linux/drivers/clk/bcm/clk-bcm2835.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2010,2015 Broadcom
   4 * Copyright (C) 2012 Stephen Warren
   5 */
   6
   7/**
   8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
   9 *
  10 * The clock tree on the 2835 has several levels.  There's a root
  11 * oscillator running at 19.2Mhz.  After the oscillator there are 5
  12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  13 * and "HDMI displays".  Those 5 PLLs each can divide their output to
  14 * produce up to 4 channels.  Finally, there is the level of clocks to
  15 * be consumed by other hardware components (like "H264" or "HDMI
  16 * state machine"), which divide off of some subset of the PLL
  17 * channels.
  18 *
  19 * All of the clocks in the tree are exposed in the DT, because the DT
  20 * may want to make assignments of the final layer of clocks to the
  21 * PLL channels, and some components of the hardware will actually
  22 * skip layers of the tree (for example, the pixel clock comes
  23 * directly from the PLLH PIX channel without using a CM_*CTL clock
  24 * generator).
  25 */
  26
  27#include <linux/clk-provider.h>
  28#include <linux/clkdev.h>
  29#include <linux/clk.h>
  30#include <linux/debugfs.h>
  31#include <linux/delay.h>
  32#include <linux/io.h>
  33#include <linux/module.h>
  34#include <linux/of_device.h>
  35#include <linux/platform_device.h>
  36#include <linux/slab.h>
  37#include <dt-bindings/clock/bcm2835.h>
  38
  39#define CM_PASSWORD             0x5a000000
  40
  41#define CM_GNRICCTL             0x000
  42#define CM_GNRICDIV             0x004
  43# define CM_DIV_FRAC_BITS       12
  44# define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  45
  46#define CM_VPUCTL               0x008
  47#define CM_VPUDIV               0x00c
  48#define CM_SYSCTL               0x010
  49#define CM_SYSDIV               0x014
  50#define CM_PERIACTL             0x018
  51#define CM_PERIADIV             0x01c
  52#define CM_PERIICTL             0x020
  53#define CM_PERIIDIV             0x024
  54#define CM_H264CTL              0x028
  55#define CM_H264DIV              0x02c
  56#define CM_ISPCTL               0x030
  57#define CM_ISPDIV               0x034
  58#define CM_V3DCTL               0x038
  59#define CM_V3DDIV               0x03c
  60#define CM_CAM0CTL              0x040
  61#define CM_CAM0DIV              0x044
  62#define CM_CAM1CTL              0x048
  63#define CM_CAM1DIV              0x04c
  64#define CM_CCP2CTL              0x050
  65#define CM_CCP2DIV              0x054
  66#define CM_DSI0ECTL             0x058
  67#define CM_DSI0EDIV             0x05c
  68#define CM_DSI0PCTL             0x060
  69#define CM_DSI0PDIV             0x064
  70#define CM_DPICTL               0x068
  71#define CM_DPIDIV               0x06c
  72#define CM_GP0CTL               0x070
  73#define CM_GP0DIV               0x074
  74#define CM_GP1CTL               0x078
  75#define CM_GP1DIV               0x07c
  76#define CM_GP2CTL               0x080
  77#define CM_GP2DIV               0x084
  78#define CM_HSMCTL               0x088
  79#define CM_HSMDIV               0x08c
  80#define CM_OTPCTL               0x090
  81#define CM_OTPDIV               0x094
  82#define CM_PCMCTL               0x098
  83#define CM_PCMDIV               0x09c
  84#define CM_PWMCTL               0x0a0
  85#define CM_PWMDIV               0x0a4
  86#define CM_SLIMCTL              0x0a8
  87#define CM_SLIMDIV              0x0ac
  88#define CM_SMICTL               0x0b0
  89#define CM_SMIDIV               0x0b4
  90/* no definition for 0x0b8  and 0x0bc */
  91#define CM_TCNTCTL              0x0c0
  92# define CM_TCNT_SRC1_SHIFT             12
  93#define CM_TCNTCNT              0x0c4
  94#define CM_TECCTL               0x0c8
  95#define CM_TECDIV               0x0cc
  96#define CM_TD0CTL               0x0d0
  97#define CM_TD0DIV               0x0d4
  98#define CM_TD1CTL               0x0d8
  99#define CM_TD1DIV               0x0dc
 100#define CM_TSENSCTL             0x0e0
 101#define CM_TSENSDIV             0x0e4
 102#define CM_TIMERCTL             0x0e8
 103#define CM_TIMERDIV             0x0ec
 104#define CM_UARTCTL              0x0f0
 105#define CM_UARTDIV              0x0f4
 106#define CM_VECCTL               0x0f8
 107#define CM_VECDIV               0x0fc
 108#define CM_PULSECTL             0x190
 109#define CM_PULSEDIV             0x194
 110#define CM_SDCCTL               0x1a8
 111#define CM_SDCDIV               0x1ac
 112#define CM_ARMCTL               0x1b0
 113#define CM_AVEOCTL              0x1b8
 114#define CM_AVEODIV              0x1bc
 115#define CM_EMMCCTL              0x1c0
 116#define CM_EMMCDIV              0x1c4
 117#define CM_EMMC2CTL             0x1d0
 118#define CM_EMMC2DIV             0x1d4
 119
 120/* General bits for the CM_*CTL regs */
 121# define CM_ENABLE                      BIT(4)
 122# define CM_KILL                        BIT(5)
 123# define CM_GATE_BIT                    6
 124# define CM_GATE                        BIT(CM_GATE_BIT)
 125# define CM_BUSY                        BIT(7)
 126# define CM_BUSYD                       BIT(8)
 127# define CM_FRAC                        BIT(9)
 128# define CM_SRC_SHIFT                   0
 129# define CM_SRC_BITS                    4
 130# define CM_SRC_MASK                    0xf
 131# define CM_SRC_GND                     0
 132# define CM_SRC_OSC                     1
 133# define CM_SRC_TESTDEBUG0              2
 134# define CM_SRC_TESTDEBUG1              3
 135# define CM_SRC_PLLA_CORE               4
 136# define CM_SRC_PLLA_PER                4
 137# define CM_SRC_PLLC_CORE0              5
 138# define CM_SRC_PLLC_PER                5
 139# define CM_SRC_PLLC_CORE1              8
 140# define CM_SRC_PLLD_CORE               6
 141# define CM_SRC_PLLD_PER                6
 142# define CM_SRC_PLLH_AUX                7
 143# define CM_SRC_PLLC_CORE1              8
 144# define CM_SRC_PLLC_CORE2              9
 145
 146#define CM_OSCCOUNT             0x100
 147
 148#define CM_PLLA                 0x104
 149# define CM_PLL_ANARST                  BIT(8)
 150# define CM_PLLA_HOLDPER                BIT(7)
 151# define CM_PLLA_LOADPER                BIT(6)
 152# define CM_PLLA_HOLDCORE               BIT(5)
 153# define CM_PLLA_LOADCORE               BIT(4)
 154# define CM_PLLA_HOLDCCP2               BIT(3)
 155# define CM_PLLA_LOADCCP2               BIT(2)
 156# define CM_PLLA_HOLDDSI0               BIT(1)
 157# define CM_PLLA_LOADDSI0               BIT(0)
 158
 159#define CM_PLLC                 0x108
 160# define CM_PLLC_HOLDPER                BIT(7)
 161# define CM_PLLC_LOADPER                BIT(6)
 162# define CM_PLLC_HOLDCORE2              BIT(5)
 163# define CM_PLLC_LOADCORE2              BIT(4)
 164# define CM_PLLC_HOLDCORE1              BIT(3)
 165# define CM_PLLC_LOADCORE1              BIT(2)
 166# define CM_PLLC_HOLDCORE0              BIT(1)
 167# define CM_PLLC_LOADCORE0              BIT(0)
 168
 169#define CM_PLLD                 0x10c
 170# define CM_PLLD_HOLDPER                BIT(7)
 171# define CM_PLLD_LOADPER                BIT(6)
 172# define CM_PLLD_HOLDCORE               BIT(5)
 173# define CM_PLLD_LOADCORE               BIT(4)
 174# define CM_PLLD_HOLDDSI1               BIT(3)
 175# define CM_PLLD_LOADDSI1               BIT(2)
 176# define CM_PLLD_HOLDDSI0               BIT(1)
 177# define CM_PLLD_LOADDSI0               BIT(0)
 178
 179#define CM_PLLH                 0x110
 180# define CM_PLLH_LOADRCAL               BIT(2)
 181# define CM_PLLH_LOADAUX                BIT(1)
 182# define CM_PLLH_LOADPIX                BIT(0)
 183
 184#define CM_LOCK                 0x114
 185# define CM_LOCK_FLOCKH                 BIT(12)
 186# define CM_LOCK_FLOCKD                 BIT(11)
 187# define CM_LOCK_FLOCKC                 BIT(10)
 188# define CM_LOCK_FLOCKB                 BIT(9)
 189# define CM_LOCK_FLOCKA                 BIT(8)
 190
 191#define CM_EVENT                0x118
 192#define CM_DSI1ECTL             0x158
 193#define CM_DSI1EDIV             0x15c
 194#define CM_DSI1PCTL             0x160
 195#define CM_DSI1PDIV             0x164
 196#define CM_DFTCTL               0x168
 197#define CM_DFTDIV               0x16c
 198
 199#define CM_PLLB                 0x170
 200# define CM_PLLB_HOLDARM                BIT(1)
 201# define CM_PLLB_LOADARM                BIT(0)
 202
 203#define A2W_PLLA_CTRL           0x1100
 204#define A2W_PLLC_CTRL           0x1120
 205#define A2W_PLLD_CTRL           0x1140
 206#define A2W_PLLH_CTRL           0x1160
 207#define A2W_PLLB_CTRL           0x11e0
 208# define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
 209# define A2W_PLL_CTRL_PWRDN             BIT(16)
 210# define A2W_PLL_CTRL_PDIV_MASK         0x000007000
 211# define A2W_PLL_CTRL_PDIV_SHIFT        12
 212# define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
 213# define A2W_PLL_CTRL_NDIV_SHIFT        0
 214
 215#define A2W_PLLA_ANA0           0x1010
 216#define A2W_PLLC_ANA0           0x1030
 217#define A2W_PLLD_ANA0           0x1050
 218#define A2W_PLLH_ANA0           0x1070
 219#define A2W_PLLB_ANA0           0x10f0
 220
 221#define A2W_PLL_KA_SHIFT        7
 222#define A2W_PLL_KA_MASK         GENMASK(9, 7)
 223#define A2W_PLL_KI_SHIFT        19
 224#define A2W_PLL_KI_MASK         GENMASK(21, 19)
 225#define A2W_PLL_KP_SHIFT        15
 226#define A2W_PLL_KP_MASK         GENMASK(18, 15)
 227
 228#define A2W_PLLH_KA_SHIFT       19
 229#define A2W_PLLH_KA_MASK        GENMASK(21, 19)
 230#define A2W_PLLH_KI_LOW_SHIFT   22
 231#define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
 232#define A2W_PLLH_KI_HIGH_SHIFT  0
 233#define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
 234#define A2W_PLLH_KP_SHIFT       1
 235#define A2W_PLLH_KP_MASK        GENMASK(4, 1)
 236
 237#define A2W_XOSC_CTRL           0x1190
