linux/drivers/dma/stm32-dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for STM32 DMA controller
   4 *
   5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
   6 *
   7 * Copyright (C) M'boumba Cedric Madianga 2015
   8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
   9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/delay.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/err.h>
  17#include <linux/init.h>
  18#include <linux/iopoll.h>
  19#include <linux/jiffies.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/of_dma.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/sched.h>
  29#include <linux/slab.h>
  30
  31#include "virt-dma.h"
  32
  33#define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
  34#define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
  35#define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
  36#define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
  37#define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
  38#define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
  39#define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
  40#define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
  41#define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
  42#define STM32_DMA_MASKI                 (STM32_DMA_TCI \
  43                                         | STM32_DMA_TEI \
  44                                         | STM32_DMA_DMEI \
  45                                         | STM32_DMA_FEI)
  46
  47/* DMA Stream x Configuration Register */
  48#define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
  49#define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
  50#define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
  51#define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
  52#define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
  53#define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
  54#define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
  55#define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
  56#define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
  57#define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
  58#define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
  59#define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
  60#define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
  61#define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
  62#define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
  63#define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
  64#define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
  65#define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
  66#define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
  67#define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
  68#define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
  69#define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
  70#define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
  71                                                */
  72#define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
  73#define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
  74#define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
  75#define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
  76                                        | STM32_DMA_SCR_MINC \
  77                                        | STM32_DMA_SCR_PINCOS \
  78                                        | STM32_DMA_SCR_PL_MASK)
  79#define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
  80                                        | STM32_DMA_SCR_TEIE \
  81                                        | STM32_DMA_SCR_DMEIE)
  82
  83/* DMA Stream x number of data register */
  84#define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
  85
  86/* DMA stream peripheral address register */
  87#define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
  88
  89/* DMA stream x memory 0 address register */
  90#define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
  91
  92/* DMA stream x memory 1 address register */
  93#define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
  94
  95/* DMA stream x FIFO control register */
  96#define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
  97#define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
  98#define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
  99#define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
 100#define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
 101#define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
 102                                        | STM32_DMA_SFCR_DMDIS)
 103
 104/* DMA direction */
 105#define STM32_DMA_DEV_TO_MEM            0x00
 106#define STM32_DMA_MEM_TO_DEV            0x01
 107#define STM32_DMA_MEM_TO_MEM            0x02
 108
 109/* DMA priority level */
 110#define STM32_DMA_PRIORITY_LOW          0x00
 111#define STM32_DMA_PRIORITY_MEDIUM       0x01
 112#define STM32_DMA_PRIORITY_HIGH         0x02
 113#define STM32_DMA_PRIORITY_VERY_HIGH    0x03
 114
 115/* DMA FIFO threshold selection */
 116#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
 117#define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
 118#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
 119#define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
 120#define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
 121
 122#define STM32_DMA_MAX_DATA_ITEMS        0xffff
 123/*
 124 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
 125 * gather at boundary. Thus it's safer to round down this value on FIFO
 126 * size (16 Bytes)
 127 */
 128#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
 129        ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
 130#define STM32_DMA_MAX_CHANNELS          0x08
 131#define STM32_DMA_MAX_REQUEST_ID        0x08
 132#define STM32_DMA_MAX_DATA_PARAM        0x03
 133#define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
 134#define STM32_DMA_MIN_BURST             4
 135#define STM32_DMA_MAX_BURST             16
 136
 137/* DMA Features */
 138#define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
 139#define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
 140#define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
 141#define STM32_DMA_DIRECT_MODE_GET(n)    (((n) & STM32_DMA_DIRECT_MODE_MASK) \
 142                                         >> 2)
 143
 144enum stm32_dma_width {
 145        STM32_DMA_BYTE,
 146        STM32_DMA_HALF_WORD,
 147        STM32_DMA_WORD,
 148};
 149
 150enum stm32_dma_burst_size {
 151        STM32_DMA_BURST_SINGLE,
 152        STM32_DMA_BURST_INCR4,
 153        STM32_DMA_BURST_INCR8,
 154        STM32_DMA_BURST_INCR16,
 155};
 156
 157/**
 158 * struct stm32_dma_cfg - STM32 DMA custom configuration
 159 * @channel_id: channel ID
 160 * @request_line: DMA request
 161 * @stream_config: 32bit mask specifying the DMA channel configuration
 162 * @features: 32bit mask specifying the DMA Feature list
 163 */
 164struct stm32_dma_cfg {
 165        u32 channel_id;
 166        u32 request_line;
 167        u32 stream_config;
 168        u32 features;
 169};
 170
 171struct stm32_dma_chan_reg {
 172        u32 dma_lisr;
 173        u32 dma_hisr;
 174        u32 dma_lifcr;
 175        u32 dma_hifcr;
 176        u32 dma_scr;
 177        u32 dma_sndtr;
 178        u32 dma_spar;
 179        u32 dma_sm0ar;
