linux/drivers/edac/igen6_edac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Intel client SoC with integrated memory controller using IBECC
   4 *
   5 * Copyright (C) 2020 Intel Corporation
   6 *
   7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
   8 * regions of the physical memory space. It's used for memory controllers
   9 * that don't support the out-of-band ECC which often needs an additional
  10 * storage device to each channel for storing ECC data.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/pci.h>
  16#include <linux/slab.h>
  17#include <linux/irq_work.h>
  18#include <linux/llist.h>
  19#include <linux/genalloc.h>
  20#include <linux/edac.h>
  21#include <linux/bits.h>
  22#include <linux/io.h>
  23#include <asm/mach_traps.h>
  24#include <asm/nmi.h>
  25#include <asm/mce.h>
  26
  27#include "edac_mc.h"
  28#include "edac_module.h"
  29
  30#define IGEN6_REVISION  "v2.5"
  31
  32#define EDAC_MOD_STR    "igen6_edac"
  33#define IGEN6_NMI_NAME  "igen6_ibecc"
  34
  35/* Debug macros */
  36#define igen6_printk(level, fmt, arg...)                \
  37        edac_printk(level, "igen6", fmt, ##arg)
  38
  39#define igen6_mc_printk(mci, level, fmt, arg...)        \
  40        edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
  41
  42#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  43
  44#define NUM_IMC                         2 /* Max memory controllers */
  45#define NUM_CHANNELS                    2 /* Max channels */
  46#define NUM_DIMMS                       2 /* Max DIMMs per channel */
  47
  48#define _4GB                            BIT_ULL(32)
  49
  50/* Size of physical memory */
  51#define TOM_OFFSET                      0xa0
  52/* Top of low usable DRAM */
  53#define TOLUD_OFFSET                    0xbc
  54/* Capability register C */
  55#define CAPID_C_OFFSET                  0xec
  56#define CAPID_C_IBECC                   BIT(15)
  57
  58/* Capability register E */
  59#define CAPID_E_OFFSET                  0xf0
  60#define CAPID_E_IBECC                   BIT(12)
  61
  62/* Error Status */
  63#define ERRSTS_OFFSET                   0xc8
  64#define ERRSTS_CE                       BIT_ULL(6)
  65#define ERRSTS_UE                       BIT_ULL(7)
  66
  67/* Error Command */
  68#define ERRCMD_OFFSET                   0xca
  69#define ERRCMD_CE                       BIT_ULL(6)
  70#define ERRCMD_UE                       BIT_ULL(7)
  71
  72/* IBECC MMIO base address */
  73#define IBECC_BASE                      (res_cfg->ibecc_base)
  74#define IBECC_ACTIVATE_OFFSET           IBECC_BASE
  75#define IBECC_ACTIVATE_EN               BIT(0)
  76
  77/* IBECC error log */
  78#define ECC_ERROR_LOG_OFFSET            (IBECC_BASE + res_cfg->ibecc_error_log_offset)
  79#define ECC_ERROR_LOG_CE                BIT_ULL(62)
  80#define ECC_ERROR_LOG_UE                BIT_ULL(63)
  81#define ECC_ERROR_LOG_ADDR_SHIFT        5
  82#define ECC_ERROR_LOG_ADDR(v)           GET_BITFIELD(v, 5, 38)
  83#define ECC_ERROR_LOG_SYND(v)           GET_BITFIELD(v, 46, 61)
  84
  85/* Host MMIO base address */
  86#define MCHBAR_OFFSET                   0x48
  87#define MCHBAR_EN                       BIT_ULL(0)
  88#define MCHBAR_BASE(v)                  (GET_BITFIELD(v, 16, 38) << 16)
  89#define MCHBAR_SIZE                     0x10000
  90
  91/* Parameters for the channel decode stage */
  92#define IMC_BASE                        (res_cfg->imc_base)
  93#define MAD_INTER_CHANNEL_OFFSET        IMC_BASE
  94#define MAD_INTER_CHANNEL_DDR_TYPE(v)   GET_BITFIELD(v, 0, 2)
  95#define MAD_INTER_CHANNEL_ECHM(v)       GET_BITFIELD(v, 3, 3)
  96#define MAD_INTER_CHANNEL_CH_L_MAP(v)   GET_BITFIELD(v, 4, 4)
  97#define MAD_INTER_CHANNEL_CH_S_SIZE(v)  ((u64)GET_BITFIELD(v, 12, 19) << 29)
  98
  99/* Parameters for DRAM decode stage */
 100#define MAD_INTRA_CH0_OFFSET            (IMC_BASE + 4)
 101#define MAD_INTRA_CH_DIMM_L_MAP(v)      GET_BITFIELD(v, 0, 0)
 102
 103/* DIMM characteristics */
 104#define MAD_DIMM_CH0_OFFSET             (IMC_BASE + 0xc)
 105#define MAD_DIMM_CH_DIMM_L_SIZE(v)      ((u64)GET_BITFIELD(v, 0, 6) << 29)
 106#define MAD_DIMM_CH_DLW(v)              GET_BITFIELD(v, 7, 8)
 107#define MAD_DIMM_CH_DIMM_S_SIZE(v)      ((u64)GET_BITFIELD(v, 16, 22) << 29)
 108#define MAD_DIMM_CH_DSW(v)              GET_BITFIELD(v, 24, 25)
 109
 110/* Hash for memory controller selection */
 111#define MAD_MC_HASH_OFFSET              (IMC_BASE + 0x1b8)
 112#define MAC_MC_HASH_LSB(v)              GET_BITFIELD(v, 1, 3)
 113
 114/* Hash for channel selection */
 115#define CHANNEL_HASH_OFFSET             (IMC_BASE + 0x24)
 116/* Hash for enhanced channel selection */
 117#define CHANNEL_EHASH_OFFSET            (IMC_BASE + 0x28)
 118#define CHANNEL_HASH_MASK(v)            (GET_BITFIELD(v, 6, 19) << 6)
 119#define CHANNEL_HASH_LSB_MASK_BIT(v)    GET_BITFIELD(v, 24, 26)
 120#define CHANNEL_HASH_MODE(v)            GET_BITFIELD(v, 28, 28)
 121
 122/* Parameters for memory slice decode stage */
 123#define MEM_SLICE_HASH_MASK(v)          (GET_BITFIELD(v, 6, 19) << 6)
 124#define MEM_SLICE_HASH_LSB_MASK_BIT(v)  GET_BITFIELD(v, 24, 26)
 125
 126static struct res_config {
 127        bool machine_check;
 128        int num_imc;