 238# define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
 239# define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
 240# define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
 241# define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
 242# define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
 243# define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
 244# define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
 245# define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
 246
 247#define A2W_PLLA_FRAC           0x1200
 248#define A2W_PLLC_FRAC           0x1220
 249#define A2W_PLLD_FRAC           0x1240
 250#define A2W_PLLH_FRAC           0x1260
 251#define A2W_PLLB_FRAC           0x12e0
 252# define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
 253# define A2W_PLL_FRAC_BITS              20
 254
 255#define A2W_PLL_CHANNEL_DISABLE         BIT(8)
 256#define A2W_PLL_DIV_BITS                8
 257#define A2W_PLL_DIV_SHIFT               0
 258
 259#define A2W_PLLA_DSI0           0x1300
 260#define A2W_PLLA_CORE           0x1400
 261#define A2W_PLLA_PER            0x1500
 262#define A2W_PLLA_CCP2           0x1600
 263
 264#define A2W_PLLC_CORE2          0x1320
 265#define A2W_PLLC_CORE1          0x1420
 266#define A2W_PLLC_PER            0x1520
 267#define A2W_PLLC_CORE0          0x1620
 268
 269#define A2W_PLLD_DSI0           0x1340
 270#define A2W_PLLD_CORE           0x1440
 271#define A2W_PLLD_PER            0x1540
 272#define A2W_PLLD_DSI1           0x1640
 273
 274#define A2W_PLLH_AUX            0x1360
 275#define A2W_PLLH_RCAL           0x1460
 276#define A2W_PLLH_PIX            0x1560
 277#define A2W_PLLH_STS            0x1660
 278
 279#define A2W_PLLH_CTRLR          0x1960
 280#define A2W_PLLH_FRACR          0x1a60
 281#define A2W_PLLH_AUXR           0x1b60
 282#define A2W_PLLH_RCALR          0x1c60
 283#define A2W_PLLH_PIXR           0x1d60
 284#define A2W_PLLH_STSR           0x1e60
 285
 286#define A2W_PLLB_ARM            0x13e0
 287#define A2W_PLLB_SP0            0x14e0
 288#define A2W_PLLB_SP1            0x15e0
 289#define A2W_PLLB_SP2            0x16e0
 290
 291#define LOCK_TIMEOUT_NS         100000000
 292#define BCM2835_MAX_FB_RATE     1750000000u
 293
 294#define SOC_BCM2835             BIT(0)
 295#define SOC_BCM2711             BIT(1)
 296#define SOC_ALL                 (SOC_BCM2835 | SOC_BCM2711)
 297
 298/*
 299 * Names of clocks used within the driver that need to be replaced
 300 * with an external parent's name.  This array is in the order that
 301 * the clocks node in the DT references external clocks.
 302 */
 303static const char *const cprman_parent_names[] = {
 304        "xosc",
 305        "dsi0_byte",
 306        "dsi0_ddr2",
 307        "dsi0_ddr",
 308        "dsi1_byte",
 309        "dsi1_ddr2",
 310        "dsi1_ddr",
 311};
 312
 313struct bcm2835_cprman {
 314        struct device *dev;
 315        void __iomem *regs;
 316        spinlock_t regs_lock; /* spinlock for all clocks */
 317        unsigned int soc;
 318
 319        /*
 320         * Real names of cprman clock parents looked up through
 321         * of_clk_get_parent_name(), which will be used in the
 322         * parent_names[] arrays for clock registration.
 323         */
 324        const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
 325
 326        /* Must be last */
 327        struct clk_hw_onecell_data onecell;
 328};
 329
 330struct cprman_plat_data {
 331        unsigned int soc;
 332};
 333
 334static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
 335{
 336        writel(CM_PASSWORD | val, cprman->regs + reg);
 337}
 338
 339static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
 340{
 341        return readl(cprman->regs + reg);
 342}
 343
 344/* Does a cycle of measuring a clock through the TCNT clock, which may
 345 * source from many other clocks in the system.
 346 */
 347static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
 348                                              u32 tcnt_mux)
 349{
 350        u32 osccount = 19200; /* 1ms */
 351        u32 count;
 352        ktime_t timeout;
 353
 354        spin_lock(&cprman->regs_lock);
 355
 356        cprman_write(cprman, CM_TCNTCTL, CM_KILL);
 357
 358        cprman_write(cprman, CM_TCNTCTL,
 359                     (tcnt_mux & CM_SRC_MASK) |
 360                     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
 361
 362        cprman_write(cprman, CM_OSCCOUNT, osccount);
 363
 364        /* do a kind delay at the start */
 365        mdelay(1);
 366
 367        /* Finish off whatever is left of OSCCOUNT */
 368        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 369        while (cprman_read(cprman, CM_OSCCOUNT)) {
 370                if (ktime_after(ktime_get(), timeout)) {
 371                        dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
 372                        count = 0;
 373                        goto out;
 374                }
 375                cpu_relax();
 376        }
 377
 378        /* Wait for BUSY to clear. */
 379        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 380        while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
 381                if (ktime_after(ktime_get(), timeout)) {
 382                        dev_err(cprman->dev, "timeout waiting for !BUSY\n");
 383                        count = 0;
 384                        goto out;
 385                }
 386                cpu_relax();
 387        }
 388
 389        count = cprman_read(cprman, CM_TCNTCNT);
 390
 391        cprman_write(cprman, CM_TCNTCTL, 0);
 392
 393out:
 394        spin_unlock(&cprman->regs_lock);
 395
 396        return count * 1000;
 397}
 398
 399static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
 400                                   const struct debugfs_reg32 *regs,
 401                                   size_t nregs, struct dentry *dentry)
 402{
 403        struct debugfs_regset32 *regset;
 404
 405        regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
 406        if (!regset)
 407                return;
 408
 409        regset->regs = regs;
 410        regset->nregs = nregs;
 411        regset->base = cprman->regs + base;
 412
 413        debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
 414}
 415
 416struct bcm2835_pll_data {
 417        const char *name;
 418        u32 cm_ctrl_reg;
 419        u32 a2w_ctrl_reg;
 420        u32 frac_reg;
 421        u32 ana_reg_base;
 422        u32 reference_enable_mask;
 423        /* Bit in CM_LOCK to indicate when the PLL has locked. */
 424        u32 lock_mask;
 425        u32 flags;
 426
 427        const struct bcm2835_pll_ana_bits *ana;
 428
 429        unsigned long min_rate;
 430        unsigned long max_rate;
 431        /*
 432         * Highest rate for the VCO before we have to use the
 433         * pre-divide-by-2.
 434         */
 435        unsigned long max_fb_rate;
 436};
 437
 438struct bcm2835_pll_ana_bits {
 439        u32 mask0;
 440        u32 set0;
 441        u32 mask1;
 442        u32 set1;
 443        u32 mask3;
 444        u32 set3;
 445        u32 fb_prediv_mask;
 446};
 447
 448static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
 449        .mask0 = 0,
 450        .set0 = 0,
 451        .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
 452        .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
 453        .mask3 = A2W_PLL_KA_MASK,
 454        .set3 = (2 << A2W_PLL_KA_SHIFT),
 455        .fb_prediv_mask = BIT(14),
 456};
 457
 458static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
 459        .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
 460        .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
 461        .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
 462        .set1 = (6 << A2W_PLLH_KP_SHIFT),
 463        .mask3 = 0,
 464        .set3 = 0,
 465        .fb_prediv_mask = BIT(11),
 466};
 467
 468struct bcm2835_pll_divider_data {
 469        const char *name;
 470        const char *source_pll;
 471
 472        u32 cm_reg;
 473        u32 a2w_reg;
 474
 475        u32 load_mask;
 476        u32 hold_mask;
 477        u32 fixed_divider;
 478        u32 flags;
 479};
 480
 481struct bcm2835_clock_data {
 482        const char *name;
 483
 484        const char *const *parents;
 485        int num_mux_parents;
 486
 487        /* Bitmap encoding which parents accept rate change propagation. */
 488        unsigned int set_rate_parent;
 489
 490        u32 ctl_reg;
 491        u32 div_reg;
 492
 493        /* Number of integer bits in the divider */
 494        u32 int_bits;
 495        /* Number of fractional bits in the divider */
 496        u32 frac_bits;
 497
 498        u32 flags;
 499
 500        bool is_vpu_clock;
 501        bool is_mash_clock;
 502        bool low_jitter;
 503
 504        u32 tcnt_mux;
 505};
 506
 507struct bcm2835_gate_data {
 508        const char *name;
 509        const char *parent;
 510
 511        u32 ctl_reg;
 512};
 513
 514struct bcm2835_pll {
 515        struct clk_hw hw;
 516        struct bcm2835_cprman *cprman;
 517        const struct bcm2835_pll_data *data;
 518};
 519
 520static int bcm2835_pll_is_on(struct clk_hw *hw)
 521{
 522        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 523        struct bcm2835_cprman *cprman = pll->cprman;
 524        const struct bcm2835_pll_data *data = pll->data;
 525
 526        return cprman_read(cprman, data->a2w_ctrl_reg) &
 527                A2W_PLL_CTRL_PRST_DISABLE;
 528}
 529
 530static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
 531                                       const struct bcm2835_pll_data *data)
 532{
 533        /*
 534         * On BCM2711 there isn't a pre-divisor available in the PLL feedback
 535         * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
 536         * for to for VCO RANGE bits.