 180        u32 dma_sm1ar;
 181        u32 dma_sfcr;
 182};
 183
 184struct stm32_dma_sg_req {
 185        u32 len;
 186        struct stm32_dma_chan_reg chan_reg;
 187};
 188
 189struct stm32_dma_desc {
 190        struct virt_dma_desc vdesc;
 191        bool cyclic;
 192        u32 num_sgs;
 193        struct stm32_dma_sg_req sg_req[];
 194};
 195
 196struct stm32_dma_chan {
 197        struct virt_dma_chan vchan;
 198        bool config_init;
 199        bool busy;
 200        u32 id;
 201        u32 irq;
 202        struct stm32_dma_desc *desc;
 203        u32 next_sg;
 204        struct dma_slave_config dma_sconfig;
 205        struct stm32_dma_chan_reg chan_reg;
 206        u32 threshold;
 207        u32 mem_burst;
 208        u32 mem_width;
 209};
 210
 211struct stm32_dma_device {
 212        struct dma_device ddev;
 213        void __iomem *base;
 214        struct clk *clk;
 215        bool mem2mem;
 216        struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
 217};
 218
 219static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
 220{
 221        return container_of(chan->vchan.chan.device, struct stm32_dma_device,
 222                            ddev);
 223}
 224
 225static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
 226{
 227        return container_of(c, struct stm32_dma_chan, vchan.chan);
 228}
 229
 230static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
 231{
 232        return container_of(vdesc, struct stm32_dma_desc, vdesc);
 233}
 234
 235static struct device *chan2dev(struct stm32_dma_chan *chan)
 236{
 237        return &chan->vchan.chan.dev->device;
 238}
 239
 240static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
 241{
 242        return readl_relaxed(dmadev->base + reg);
 243}
 244
 245static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
 246{
 247        writel_relaxed(val, dmadev->base + reg);
 248}
 249
 250static int stm32_dma_get_width(struct stm32_dma_chan *chan,
 251                               enum dma_slave_buswidth width)
 252{
 253        switch (width) {
 254        case DMA_SLAVE_BUSWIDTH_1_BYTE:
 255                return STM32_DMA_BYTE;
 256        case DMA_SLAVE_BUSWIDTH_2_BYTES:
 257                return STM32_DMA_HALF_WORD;
 258        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 259                return STM32_DMA_WORD;
 260        default:
 261                dev_err(chan2dev(chan), "Dma bus width not supported\n");
 262                return -EINVAL;
 263        }
 264}
 265
 266static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
 267                                                       dma_addr_t buf_addr,
 268                                                       u32 threshold)
 269{
 270        enum dma_slave_buswidth max_width;
 271        u64 addr = buf_addr;
 272
 273        if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
 274                max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 275        else
 276                max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 277
 278        while ((buf_len < max_width  || buf_len % max_width) &&
 279               max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
 280                max_width = max_width >> 1;
 281
 282        if (do_div(addr, max_width))
 283                max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 284
 285        return max_width;
 286}
 287
 288static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
 289                                                enum dma_slave_buswidth width)
 290{
 291        u32 remaining;
 292
 293        if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 294                return false;
 295
 296        if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 297                if (burst != 0) {
 298                        /*
 299                         * If number of beats fit in several whole bursts
 300                         * this configuration is allowed.
 301                         */
 302                        remaining = ((STM32_DMA_FIFO_SIZE / width) *
 303                                     (threshold + 1) / 4) % burst;
 304
 305                        if (remaining == 0)
 306                                return true;
 307                } else {
 308                        return true;
 309                }
 310        }
 311
 312        return false;
 313}
 314
 315static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
 316{
 317        /* If FIFO direct mode, burst is not possible */
 318        if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
 319                return false;
 320
 321        /*
 322         * Buffer or period length has to be aligned on FIFO depth.
 323         * Otherwise bytes may be stuck within FIFO at buffer or period
 324         * length.
 325         */
 326        return ((buf_len % ((threshold + 1) * 4)) == 0);
 327}
 328
 329static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
 330                                    enum dma_slave_buswidth width)
 331{
 332        u32 best_burst = max_burst;
 333
 334        if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
 335                return 0;
 336
 337        while ((buf_len < best_burst * width && best_burst > 1) ||
 338               !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
 339                                                    width)) {
 340                if (best_burst > STM32_DMA_MIN_BURST)
 341                        best_burst = best_burst >> 1;
 342                else
 343                        best_burst = 0;
 344        }
 345
 346        return best_burst;
 347}
 348
 349static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
 350{
 351        switch (maxburst) {
 352        case 0:
 353        case 1:
 354                return STM32_DMA_BURST_SINGLE;
 355        case 4:
 356                return STM32_DMA_BURST_INCR4;
 357        case 8:
 358                return STM32_DMA_BURST_INCR8;
 359        case 16:
 360                return STM32_DMA_BURST_INCR16;
 361        default:
 362                dev_err(chan2dev(chan), "Dma burst size not supported\n");
 363                return -EINVAL;
 364        }
 365}
 366
 367static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
 368                                      u32 src_burst, u32 dst_burst)
 369{
 370        chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
 371        chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
 372
 373        if (!src_burst && !dst_burst) {
 374                /* Using direct mode */
 375                chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
 376        } else {
 377                /* Using FIFO mode */
 378                chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
 379        }
 380}
 381
 382static int stm32_dma_slave_config(struct dma_chan *c,
 383                                  struct dma_slave_config *config)
 384{
 385        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 386
 387        memcpy(&chan->dma_sconfig, config, sizeof(*config));
 388
 389        chan->config_init = true;
 390
 391        return 0;
 392}
 393
 394static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
 395{
 396        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 397        u32 flags, dma_isr;
 398
 399        /*
 400         * Read "flags" from DMA_xISR register corresponding to the selected
 401         * DMA channel at the correct bit offset inside that register.