 129        u32 imc_base;
 130        u32 cmf_base;
 131        u32 cmf_size;
 132        u32 ms_hash_offset;
 133        u32 ibecc_base;
 134        u32 ibecc_error_log_offset;
 135        bool (*ibecc_available)(struct pci_dev *pdev);
 136        /* Convert error address logged in IBECC to system physical address */
 137        u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
 138        /* Convert error address logged in IBECC to integrated memory controller address */
 139        u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
 140} *res_cfg;
 141
 142struct igen6_imc {
 143        int mc;
 144        struct mem_ctl_info *mci;
 145        struct pci_dev *pdev;
 146        struct device dev;
 147        void __iomem *window;
 148        u64 size;
 149        u64 ch_s_size;
 150        int ch_l_map;
 151        u64 dimm_s_size[NUM_CHANNELS];
 152        u64 dimm_l_size[NUM_CHANNELS];
 153        int dimm_l_map[NUM_CHANNELS];
 154};
 155
 156static struct igen6_pvt {
 157        struct igen6_imc imc[NUM_IMC];
 158        u64 ms_hash;
 159        u64 ms_s_size;
 160        int ms_l_map;
 161} *igen6_pvt;
 162
 163/* The top of low usable DRAM */
 164static u32 igen6_tolud;
 165/* The size of physical memory */
 166static u64 igen6_tom;
 167
 168struct decoded_addr {
 169        int mc;
 170        u64 imc_addr;
 171        u64 sys_addr;
 172        int channel_idx;
 173        u64 channel_addr;
 174        int sub_channel_idx;
 175        u64 sub_channel_addr;
 176};
 177
 178struct ecclog_node {
 179        struct llist_node llnode;
 180        int mc;
 181        u64 ecclog;
 182};
 183
 184/*
 185 * In the NMI handler, the driver uses the lock-less memory allocator
 186 * to allocate memory to store the IBECC error logs and links the logs
 187 * to the lock-less list. Delay printk() and the work of error reporting
 188 * to EDAC core in a worker.
 189 */
 190#define ECCLOG_POOL_SIZE        PAGE_SIZE
 191static LLIST_HEAD(ecclog_llist);
 192static struct gen_pool *ecclog_pool;
 193static char ecclog_buf[ECCLOG_POOL_SIZE];
 194static struct irq_work ecclog_irq_work;
 195static struct work_struct ecclog_work;
 196
 197/* Compute die IDs for Elkhart Lake with IBECC */
 198#define DID_EHL_SKU5    0x4514
 199#define DID_EHL_SKU6    0x4528
 200#define DID_EHL_SKU7    0x452a
 201#define DID_EHL_SKU8    0x4516
 202#define DID_EHL_SKU9    0x452c
 203#define DID_EHL_SKU10   0x452e
 204#define DID_EHL_SKU11   0x4532
 205#define DID_EHL_SKU12   0x4518
 206#define DID_EHL_SKU13   0x451a
 207#define DID_EHL_SKU14   0x4534
 208#define DID_EHL_SKU15   0x4536
 209
 210/* Compute die IDs for ICL-NNPI with IBECC */
 211#define DID_ICL_SKU8    0x4581
 212#define DID_ICL_SKU10   0x4585
 213#define DID_ICL_SKU11   0x4589
 214#define DID_ICL_SKU12   0x458d
 215
 216/* Compute die IDs for Tiger Lake with IBECC */
 217#define DID_TGL_SKU     0x9a14
 218
 219/* Compute die IDs for Alder Lake with IBECC */
 220#define DID_ADL_SKU1    0x4601
 221#define DID_ADL_SKU2    0x4602
 222#define DID_ADL_SKU3    0x4621
 223#define DID_ADL_SKU4    0x4641
 224
 225static bool ehl_ibecc_available(struct pci_dev *pdev)
 226{
 227        u32 v;
 228
 229        if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
 230                return false;
 231
 232        return !!(CAPID_C_IBECC & v);
 233}
 234
 235static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
 236{
 237        return eaddr;
 238}
 239
 240static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
 241{
 242        if (eaddr < igen6_tolud)
 243                return eaddr;
 244
 245        if (igen6_tom <= _4GB)
 246                return eaddr + igen6_tolud - _4GB;
 247
 248        if (eaddr < _4GB)
 249                return eaddr + igen6_tolud - igen6_tom;
 250
 251        return eaddr;
 252}
 253
 254static bool icl_ibecc_available(struct pci_dev *pdev)
 255{
 256        u32 v;
 257
 258        if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
 259                return false;
 260
 261        return !(CAPID_C_IBECC & v) &&
 262                (boot_cpu_data.x86_stepping >= 1);
 263}
 264
 265static bool tgl_ibecc_available(struct pci_dev *pdev)
 266{
 267        u32 v;
 268
 269        if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
 270                return false;
 271
 272        return !(CAPID_E_IBECC & v);
 273}
 274
 275static u64 mem_addr_to_sys_addr(u64 maddr)
 276{
 277        if (maddr < igen6_tolud)
 278                return maddr;
 279
 280        if (igen6_tom <= _4GB)
 281                return maddr - igen6_tolud + _4GB;
 282
 283        if (maddr < _4GB)
 284                return maddr - igen6_tolud + igen6_tom;
 285
 286        return maddr;
 287}
 288
 289static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
 290{
 291        u64 hash_addr = addr & mask, hash = hash_init;
 292        u64 intlv = (addr >> intlv_bit) & 1;
 293        int i;
 294
 295        for (i = 6; i < 20; i++)
 296                hash ^= (hash_addr >> i) & 1;
 297
 298        return hash ^ intlv;
 299}
 300
 301static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
 302{
 303        u64 maddr, hash, mask, ms_s_size;
 304        int intlv_bit;
 305        u32 ms_hash;
 306