 537         */
 538        if (cprman->soc & SOC_BCM2711)
 539                return 0;
 540
 541        return data->ana->fb_prediv_mask;
 542}
 543
 544static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
 545                                             unsigned long parent_rate,
 546                                             u32 *ndiv, u32 *fdiv)
 547{
 548        u64 div;
 549
 550        div = (u64)rate << A2W_PLL_FRAC_BITS;
 551        do_div(div, parent_rate);
 552
 553        *ndiv = div >> A2W_PLL_FRAC_BITS;
 554        *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
 555}
 556
 557static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
 558                                           u32 ndiv, u32 fdiv, u32 pdiv)
 559{
 560        u64 rate;
 561
 562        if (pdiv == 0)
 563                return 0;
 564
 565        rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
 566        do_div(rate, pdiv);
 567        return rate >> A2W_PLL_FRAC_BITS;
 568}
 569
 570static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 571                                   unsigned long *parent_rate)
 572{
 573        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 574        const struct bcm2835_pll_data *data = pll->data;
 575        u32 ndiv, fdiv;
 576
 577        rate = clamp(rate, data->min_rate, data->max_rate);
 578
 579        bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
 580
 581        return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
 582}
 583
 584static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
 585                                          unsigned long parent_rate)
 586{
 587        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 588        struct bcm2835_cprman *cprman = pll->cprman;
 589        const struct bcm2835_pll_data *data = pll->data;
 590        u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
 591        u32 ndiv, pdiv, fdiv;
 592        bool using_prediv;
 593
 594        if (parent_rate == 0)
 595                return 0;
 596
 597        fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
 598        ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
 599        pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
 600        using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
 601                       bcm2835_pll_get_prediv_mask(cprman, data);
 602
 603        if (using_prediv) {
 604                ndiv *= 2;
 605                fdiv *= 2;
 606        }
 607
 608        return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
 609}
 610
 611static void bcm2835_pll_off(struct clk_hw *hw)
 612{
 613        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 614        struct bcm2835_cprman *cprman = pll->cprman;
 615        const struct bcm2835_pll_data *data = pll->data;
 616
 617        spin_lock(&cprman->regs_lock);
 618        cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
 619        cprman_write(cprman, data->a2w_ctrl_reg,
 620                     cprman_read(cprman, data->a2w_ctrl_reg) |
 621                     A2W_PLL_CTRL_PWRDN);
 622        spin_unlock(&cprman->regs_lock);
 623}
 624
 625static int bcm2835_pll_on(struct clk_hw *hw)
 626{
 627        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 628        struct bcm2835_cprman *cprman = pll->cprman;
 629        const struct bcm2835_pll_data *data = pll->data;
 630        ktime_t timeout;
 631
 632        cprman_write(cprman, data->a2w_ctrl_reg,
 633                     cprman_read(cprman, data->a2w_ctrl_reg) &
 634                     ~A2W_PLL_CTRL_PWRDN);
 635
 636        /* Take the PLL out of reset. */
 637        spin_lock(&cprman->regs_lock);
 638        cprman_write(cprman, data->cm_ctrl_reg,
 639                     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
 640        spin_unlock(&cprman->regs_lock);
 641
 642        /* Wait for the PLL to lock. */
 643        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 644        while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
 645                if (ktime_after(ktime_get(), timeout)) {
 646                        dev_err(cprman->dev, "%s: couldn't lock PLL\n",
 647                                clk_hw_get_name(hw));
 648                        return -ETIMEDOUT;
 649                }
 650
 651                cpu_relax();
 652        }
 653
 654        cprman_write(cprman, data->a2w_ctrl_reg,
 655                     cprman_read(cprman, data->a2w_ctrl_reg) |
 656                     A2W_PLL_CTRL_PRST_DISABLE);
 657
 658        return 0;
 659}
 660
 661static void
 662bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
 663{
 664        int i;
 665
 666        /*
 667         * ANA register setup is done as a series of writes to
 668         * ANA3-ANA0, in that order.  This lets us write all 4
 669         * registers as a single cycle of the serdes interface (taking
 670         * 100 xosc clocks), whereas if we were to update ana0, 1, and
 671         * 3 individually through their partial-write registers, each
 672         * would be their own serdes cycle.
 673         */
 674        for (i = 3; i >= 0; i--)
 675                cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
 676}
 677
 678static int bcm2835_pll_set_rate(struct clk_hw *hw,
 679                                unsigned long rate, unsigned long parent_rate)
 680{
 681        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 682        struct bcm2835_cprman *cprman = pll->cprman;
 683        const struct bcm2835_pll_data *data = pll->data;
 684        u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
 685        bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
 686        u32 ndiv, fdiv, a2w_ctl;
 687        u32 ana[4];
 688        int i;
 689
 690        if (rate > data->max_fb_rate) {
 691                use_fb_prediv = true;
 692                rate /= 2;
 693        } else {
 694                use_fb_prediv = false;
 695        }
 696
 697        bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
 698
 699        for (i = 3; i >= 0; i--)
 700                ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
 701
 702        was_using_prediv = ana[1] & prediv_mask;
 703
 704        ana[0] &= ~data->ana->mask0;
 705        ana[0] |= data->ana->set0;
 706        ana[1] &= ~data->ana->mask1;
 707        ana[1] |= data->ana->set1;
 708        ana[3] &= ~data->ana->mask3;
 709        ana[3] |= data->ana->set3;
 710
 711        if (was_using_prediv && !use_fb_prediv) {
 712                ana[1] &= ~prediv_mask;
 713                do_ana_setup_first = true;
 714        } else if (!was_using_prediv && use_fb_prediv) {
 715                ana[1] |= prediv_mask;
 716                do_ana_setup_first = false;
 717        } else {
 718                do_ana_setup_first = true;
 719        }
 720
 721        /* Unmask the reference clock from the oscillator. */
 722        spin_lock(&cprman->regs_lock);
 723        cprman_write(cprman, A2W_XOSC_CTRL,
 724                     cprman_read(cprman, A2W_XOSC_CTRL) |
 725                     data->reference_enable_mask);
 726        spin_unlock(&cprman->regs_lock);
 727
 728        if (do_ana_setup_first)
 729                bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 730
 731        /* Set the PLL multiplier from the oscillator. */
 732        cprman_write(cprman, data->frac_reg, fdiv);
 733
 734        a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
 735        a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
 736        a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
 737        a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
 738        a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
 739        cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
 740
 741        if (!do_ana_setup_first)
 742                bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 743
 744        return 0;
 745}
 746
 747static void bcm2835_pll_debug_init(struct clk_hw *hw,
 748                                  struct dentry *dentry)
 749{
 750        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 751        struct bcm2835_cprman *cprman = pll->cprman;
 752        const struct bcm2835_pll_data *data = pll->data;
 753        struct debugfs_reg32 *regs;
 754
 755        regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 756        if (!regs)
 757                return;
 758
 759        regs[0].name = "cm_ctrl";
 760        regs[0].offset = data->cm_ctrl_reg;
 761        regs[1].name = "a2w_ctrl";
 762        regs[1].offset = data->a2w_ctrl_reg;
 763        regs[2].name = "frac";
 764        regs[2].offset = data->frac_reg;
 765        regs[3].name = "ana0";
 766        regs[3].offset = data->ana_reg_base + 0 * 4;
 767        regs[4].name = "ana1";
 768        regs[4].offset = data->ana_reg_base + 1 * 4;
 769        regs[5].name = "ana2";
 770        regs[5].offset = data->ana_reg_base + 2 * 4;
 771        regs[6].name = "ana3";
 772        regs[6].offset = data->ana_reg_base + 3 * 4;
 773
 774        bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
 775}
 776
 777static const struct clk_ops bcm2835_pll_clk_ops = {
 778        .is_prepared = bcm2835_pll_is_on,
 779        .prepare = bcm2835_pll_on,
 780        .unprepare = bcm2835_pll_off,
 781        .recalc_rate = bcm2835_pll_get_rate,
 782        .set_rate = bcm2835_pll_set_rate,
 783        .round_rate = bcm2835_pll_round_rate,
 784        .debug_init = bcm2835_pll_debug_init,
 785};
 786
 787struct bcm2835_pll_divider {
 788        struct clk_divider div;
 789        struct bcm2835_cprman *cprman;
 790        const struct bcm2835_pll_divider_data *data;
 791};
 792
 793static struct bcm2835_pll_divider *
 794bcm2835_pll_divider_from_hw(struct clk_hw *hw)
 795{
 796        return container_of(hw, struct bcm2835_pll_divider, div.hw);
 797}
 798
 799static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
 800{
 801        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 802        struct bcm2835_cprman *cprman = divider->cprman;
 803        const struct bcm2835_pll_divider_data *data = divider->data;
 804
 805        return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
 806}
 807
 808static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
 809                                           unsigned long rate,
 810                                           unsigned long *parent_rate)
 811{
 812        return clk_divider_ops.round_rate(hw, rate, parent_rate);
 813}
 814
 815static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
 816                                                  unsigned long parent_rate)
 817{
 818        return clk_divider_ops.recalc_rate(hw, parent_rate);
 819}
 820
 821static void bcm2835_pll_divider_off(struct clk_hw *hw)
 822{
 823        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 824        struct bcm2835_cprman *cprman = divider->cprman;
 825        const struct bcm2835_pll_divider_data *data = divider->data;
 826
 827        spin_lock(&cprman->regs_lock);
 828        cprman_write(cprman, data->cm_reg,
 829                     (cprman_read(cprman, data->cm_reg) &
 830                      ~data->load_mask) | data->hold_mask);
 831        cprman_write(cprman, data->a2w_reg,
 832                     cprman_read(cprman, data->a2w_reg) |
 833                     A2W_PLL_CHANNEL_DISABLE);
 834        spin_unlock(&cprman->regs_lock);
 835}
 836
 837static int bcm2835_pll_divider_on(struct clk_hw *hw)
 838{
 839        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 840        struct bcm2835_cprman *cprman = divider->cprman;
 841        const struct bcm2835_pll_divider_data *data = divider->data;
 842
 843        spin_lock(&cprman->regs_lock);
 844        cprman_write(cprman, data->a2w_reg,
 845                     cprman_read(cprman, data->a2w_reg) &
 846                     ~A2W_PLL_CHANNEL_DISABLE);
 847
 848        cprman_write(cprman, data->cm_reg,
 849                     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
 850        spin_unlock(&cprman->regs_lock);
 851
 852        return 0;
 853}
 854
 855static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
 856                                        unsigned long rate,
 857                                        unsigned long parent_rate)
 858{
 859        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 860        struct bcm2835_cprman *cprman = divider->cprman;
 861        const struct bcm2835_pll_divider_data *data = divider->data;
 862        u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
 863
 864        div = DIV_ROUND_UP_ULL(parent_rate, rate);
 865
 866        div = min(div, max_div);
 867        if (div == max_div)
 868                div = 0;
 869
 870        cprman_write(cprman, data->a2w_reg, div);
 871        cm = cprman_read(cprman, data->cm_reg);
 872        cprman_write(cprman, data->cm_reg, cm | data->load_mask);
 873        cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
 874
 875        return 0;
 876}
 877
 878static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
 879                                           struct dentry *dentry)
 880{
 881        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 882        struct bcm2835_cprman *cprman = divider->cprman;
 883        const struct bcm2835_pll_divider_data *data = divider->data;
 884        struct debugfs_reg32 *regs;
 885
 886        regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 887        if (!regs)
 888                return;
 889
 890        regs[0].name = "cm";
 891        regs[0].offset = data->cm_reg;
 892        regs[1].name = "a2w";
 893        regs[1].offset = data->a2w_reg;
 894
 895        bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
 896}
 897
 898static const struct clk_ops bcm2835_pll_divider_clk_ops = {
 899        .is_prepared = bcm2835_pll_divider_is_on,
 900        .prepare = bcm2835_pll_divider_on,
 901        .unprepare = bcm2835_pll_divider_off,
 902        .recalc_rate = bcm2835_pll_divider_get_rate,
 903        .set_rate = bcm2835_pll_divider_set_rate,
 904        .round_rate = bcm2835_pll_divider_round_rate,
 905        .debug_init = bcm2835_pll_divider_debug_init,
 906};
 907
 908/*
 909 * The CM dividers do fixed-point division, so we can't use the
 910 * generic integer divider code like the PLL dividers do (and we can't
 911 * fake it by having some fixed shifts preceding it in the clock tree,
 912 * because we'd run out of bits in a 32-bit unsigned long).