 402         *
 403         * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 404         * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 405         */
 406
 407        if (chan->id & 4)
 408                dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
 409        else
 410                dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
 411
 412        flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 413
 414        return flags & STM32_DMA_MASKI;
 415}
 416
 417static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
 418{
 419        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 420        u32 dma_ifcr;
 421
 422        /*
 423         * Write "flags" to the DMA_xIFCR register corresponding to the selected
 424         * DMA channel at the correct bit offset inside that register.
 425         *
 426         * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
 427         * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
 428         */
 429        flags &= STM32_DMA_MASKI;
 430        dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
 431
 432        if (chan->id & 4)
 433                stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
 434        else
 435                stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
 436}
 437
 438static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
 439{
 440        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 441        u32 dma_scr, id, reg;
 442
 443        id = chan->id;
 444        reg = STM32_DMA_SCR(id);
 445        dma_scr = stm32_dma_read(dmadev, reg);
 446
 447        if (dma_scr & STM32_DMA_SCR_EN) {
 448                dma_scr &= ~STM32_DMA_SCR_EN;
 449                stm32_dma_write(dmadev, reg, dma_scr);
 450
 451                return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
 452                                        dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
 453                                        10, 1000000);
 454        }
 455
 456        return 0;
 457}
 458
 459static void stm32_dma_stop(struct stm32_dma_chan *chan)
 460{
 461        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 462        u32 dma_scr, dma_sfcr, status;
 463        int ret;
 464
 465        /* Disable interrupts */
 466        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 467        dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
 468        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
 469        dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 470        dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
 471        stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
 472
 473        /* Disable DMA */
 474        ret = stm32_dma_disable_chan(chan);
 475        if (ret < 0)
 476                return;
 477
 478        /* Clear interrupt status if it is there */
 479        status = stm32_dma_irq_status(chan);
 480        if (status) {
 481                dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
 482                        __func__, status);
 483                stm32_dma_irq_clear(chan, status);
 484        }
 485
 486        chan->busy = false;
 487}
 488
 489static int stm32_dma_terminate_all(struct dma_chan *c)
 490{
 491        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 492        unsigned long flags;
 493        LIST_HEAD(head);
 494
 495        spin_lock_irqsave(&chan->vchan.lock, flags);
 496
 497        if (chan->desc) {
 498                vchan_terminate_vdesc(&chan->desc->vdesc);
 499                if (chan->busy)
 500                        stm32_dma_stop(chan);
 501                chan->desc = NULL;
 502        }
 503
 504        vchan_get_all_descriptors(&chan->vchan, &head);
 505        spin_unlock_irqrestore(&chan->vchan.lock, flags);
 506        vchan_dma_desc_free_list(&chan->vchan, &head);
 507
 508        return 0;
 509}
 510
 511static void stm32_dma_synchronize(struct dma_chan *c)
 512{
 513        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 514
 515        vchan_synchronize(&chan->vchan);
 516}
 517
 518static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
 519{
 520        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 521        u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 522        u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
 523        u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
 524        u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
 525        u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
 526        u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 527
 528        dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
 529        dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
 530        dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
 531        dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
 532        dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
 533        dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
 534}
 535
 536static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
 537
 538static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
 539{
 540        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 541        struct virt_dma_desc *vdesc;
 542        struct stm32_dma_sg_req *sg_req;
 543        struct stm32_dma_chan_reg *reg;
 544        u32 status;
 545        int ret;
 546
 547        ret = stm32_dma_disable_chan(chan);
 548        if (ret < 0)
 549                return;
 550
 551        if (!chan->desc) {
 552                vdesc = vchan_next_desc(&chan->vchan);
 553                if (!vdesc)
 554                        return;
 555
 556                list_del(&vdesc->node);
 557
 558                chan->desc = to_stm32_dma_desc(vdesc);
 559                chan->next_sg = 0;
 560        }
 561
 562        if (chan->next_sg == chan->desc->num_sgs)
 563                chan->next_sg = 0;
 564
 565        sg_req = &chan->desc->sg_req[chan->next_sg];
 566        reg = &sg_req->chan_reg;
 567
 568        reg->dma_scr &= ~STM32_DMA_SCR_EN;
 569        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 570        stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
 571        stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
 572        stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
 573        stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
 574        stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
 575
 576        chan->next_sg++;
 577
 578        /* Clear interrupt status if it is there */
 579        status = stm32_dma_irq_status(chan);
 580        if (status)
 581                stm32_dma_irq_clear(chan, status);
 582
 583        if (chan->desc->cyclic)
 584                stm32_dma_configure_next_sg(chan);
 585
 586        stm32_dma_dump_reg(chan);
 587
 588        /* Start DMA */
 589        reg->dma_scr |= STM32_DMA_SCR_EN;
 590        stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
 591
 592        chan->busy = true;
 593
 594        dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
 595}
 596
 597static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
 598{
 599        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 600        struct stm32_dma_sg_req *sg_req;
 601        u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
 602
 603        id = chan->id;
 604        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
 605
 606        if (dma_scr & STM32_DMA_SCR_DBM) {
 607                if (chan->next_sg == chan->desc->num_sgs)