 307        ms_s_size = igen6_pvt->ms_s_size;
 308        if (eaddr >= ms_s_size)
 309                return eaddr + ms_s_size;
 310
 311        ms_hash = igen6_pvt->ms_hash;
 312
 313        mask = MEM_SLICE_HASH_MASK(ms_hash);
 314        intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
 315
 316        maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
 317                GET_BITFIELD(eaddr, 0, intlv_bit - 1);
 318
 319        hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
 320
 321        return maddr | (hash << intlv_bit);
 322}
 323
 324static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
 325{
 326        u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
 327
 328        return mem_addr_to_sys_addr(maddr);
 329}
 330
 331static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
 332{
 333        return eaddr;
 334}
 335
 336static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
 337{
 338        return mem_addr_to_sys_addr(eaddr);
 339}
 340
 341static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
 342{
 343        u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
 344        struct igen6_imc *imc = &igen6_pvt->imc[mc];
 345        int intlv_bit;
 346        u32 mc_hash;
 347
 348        if (eaddr >= 2 * ms_s_size)
 349                return eaddr - ms_s_size;
 350
 351        mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
 352
 353        intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
 354
 355        imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
 356                   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
 357
 358        return imc_addr;
 359}
 360
 361static struct res_config ehl_cfg = {
 362        .num_imc                = 1,
 363        .imc_base               = 0x5000,
 364        .ibecc_base             = 0xdc00,
 365        .ibecc_available        = ehl_ibecc_available,
 366        .ibecc_error_log_offset = 0x170,
 367        .err_addr_to_sys_addr   = ehl_err_addr_to_sys_addr,
 368        .err_addr_to_imc_addr   = ehl_err_addr_to_imc_addr,
 369};
 370
 371static struct res_config icl_cfg = {
 372        .num_imc                = 1,
 373        .imc_base               = 0x5000,
 374        .ibecc_base             = 0xd800,
 375        .ibecc_error_log_offset = 0x170,
 376        .ibecc_available        = icl_ibecc_available,
 377        .err_addr_to_sys_addr   = ehl_err_addr_to_sys_addr,
 378        .err_addr_to_imc_addr   = ehl_err_addr_to_imc_addr,
 379};
 380
 381static struct res_config tgl_cfg = {
 382        .machine_check          = true,
 383        .num_imc                = 2,
 384        .imc_base               = 0x5000,
 385        .cmf_base               = 0x11000,
 386        .cmf_size               = 0x800,
 387        .ms_hash_offset         = 0xac,
 388        .ibecc_base             = 0xd400,
 389        .ibecc_error_log_offset = 0x170,
 390        .ibecc_available        = tgl_ibecc_available,
 391        .err_addr_to_sys_addr   = tgl_err_addr_to_sys_addr,
 392        .err_addr_to_imc_addr   = tgl_err_addr_to_imc_addr,
 393};
 394
 395static struct res_config adl_cfg = {
 396        .machine_check          = true,
 397        .num_imc                = 2,
 398        .imc_base               = 0xd800,
 399        .ibecc_base             = 0xd400,
 400        .ibecc_error_log_offset = 0x68,
 401        .ibecc_available        = tgl_ibecc_available,
 402        .err_addr_to_sys_addr   = adl_err_addr_to_sys_addr,
 403        .err_addr_to_imc_addr   = adl_err_addr_to_imc_addr,
 404};
 405
 406static const struct pci_device_id igen6_pci_tbl[] = {
 407        { PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
 408        { PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
 409        { PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
 410        { PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
 411        { PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
 412        { PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
 413        { PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
 414        { PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
 415        { PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
 416        { PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
 417        { PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
 418        { PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
 419        { PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
 420        { PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
 421        { PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
 422        { PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
 423        { PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
 424        { PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
 425        { PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
 426        { PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
 427        { },
 428};
 429MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
 430
 431static enum dev_type get_width(int dimm_l, u32 mad_dimm)
 432{
 433        u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
 434                         MAD_DIMM_CH_DSW(mad_dimm);