 913 */
 914struct bcm2835_clock {
 915        struct clk_hw hw;
 916        struct bcm2835_cprman *cprman;
 917        const struct bcm2835_clock_data *data;
 918};
 919
 920static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
 921{
 922        return container_of(hw, struct bcm2835_clock, hw);
 923}
 924
 925static int bcm2835_clock_is_on(struct clk_hw *hw)
 926{
 927        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 928        struct bcm2835_cprman *cprman = clock->cprman;
 929        const struct bcm2835_clock_data *data = clock->data;
 930
 931        return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
 932}
 933
 934static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
 935                                    unsigned long rate,
 936                                    unsigned long parent_rate,
 937                                    bool round_up)
 938{
 939        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 940        const struct bcm2835_clock_data *data = clock->data;
 941        u32 unused_frac_mask =
 942                GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
 943        u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
 944        u64 rem;
 945        u32 div, mindiv, maxdiv;
 946
 947        rem = do_div(temp, rate);
 948        div = temp;
 949
 950        /* Round up and mask off the unused bits */
 951        if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
 952                div += unused_frac_mask + 1;
 953        div &= ~unused_frac_mask;
 954
 955        /* different clamping limits apply for a mash clock */
 956        if (data->is_mash_clock) {
 957                /* clamp to min divider of 2 */
 958                mindiv = 2 << CM_DIV_FRAC_BITS;
 959                /* clamp to the highest possible integer divider */
 960                maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
 961        } else {
 962                /* clamp to min divider of 1 */
 963                mindiv = 1 << CM_DIV_FRAC_BITS;
 964                /* clamp to the highest possible fractional divider */
 965                maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
 966                                 CM_DIV_FRAC_BITS - data->frac_bits);
 967        }
 968
 969        /* apply the clamping  limits */
 970        div = max_t(u32, div, mindiv);
 971        div = min_t(u32, div, maxdiv);
 972
 973        return div;
 974}
 975
 976static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
 977                                            unsigned long parent_rate,
 978                                            u32 div)
 979{
 980        const struct bcm2835_clock_data *data = clock->data;
 981        u64 temp;
 982
 983        if (data->int_bits == 0 && data->frac_bits == 0)
 984                return parent_rate;
 985
 986        /*
 987         * The divisor is a 12.12 fixed point field, but only some of
 988         * the bits are populated in any given clock.
 989         */
 990        div >>= CM_DIV_FRAC_BITS - data->frac_bits;
 991        div &= (1 << (data->int_bits + data->frac_bits)) - 1;
 992
 993        if (div == 0)
 994                return 0;
 995
 996        temp = (u64)parent_rate << data->frac_bits;
 997
 998        do_div(temp, div);
 999
1000        return temp;
1001}
1002
1003static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1004                                            unsigned long parent_rate)
1005{
1006        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1007        struct bcm2835_cprman *cprman = clock->cprman;
1008        const struct bcm2835_clock_data *data = clock->data;
1009        u32 div;
1010
1011        if (data->int_bits == 0 && data->frac_bits == 0)
1012                return parent_rate;
1013
1014        div = cprman_read(cprman, data->div_reg);
1015
1016        return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1017}
1018
1019static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1020{
1021        struct bcm2835_cprman *cprman = clock->cprman;
1022        const struct bcm2835_clock_data *data = clock->data;
1023        ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1024
1025        while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1026                if (ktime_after(ktime_get(), timeout)) {
1027                        dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1028                                clk_hw_get_name(&clock->hw));
1029                        return;
1030                }
1031                cpu_relax();
1032        }
1033}
1034
1035static void bcm2835_clock_off(struct clk_hw *hw)
1036{
1037        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1038        struct bcm2835_cprman *cprman = clock->cprman;
1039        const struct bcm2835_clock_data *data = clock->data;
1040
1041        spin_lock(&cprman->regs_lock);
1042        cprman_write(cprman, data->ctl_reg,
1043                     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1044        spin_unlock(&cprman->regs_lock);
1045
1046        /* BUSY will remain high until the divider completes its cycle. */
1047        bcm2835_clock_wait_busy(clock);
1048}
1049
1050static int bcm2835_clock_on(struct clk_hw *hw)
1051{
1052        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1053        struct bcm2835_cprman *cprman = clock->cprman;
1054        const struct bcm2835_clock_data *data = clock->data;
1055
1056        spin_lock(&cprman->regs_lock);
1057        cprman_write(cprman, data->ctl_reg,
1058                     cprman_read(cprman, data->ctl_reg) |
1059                     CM_ENABLE |
1060                     CM_GATE);
1061        spin_unlock(&cprman->regs_lock);
1062
1063        /* Debug code to measure the clock once it's turned on to see
1064         * if it's ticking at the rate we expect.
1065         */
1066        if (data->tcnt_mux && false) {
1067                dev_info(cprman->dev,
1068                         "clk %s: rate %ld, measure %ld\n",
1069                         data->name,
1070                         clk_hw_get_rate(hw),
1071                         bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1072        }
1073
1074        return 0;
1075}
1076
1077static int bcm2835_clock_set_rate(struct clk_hw *hw,
1078                                  unsigned long rate, unsigned long parent_rate)
1079{
1080        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1081        struct bcm2835_cprman *cprman = clock->cprman;
1082        const struct bcm2835_clock_data *data = clock->data;
1083        u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1084        u32 ctl;
1085
1086        spin_lock(&cprman->regs_lock);
1087
1088        /*
1089         * Setting up frac support
1090         *
1091         * In principle it is recommended to stop/start the clock first,
1092         * but as we set CLK_SET_RATE_GATE during registration of the
1093         * clock this requirement should be take care of by the
1094         * clk-framework.
1095         */
1096        ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1097        ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1098        cprman_write(cprman, data->ctl_reg, ctl);
1099
1100        cprman_write(cprman, data->div_reg, div);
1101
1102        spin_unlock(&cprman->regs_lock);
1103
1104        return 0;
1105}
1106
1107static bool
1108bcm2835_clk_is_pllc(struct clk_hw *hw)
1109{
1110        if (!hw)
1111                return false;
1112
1113        return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1114}
1115
1116static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1117                                                        int parent_idx,
1118                                                        unsigned long rate,
1119                                                        u32 *div,
1120                                                        unsigned long *prate,
1121                                                        unsigned long *avgrate)
1122{
1123        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1124        struct bcm2835_cprman *cprman = clock->cprman;
1125        const struct bcm2835_clock_data *data = clock->data;
1126        unsigned long best_rate = 0;
1127        u32 curdiv, mindiv, maxdiv;
1128        struct clk_hw *parent;
1129
1130        parent = clk_hw_get_parent_by_index(hw, parent_idx);
1131
1132        if (!(BIT(parent_idx) & data->set_rate_parent)) {
1133                *prate = clk_hw_get_rate(parent);
1134                *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1135
1136                *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1137
1138                if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1139                        unsigned long high, low;
1140                        u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1141
1142                        high = bcm2835_clock_rate_from_divisor(clock, *prate,
1143                                                               int_div);
1144                        int_div += CM_DIV_FRAC_MASK + 1;
1145                        low = bcm2835_clock_rate_from_divisor(clock, *prate,
1146                                                              int_div);
1147
1148                        /*
1149                         * Return a value which is the maximum deviation
1150                         * below the ideal rate, for use as a metric.