 608                        chan->next_sg = 0;
 609
 610                sg_req = &chan->desc->sg_req[chan->next_sg];
 611
 612                if (dma_scr & STM32_DMA_SCR_CT) {
 613                        dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
 614                        stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
 615                        dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
 616                                stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
 617                } else {
 618                        dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
 619                        stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
 620                        dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
 621                                stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
 622                }
 623        }
 624}
 625
 626static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
 627{
 628        if (chan->desc) {
 629                if (chan->desc->cyclic) {
 630                        vchan_cyclic_callback(&chan->desc->vdesc);
 631                        chan->next_sg++;
 632                        stm32_dma_configure_next_sg(chan);
 633                } else {
 634                        chan->busy = false;
 635                        if (chan->next_sg == chan->desc->num_sgs) {
 636                                vchan_cookie_complete(&chan->desc->vdesc);
 637                                chan->desc = NULL;
 638                        }
 639                        stm32_dma_start_transfer(chan);
 640                }
 641        }
 642}
 643
 644static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
 645{
 646        struct stm32_dma_chan *chan = devid;
 647        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
 648        u32 status, scr, sfcr;
 649
 650        spin_lock(&chan->vchan.lock);
 651
 652        status = stm32_dma_irq_status(chan);
 653        scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
 654        sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
 655
 656        if (status & STM32_DMA_FEI) {
 657                stm32_dma_irq_clear(chan, STM32_DMA_FEI);
 658                status &= ~STM32_DMA_FEI;
 659                if (sfcr & STM32_DMA_SFCR_FEIE) {
 660                        if (!(scr & STM32_DMA_SCR_EN) &&
 661                            !(status & STM32_DMA_TCI))
 662                                dev_err(chan2dev(chan), "FIFO Error\n");
 663                        else
 664                                dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
 665                }
 666        }
 667        if (status & STM32_DMA_DMEI) {
 668                stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
 669                status &= ~STM32_DMA_DMEI;
 670                if (sfcr & STM32_DMA_SCR_DMEIE)
 671                        dev_dbg(chan2dev(chan), "Direct mode overrun\n");
 672        }
 673
 674        if (status & STM32_DMA_TCI) {
 675                stm32_dma_irq_clear(chan, STM32_DMA_TCI);
 676                if (scr & STM32_DMA_SCR_TCIE)
 677                        stm32_dma_handle_chan_done(chan);
 678                status &= ~STM32_DMA_TCI;
 679        }
 680
 681        if (status & STM32_DMA_HTI) {
 682                stm32_dma_irq_clear(chan, STM32_DMA_HTI);
 683                status &= ~STM32_DMA_HTI;
 684        }
 685
 686        if (status) {
 687                stm32_dma_irq_clear(chan, status);
 688                dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
 689                if (!(scr & STM32_DMA_SCR_EN))
 690                        dev_err(chan2dev(chan), "chan disabled by HW\n");
 691        }
 692
 693        spin_unlock(&chan->vchan.lock);
 694
 695        return IRQ_HANDLED;
 696}
 697
 698static void stm32_dma_issue_pending(struct dma_chan *c)
 699{
 700        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 701        unsigned long flags;
 702
 703        spin_lock_irqsave(&chan->vchan.lock, flags);
 704        if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
 705                dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
 706                stm32_dma_start_transfer(chan);
 707
 708        }
 709        spin_unlock_irqrestore(&chan->vchan.lock, flags);
 710}
 711
 712static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
 713                                    enum dma_transfer_direction direction,
 714                                    enum dma_slave_buswidth *buswidth,
 715                                    u32 buf_len, dma_addr_t buf_addr)
 716{
 717        enum dma_slave_buswidth src_addr_width, dst_addr_width;
 718        int src_bus_width, dst_bus_width;
 719        int src_burst_size, dst_burst_size;
 720        u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
 721        u32 dma_scr, fifoth;
 722
 723        src_addr_width = chan->dma_sconfig.src_addr_width;
 724        dst_addr_width = chan->dma_sconfig.dst_addr_width;
 725        src_maxburst = chan->dma_sconfig.src_maxburst;
 726        dst_maxburst = chan->dma_sconfig.dst_maxburst;
 727        fifoth = chan->threshold;
 728
 729        switch (direction) {
 730        case DMA_MEM_TO_DEV:
 731                /* Set device data size */
 732                dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 733                if (dst_bus_width < 0)
 734                        return dst_bus_width;
 735
 736                /* Set device burst size */
 737                dst_best_burst = stm32_dma_get_best_burst(buf_len,
 738                                                          dst_maxburst,
 739                                                          fifoth,
 740                                                          dst_addr_width);
 741
 742                dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 743                if (dst_burst_size < 0)
 744                        return dst_burst_size;
 745
 746                /* Set memory data size */
 747                src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
 748                                                         fifoth);
 749                chan->mem_width = src_addr_width;
 750                src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 751                if (src_bus_width < 0)
 752                        return src_bus_width;
 753
 754                /* Set memory burst size */
 755                src_maxburst = STM32_DMA_MAX_BURST;
 756                src_best_burst = stm32_dma_get_best_burst(buf_len,
 757                                                          src_maxburst,
 758                                                          fifoth,
 759                                                          src_addr_width);
 760                src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 761                if (src_burst_size < 0)
 762                        return src_burst_size;
 763
 764                dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
 765                        STM32_DMA_SCR_PSIZE(dst_bus_width) |
 766                        STM32_DMA_SCR_MSIZE(src_bus_width) |
 767                        STM32_DMA_SCR_PBURST(dst_burst_size) |
 768                        STM32_DMA_SCR_MBURST(src_burst_size);
 769
 770                /* Set FIFO threshold */
 771                chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 772                if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 773                        chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