 435
 436        switch (w) {
 437        case 0:
 438                return DEV_X8;
 439        case 1:
 440                return DEV_X16;
 441        case 2:
 442                return DEV_X32;
 443        default:
 444                return DEV_UNKNOWN;
 445        }
 446}
 447
 448static enum mem_type get_memory_type(u32 mad_inter)
 449{
 450        u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
 451
 452        switch (t) {
 453        case 0:
 454                return MEM_DDR4;
 455        case 1:
 456                return MEM_DDR3;
 457        case 2:
 458                return MEM_LPDDR3;
 459        case 3:
 460                return MEM_LPDDR4;
 461        case 4:
 462                return MEM_WIO2;
 463        default:
 464                return MEM_UNKNOWN;
 465        }
 466}
 467
 468static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
 469{
 470        u64 hash_addr = addr & mask, hash = 0;
 471        u64 intlv = (addr >> intlv_bit) & 1;
 472        int i;
 473
 474        for (i = 6; i < 20; i++)
 475                hash ^= (hash_addr >> i) & 1;
 476
 477        return (int)hash ^ intlv;
 478}
 479
 480static u64 decode_channel_addr(u64 addr, int intlv_bit)
 481{
 482        u64 channel_addr;
 483
 484        /* Remove the interleave bit and shift upper part down to fill gap */
 485        channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
 486        channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
 487
 488        return channel_addr;
 489}
 490
 491static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
 492                        int *idx, u64 *sub_addr)
 493{
 494        int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
 495
 496        if (addr > 2 * s_size) {
 497                *sub_addr = addr - s_size;
 498                *idx = l_map;
 499                return;
 500        }
 501
 502        if (CHANNEL_HASH_MODE(hash)) {
 503                *sub_addr = decode_channel_addr(addr, intlv_bit);
 504                *idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
 505        } else {
 506                *sub_addr = decode_channel_addr(addr, 6);
 507                *idx = GET_BITFIELD(addr, 6, 6);
 508        }
 509}
 510
 511static int igen6_decode(struct decoded_addr *res)
 512{
 513        struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
 514        u64 addr = res->imc_addr, sub_addr, s_size;
 515        int idx, l_map;
 516        u32 hash;
 517
 518        if (addr >= igen6_tom) {
 519                edac_dbg(0, "Address 0x%llx out of range\n", addr);
 520                return -EINVAL;
 521        }
 522
 523        /* Decode channel */
 524        hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
 525        s_size = imc->ch_s_size;
 526        l_map  = imc->ch_l_map;
 527        decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
 528        res->channel_idx  = idx;
 529        res->channel_addr = sub_addr;
 530
 531        /* Decode sub-channel/DIMM */
 532        hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
 533        s_size = imc->dimm_s_size[idx];
 534        l_map  = imc->dimm_l_map[idx];
 535        decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
 536        res->sub_channel_idx  = idx;
 537        res->sub_channel_addr = sub_addr;
 538
 539        return 0;
 540}
 541
 542static void igen6_output_error(struct decoded_addr *res,
 543                               struct mem_ctl_info *mci, u64 ecclog)
 544{
 545        enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
 546                                         HW_EVENT_ERR_UNCORRECTED :
 547                                         HW_EVENT_ERR_CORRECTED;
 548
 549        edac_mc_handle_error(type, mci, 1,
 550                             res->sys_addr >> PAGE_SHIFT,
 551                             res->sys_addr & ~PAGE_MASK,
 552                             ECC_ERROR_LOG_SYND(ecclog),
 553                             res->channel_idx, res->sub_channel_idx,
 554                             -1, "", "");
 555}
 556
 557static struct gen_pool *ecclog_gen_pool_create(void)
 558{
 559        struct gen_pool *pool;
 560
 561        pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
 562        if (!pool)
 563                return NULL;
 564
 565        if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
 566                gen_pool_destroy(pool);
 567                return NULL;
 568        }
 569
 570        return pool;
 571}
 572
 573static int ecclog_gen_pool_add(int mc, u64 ecclog)
 574{
 575        struct ecclog_node *node;
 576
 577        node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
 578        if (!node)
 579                return -ENOMEM;
 580
 581        node->mc = mc;
 582        node->ecclog = ecclog;
 583        llist_add(&node->llnode, &ecclog_llist);
 584
 585        return 0;
 586}
 587
 588/*
 589 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
 590 * configuration space status register ERRSTS can indicate whether a
 591 * correctable error or an uncorrectable error occurred. We only use the
 592 * ECC_ERROR_LOG register to check error type, but need to clear both
 593 * registers to enable future error events.