1151                         */
1152                        return *avgrate - max(*avgrate - low, high - *avgrate);
1153                }
1154                return *avgrate;
1155        }
1156
1157        if (data->frac_bits)
1158                dev_warn(cprman->dev,
1159                        "frac bits are not used when propagating rate change");
1160
1161        /* clamp to min divider of 2 if we're dealing with a mash clock */
1162        mindiv = data->is_mash_clock ? 2 : 1;
1163        maxdiv = BIT(data->int_bits) - 1;
1164
1165        /* TODO: Be smart, and only test a subset of the available divisors. */
1166        for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1167                unsigned long tmp_rate;
1168
1169                tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1170                tmp_rate /= curdiv;
1171                if (curdiv == mindiv ||
1172                    (tmp_rate > best_rate && tmp_rate <= rate))
1173                        best_rate = tmp_rate;
1174
1175                if (best_rate == rate)
1176                        break;
1177        }
1178
1179        *div = curdiv << CM_DIV_FRAC_BITS;
1180        *prate = curdiv * best_rate;
1181        *avgrate = best_rate;
1182
1183        return best_rate;
1184}
1185
1186static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1187                                        struct clk_rate_request *req)
1188{
1189        struct clk_hw *parent, *best_parent = NULL;
1190        bool current_parent_is_pllc;
1191        unsigned long rate, best_rate = 0;
1192        unsigned long prate, best_prate = 0;
1193        unsigned long avgrate, best_avgrate = 0;
1194        size_t i;
1195        u32 div;
1196
1197        current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1198
1199        /*
1200         * Select parent clock that results in the closest but lower rate
1201         */
1202        for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1203                parent = clk_hw_get_parent_by_index(hw, i);
1204                if (!parent)
1205                        continue;
1206
1207                /*
1208                 * Don't choose a PLLC-derived clock as our parent
1209                 * unless it had been manually set that way.  PLLC's
1210                 * frequency gets adjusted by the firmware due to
1211                 * over-temp or under-voltage conditions, without
1212                 * prior notification to our clock consumer.
1213                 */
1214                if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1215                        continue;
1216
1217                rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1218                                                          &div, &prate,
1219                                                          &avgrate);
1220                if (rate > best_rate && rate <= req->rate) {
1221                        best_parent = parent;
1222                        best_prate = prate;
1223                        best_rate = rate;
1224                        best_avgrate = avgrate;
1225                }
1226        }
1227
1228        if (!best_parent)
1229                return -EINVAL;
1230
1231        req->best_parent_hw = best_parent;
1232        req->best_parent_rate = best_prate;
1233
1234        req->rate = best_avgrate;
1235
1236        return 0;
1237}
1238
1239static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1240{
1241        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1242        struct bcm2835_cprman *cprman = clock->cprman;
1243        const struct bcm2835_clock_data *data = clock->data;
1244        u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1245
1246        cprman_write(cprman, data->ctl_reg, src);
1247        return 0;
1248}
1249
1250static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1251{
1252        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1253        struct bcm2835_cprman *cprman = clock->cprman;
1254        const struct bcm2835_clock_data *data = clock->data;
1255        u32 src = cprman_read(cprman, data->ctl_reg);
1256
1257        return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1258}
1259
1260static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1261        {
1262                .name = "ctl",
1263                .offset = 0,
1264        },
1265        {
1266                .name = "div",
1267                .offset = 4,
1268        },
1269};
1270
1271static void bcm2835_clock_debug_init(struct clk_hw *hw,
1272                                    struct dentry *dentry)
1273{
1274        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1275        struct bcm2835_cprman *cprman = clock->cprman;
1276        const struct bcm2835_clock_data *data = clock->data;
1277
1278        bcm2835_debugfs_regset(cprman, data->ctl_reg,
1279                bcm2835_debugfs_clock_reg32,
1280                ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1281                dentry);
1282}
1283
1284static const struct clk_ops bcm2835_clock_clk_ops = {
1285        .is_prepared = bcm2835_clock_is_on,
1286        .prepare = bcm2835_clock_on,
1287        .unprepare = bcm2835_clock_off,
1288        .recalc_rate = bcm2835_clock_get_rate,
1289        .set_rate = bcm2835_clock_set_rate,
1290        .determine_rate = bcm2835_clock_determine_rate,
1291        .set_parent = bcm2835_clock_set_parent,
1292        .get_parent = bcm2835_clock_get_parent,
1293        .debug_init = bcm2835_clock_debug_init,
1294};
1295
1296static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1297{
1298        return true;
1299}
1300
1301/*
1302 * The VPU clock can never be disabled (it doesn't have an ENABLE
1303 * bit), so it gets its own set of clock ops.
1304 */
1305static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1306        .is_prepared = bcm2835_vpu_clock_is_on,
1307        .recalc_rate = bcm2835_clock_get_rate,
1308        .set_rate = bcm2835_clock_set_rate,
1309        .determine_rate = bcm2835_clock_determine_rate,
1310        .set_parent = bcm2835_clock_set_parent,
1311        .get_parent = bcm2835_clock_get_parent,
1312        .debug_init = bcm2835_clock_debug_init,
1313};
1314
1315static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1316                                           const void *data)
1317{
1318        const struct bcm2835_pll_data *pll_data = data;
1319        struct bcm2835_pll *pll;
1320        struct clk_init_data init;
1321        int ret;
1322
1323        memset(&init, 0, sizeof(init));
1324
1325        /* All of the PLLs derive from the external oscillator. */
1326        init.parent_names = &cprman->real_parent_names[0];
1327        init.num_parents = 1;
1328        init.name = pll_data->name;
1329        init.ops = &bcm2835_pll_clk_ops;
1330        init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1331
1332        pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1333        if (!pll)
1334                return NULL;
1335
1336        pll->cprman = cprman;
1337        pll->data = pll_data;
1338        pll->hw.init = &init;
1339
1340        ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1341        if (ret) {
1342                kfree(pll);
1343                return NULL;
1344        }
1345        return &pll->hw;
1346}
1347
1348static struct clk_hw *
1349bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1350                             const void *data)
1351{
1352        const struct bcm2835_pll_divider_data *divider_data = data;
1353        struct bcm2835_pll_divider *divider;
1354        struct clk_init_data init;
1355        const char *divider_name;
1356        int ret;
1357
1358        if (divider_data->fixed_divider != 1) {
1359                divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1360                                              "%s_prediv", divider_data->name);
1361                if (!divider_name)
1362                        return NULL;
1363        } else {
1364                divider_name = divider_data->name;
1365        }
1366
1367        memset(&init, 0, sizeof(init));
1368
1369        init.parent_names = &divider_data->source_pll;
1370        init.num_parents = 1;
1371        init.name = divider_name;
1372        init.ops = &bcm2835_pll_divider_clk_ops;
1373        init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1374
1375        divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1376        if (!divider)
1377                return NULL;
1378
1379        divider->div.reg = cprman->regs + divider_data->a2w_reg;
1380        divider->div.shift = A2W_PLL_DIV_SHIFT;
1381        divider->div.width = A2W_PLL_DIV_BITS;
1382        divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1383        divider->div.lock = &cprman->regs_lock;
1384        divider->div.hw.init = &init;
1385        divider->div.table = NULL;
1386
1387        divider->cprman = cprman;
1388        divider->data = divider_data;
1389
1390        ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1391        if (ret)
1392                return ERR_PTR(ret);
1393
1394        /*
1395         * PLLH's channels have a fixed divide by 10 afterwards, which
1396         * is what our consumers are actually using.
1397         */
1398        if (divider_data->fixed_divider != 1) {
1399                return clk_hw_register_fixed_factor(cprman->dev,
1400                                                    divider_data->name,
1401                                                    divider_name,
1402                                                    CLK_SET_RATE_PARENT,
1403                                                    1,
1404                                                    divider_data->fixed_divider);
1405        }
1406
1407        return &divider->div.hw;
1408}
1409
1410static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1411                                             const void *data)
1412{
1413        const struct bcm2835_clock_data *clock_data = data;
1414        struct bcm2835_clock *clock;
1415        struct clk_init_data init;
1416        const char *parents[1 << CM_SRC_BITS];
1417        size_t i;
1418        int ret;
1419
1420        /*
1421         * Replace our strings referencing parent clocks with the
1422         * actual clock-output-name of the parent.
1423         */
1424        for (i = 0; i < clock_data->num_mux_parents; i++) {
1425                parents[i] = clock_data->parents[i];
1426
1427                ret = match_string(cprman_parent_names,
1428                                   ARRAY_SIZE(cprman_parent_names),
1429                                   parents[i]);
1430                if (ret >= 0)
1431                        parents[i] = cprman->real_parent_names[ret];
1432        }
1433
1434        memset(&init, 0, sizeof(init));
1435        init.parent_names = parents;
1436        init.num_parents = clock_data->num_mux_parents;
1437        init.name = clock_data->name;
1438        init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1439
1440        /*
1441         * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1442         * rate changes on at least of the parents.
1443         */
1444        if (clock_data->set_rate_parent)
1445                init.flags |= CLK_SET_RATE_PARENT;
1446
1447        if (clock_data->is_vpu_clock) {
1448                init.ops = &bcm2835_vpu_clock_clk_ops;
1449        } else {
1450                init.ops = &bcm2835_clock_clk_ops;
1451                init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1452
1453                /* If the clock wasn't actually enabled at boot, it's not
1454                 * critical.