 774
 775                /* Set peripheral address */
 776                chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
 777                *buswidth = dst_addr_width;
 778                break;
 779
 780        case DMA_DEV_TO_MEM:
 781                /* Set device data size */
 782                src_bus_width = stm32_dma_get_width(chan, src_addr_width);
 783                if (src_bus_width < 0)
 784                        return src_bus_width;
 785
 786                /* Set device burst size */
 787                src_best_burst = stm32_dma_get_best_burst(buf_len,
 788                                                          src_maxburst,
 789                                                          fifoth,
 790                                                          src_addr_width);
 791                chan->mem_burst = src_best_burst;
 792                src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
 793                if (src_burst_size < 0)
 794                        return src_burst_size;
 795
 796                /* Set memory data size */
 797                dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
 798                                                         fifoth);
 799                chan->mem_width = dst_addr_width;
 800                dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
 801                if (dst_bus_width < 0)
 802                        return dst_bus_width;
 803
 804                /* Set memory burst size */
 805                dst_maxburst = STM32_DMA_MAX_BURST;
 806                dst_best_burst = stm32_dma_get_best_burst(buf_len,
 807                                                          dst_maxburst,
 808                                                          fifoth,
 809                                                          dst_addr_width);
 810                chan->mem_burst = dst_best_burst;
 811                dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
 812                if (dst_burst_size < 0)
 813                        return dst_burst_size;
 814
 815                dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
 816                        STM32_DMA_SCR_PSIZE(src_bus_width) |
 817                        STM32_DMA_SCR_MSIZE(dst_bus_width) |
 818                        STM32_DMA_SCR_PBURST(src_burst_size) |
 819                        STM32_DMA_SCR_MBURST(dst_burst_size);
 820
 821                /* Set FIFO threshold */
 822                chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
 823                if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
 824                        chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
 825
 826                /* Set peripheral address */
 827                chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
 828                *buswidth = chan->dma_sconfig.src_addr_width;
 829                break;
 830
 831        default:
 832                dev_err(chan2dev(chan), "Dma direction is not supported\n");
 833                return -EINVAL;
 834        }
 835
 836        stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
 837
 838        /* Set DMA control register */
 839        chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
 840                        STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
 841                        STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
 842        chan->chan_reg.dma_scr |= dma_scr;
 843
 844        return 0;
 845}
 846
 847static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
 848{
 849        memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
 850}
 851
 852static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
 853        struct dma_chan *c, struct scatterlist *sgl,
 854        u32 sg_len, enum dma_transfer_direction direction,
 855        unsigned long flags, void *context)
 856{
 857        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 858        struct stm32_dma_desc *desc;
 859        struct scatterlist *sg;
 860        enum dma_slave_buswidth buswidth;
 861        u32 nb_data_items;
 862        int i, ret;
 863
 864        if (!chan->config_init) {
 865                dev_err(chan2dev(chan), "dma channel is not configured\n");
 866                return NULL;
 867        }
 868
 869        if (sg_len < 1) {
 870                dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
 871                return NULL;
 872        }
 873
 874        desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
 875        if (!desc)
 876                return NULL;
 877
 878        /* Set peripheral flow controller */
 879        if (chan->dma_sconfig.device_fc)
 880                chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
 881        else
 882                chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 883
 884        for_each_sg(sgl, sg, sg_len, i) {
 885                ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
 886                                               sg_dma_len(sg),
 887                                               sg_dma_address(sg));
 888                if (ret < 0)
 889                        goto err;
 890
 891                desc->sg_req[i].len = sg_dma_len(sg);
 892
 893                nb_data_items = desc->sg_req[i].len / buswidth;
 894                if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 895                        dev_err(chan2dev(chan), "nb items not supported\n");
 896                        goto err;
 897                }
 898
 899                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 900                desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 901                desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 902                desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 903                desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
 904                desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
 905                desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 906        }
 907
 908        desc->num_sgs = sg_len;
 909        desc->cyclic = false;
 910
 911        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 912
 913err:
 914        kfree(desc);
 915        return NULL;
 916}
 917
 918static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
 919        struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
 920        size_t period_len, enum dma_transfer_direction direction,
 921        unsigned long flags)
 922{
 923        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
 924        struct stm32_dma_desc *desc;
 925        enum dma_slave_buswidth buswidth;
 926        u32 num_periods, nb_data_items;
 927        int i, ret;
 928
 929        if (!buf_len || !period_len) {
 930                dev_err(chan2dev(chan), "Invalid buffer/period len\n");
 931                return NULL;
 932        }
 933
 934        if (!chan->config_init) {
 935                dev_err(chan2dev(chan), "dma channel is not configured\n");
 936                return NULL;
 937        }
 938
 939        if (buf_len % period_len) {
 940                dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
 941                return NULL;
 942        }
 943
 944        /*
 945         * We allow to take more number of requests till DMA is
 946         * not started. The driver will loop over all requests.
 947         * Once DMA is started then new requests can be queued only after
 948         * terminating the DMA.