 594 */
 595static u64 ecclog_read_and_clear(struct igen6_imc *imc)
 596{
 597        u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
 598
 599        if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
 600                /* Clear CE/UE bits by writing 1s */
 601                writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
 602                return ecclog;
 603        }
 604
 605        return 0;
 606}
 607
 608static void errsts_clear(struct igen6_imc *imc)
 609{
 610        u16 errsts;
 611
 612        if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
 613                igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
 614                return;
 615        }
 616
 617        /* Clear CE/UE bits by writing 1s */
 618        if (errsts & (ERRSTS_CE | ERRSTS_UE))
 619                pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
 620}
 621
 622static int errcmd_enable_error_reporting(bool enable)
 623{
 624        struct igen6_imc *imc = &igen6_pvt->imc[0];
 625        u16 errcmd;
 626        int rc;
 627
 628        rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
 629        if (rc)
 630                return rc;
 631
 632        if (enable)
 633                errcmd |= ERRCMD_CE | ERRSTS_UE;
 634        else
 635                errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
 636
 637        rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
 638        if (rc)
 639                return rc;
 640
 641        return 0;
 642}
 643
 644static int ecclog_handler(void)
 645{
 646        struct igen6_imc *imc;
 647        int i, n = 0;
 648        u64 ecclog;
 649
 650        for (i = 0; i < res_cfg->num_imc; i++) {
 651                imc = &igen6_pvt->imc[i];
 652
 653                /* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
 654
 655                ecclog = ecclog_read_and_clear(imc);
 656                if (!ecclog)
 657                        continue;
 658
 659                if (!ecclog_gen_pool_add(i, ecclog))
 660                        irq_work_queue(&ecclog_irq_work);
 661
 662                n++;
 663        }
 664
 665        return n;
 666}
 667
 668static void ecclog_work_cb(struct work_struct *work)
 669{
 670        struct ecclog_node *node, *tmp;
 671        struct mem_ctl_info *mci;
 672        struct llist_node *head;
 673        struct decoded_addr res;
 674        u64 eaddr;
 675
 676        head = llist_del_all(&ecclog_llist);
 677        if (!head)
 678                return;
 679
 680        llist_for_each_entry_safe(node, tmp, head, llnode) {
 681                memset(&res, 0, sizeof(res));
 682                eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
 683                        ECC_ERROR_LOG_ADDR_SHIFT;
 684                res.mc       = node->mc;
 685                res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
 686                res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
 687
 688                mci = igen6_pvt->imc[res.mc].mci;
 689
 690                edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
 691                igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
 692                igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
 693
 694                if (!igen6_decode(&res))
 695                        igen6_output_error(&res, mci, node->ecclog);
 696
 697                gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
 698        }
 699}
 700
 701static void ecclog_irq_work_cb(struct irq_work *irq_work)
 702{
 703        int i;
 704
 705        for (i = 0; i < res_cfg->num_imc; i++)
 706                errsts_clear(&igen6_pvt->imc[i]);
 707
 708        if (!llist_empty(&ecclog_llist))
 709                schedule_work(&ecclog_work);
 710}
 711
 712static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
 713{
 714        unsigned char reason;
 715
 716        if (!ecclog_handler())
 717                return NMI_DONE;
 718
 719        /*
 720         * Both In-Band ECC correctable error and uncorrectable error are
 721         * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
 722         * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
 723         * re-enable the SERR# NMI after NMI handling. So clear this bit here
 724         * to re-enable SERR# NMI for receiving future In-Band ECC errors.
 725         */
 726        reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
 727        reason |= NMI_REASON_CLEAR_SERR;
 728        outb(reason, NMI_REASON_PORT);
 729        reason &= ~NMI_REASON_CLEAR_SERR;
 730        outb(reason, NMI_REASON_PORT);
 731
 732        return NMI_HANDLED;
 733}
 734
 735static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
 736                              void *data)
 737{
 738        struct mce *mce = (struct mce *)data;
 739        char *type;
 740
 741        if (mce->kflags & MCE_HANDLED_CEC)
 742                return NOTIFY_DONE;
 743
 744        /*
 745         * Ignore unless this is a memory related error.
 746         * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
 747         * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
 748         */
 749        if ((mce->status & 0xefff) >> 7 != 1)
 750                return NOTIFY_DONE;
 751
 752        if (mce->mcgstatus & MCG_STATUS_MCIP)
 753                type = "Exception";
 754        else
 755                type = "Event";
 756
 757        edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
 758                 mce->extcpu, type, mce->mcgstatus,
 759                 mce->bank, mce->status);
 760        edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
 761        edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
 762        edac_dbg(0, "MISC 0x%llx\n", mce->misc);
 763        edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
 764                 mce->cpuvendor, mce->cpuid, mce->time,
 765                 mce->socketid, mce->apicid);
 766        /*
 767         * We just use the Machine Check for the memory error notification.