1455                 */
1456                if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1457                        init.flags &= ~CLK_IS_CRITICAL;
1458        }
1459
1460        clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1461        if (!clock)
1462                return NULL;
1463
1464        clock->cprman = cprman;
1465        clock->data = clock_data;
1466        clock->hw.init = &init;
1467
1468        ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1469        if (ret)
1470                return ERR_PTR(ret);
1471        return &clock->hw;
1472}
1473
1474static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1475                                            const void *data)
1476{
1477        const struct bcm2835_gate_data *gate_data = data;
1478
1479        return clk_hw_register_gate(cprman->dev, gate_data->name,
1480                                    gate_data->parent,
1481                                    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1482                                    cprman->regs + gate_data->ctl_reg,
1483                                    CM_GATE_BIT, 0, &cprman->regs_lock);
1484}
1485
1486struct bcm2835_clk_desc {
1487        struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1488                                       const void *data);
1489        unsigned int supported;
1490        const void *data;
1491};
1492
1493/* assignment helper macros for different clock types */
1494#define _REGISTER(f, s, ...) { .clk_register = f, \
1495                               .supported = s,                          \
1496                               .data = __VA_ARGS__ }
1497#define REGISTER_PLL(s, ...)    _REGISTER(&bcm2835_register_pll,        \
1498                                          s,                            \
1499                                          &(struct bcm2835_pll_data)    \
1500                                          {__VA_ARGS__})
1501#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1502                                           s,                             \
1503                                           &(struct bcm2835_pll_divider_data) \
1504                                           {__VA_ARGS__})
1505#define REGISTER_CLK(s, ...)    _REGISTER(&bcm2835_register_clock,      \
1506                                          s,                            \
1507                                          &(struct bcm2835_clock_data)  \
1508                                          {__VA_ARGS__})
1509#define REGISTER_GATE(s, ...)   _REGISTER(&bcm2835_register_gate,       \
1510                                          s,                            \
1511                                          &(struct bcm2835_gate_data)   \
1512                                          {__VA_ARGS__})
1513
1514/* parent mux arrays plus helper macros */
1515
1516/* main oscillator parent mux */
1517static const char *const bcm2835_clock_osc_parents[] = {
1518        "gnd",
1519        "xosc",
1520        "testdebug0",
1521        "testdebug1"
1522};
1523
1524#define REGISTER_OSC_CLK(s, ...)        REGISTER_CLK(                   \
1525        s,                                                              \
1526        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1527        .parents = bcm2835_clock_osc_parents,                           \
1528        __VA_ARGS__)
1529
1530/* main peripherial parent mux */
1531static const char *const bcm2835_clock_per_parents[] = {
1532        "gnd",
1533        "xosc",
1534        "testdebug0",
1535        "testdebug1",
1536        "plla_per",
1537        "pllc_per",
1538        "plld_per",
1539        "pllh_aux",
1540};
1541
1542#define REGISTER_PER_CLK(s, ...)        REGISTER_CLK(                   \
1543        s,                                                              \
1544        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1545        .parents = bcm2835_clock_per_parents,                           \
1546        __VA_ARGS__)
1547
1548/*
1549 * Restrict clock sources for the PCM peripheral to the oscillator and
1550 * PLLD_PER because other source may have varying rates or be switched
1551 * off.
1552 *
1553 * Prevent other sources from being selected by replacing their names in
1554 * the list of potential parents with dummy entries (entry index is
1555 * significant).
1556 */
1557static const char *const bcm2835_pcm_per_parents[] = {
1558        "-",
1559        "xosc",
1560        "-",
1561        "-",
1562        "-",
1563        "-",
1564        "plld_per",
1565        "-",
1566};
1567
1568#define REGISTER_PCM_CLK(s, ...)        REGISTER_CLK(                   \
1569        s,                                                              \
1570        .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1571        .parents = bcm2835_pcm_per_parents,                             \
1572        __VA_ARGS__)
1573
1574/* main vpu parent mux */
1575static const char *const bcm2835_clock_vpu_parents[] = {
1576        "gnd",
1577        "xosc",
1578        "testdebug0",
1579        "testdebug1",
1580        "plla_core",
1581        "pllc_core0",
1582        "plld_core",
1583        "pllh_aux",
1584        "pllc_core1",
1585        "pllc_core2",
1586};
1587
1588#define REGISTER_VPU_CLK(s, ...)        REGISTER_CLK(                   \
1589        s,                                                              \
1590        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1591        .parents = bcm2835_clock_vpu_parents,                           \
1592        __VA_ARGS__)
1593
1594/*
1595 * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1596 * analog PHY.  The _inv variants are generated internally to cprman,
1597 * but we don't use them so they aren't hooked up.
1598 */
1599static const char *const bcm2835_clock_dsi0_parents[] = {
1600        "gnd",
1601        "xosc",
1602        "testdebug0",
1603        "testdebug1",
1604        "dsi0_ddr",
1605        "dsi0_ddr_inv",
1606        "dsi0_ddr2",
1607        "dsi0_ddr2_inv",
1608        "dsi0_byte",
1609        "dsi0_byte_inv",
1610};
1611
1612static const char *const bcm2835_clock_dsi1_parents[] = {
1613        "gnd",
1614        "xosc",
1615        "testdebug0",
1616        "testdebug1",
1617        "dsi1_ddr",
1618        "dsi1_ddr_inv",
1619        "dsi1_ddr2",
1620        "dsi1_ddr2_inv",
1621        "dsi1_byte",
1622        "dsi1_byte_inv",
1623};
1624
1625#define REGISTER_DSI0_CLK(s, ...)       REGISTER_CLK(                   \
1626        s,                                                              \
1627        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1628        .parents = bcm2835_clock_dsi0_parents,                          \
1629        __VA_ARGS__)
1630
1631#define REGISTER_DSI1_CLK(s, ...)       REGISTER_CLK(                   \
1632        s,                                                              \
1633        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1634        .parents = bcm2835_clock_dsi1_parents,                          \
1635        __VA_ARGS__)
1636
1637/*
1638 * the real definition of all the pll, pll_dividers and clocks
1639 * these make use of the above REGISTER_* macros
1640 */
1641static const struct bcm2835_clk_desc clk_desc_array[] = {
1642        /* the PLL + PLL dividers */
1643
1644        /*
1645         * PLLA is the auxiliary PLL, used to drive the CCP2
1646         * (Compact Camera Port 2) transmitter clock.
1647         *
1648         * It is in the PX LDO power domain, which is on when the
1649         * AUDIO domain is on.
1650         */
1651        [BCM2835_PLLA]          = REGISTER_PLL(
1652                SOC_ALL,
1653                .name = "plla",
1654                .cm_ctrl_reg = CM_PLLA,
1655                .a2w_ctrl_reg = A2W_PLLA_CTRL,
1656                .frac_reg = A2W_PLLA_FRAC,
1657                .ana_reg_base = A2W_PLLA_ANA0,
1658                .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1659                .lock_mask = CM_LOCK_FLOCKA,
1660
1661                .ana = &bcm2835_ana_default,
1662
1663                .min_rate = 600000000u,
1664                .max_rate = 2400000000u,
1665                .max_fb_rate = BCM2835_MAX_FB_RATE),
1666        [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1667                SOC_ALL,
1668                .name = "plla_core",
1669                .source_pll = "plla",
1670                .cm_reg = CM_PLLA,
1671                .a2w_reg = A2W_PLLA_CORE,
1672                .load_mask = CM_PLLA_LOADCORE,
1673                .hold_mask = CM_PLLA_HOLDCORE,
1674                .fixed_divider = 1,
1675                .flags = CLK_SET_RATE_PARENT),
1676        [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1677                SOC_ALL,
1678                .name = "plla_per",
1679                .source_pll = "plla",
1680                .cm_reg = CM_PLLA,
1681                .a2w_reg = A2W_PLLA_PER,
1682                .load_mask = CM_PLLA_LOADPER,
1683                .hold_mask = CM_PLLA_HOLDPER,
1684                .fixed_divider = 1,
1685                .flags = CLK_SET_RATE_PARENT),
1686        [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1687                SOC_ALL,
1688                .name = "plla_dsi0",
1689                .source_pll = "plla",
1690                .cm_reg = CM_PLLA,
1691                .a2w_reg = A2W_PLLA_DSI0,
1692                .load_mask = CM_PLLA_LOADDSI0,
1693                .hold_mask = CM_PLLA_HOLDDSI0,
1694                .fixed_divider = 1),
1695        [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1696                SOC_ALL,
1697                .name = "plla_ccp2",
1698                .source_pll = "plla",
1699                .cm_reg = CM_PLLA,
1700                .a2w_reg = A2W_PLLA_CCP2,
1701                .load_mask = CM_PLLA_LOADCCP2,
1702                .hold_mask = CM_PLLA_HOLDCCP2,
1703                .fixed_divider = 1,
1704                .flags = CLK_SET_RATE_PARENT),
1705
1706        /* PLLB is used for the ARM's clock. */
1707        [BCM2835_PLLB]          = REGISTER_PLL(
1708                SOC_ALL,
1709                .name = "pllb",
1710                .cm_ctrl_reg = CM_PLLB,
1711                .a2w_ctrl_reg = A2W_PLLB_CTRL,
1712                .frac_reg = A2W_PLLB_FRAC,
1713                .ana_reg_base = A2W_PLLB_ANA0,
1714                .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1715                .lock_mask = CM_LOCK_FLOCKB,
1716
1717                .ana = &bcm2835_ana_default,
1718
1719                .min_rate = 600000000u,
1720                .max_rate = 3000000000u,
1721                .max_fb_rate = BCM2835_MAX_FB_RATE,
1722                .flags = CLK_GET_RATE_NOCACHE),
1723        [BCM2835_PLLB_ARM]      = REGISTER_PLL_DIV(
1724                SOC_ALL,
1725                .name = "pllb_arm",
1726                .source_pll = "pllb",
1727                .cm_reg = CM_PLLB,
1728                .a2w_reg = A2W_PLLB_ARM,
1729                .load_mask = CM_PLLB_LOADARM,
1730                .hold_mask = CM_PLLB_HOLDARM,
1731                .fixed_divider = 1,
1732                .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1733
1734        /*
1735         * PLLC is the core PLL, used to drive the core VPU clock.
1736         *
1737         * It is in the PX LDO power domain, which is on when the
1738         * AUDIO domain is on.
