linux/drivers/clk/mvebu/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Marvell EBU SoC common clock handling
   4 *
   5 * Copyright (C) 2012 Marvell
   6 *
   7 * Gregory CLEMENT <gregory.clement@free-electrons.com>
   8 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
   9 * Andrew Lunn <andrew@lunn.ch>
  10 *
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/clk.h>
  16#include <linux/clk-provider.h>
  17#include <linux/io.h>
  18#include <linux/of.h>
  19#include <linux/of_address.h>
  20#include <linux/syscore_ops.h>
  21
  22#include "common.h"
  23
  24/*
  25 * Core Clocks
  26 */
  27
  28#define SSCG_CONF_MODE(reg)     (((reg) >> 16) & 0x3)
  29#define SSCG_SPREAD_DOWN        0x0
  30#define SSCG_SPREAD_UP          0x1
  31#define SSCG_SPREAD_CENTRAL     0x2
  32#define SSCG_CONF_LOW(reg)      (((reg) >> 8) & 0xFF)
  33#define SSCG_CONF_HIGH(reg)     ((reg) & 0xFF)
  34
  35static struct clk_onecell_data clk_data;
  36
  37/*
  38 * This function can be used by the Kirkwood, the Armada 370, the
  39 * Armada XP and the Armada 375 SoC. The name of the function was
  40 * chosen following the dt convention: using the first known SoC
  41 * compatible with it.
  42 */
  43u32 kirkwood_fix_sscg_deviation(u32 system_clk)
  44{
  45        struct device_node *sscg_np = NULL;
  46        void __iomem *sscg_map;
  47        u32 sscg_reg;
  48        s32 low_bound, high_bound;
  49        u64 freq_swing_half;
  50
  51        sscg_np = of_find_node_by_name(NULL, "sscg");
  52        if (sscg_np == NULL) {
  53                pr_err("cannot get SSCG register node\n");
  54                return system_clk;
  55        }
  56
  57        sscg_map = of_iomap(sscg_np, 0);
  58        if (sscg_map == NULL) {
  59                pr_err("cannot map SSCG register\n");
  60                goto out;
  61        }
  62
  63        sscg_reg = readl(sscg_map);
  64        high_bound = SSCG_CONF_HIGH(sscg_reg);
  65        low_bound = SSCG_CONF_LOW(sscg_reg);
  66
  67        if ((high_bound - low_bound) <= 0)
  68                goto out;
  69        /*
  70         * From Marvell engineer we got the following formula (when
  71         * this code was written, the datasheet was erroneous)
  72         * Spread percentage = 1/96 * (H - L) / H
  73         * H = SSCG_High_Boundary
  74         * L = SSCG_Low_Boundary
  75         *
  76         * As the deviation is half of spread then it lead to the
  77         * following formula in the code.
  78         *
  79         * To avoid an overflow and not lose any significant digit in
  80         * the same time we have to use a 64 bit integer.
  81         */
  82
  83        freq_swing_half = (((u64)high_bound - (u64)low_bound)
  84                        * (u64)system_clk);
  85        do_div(freq_swing_half, (2 * 96 * high_bound));
  86
  87        switch (SSCG_CONF_MODE(sscg_reg)) {
  88        case SSCG_SPREAD_DOWN:
  89                system_clk -= freq_swing_half;
  90                break;
  91        case SSCG_SPREAD_UP:
  92                system_clk += freq_swing_half;
  93                break;
  94        case SSCG_SPREAD_CENTRAL:
  95        default:
  96                break;
  97        }
  98
  99        iounmap(sscg_map);
 100
 101out:
 102        of_node_put(sscg_np);
 103
 104        return system_clk;
 105}
 106
 107void __init mvebu_coreclk_setup(struct device_node *np,
 108                                const struct coreclk_soc_desc *desc)
 109{
 110        const char *tclk_name = "tclk";
 111        const char *cpuclk_name = "cpuclk";
 112        void __iomem *base;
 113        unsigned long rate;
 114        int n;
 115
 116        base = of_iomap(np, 0);
 117        if (WARN_ON(!base))
 118                return;
 119
 120        /* Allocate struct for TCLK, cpu clk, and core ratio clocks */
 121        clk_data.clk_num = 2 + desc->num_ratios;
 122
 123        /* One more clock for the optional refclk */
 124        if (desc->get_refclk_freq)
 125                clk_data.clk_num += 1;
 126
 127        clk_data.clks = kcalloc(clk_data.clk_num, sizeof(*clk_data.clks),
 128                                GFP_KERNEL);
 129        if (WARN_ON(!clk_data.clks)) {
 130                iounmap(base);
 131                return;
 132        }
 133
 134        /* Register TCLK */
 135        of_property_read_string_index(np, "clock-output-names", 0,
 136                                      &tclk_name);
 137        rate = desc->get_tclk_freq(base);
 138        clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL, 0,
 139                                                   rate);
 140        WARN_ON(IS_ERR(clk_data.clks[0]));
 141
 142        /* Register CPU clock */
 143        of_property_read_string_index(np, "clock-output-names", 1,
 144                                      &cpuclk_name);
 145        rate = desc->get_cpu_freq(base);
 146
 147        if (desc->is_sscg_enabled && desc->fix_sscg_deviation
 148                && desc->is_sscg_enabled(base))