 768         * Each memory controller is associated with an IBECC instance.
 769         * Directly read and clear the error information(error address and
 770         * error type) on all the IBECC instances so that we know on which
 771         * memory controller the memory error(s) occurred.
 772         */
 773        if (!ecclog_handler())
 774                return NOTIFY_DONE;
 775
 776        mce->kflags |= MCE_HANDLED_EDAC;
 777
 778        return NOTIFY_DONE;
 779}
 780
 781static struct notifier_block ecclog_mce_dec = {
 782        .notifier_call  = ecclog_mce_handler,
 783        .priority       = MCE_PRIO_EDAC,
 784};
 785
 786static bool igen6_check_ecc(struct igen6_imc *imc)
 787{
 788        u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
 789
 790        return !!(activate & IBECC_ACTIVATE_EN);
 791}
 792
 793static int igen6_get_dimm_config(struct mem_ctl_info *mci)
 794{
 795        struct igen6_imc *imc = mci->pvt_info;
 796        u32 mad_inter, mad_intra, mad_dimm;
 797        int i, j, ndimms, mc = imc->mc;
 798        struct dimm_info *dimm;
 799        enum mem_type mtype;
 800        enum dev_type dtype;
 801        u64 dsize;
 802        bool ecc;
 803
 804        edac_dbg(2, "\n");
 805
 806        mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
 807        mtype = get_memory_type(mad_inter);
 808        ecc = igen6_check_ecc(imc);
 809        imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
 810        imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
 811
 812        for (i = 0; i < NUM_CHANNELS; i++) {
 813                mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
 814                mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
 815
 816                imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
 817                imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
 818                imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
 819                imc->size += imc->dimm_s_size[i];
 820                imc->size += imc->dimm_l_size[i];
 821                ndimms = 0;
 822
 823                for (j = 0; j < NUM_DIMMS; j++) {
 824                        dimm = edac_get_dimm(mci, i, j, 0);
 825
 826                        if (j ^ imc->dimm_l_map[i]) {
 827                                dtype = get_width(0, mad_dimm);
 828                                dsize = imc->dimm_s_size[i];
 829                        } else {
 830                                dtype = get_width(1, mad_dimm);
 831                                dsize = imc->dimm_l_size[i];
 832                        }
 833
 834                        if (!dsize)
 835                                continue;
 836
 837                        dimm->grain = 64;
 838                        dimm->mtype = mtype;
 839                        dimm->dtype = dtype;
 840                        dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
 841                        dimm->edac_mode = EDAC_SECDED;
 842                        snprintf(dimm->label, sizeof(dimm->label),
 843                                 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
 844                        edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
 845                                 mc, i, j, dsize >> 20, dimm->nr_pages);
 846
 847                        ndimms++;
 848                }
 849
 850                if (ndimms && !ecc) {
 851                        igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
 852                        return -ENODEV;
 853                }
 854        }
 855
 856        edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
 857
 858        return 0;
 859}
 860
 861#ifdef CONFIG_EDAC_DEBUG
 862/* Top of upper usable DRAM */
 863static u64 igen6_touud;
 864#define TOUUD_OFFSET    0xa8
 865
 866static void igen6_reg_dump(struct igen6_imc *imc)
 867{
 868        int i;
 869
 870        edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
 871                 readl(imc->window + CHANNEL_HASH_OFFSET));
 872        edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
 873                 readl(imc->window + CHANNEL_EHASH_OFFSET));
 874        edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
 875                 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
 876        edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
 877                 readq(imc->window + ECC_ERROR_LOG_OFFSET));
 878
 879        for (i = 0; i < NUM_CHANNELS; i++) {
 880                edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
 881                         readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
 882                edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
 883                         readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
 884        }
 885        edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
 886        edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
 887        edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
 888}
 889
 890static struct dentry *igen6_test;
 891
 892static int debugfs_u64_set(void *data, u64 val)
 893{
 894        u64 ecclog;
 895
 896        if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
 897                edac_dbg(0, "Address 0x%llx out of range\n", val);
 898                return 0;
 899        }
 900
 901        pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
 902
 903        val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
 904        ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
 905
 906        if (!ecclog_gen_pool_add(0, ecclog))
 907                irq_work_queue(&ecclog_irq_work);
 908
 909        return 0;
 910}
 911DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
 912
 913static void igen6_debug_setup(void)
 914{