1739         */
1740        [BCM2835_PLLC]          = REGISTER_PLL(
1741                SOC_ALL,
1742                .name = "pllc",
1743                .cm_ctrl_reg = CM_PLLC,
1744                .a2w_ctrl_reg = A2W_PLLC_CTRL,
1745                .frac_reg = A2W_PLLC_FRAC,
1746                .ana_reg_base = A2W_PLLC_ANA0,
1747                .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1748                .lock_mask = CM_LOCK_FLOCKC,
1749
1750                .ana = &bcm2835_ana_default,
1751
1752                .min_rate = 600000000u,
1753                .max_rate = 3000000000u,
1754                .max_fb_rate = BCM2835_MAX_FB_RATE),
1755        [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1756                SOC_ALL,
1757                .name = "pllc_core0",
1758                .source_pll = "pllc",
1759                .cm_reg = CM_PLLC,
1760                .a2w_reg = A2W_PLLC_CORE0,
1761                .load_mask = CM_PLLC_LOADCORE0,
1762                .hold_mask = CM_PLLC_HOLDCORE0,
1763                .fixed_divider = 1,
1764                .flags = CLK_SET_RATE_PARENT),
1765        [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1766                SOC_ALL,
1767                .name = "pllc_core1",
1768                .source_pll = "pllc",
1769                .cm_reg = CM_PLLC,
1770                .a2w_reg = A2W_PLLC_CORE1,
1771                .load_mask = CM_PLLC_LOADCORE1,
1772                .hold_mask = CM_PLLC_HOLDCORE1,
1773                .fixed_divider = 1,
1774                .flags = CLK_SET_RATE_PARENT),
1775        [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1776                SOC_ALL,
1777                .name = "pllc_core2",
1778                .source_pll = "pllc",
1779                .cm_reg = CM_PLLC,
1780                .a2w_reg = A2W_PLLC_CORE2,
1781                .load_mask = CM_PLLC_LOADCORE2,
1782                .hold_mask = CM_PLLC_HOLDCORE2,
1783                .fixed_divider = 1,
1784                .flags = CLK_SET_RATE_PARENT),
1785        [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1786                SOC_ALL,
1787                .name = "pllc_per",
1788                .source_pll = "pllc",
1789                .cm_reg = CM_PLLC,
1790                .a2w_reg = A2W_PLLC_PER,
1791                .load_mask = CM_PLLC_LOADPER,
1792                .hold_mask = CM_PLLC_HOLDPER,
1793                .fixed_divider = 1,
1794                .flags = CLK_SET_RATE_PARENT),
1795
1796        /*
1797         * PLLD is the display PLL, used to drive DSI display panels.
1798         *
1799         * It is in the PX LDO power domain, which is on when the
1800         * AUDIO domain is on.
1801         */
1802        [BCM2835_PLLD]          = REGISTER_PLL(
1803                SOC_ALL,
1804                .name = "plld",
1805                .cm_ctrl_reg = CM_PLLD,
1806                .a2w_ctrl_reg = A2W_PLLD_CTRL,
1807                .frac_reg = A2W_PLLD_FRAC,
1808                .ana_reg_base = A2W_PLLD_ANA0,
1809                .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1810                .lock_mask = CM_LOCK_FLOCKD,
1811
1812                .ana = &bcm2835_ana_default,
1813
1814                .min_rate = 600000000u,
1815                .max_rate = 2400000000u,
1816                .max_fb_rate = BCM2835_MAX_FB_RATE),
1817        [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1818                SOC_ALL,
1819                .name = "plld_core",
1820                .source_pll = "plld",
1821                .cm_reg = CM_PLLD,
1822                .a2w_reg = A2W_PLLD_CORE,
1823                .load_mask = CM_PLLD_LOADCORE,
1824                .hold_mask = CM_PLLD_HOLDCORE,
1825                .fixed_divider = 1,
1826                .flags = CLK_SET_RATE_PARENT),
1827        /*
1828         * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1829         * Otherwise this could cause firmware lookups. That's why we mark
1830         * it as critical.
1831         */
1832        [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1833                SOC_ALL,
1834                .name = "plld_per",
1835                .source_pll = "plld",
1836                .cm_reg = CM_PLLD,
1837                .a2w_reg = A2W_PLLD_PER,
1838                .load_mask = CM_PLLD_LOADPER,
1839                .hold_mask = CM_PLLD_HOLDPER,
1840                .fixed_divider = 1,
1841                .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1842        [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1843                SOC_ALL,
1844                .name = "plld_dsi0",
1845                .source_pll = "plld",
1846                .cm_reg = CM_PLLD,
1847                .a2w_reg = A2W_PLLD_DSI0,
1848                .load_mask = CM_PLLD_LOADDSI0,
1849                .hold_mask = CM_PLLD_HOLDDSI0,
1850                .fixed_divider = 1),
1851        [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1852                SOC_ALL,
1853                .name = "plld_dsi1",
1854                .source_pll = "plld",
1855                .cm_reg = CM_PLLD,
1856                .a2w_reg = A2W_PLLD_DSI1,
1857                .load_mask = CM_PLLD_LOADDSI1,
1858                .hold_mask = CM_PLLD_HOLDDSI1,
1859                .fixed_divider = 1),
1860
1861        /*
1862         * PLLH is used to supply the pixel clock or the AUX clock for the
1863         * TV encoder.
1864         *
1865         * It is in the HDMI power domain.
1866         */
1867        [BCM2835_PLLH]          = REGISTER_PLL(
1868                SOC_BCM2835,
1869                "pllh",
1870                .cm_ctrl_reg = CM_PLLH,
1871                .a2w_ctrl_reg = A2W_PLLH_CTRL,
1872                .frac_reg = A2W_PLLH_FRAC,
1873                .ana_reg_base = A2W_PLLH_ANA0,
1874                .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1875                .lock_mask = CM_LOCK_FLOCKH,
1876
1877                .ana = &bcm2835_ana_pllh,
1878
1879                .min_rate = 600000000u,
1880                .max_rate = 3000000000u,
1881                .max_fb_rate = BCM2835_MAX_FB_RATE),
1882        [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1883                SOC_BCM2835,
1884                .name = "pllh_rcal",
1885                .source_pll = "pllh",
1886                .cm_reg = CM_PLLH,
1887                .a2w_reg = A2W_PLLH_RCAL,
1888                .load_mask = CM_PLLH_LOADRCAL,
1889                .hold_mask = 0,
1890                .fixed_divider = 10,
1891                .flags = CLK_SET_RATE_PARENT),
1892        [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1893                SOC_BCM2835,
1894                .name = "pllh_aux",
1895                .source_pll = "pllh",
1896                .cm_reg = CM_PLLH,
1897                .a2w_reg = A2W_PLLH_AUX,
1898                .load_mask = CM_PLLH_LOADAUX,
1899                .hold_mask = 0,
1900                .fixed_divider = 1,
1901                .flags = CLK_SET_RATE_PARENT),
1902        [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1903                SOC_BCM2835,
1904                .name = "pllh_pix",
1905                .source_pll = "pllh",
1906                .cm_reg = CM_PLLH,
1907                .a2w_reg = A2W_PLLH_PIX,
1908                .load_mask = CM_PLLH_LOADPIX,
1909                .hold_mask = 0,
1910                .fixed_divider = 10,
1911                .flags = CLK_SET_RATE_PARENT),
1912
1913        /* the clocks */
1914
1915        /* clocks with oscillator parent mux */
1916
1917        /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1918        [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1919                SOC_ALL,
1920                .name = "otp",
1921                .ctl_reg = CM_OTPCTL,
1922                .div_reg = CM_OTPDIV,
1923                .int_bits = 4,
1924                .frac_bits = 0,
1925                .tcnt_mux = 6),
1926        /*
1927         * Used for a 1Mhz clock for the system clocksource, and also used
1928         * bythe watchdog timer and the camera pulse generator.
1929         */
1930        [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1931                SOC_ALL,
1932                .name = "timer",
1933                .ctl_reg = CM_TIMERCTL,
1934                .div_reg = CM_TIMERDIV,
1935                .int_bits = 6,
1936                .frac_bits = 12),
1937        /*
1938         * Clock for the temperature sensor.
1939         * Generally run at 2Mhz, max 5Mhz.
1940         */
1941        [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1942                SOC_ALL,
1943                .name = "tsens",
1944                .ctl_reg = CM_TSENSCTL,
1945                .div_reg = CM_TSENSDIV,
1946                .int_bits = 5,
1947                .frac_bits = 0),
1948        [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1949                SOC_ALL,
1950                .name = "tec",
1951                .ctl_reg = CM_TECCTL,
1952                .div_reg = CM_TECDIV,
1953                .int_bits = 6,
1954                .frac_bits = 0),
1955
1956        /* clocks with vpu parent mux */
1957        [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1958                SOC_ALL,
1959                .name = "h264",
1960                .ctl_reg = CM_H264CTL,
1961                .div_reg = CM_H264DIV,
1962                .int_bits = 4,
1963                .frac_bits = 8,
1964                .tcnt_mux = 1),
1965        [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1966                SOC_ALL,
1967                .name = "isp",
1968                .ctl_reg = CM_ISPCTL,
1969                .div_reg = CM_ISPDIV,
1970                .int_bits = 4,
1971                .frac_bits = 8,
1972                .tcnt_mux = 2),
1973
1974        /*
1975         * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1976         * in the SDRAM controller can't be used.
1977         */
1978        [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1979                SOC_ALL,
1980                .name = "sdram",
1981                .ctl_reg = CM_SDCCTL,
1982                .div_reg = CM_SDCDIV,
1983                .int_bits = 6,
1984                .frac_bits = 0,
1985                .tcnt_mux = 3),
1986        [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1987                SOC_ALL,
1988                .name = "v3d",
1989                .ctl_reg = CM_V3DCTL,
1990                .div_reg = CM_V3DDIV,
1991                .int_bits = 4,
1992                .frac_bits = 8,
1993                .tcnt_mux = 4),
1994        /*
1995         * VPU clock.  This doesn't have an enable bit, since it drives
1996         * the bus for everything else, and is special so it doesn't need
1997         * to be gated for rate changes.  It is also known as "clk_audio"
1998         * in various hardware documentation.