 949         */
 950        if (chan->busy) {
 951                dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
 952                return NULL;
 953        }
 954
 955        ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
 956                                       buf_addr);
 957        if (ret < 0)
 958                return NULL;
 959
 960        nb_data_items = period_len / buswidth;
 961        if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
 962                dev_err(chan2dev(chan), "number of items not supported\n");
 963                return NULL;
 964        }
 965
 966        /*  Enable Circular mode or double buffer mode */
 967        if (buf_len == period_len)
 968                chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
 969        else
 970                chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
 971
 972        /* Clear periph ctrl if client set it */
 973        chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
 974
 975        num_periods = buf_len / period_len;
 976
 977        desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
 978        if (!desc)
 979                return NULL;
 980
 981        for (i = 0; i < num_periods; i++) {
 982                desc->sg_req[i].len = period_len;
 983
 984                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
 985                desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
 986                desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
 987                desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
 988                desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
 989                desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
 990                desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
 991                buf_addr += period_len;
 992        }
 993
 994        desc->num_sgs = num_periods;
 995        desc->cyclic = true;
 996
 997        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
 998}
 999
1000static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1001        struct dma_chan *c, dma_addr_t dest,
1002        dma_addr_t src, size_t len, unsigned long flags)
1003{
1004        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1005        enum dma_slave_buswidth max_width;
1006        struct stm32_dma_desc *desc;
1007        size_t xfer_count, offset;
1008        u32 num_sgs, best_burst, dma_burst, threshold;
1009        int i;
1010
1011        num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1012        desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1013        if (!desc)
1014                return NULL;
1015
1016        threshold = chan->threshold;
1017
1018        for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1019                xfer_count = min_t(size_t, len - offset,
1020                                   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1021
1022                /* Compute best burst size */
1023                max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024                best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1025                                                      threshold, max_width);
1026                dma_burst = stm32_dma_get_burst(chan, best_burst);
1027
1028                stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1029                desc->sg_req[i].chan_reg.dma_scr =
1030                        STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1031                        STM32_DMA_SCR_PBURST(dma_burst) |
1032                        STM32_DMA_SCR_MBURST(dma_burst) |
1033                        STM32_DMA_SCR_MINC |
1034                        STM32_DMA_SCR_PINC |
1035                        STM32_DMA_SCR_TCIE |
1036                        STM32_DMA_SCR_TEIE;
1037                desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1038                desc->sg_req[i].chan_reg.dma_sfcr |=
1039                        STM32_DMA_SFCR_FTH(threshold);
1040                desc->sg_req[i].chan_reg.dma_spar = src + offset;
1041                desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1042                desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1043                desc->sg_req[i].len = xfer_count;
1044        }
1045
1046        desc->num_sgs = num_sgs;
1047        desc->cyclic = false;
1048
1049        return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1050}
1051
1052static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1053{
1054        u32 dma_scr, width, ndtr;
1055        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1056
1057        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1058        width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1059        ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1060
1061        return ndtr << width;
1062}
1063
1064/**
1065 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1066 * @chan: dma channel
1067 *
1068 * This function called when IRQ are disable, checks that the hardware has not
1069 * switched on the next transfer in double buffer mode. The test is done by
1070 * comparing the next_sg memory address with the hardware related register
1071 * (based on CT bit value).
1072 *
1073 * Returns true if expected current transfer is still running or double
1074 * buffer mode is not activated.
1075 */
1076static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1077{
1078        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1079        struct stm32_dma_sg_req *sg_req;
1080        u32 dma_scr, dma_smar, id;
1081
1082        id = chan->id;
1083        dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1084
1085        if (!(dma_scr & STM32_DMA_SCR_DBM))
1086                return true;
1087
1088        sg_req = &chan->desc->sg_req[chan->next_sg];
1089
1090        if (dma_scr & STM32_DMA_SCR_CT) {
1091                dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1092                return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1093        }
1094
1095        dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1096
1097        return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1098}
1099
1100static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1101                                     struct stm32_dma_desc *desc,
1102                                     u32 next_sg)
1103{
1104        u32 modulo, burst_size;
1105        u32 residue;
1106        u32 n_sg = next_sg;
1107        struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1108        int i;
1109
1110        /*
1111         * Calculate the residue means compute the descriptors
1112         * information:
1113         * - the sg_req currently transferred
1114         * - the Hardware remaining position in this sg (NDTR bits field).
1115         *
1116         * A race condition may occur if DMA is running in cyclic or double
1117         * buffer mode, since the DMA register are automatically reloaded at end
1118         * of period transfer. The hardware may have switched to the next
1119         * transfer (CT bit updated) just before the position (SxNDTR reg) is
1120         * read.
1121         * In this case the SxNDTR reg could (or not) correspond to the new
1122         * transfer position, and not the expected one.
1123         * The strategy implemented in the stm32 driver is to:
1124         *  - read the SxNDTR register
1125         *  - crosscheck that hardware is still in current transfer.
1126         * In case of switch, we can assume that the DMA is at the beginning of
1127         * the next transfer. So we approximate the residue in consequence, by
1128         * pointing on the beginning of next transfer.
1129         *
1130         * This race condition doesn't apply for none cyclic mode, as double
1131         * buffer is not used. In such situation registers are updated by the
1132         * software.