 915        igen6_test = edac_debugfs_create_dir("igen6_test");
 916        if (!igen6_test)
 917                return;
 918
 919        if (!edac_debugfs_create_file("addr", 0200, igen6_test,
 920                                      NULL, &fops_u64_wo)) {
 921                debugfs_remove(igen6_test);
 922                igen6_test = NULL;
 923        }
 924}
 925
 926static void igen6_debug_teardown(void)
 927{
 928        debugfs_remove_recursive(igen6_test);
 929}
 930#else
 931static void igen6_reg_dump(struct igen6_imc *imc) {}
 932static void igen6_debug_setup(void) {}
 933static void igen6_debug_teardown(void) {}
 934#endif
 935
 936static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
 937{
 938        union  {
 939                u64 v;
 940                struct {
 941                        u32 v_lo;
 942                        u32 v_hi;
 943                };
 944        } u;
 945
 946        edac_dbg(2, "\n");
 947
 948        if (!res_cfg->ibecc_available(pdev)) {
 949                edac_dbg(2, "No In-Band ECC IP\n");
 950                goto fail;
 951        }
 952
 953        if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
 954                igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
 955                goto fail;
 956        }
 957
 958        igen6_tolud &= GENMASK(31, 20);
 959
 960        if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
 961                igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
 962                goto fail;
 963        }
 964
 965        if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
 966                igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
 967                goto fail;
 968        }
 969
 970        igen6_tom = u.v & GENMASK_ULL(38, 20);
 971
 972        if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
 973                igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
 974                goto fail;
 975        }
 976
 977        if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
 978                igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
 979                goto fail;
 980        }
 981
 982        if (!(u.v & MCHBAR_EN)) {
 983                igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
 984                goto fail;
 985        }
 986
 987        *mchbar = MCHBAR_BASE(u.v);
 988
 989#ifdef CONFIG_EDAC_DEBUG
 990        if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
 991                edac_dbg(2, "Failed to read lower TOUUD\n");
 992        else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
 993                edac_dbg(2, "Failed to read upper TOUUD\n");
 994        else
 995                igen6_touud = u.v & GENMASK_ULL(38, 20);
 996#endif
 997
 998        return 0;
 999fail:
1000        return -ENODEV;
1001}
1002
1003static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1004{
1005        struct edac_mc_layer layers[2];
1006        struct mem_ctl_info *mci;
1007        struct igen6_imc *imc;
1008        void __iomem *window;
1009        int rc;
1010
1011        edac_dbg(2, "\n");
1012
1013        mchbar += mc * MCHBAR_SIZE;
1014        window = ioremap(mchbar, MCHBAR_SIZE);
1015        if (!window) {
1016                igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1017                return -ENODEV;
1018        }
1019
1020        layers[0].type = EDAC_MC_LAYER_CHANNEL;
1021        layers[0].size = NUM_CHANNELS;
1022        layers[0].is_virt_csrow = false;
1023        layers[1].type = EDAC_MC_LAYER_SLOT;
1024        layers[1].size = NUM_DIMMS;
1025        layers[1].is_virt_csrow = true;
1026
1027        mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1028        if (!mci) {
1029                rc = -ENOMEM;
1030                goto fail;
1031        }
1032
1033        mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1034        if (!mci->ctl_name) {
1035                rc = -ENOMEM;
1036                goto fail2;
1037        }
1038
1039        mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1040        mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1041        mci->edac_cap = EDAC_FLAG_SECDED;
1042        mci->mod_name = EDAC_MOD_STR;
1043        mci->dev_name = pci_name(pdev);
1044        mci->pvt_info = &igen6_pvt->imc[mc];
1045
1046        imc = mci->pvt_info;
1047        device_initialize(&imc->dev);
1048        /*
1049         * EDAC core uses mci->pdev(pointer of structure device) as
1050         * memory controller ID. The client SoCs attach one or more
1051         * memory controllers to single pci_dev (single pci_dev->dev
1052         * can be for multiple memory controllers).
1053         *
1054         * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1055         * for the first memory controller and assign a unique imc->dev
1056         * to mci->pdev for each non-first memory controller.
1057         */
1058        mci->pdev = mc ? &imc->dev : &pdev->dev;
1059        imc->mc = mc;
1060        imc->pdev = pdev;
1061        imc->window = window;
1062
1063        igen6_reg_dump(imc);
1064
1065        rc = igen6_get_dimm_config(mci);
1066        if (rc)
1067                goto fail3;
1068
1069        rc = edac_mc_add_mc(mci);
1070        if (rc) {
1071                igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1072                goto fail3;
1073        }
1074
1075        imc->mci = mci;
1076        return 0;
1077fail3:
1078        kfree(mci->ctl_name);
1079fail2:
1080        edac_mc_free(mci);
1081fail:
1082        iounmap(window);
1083        return rc;
1084}
1085
1086static void igen6_unregister_mcis(void)
1087{
1088        struct mem_ctl_info *mci;
1089        struct igen6_imc *imc;
1090        int i;
1091
1092        edac_dbg(2, "\n");
1093
1094        for (i = 0; i < res_cfg->num_imc; i++) {
1095                imc = &igen6_pvt->imc[i];