1999         */
2000        [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
2001                SOC_ALL,
2002                .name = "vpu",
2003                .ctl_reg = CM_VPUCTL,
2004                .div_reg = CM_VPUDIV,
2005                .int_bits = 12,
2006                .frac_bits = 8,
2007                .flags = CLK_IS_CRITICAL,
2008                .is_vpu_clock = true,
2009                .tcnt_mux = 5),
2010
2011        /* clocks with per parent mux */
2012        [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
2013                SOC_ALL,
2014                .name = "aveo",
2015                .ctl_reg = CM_AVEOCTL,
2016                .div_reg = CM_AVEODIV,
2017                .int_bits = 4,
2018                .frac_bits = 0,
2019                .tcnt_mux = 38),
2020        [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
2021                SOC_ALL,
2022                .name = "cam0",
2023                .ctl_reg = CM_CAM0CTL,
2024                .div_reg = CM_CAM0DIV,
2025                .int_bits = 4,
2026                .frac_bits = 8,
2027                .tcnt_mux = 14),
2028        [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
2029                SOC_ALL,
2030                .name = "cam1",
2031                .ctl_reg = CM_CAM1CTL,
2032                .div_reg = CM_CAM1DIV,
2033                .int_bits = 4,
2034                .frac_bits = 8,
2035                .tcnt_mux = 15),
2036        [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
2037                SOC_ALL,
2038                .name = "dft",
2039                .ctl_reg = CM_DFTCTL,
2040                .div_reg = CM_DFTDIV,
2041                .int_bits = 5,
2042                .frac_bits = 0),
2043        [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
2044                SOC_ALL,
2045                .name = "dpi",
2046                .ctl_reg = CM_DPICTL,
2047                .div_reg = CM_DPIDIV,
2048                .int_bits = 4,
2049                .frac_bits = 8,
2050                .tcnt_mux = 17),
2051
2052        /* Arasan EMMC clock */
2053        [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
2054                SOC_ALL,
2055                .name = "emmc",
2056                .ctl_reg = CM_EMMCCTL,
2057                .div_reg = CM_EMMCDIV,
2058                .int_bits = 4,
2059                .frac_bits = 8,
2060                .tcnt_mux = 39),
2061
2062        /* EMMC2 clock (only available for BCM2711) */
2063        [BCM2711_CLOCK_EMMC2]   = REGISTER_PER_CLK(
2064                SOC_BCM2711,
2065                .name = "emmc2",
2066                .ctl_reg = CM_EMMC2CTL,
2067                .div_reg = CM_EMMC2DIV,
2068                .int_bits = 4,
2069                .frac_bits = 8,
2070                .tcnt_mux = 42),
2071
2072        /* General purpose (GPIO) clocks */
2073        [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
2074                SOC_ALL,
2075                .name = "gp0",
2076                .ctl_reg = CM_GP0CTL,
2077                .div_reg = CM_GP0DIV,
2078                .int_bits = 12,
2079                .frac_bits = 12,
2080                .is_mash_clock = true,
2081                .tcnt_mux = 20),
2082        [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
2083                SOC_ALL,
2084                .name = "gp1",
2085                .ctl_reg = CM_GP1CTL,
2086                .div_reg = CM_GP1DIV,
2087                .int_bits = 12,
2088                .frac_bits = 12,
2089                .flags = CLK_IS_CRITICAL,
2090                .is_mash_clock = true,
2091                .tcnt_mux = 21),
2092        [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2093                SOC_ALL,
2094                .name = "gp2",
2095                .ctl_reg = CM_GP2CTL,
2096                .div_reg = CM_GP2DIV,
2097                .int_bits = 12,
2098                .frac_bits = 12,
2099                .flags = CLK_IS_CRITICAL),
2100
2101        /* HDMI state machine */
2102        [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2103                SOC_ALL,
2104                .name = "hsm",
2105                .ctl_reg = CM_HSMCTL,
2106                .div_reg = CM_HSMDIV,
2107                .int_bits = 4,
2108                .frac_bits = 8,
2109                .tcnt_mux = 22),
2110        [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2111                SOC_ALL,
2112                .name = "pcm",
2113                .ctl_reg = CM_PCMCTL,
2114                .div_reg = CM_PCMDIV,
2115                .int_bits = 12,
2116                .frac_bits = 12,
2117                .is_mash_clock = true,
2118                .low_jitter = true,
2119                .tcnt_mux = 23),
2120        [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2121                SOC_ALL,
2122                .name = "pwm",
2123                .ctl_reg = CM_PWMCTL,
2124                .div_reg = CM_PWMDIV,
2125                .int_bits = 12,
2126                .frac_bits = 12,
2127                .is_mash_clock = true,
2128                .tcnt_mux = 24),
2129        [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2130                SOC_ALL,
2131                .name = "slim",
2132                .ctl_reg = CM_SLIMCTL,
2133                .div_reg = CM_SLIMDIV,
2134                .int_bits = 12,
2135                .frac_bits = 12,
2136                .is_mash_clock = true,
2137                .tcnt_mux = 25),
2138        [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2139                SOC_ALL,
2140                .name = "smi",
2141                .ctl_reg = CM_SMICTL,
2142                .div_reg = CM_SMIDIV,
2143                .int_bits = 4,
2144                .frac_bits = 8,
2145                .tcnt_mux = 27),
2146        [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2147                SOC_ALL,
2148                .name = "uart",
2149                .ctl_reg = CM_UARTCTL,
2150                .div_reg = CM_UARTDIV,
2151                .int_bits = 10,
2152                .frac_bits = 12,
2153                .tcnt_mux = 28),
2154
2155        /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2156        [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2157                SOC_ALL,
2158                .name = "vec",
2159                .ctl_reg = CM_VECCTL,
2160                .div_reg = CM_VECDIV,
2161                .int_bits = 4,
2162                .frac_bits = 0,
2163                /*
2164                 * Allow rate change propagation only on PLLH_AUX which is
2165                 * assigned index 7 in the parent array.
2166                 */
2167                .set_rate_parent = BIT(7),
2168                .tcnt_mux = 29),
2169
2170        /* dsi clocks */
2171        [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2172                SOC_ALL,
2173                .name = "dsi0e",
2174                .ctl_reg = CM_DSI0ECTL,
2175                .div_reg = CM_DSI0EDIV,
2176                .int_bits = 4,
2177                .frac_bits = 8,
2178                .tcnt_mux = 18),
2179        [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2180                SOC_ALL,
2181                .name = "dsi1e",
2182                .ctl_reg = CM_DSI1ECTL,
2183                .div_reg = CM_DSI1EDIV,
2184                .int_bits = 4,
2185                .frac_bits = 8,
2186                .tcnt_mux = 19),
2187        [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2188                SOC_ALL,
2189                .name = "dsi0p",
2190                .ctl_reg = CM_DSI0PCTL,
2191                .div_reg = CM_DSI0PDIV,
2192                .int_bits = 0,
2193                .frac_bits = 0,
2194                .tcnt_mux = 12),
2195        [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2196                SOC_ALL,
2197                .name = "dsi1p",
2198                .ctl_reg = CM_DSI1PCTL,
2199                .div_reg = CM_DSI1PDIV,
2200                .int_bits = 0,
2201                .frac_bits = 0,
2202                .tcnt_mux = 13),
2203
2204        /* the gates */
2205
2206        /*
2207         * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2208         * you have the debug bit set in the power manager, which we
2209         * don't bother exposing) are individual gates off of the
2210         * non-stop vpu clock.
2211         */
2212        [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2213                SOC_ALL,
2214                .name = "peri_image",
2215                .parent = "vpu",
2216                .ctl_reg = CM_PERIICTL),
2217};
2218
2219/*
2220 * Permanently take a reference on the parent of the SDRAM clock.
2221 *
2222 * While the SDRAM is being driven by its dedicated PLL most of the
2223 * time, there is a little loop running in the firmware that
2224 * periodically switches the SDRAM to using our CM clock to do PVT
2225 * recalibration, with the assumption that the previously configured
2226 * SDRAM parent is still enabled and running.
2227 */
2228static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2229{
2230        struct clk *parent = clk_get_parent(sdc);
2231
2232        if (IS_ERR(parent))
2233                return PTR_ERR(parent);
2234
2235        return clk_prepare_enable(parent);
2236}
2237
2238static int bcm2835_clk_probe(struct platform_device *pdev)
2239{
2240        struct device *dev = &pdev->dev;
2241        struct clk_hw **hws;
2242        struct bcm2835_cprman *cprman;
2243        const struct bcm2835_clk_desc *desc;
2244        const size_t asize = ARRAY_SIZE(clk_desc_array);
2245        const struct cprman_plat_data *pdata;
2246        size_t i;
2247        int ret;
2248
2249        pdata = of_device_get_match_data(&pdev->dev);
2250        if (!pdata)
2251                return -ENODEV;
2252
2253        cprman = devm_kzalloc(dev,
2254                              struct_size(cprman, onecell.hws, asize),
2255                              GFP_KERNEL);
2256        if (!cprman)
2257                return -ENOMEM;
2258
2259        spin_lock_init(&cprman->regs_lock);
2260        cprman->dev = dev;
2261        cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2262        if (IS_ERR(cprman->regs))
2263                return PTR_ERR(cprman->regs);
2264
2265        memcpy(cprman->real_parent_names, cprman_parent_names,
2266               sizeof(cprman_parent_names));
2267        of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2268                           ARRAY_SIZE(cprman_parent_names));
2269
2270        /*
2271         * Make sure the external oscillator has been registered.
2272         *
2273         * The other (DSI) clocks are not present on older device
2274         * trees, which we still need to support for backwards
2275         * compatibility.
2276         */
2277        if (!cprman->real_parent_names[0])
2278                return -ENODEV;
2279
2280        platform_set_drvdata(pdev, cprman);
2281
2282        cprman->onecell.num = asize;
2283        cprman->soc = pdata->soc;
2284        hws = cprman->onecell.hws;
2285
2286        for (i = 0; i < asize; i++) {
2287                desc = &clk_desc_array[i];
2288                if (desc->clk_register && desc->data &&
2289                    (desc->supported & pdata->soc)) {
2290                        hws[i] = desc->clk_register(cprman, desc->data);
2291                }
2292        }
2293
2294        ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2295        if (ret)
2296                return ret;
2297
2298        return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2299                                      &cprman->onecell);
2300}
2301
2302static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2303        .soc = SOC_BCM2835,
2304};
2305
2306static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2307        .soc = SOC_BCM2711,
2308};
2309
2310static const struct of_device_id bcm2835_clk_of_match[] = {
2311        { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2312        { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2313        {}
2314};
2315MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2316
2317static struct platform_driver bcm2835_clk_driver = {
2318        .driver = {
2319                .name = "bcm2835-clk",
2320                .of_match_table = bcm2835_clk_of_match,
2321        },
2322        .probe          = bcm2835_clk_probe,
2323};
2324
2325builtin_platform_driver(bcm2835_clk_driver);
2326
2327MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2328MODULE_DESCRIPTION("BCM2835 clock driver");
2329MODULE_LICENSE("GPL");
2330