1133         */
1134
1135        residue = stm32_dma_get_remaining_bytes(chan);
1136
1137        if (!stm32_dma_is_current_sg(chan)) {
1138                n_sg++;
1139                if (n_sg == chan->desc->num_sgs)
1140                        n_sg = 0;
1141                residue = sg_req->len;
1142        }
1143
1144        /*
1145         * In cyclic mode, for the last period, residue = remaining bytes
1146         * from NDTR,
1147         * else for all other periods in cyclic mode, and in sg mode,
1148         * residue = remaining bytes from NDTR + remaining
1149         * periods/sg to be transferred
1150         */
1151        if (!chan->desc->cyclic || n_sg != 0)
1152                for (i = n_sg; i < desc->num_sgs; i++)
1153                        residue += desc->sg_req[i].len;
1154
1155        if (!chan->mem_burst)
1156                return residue;
1157
1158        burst_size = chan->mem_burst * chan->mem_width;
1159        modulo = residue % burst_size;
1160        if (modulo)
1161                residue = residue - modulo + burst_size;
1162
1163        return residue;
1164}
1165
1166static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1167                                           dma_cookie_t cookie,
1168                                           struct dma_tx_state *state)
1169{
1170        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1171        struct virt_dma_desc *vdesc;
1172        enum dma_status status;
1173        unsigned long flags;
1174        u32 residue = 0;
1175
1176        status = dma_cookie_status(c, cookie, state);
1177        if (status == DMA_COMPLETE || !state)
1178                return status;
1179
1180        spin_lock_irqsave(&chan->vchan.lock, flags);
1181        vdesc = vchan_find_desc(&chan->vchan, cookie);
1182        if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1183                residue = stm32_dma_desc_residue(chan, chan->desc,
1184                                                 chan->next_sg);
1185        else if (vdesc)
1186                residue = stm32_dma_desc_residue(chan,
1187                                                 to_stm32_dma_desc(vdesc), 0);
1188        dma_set_residue(state, residue);
1189
1190        spin_unlock_irqrestore(&chan->vchan.lock, flags);
1191
1192        return status;
1193}
1194
1195static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1196{
1197        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1198        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1199        int ret;
1200
1201        chan->config_init = false;
1202
1203        ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1204        if (ret < 0)
1205                return ret;
1206
1207        ret = stm32_dma_disable_chan(chan);
1208        if (ret < 0)
1209                pm_runtime_put(dmadev->ddev.dev);
1210
1211        return ret;
1212}
1213
1214static void stm32_dma_free_chan_resources(struct dma_chan *c)
1215{
1216        struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1217        struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1218        unsigned long flags;
1219
1220        dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1221
1222        if (chan->busy) {
1223                spin_lock_irqsave(&chan->vchan.lock, flags);
1224                stm32_dma_stop(chan);
1225                chan->desc = NULL;
1226                spin_unlock_irqrestore(&chan->vchan.lock, flags);
1227        }
1228
1229        pm_runtime_put(dmadev->ddev.dev);
1230
1231        vchan_free_chan_resources(to_virt_chan(c));
1232        stm32_dma_clear_reg(&chan->chan_reg);
1233        chan->threshold = 0;
1234}
1235
1236static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1237{
1238        kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1239}
1240
1241static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1242                                 struct stm32_dma_cfg *cfg)
1243{
1244        stm32_dma_clear_reg(&chan->chan_reg);
1245
1246        chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1247        chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1248
1249        /* Enable Interrupts  */
1250        chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1251
1252        chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1253        if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1254                chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1255}
1256
1257static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1258                                           struct of_dma *ofdma)
1259{
1260        struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1261        struct device *dev = dmadev->ddev.dev;
1262        struct stm32_dma_cfg cfg;
1263        struct stm32_dma_chan *chan;
1264        struct dma_chan *c;
1265
1266        if (dma_spec->args_count < 4) {
1267                dev_err(dev, "Bad number of cells\n");
1268                return NULL;
1269        }
1270
1271        cfg.channel_id = dma_spec->args[0];
1272        cfg.request_line = dma_spec->args[1];
1273        cfg.stream_config = dma_spec->args[2];
1274        cfg.features = dma_spec->args[3];
1275
1276        if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1277            cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1278                dev_err(dev, "Bad channel and/or request id\n");
1279                return NULL;
1280        }
1281
1282        chan = &dmadev->chan[cfg.channel_id];
1283
1284        c = dma_get_slave_channel(&chan->vchan.chan);
1285        if (!c) {
1286                dev_err(dev, "No more channels available\n");
1287                return NULL;
1288        }
1289
1290        stm32_dma_set_config(chan, &cfg);
1291
1292        return c;
1293}
1294
1295static const struct of_device_id stm32_dma_of_match[] = {
1296        { .compatible = "st,stm32-dma", },
1297        { /* sentinel */ },
1298};
1299MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1300
1301static int stm32_dma_probe(struct platform_device *pdev)
1302{
1303        struct stm32_dma_chan *chan;
1304        struct stm32_dma_device *dmadev;
1305        struct dma_device *dd;
1306        const struct of_device_id *match;
1307        struct resource *res;
1308        struct reset_control *rst;
1309        int i, ret;
1310
1311        match = of_match_device(stm32_dma_of_match, &pdev->dev);
1312        if (!match) {
1313                dev_err(&pdev->dev, "Error: No device match found\n");
1314                return -ENODEV;
1315        }
1316
1317        dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1318        if (!dmadev)
1319                return -ENOMEM;
1320
1321        dd = &dmadev->ddev;
1322
1323        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1324        dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1325        if (IS_ERR(dmadev->base))
1326                return PTR_ERR(dmadev->base);
1327
1328        dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1329        if (IS_ERR(dmadev->clk))