1096                mci = imc->mci;
1097                if (!mci)
1098                        continue;
1099
1100                edac_mc_del_mc(mci->pdev);
1101                kfree(mci->ctl_name);
1102                edac_mc_free(mci);
1103                iounmap(imc->window);
1104        }
1105}
1106
1107static int igen6_mem_slice_setup(u64 mchbar)
1108{
1109        struct igen6_imc *imc = &igen6_pvt->imc[0];
1110        u64 base = mchbar + res_cfg->cmf_base;
1111        u32 offset = res_cfg->ms_hash_offset;
1112        u32 size = res_cfg->cmf_size;
1113        u64 ms_s_size, ms_hash;
1114        void __iomem *cmf;
1115        int ms_l_map;
1116
1117        edac_dbg(2, "\n");
1118
1119        if (imc[0].size < imc[1].size) {
1120                ms_s_size = imc[0].size;
1121                ms_l_map  = 1;
1122        } else {
1123                ms_s_size = imc[1].size;
1124                ms_l_map  = 0;
1125        }
1126
1127        igen6_pvt->ms_s_size = ms_s_size;
1128        igen6_pvt->ms_l_map  = ms_l_map;
1129
1130        edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1131                 ms_s_size >> 20, ms_l_map);
1132
1133        if (!size)
1134                return 0;
1135
1136        cmf = ioremap(base, size);
1137        if (!cmf) {
1138                igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1139                return -ENODEV;
1140        }
1141
1142        ms_hash = readq(cmf + offset);
1143        igen6_pvt->ms_hash = ms_hash;
1144
1145        edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1146
1147        iounmap(cmf);
1148
1149        return 0;
1150}
1151
1152static int register_err_handler(void)
1153{
1154        int rc;
1155
1156        if (res_cfg->machine_check) {
1157                mce_register_decode_chain(&ecclog_mce_dec);
1158                return 0;
1159        }
1160
1161        rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1162                                  0, IGEN6_NMI_NAME);
1163        if (rc) {
1164                igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1165                return rc;
1166        }
1167
1168        return 0;
1169}
1170
1171static void unregister_err_handler(void)
1172{
1173        if (res_cfg->machine_check) {
1174                mce_unregister_decode_chain(&ecclog_mce_dec);
1175                return;
1176        }
1177
1178        unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1179}
1180
1181static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1182{
1183        u64 mchbar;
1184        int i, rc;
1185
1186        edac_dbg(2, "\n");
1187
1188        igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1189        if (!igen6_pvt)
1190                return -ENOMEM;
1191
1192        res_cfg = (struct res_config *)ent->driver_data;
1193
1194        rc = igen6_pci_setup(pdev, &mchbar);
1195        if (rc)
1196                goto fail;
1197
1198        for (i = 0; i < res_cfg->num_imc; i++) {
1199                rc = igen6_register_mci(i, mchbar, pdev);
1200                if (rc)
1201                        goto fail2;
1202        }
1203
1204        if (res_cfg->num_imc > 1) {
1205                rc = igen6_mem_slice_setup(mchbar);
1206                if (rc)
1207                        goto fail2;
1208        }
1209
1210        ecclog_pool = ecclog_gen_pool_create();
1211        if (!ecclog_pool) {
1212                rc = -ENOMEM;
1213                goto fail2;
1214        }
1215
1216        INIT_WORK(&ecclog_work, ecclog_work_cb);
1217        init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1218
1219        /* Check if any pending errors before registering the NMI handler */
1220        ecclog_handler();
1221
1222        rc = register_err_handler();
1223        if (rc)
1224                goto fail3;
1225
1226        /* Enable error reporting */
1227        rc = errcmd_enable_error_reporting(true);
1228        if (rc) {
1229                igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1230                goto fail4;
1231        }
1232
1233        igen6_debug_setup();
1234        return 0;
1235fail4:
1236        unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1237fail3:
1238        gen_pool_destroy(ecclog_pool);
1239fail2:
1240        igen6_unregister_mcis();
1241fail:
1242        kfree(igen6_pvt);
1243        return rc;
1244}
1245
1246static void igen6_remove(struct pci_dev *pdev)
1247{
1248        edac_dbg(2, "\n");
1249
1250        igen6_debug_teardown();
1251        errcmd_enable_error_reporting(false);
1252        unregister_err_handler();
1253        irq_work_sync(&ecclog_irq_work);
1254        flush_work(&ecclog_work);
1255        gen_pool_destroy(ecclog_pool);
1256        igen6_unregister_mcis();
1257        kfree(igen6_pvt);
1258}
1259
1260static struct pci_driver igen6_driver = {
1261        .name     = EDAC_MOD_STR,
1262        .probe    = igen6_probe,
1263        .remove   = igen6_remove,
1264        .id_table = igen6_pci_tbl,
1265};
1266
1267static int __init igen6_init(void)
1268{
1269        const char *owner;
1270        int rc;
1271
1272        edac_dbg(2, "\n");
1273
1274        owner = edac_get_owner();
1275        if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1276                return -ENODEV;
1277
1278        edac_op_state = EDAC_OPSTATE_NMI;
1279
1280        rc = pci_register_driver(&igen6_driver);
1281        if (rc)
1282                return rc;
1283
1284        igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1285
1286        return 0;
1287}
1288
1289static void __exit igen6_exit(void)
1290{
1291        edac_dbg(2, "\n");
1292
1293        pci_unregister_driver(&igen6_driver);
1294}
1295
1296module_init(igen6_init);
1297module_exit(igen6_exit);
1298
1299MODULE_LICENSE("GPL v2");
1300MODULE_AUTHOR("Qiuxu Zhuo");
1301MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1302