 149                rate = desc->fix_sscg_deviation(rate);
 150
 151        clk_data.clks[1] = clk_register_fixed_rate(NULL, cpuclk_name, NULL, 0,
 152                                                   rate);
 153        WARN_ON(IS_ERR(clk_data.clks[1]));
 154
 155        /* Register fixed-factor clocks derived from CPU clock */
 156        for (n = 0; n < desc->num_ratios; n++) {
 157                const char *rclk_name = desc->ratios[n].name;
 158                int mult, div;
 159
 160                of_property_read_string_index(np, "clock-output-names",
 161                                              2+n, &rclk_name);
 162                desc->get_clk_ratio(base, desc->ratios[n].id, &mult, &div);
 163                clk_data.clks[2+n] = clk_register_fixed_factor(NULL, rclk_name,
 164                                       cpuclk_name, 0, mult, div);
 165                WARN_ON(IS_ERR(clk_data.clks[2+n]));
 166        }
 167
 168        /* Register optional refclk */
 169        if (desc->get_refclk_freq) {
 170                const char *name = "refclk";
 171                of_property_read_string_index(np, "clock-output-names",
 172                                              2 + desc->num_ratios, &name);
 173                rate = desc->get_refclk_freq(base);
 174                clk_data.clks[2 + desc->num_ratios] =
 175                        clk_register_fixed_rate(NULL, name, NULL, 0, rate);
 176                WARN_ON(IS_ERR(clk_data.clks[2 + desc->num_ratios]));
 177        }
 178
 179        /* SAR register isn't needed anymore */
 180        iounmap(base);
 181
 182        of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
 183}
 184
 185/*
 186 * Clock Gating Control
 187 */
 188
 189DEFINE_SPINLOCK(ctrl_gating_lock);
 190
 191struct clk_gating_ctrl {
 192        spinlock_t *lock;
 193        struct clk **gates;
 194        int num_gates;
 195        void __iomem *base;
 196        u32 saved_reg;
 197};
 198
 199static struct clk_gating_ctrl *ctrl;
 200
 201static struct clk *clk_gating_get_src(
 202        struct of_phandle_args *clkspec, void *data)
 203{
 204        int n;
 205
 206        if (clkspec->args_count < 1)
 207                return ERR_PTR(-EINVAL);
 208
 209        for (n = 0; n < ctrl->num_gates; n++) {
 210                struct clk_gate *gate =
 211                        to_clk_gate(__clk_get_hw(ctrl->gates[n]));
 212                if (clkspec->args[0] == gate->bit_idx)
 213                        return ctrl->gates[n];
 214        }
 215        return ERR_PTR(-ENODEV);
 216}
 217
 218static int mvebu_clk_gating_suspend(void)
 219{
 220        ctrl->saved_reg = readl(ctrl->base);
 221        return 0;
 222}
 223
 224static void mvebu_clk_gating_resume(void)
 225{
 226        writel(ctrl->saved_reg, ctrl->base);
 227}
 228
 229static struct syscore_ops clk_gate_syscore_ops = {
 230        .suspend = mvebu_clk_gating_suspend,
 231        .resume = mvebu_clk_gating_resume,
 232};
 233
 234void __init mvebu_clk_gating_setup(struct device_node *np,
 235                                   const struct clk_gating_soc_desc *desc)
 236{
 237        struct clk *clk;
 238        void __iomem *base;
 239        const char *default_parent = NULL;
 240        int n;
 241
 242        if (ctrl) {
 243                pr_err("mvebu-clk-gating: cannot instantiate more than one gateable clock device\n");
 244                return;
 245        }
 246
 247        base = of_iomap(np, 0);
 248        if (WARN_ON(!base))
 249                return;
 250
 251        clk = of_clk_get(np, 0);
 252        if (!IS_ERR(clk)) {
 253                default_parent = __clk_get_name(clk);
 254                clk_put(clk);
 255        }
 256
 257        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
 258        if (WARN_ON(!ctrl))
 259                goto ctrl_out;
 260
 261        /* lock must already be initialized */
 262        ctrl->lock = &ctrl_gating_lock;
 263
 264        ctrl->base = base;
 265
 266        /* Count, allocate, and register clock gates */
 267        for (n = 0; desc[n].name;)
 268                n++;
 269
 270        ctrl->num_gates = n;
 271        ctrl->gates = kcalloc(ctrl->num_gates, sizeof(*ctrl->gates),
 272                              GFP_KERNEL);
 273        if (WARN_ON(!ctrl->gates))
 274                goto gates_out;
 275
 276        for (n = 0; n < ctrl->num_gates; n++) {
 277                const char *parent =
 278                        (desc[n].parent) ? desc[n].parent : default_parent;
 279                ctrl->gates[n] = clk_register_gate(NULL, desc[n].name, parent,
 280                                        desc[n].flags, base, desc[n].bit_idx,
 281                                        0, ctrl->lock);
 282                WARN_ON(IS_ERR(ctrl->gates[n]));
 283        }
 284
 285        of_clk_add_provider(np, clk_gating_get_src, ctrl);
 286
 287        register_syscore_ops(&clk_gate_syscore_ops);
 288
 289        return;
 290gates_out:
 291        kfree(ctrl);
 292ctrl_out:
 293        iounmap(base);
 294}
 295