MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2592
2593static struct pci_driver lanai_driver = {
2594        .name     = DEV_LABEL,
2595        .id_table = lanai_pci_tbl,
2596        .probe    = lanai_init_one,
2597};
2598
2599module_pci_driver(lanai_driver);
2600
2601MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2602MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2603MODULE_LICENSE("GPL");
2604