1330                return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1331
1332        ret = clk_prepare_enable(dmadev->clk);
1333        if (ret < 0) {
1334                dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1335                return ret;
1336        }
1337
1338        dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1339                                                "st,mem2mem");
1340
1341        rst = devm_reset_control_get(&pdev->dev, NULL);
1342        if (IS_ERR(rst)) {
1343                ret = PTR_ERR(rst);
1344                if (ret == -EPROBE_DEFER)
1345                        goto clk_free;
1346        } else {
1347                reset_control_assert(rst);
1348                udelay(2);
1349                reset_control_deassert(rst);
1350        }
1351
1352        dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1353
1354        dma_cap_set(DMA_SLAVE, dd->cap_mask);
1355        dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1356        dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1357        dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1358        dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1359        dd->device_tx_status = stm32_dma_tx_status;
1360        dd->device_issue_pending = stm32_dma_issue_pending;
1361        dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1362        dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1363        dd->device_config = stm32_dma_slave_config;
1364        dd->device_terminate_all = stm32_dma_terminate_all;
1365        dd->device_synchronize = stm32_dma_synchronize;
1366        dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1367                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1368                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1369        dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1370                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1371                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1372        dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1373        dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1374        dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1375        dd->max_burst = STM32_DMA_MAX_BURST;
1376        dd->descriptor_reuse = true;
1377        dd->dev = &pdev->dev;
1378        INIT_LIST_HEAD(&dd->channels);
1379
1380        if (dmadev->mem2mem) {
1381                dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1382                dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1383                dd->directions |= BIT(DMA_MEM_TO_MEM);
1384        }
1385
1386        for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1387                chan = &dmadev->chan[i];
1388                chan->id = i;
1389                chan->vchan.desc_free = stm32_dma_desc_free;
1390                vchan_init(&chan->vchan, dd);
1391        }
1392
1393        ret = dma_async_device_register(dd);
1394        if (ret)
1395                goto clk_free;
1396
1397        for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1398                chan = &dmadev->chan[i];
1399                ret = platform_get_irq(pdev, i);
1400                if (ret < 0)
1401                        goto err_unregister;
1402                chan->irq = ret;
1403
1404                ret = devm_request_irq(&pdev->dev, chan->irq,
1405                                       stm32_dma_chan_irq, 0,
1406                                       dev_name(chan2dev(chan)), chan);
1407                if (ret) {
1408                        dev_err(&pdev->dev,
1409                                "request_irq failed with err %d channel %d\n",
1410                                ret, i);
1411                        goto err_unregister;
1412                }
1413        }
1414
1415        ret = of_dma_controller_register(pdev->dev.of_node,
1416                                         stm32_dma_of_xlate, dmadev);
1417        if (ret < 0) {
1418                dev_err(&pdev->dev,
1419                        "STM32 DMA DMA OF registration failed %d\n", ret);
1420                goto err_unregister;
1421        }
1422
1423        platform_set_drvdata(pdev, dmadev);
1424
1425        pm_runtime_set_active(&pdev->dev);
1426        pm_runtime_enable(&pdev->dev);
1427        pm_runtime_get_noresume(&pdev->dev);
1428        pm_runtime_put(&pdev->dev);
1429
1430        dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1431
1432        return 0;
1433
1434err_unregister:
1435        dma_async_device_unregister(dd);
1436clk_free:
1437        clk_disable_unprepare(dmadev->clk);
1438
1439        return ret;
1440}
1441
1442#ifdef CONFIG_PM
1443static int stm32_dma_runtime_suspend(struct device *dev)
1444{
1445        struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1446
1447        clk_disable_unprepare(dmadev->clk);
1448
1449        return 0;
1450}
1451
1452static int stm32_dma_runtime_resume(struct device *dev)
1453{
1454        struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1455        int ret;
1456
1457        ret = clk_prepare_enable(dmadev->clk);
1458        if (ret) {
1459                dev_err(dev, "failed to prepare_enable clock\n");
1460                return ret;
1461        }
1462
1463        return 0;
1464}
1465#endif
1466
1467#ifdef CONFIG_PM_SLEEP
1468static int stm32_dma_suspend(struct device *dev)
1469{
1470        struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1471        int id, ret, scr;
1472
1473        ret = pm_runtime_resume_and_get(dev);
1474        if (ret < 0)
1475                return ret;
1476
1477        for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1478                scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1479                if (scr & STM32_DMA_SCR_EN) {
1480                        dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1481                        return -EBUSY;
1482                }
1483        }
1484
1485        pm_runtime_put_sync(dev);
1486
1487        pm_runtime_force_suspend(dev);
1488
1489        return 0;
1490}
1491
1492static int stm32_dma_resume(struct device *dev)
1493{
1494        return pm_runtime_force_resume(dev);
1495}
1496#endif
1497
1498static const struct dev_pm_ops stm32_dma_pm_ops = {
1499        SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1500        SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1501                           stm32_dma_runtime_resume, NULL)
1502};
1503
1504static struct platform_driver stm32_dma_driver = {
1505        .driver = {
1506                .name = "stm32-dma",
1507                .of_match_table = stm32_dma_of_match,
1508                .pm = &stm32_dma_pm_ops,
1509        },
1510        .probe = stm32_dma_probe,
1511};
1512
1513static int __init stm32_dma_init(void)
1514{
1515        return platform_driver_register(&stm32_dma_driver);
1516}
1517subsys_initcall(stm32_dma_init);
1518